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We investigate the large-scale signature of the random switches between two mirrored
turbulent wake states of flat-backed bodies. A direct numerical simulation (DNS) of the
flow around an Ahmed body at a Reynolds number (Re) of 10 000 is considered. Using
proper orthogonal decomposition (POD), we identify the most energetic modes of the
velocity field and build a low-dimensional model based on the first six fluctuating velocity
modes capturing the characteristics of the flow dynamics during and between switches.
In the absence of noise, the model produces random switches with characteristic time
scales in agreement with the simulation and experiments. This chaotic model suggests that
random switches are triggered by the increase of the vortex shedding activity. However, the
addition of noise results in a better agreement in the temporal spectra of the coefficients
between the model and the simulation.
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1. Introduction

The flat-backed Ahmed geometry (Ahmed, Ramm & Faitin 1984) is a useful model to
study the complex afterbody aerodynamics and the related base suction of trucks, sport
utility vehicles and other blunt-base vehicles responsible for high drag (Choi, Lee & Park
2014). The massive turbulent separation of the flat-backed Ahmed body is dominated by
different motions associated with specific time scales (Grandemange, Gohlke & Cadot
2013; Volpe, Devinant & Kourta 2015; Haffner et al. 2020) – which will be expressed
in the remainder of the paper in convective time units based on the fluid velocity and
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body height. First of all, the recirculation zone behind the body is generally instantaneously
asymmetric and characterized by switches between the asymmetric quasi-stationary states.
The duration of the switches is O(50) convective time units and the mean time between
switches is O(1000) convective units. A second type of motion corresponds to vortex
shedding in the wake, which can be split into lateral and vertical components and is
characterized by non-dimensional periods of O(5) convective units. A third type of motion
can be associated with the pumping motion of the recirculation zone over time scales of
O(10–20) units. These results have been confirmed using different techniques to analyse
the flow, such as direct Fourier analysis on the velocity field or using proper orthogonal
decomposition (POD) by identifying the combinations of the POD modes associated with
these global dynamics.

Pavia et al. (2020) made use of the filtering properties of the POD analysis to
characterize experimentally the three-dimensional topology of the recirculation and
succeeded to observe its evolution during the switches. These results were confirmed from
the numerical simulation of Fan et al. (2020). These three-dimensional characterizations
completed the previous experimental two-dimensional wake measurements of Pavia,
Passmore & Sardu (2018) and Perry, Pavia & Passmore (2016). Podvin et al. (2020)
recently took advantage of the three-dimensional POD to correlate the different known
global dynamics to the base suction (or base drag). They found that the larger the
quasi-steady deviation of the wake, the larger the base drag, while large vortex shedding
intensity was correlated to lower quasi-steady deviation and then to lower drag. Although
their simulation reported the permanent quasi-steady wake deviation (the reflectional
symmetry-breaking state of Grandemange et al. 2013), it was not long enough to observe
wake switching towards the opposite deviation. Recently, the experiment of Haffner et al.
(2020) has carefully examined wake switching in relation to base drag and concluded with
a base drag reduction of 8 % during the switch, a similar figure found by Grandemange,
Gohlke & Cadot (2014) using a passive control cylinder to symmetrize the wake or
previous measurements of base drag due to Evrard et al. (2016) during a switch.

The first numerical wake switching was observed by Dalla Longa, Evstafyeva &
Morgans (2019) and found to be associated with a vortex loop shedding, also reported
by Fan et al. (2020). In an attempt to understand the triggering mechanism for the switch,
Hesse & Morgans (2021) used different turbulent modelling and pointed out the role of the
separation at the front. Whatever the mechanism is, the very long waiting time between
the switches and the associated randomness are consistent with rare events of Poisson
statistics (Grandemange et al. 2013; Volpe et al. 2015; Cadot et al. 2020) and can be
successfully modelled using a Langevin equation as first introduced by Rigas et al. (2014,
2015). The modelling has been adapted to the Ahmed body (Brackston et al. 2016; Evrard
et al. 2016; Barros et al. 2017) to simulate the bistable dynamics. For these so-called
stochastic models, an additional noise is applied on a nonlinear dynamical system and
the probability to change equilibrium states is proportional to exp(−�V/σ). The noise
intensity σ and the potential barrier between the two equilibrium states �V are deduced
from the experimental signals using different identification methods (Rigas et al. 2014;
Boujo & Noiray 2017). Recently, an alternative low-dimensional modelling based on POD
was obtained by Podvin et al. (2020) by projecting the Navier–Stokes equations on the
most energetic POD modes. However, their POD basis did not contain switching events,
as no switching occurred during the simulation. Adding noise to the reduced-order model
was necessary to produce the wake switching similarly to the stochastic models.

The origin of the noise responsible for these switchings still remains an open question.
It has been addressed experimentally in Cadot et al. (2020) who attributed the main role
to the fluctuation in the wake and not to the small-scale turbulent intensity of the free
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stream flow. Together with the numerical simulations observation (Dalla Longa et al. 2019;
Fan et al. 2020), there are strong evidences that events such as vortex shedding may trigger
the switch and one may wonder if a chaotic process involving the largest scales of the flow
could generate the observed bistable dynamics. The flow behaviour would be described
by a nonlinear system as for stochastic models but it would not require additional noise
to produce the bistable dynamics. This idea was explored by Varon et al. (2017) who
showed that the low-frequency dynamics of the switch appeared to exhibit weakly chaotic
behaviour.

The aim of the present paper is to pursue the modelling based on the POD of Podvin
et al. (2020) but on a longer simulation that contains wake switchings. It will be shown
that the POD basis is completed by a new POD mode associated with a switching event.
The modelling leads to spontaneous and random switching through a chaotic dynamics
implying directly the periodic vortex shedding. The article is organised as follows: § 2
contains a description of the numerical simulation along with a review of POD. The
velocity POD modes are presented in § 3, then the model is elaborated and discussed in
§ 4 and the paper is concluded in § 5.

2. Methodology

The characteristics of the simulation are the same as in Podvin et al. (2020). The
dimensions of the squareback Ahmed body are L = 1.124 m, H = 0.297 m, W = 0.350 m.
The ground height is taken equal to 0.334H in the simulation. The code SUNFLUIDh,
which is a finite-volume solver, is used to solve the incompressible Navier–Stokes
equations. The Reynolds number (Re) based on the fluid viscosity ν, incoming velocity U
and Ahmed body height H is 104. The temporal discretization is based on a second-order
backward Euler scheme, with implicit treatment of the diffusion terms and explicit
representation of the convective terms (Adams–Bashforth scheme). We use (512 × 256 ×
256) grid points in, respectively, the longitudinal direction x, the spanwise direction y and
the vertical direction z.

The mesh was refined near the body surface and the wall in order to capture the
dissipative scales (following Howard & Pourquie 2002; Fares 2006; Minguez, Pasquetti
& Serre 2008). In the boundary layers, the cell sizes in the wall-normal and transverse
directions ranged from ηbl to 8ηbl, where the viscous boundary-layer thickness ηbl ≈
6.71Re−0.9 is the smallest wall scale in the simulation. The cell size in the downstream
direction ranged from 5ηbl to 15ηbl. In the wake region, within a downstream distance
of 2H, cell sizes varied from 2ηw to 16ηw in the transverse directions and from 10ηw to
20ηw along the downstream direction, where ηw ≈ 1.2Re−0.75 is the Kolmogorov length
scale. The simulation time considered in the paper was approximately 500 convective time
units based on the velocity U and height H. All reference units will be based on these
two quantities. The time step was set to �t = 5 × 10−4 and the Courant–Friedrichs–Lewy
(CFL) number never exceeded 0.4. During the period considered, two switches in the
deviation could be observed. Figure 1 represents the mean velocity field in a mid-height
figure 1(a) and a mid-span plane figure 1(b). In all figures, the origin of the axes is taken
at the top and foremost position of the Ahmed body in the vertical symmetry plane. The
longitudinal axis is oriented downstream, the vertical axis pointing in the upward direction
and the third component is chosen accordingly to obtain a right-handed coordinate system.
Two switches were observed during the total length of the simulation. We note that in
experiments (Evrard et al. 2016) or in simulations (Hesse & Morgans 2021) it was not
unusual to observe inter-switch times of only a few hundred convective time units, which
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Figure 1. Mean velocity (a) mid-height horizontal plane and (b) mid-span vertical plane – the black lines
correspond to the isovalue 0.

is consistent with the fact that the advent of switches is governed by a Poisson distribution
of mean 1000 time units (Grandemange et al. 2013).

The main tool of analysis used in this paper is POD (Lumley 1967), which we apply to
the velocity field u(x, t) defined on a spatial domain D. The field can be expressed as a
superposition of spatial modes φk:

u(x, t) =
∑
k�0

av
k(t)φk

(x) (2.1)

where the spatial modes φ
k

are orthogonal (and can be made orthonormal), i.e.∫
D φ

k
(x) · φ

m
(x) dx = δkm (with δkm the Kronecker symbol), while the amplitudes ak are

uncorrelated. The modes can be ordered by decreasing energy λ1 � λ2 � . . . � λk =
〈|av

k |2〉, where 〈.〉 represents a time average. Since the full velocity field is considered
and the database is symmetrized, the mode 0 corresponds to the symmetric part of the
time-averaged field (Podvin et al. 2020), which we checked was essentially equal to the
time-averaged field (since the coefficient a0 is constant within less than 0.3 %). The
amplitudes av

k can be obtained from the knowledge of the spatial modes by projection
of the vector field u onto the spatial modes:

av
k(t) =

∫
Ω

u(x, t) · φ
k
(x) dx. (2.2)

One can obtain the modes from a set of N snapshots by computing the eigenvectors
A of the temporal autocorrelation matrix C. One has C̄ijAjk = λkAik, where Ajk = ak(tj)
and C̄ is the temporal autocorrelation matrix: C̄ij = (1/N)

∫
D u(x, ti) · u(x, tj) dx (method

of snapshots) and Ajk = ak(tj). When appropriate we will consider normalized amplitudes
defined as ak = av

k/
√
λk.

The decomposition was applied to the velocity field, using the symmetrization procedure
described in Podvin et al. (2020) in order to guarantee all POD modes have the same
reflectional symmetry y → −y as the geometry. Consequently, the POD modal basis
is made to respect the symmetry of the forcing geometry. Results shown in this paper
were based on a set of 1200 snapshots, 600 of which are extracted from the simulation,
and 600 are obtained through the reflection symmetry. The original 600 snapshots span
300 convective time units, 200 of which correspond to the duration of the first switch.
Comparison with another set of snapshots based on 2 × 200 samples acquired spanning
the duration of the second switch did not show any significant differences in the shape of
the modes.
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Figure 2. Cross-sections of POD velocity mode streamwise component: (a) on mid-height plane; (b) on
mid-span plan for the symmetric modes k = 2, 3, 4 and at the position y = 0.4H for the antisymmetric modes
k = 1, 5, 6. The black line corresponds to the contour Ux = 0. (c) Amplitude temporal spectra – the red dashed
lines correspond to the frequencies f = 0.2 and f = 0.8. PSD, power spectral density.

3. POD analysis of the velocity field

The POD modes of the full velocity field are shown in figure 2(a,b) as the component φkx
of the modes k. They can be compared with those obtained using a database that does
not contain any switching, described in Podvin et al. (2020). The main difference in the
decompositions is the emergence of a new mode (mode 2 in figure 2a,b), that will be called
the switch mode (please note that modes are indexed from 0 in the present paper and 1 in
Podvin et al. 2020). The new second mode creates a strong dissymmetry between the upper
and the lower part of the near wake. The mode is symmetric and is essentially streamwise
invariant in the far wake. The temporal spectra of the amplitudes are also represented for
each mode in figure 2(c). Modes 1 and 2 are characterized by low frequencies. We can
notice a slight local increase in the spectrum around the non-dimensional frequency (or
Strouhal number) of 0.2 – we will come back to this point in the next section.
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Figure 3. Velocity in a horizontal mid-plane at (a,d) the beginning, (b,e) during when av
1 = 0 and (c, f ) at the

end of the switch; (a–c) instantaneous field; (d–f ) reconstructed field using the mean and the six first fluctuating
modes.

The next four modes (modes 3 to 6) correspond to von Kármán shedding modes
in the horizontal and in the vertical direction. Modes 3 and 4 are characterized by a
non-dimensional frequency of 0.19 and modes 5 and 6 are characterized by a frequency of
0.23. These four modes also display a slight peak at 0.8, which can be seen to match the
frequency of the Kelvin–Helmholtz vortices observed along the body sides and originating
from the separations at the nose in the modes 3, 4, 5, 6.

It is possible to describe the large-scale dynamics with a relatively low number of
modes as evidenced by figure 3 which shows three instantaneous fields at the beginning
figure 3(a), in the middle figure 3(b) and at the end figure 3(c) of the first switch. Each
time stamp of the switch is defined as av

1 maximum, zero and minimum. The times are
represented by red vertical lines in the shaded area of figure 4. The full fields (figure 3a,b,c)
can be compared with their reconstructions (figure 3d,e, f ) based on the mean (figure 1)
and the six most energetic POD modes (figure 2a,b). The time evolution of the first two
fluctuating amplitudes av

1 and av
2 are represented in figure 4. We can see that the coefficient

of the switch mode av
2 is maximum during the switch. In the next section, we examine if

the large-scale signature of the switch can be reproduced with a low-dimensional model.

4. Low-dimensional model

4.1. Derivation
We give a brief review of the derivation process (see also Podvin et al. 2020; Soucasse
et al. 2020). The Navier–Stokes equations are projected onto the basis of the spatial
velocity modes φ

k
for a given truncation k ∈ [1, . . . , NT ] and a model, or system of NT

ordinary differential equations (ODEs) is obtained. The model is of the form

ȧv
k = Lkmav

m + Qkmpav
mav

p + Tk. (4.1)
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Figure 4. Amplitudes of the POD velocity modes (a) av
1 and (b) av

2. The vertical lines in the shaded area
corresponding to the switch represent the times of figure 3.

The linear term Lkm is due to the viscous dissipation Lkm = ∫
ν�φ

m
· φ

k
dx and is found

to be essentially diagonal. The quadratic terms Qkmp can be written in symmetric form as

Qkmp = 1
2(2 − δmp)

∫
(φ

p
· ∇φ

m
) + φ

m
· ∇φ

p
) · φ

k
dx. (4.2)

They represent the nonlinear interaction of the resolved modes, including the mean field
corresponding to mode 0. Here Tk is a closure term representing the contribution of
the unresolved stresses (associated with the modes excluded from the truncation) to the
evolution of the amplitude ak. As has been shown in Podvin & Sergent (2017), the closure
term can be modelled as Tk = −αk

∑NT
p=1(λp + |av

p|2)av
k + εk, where λp is the energy of

mode p and εk is a noise-like perturbation. The value of αk is determined by requiring that
for some equilibrium state av,eq

p inferred from the direct numerical simulation (DNS), the
total contribution Ak = Lkkav

k + Qkk0av
k + Tk cancels when av

k = av,eq
k for k = 1, . . . , 6,

and εk = 0, which yields

αk = Lkk + Qkk0
NT∑

p=1
(λp + |av,eq

p |2)
, (4.3)

which yields

Ak = αkav
k

NT∑
p=1

(|av,eq
p |2 − |av

p|2). (4.4)

Since (4.4) is derived from relatively crude modelling assumptions, some adjustment in
the definition of Ak may be needed in the model.

4.2. Seven-mode truncation
In what follows, we consider a seven-mode truncation for the full field (NT = 6). Since
the amplitude of the mean field is constant, i.e. a0 = 1, the model is six-dimensional.
The model includes the deviation mode, the switch mode and the von Kármán shedding
modes. We note that the model is different from that of Podvin et al. (2020) which did
not include the switch mode a2. If only the deviation mode is retained in the model,
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the system is formally analogous to the model of Rigas et al. (2015). The quadratic
interactions coefficients were thresholded: values smaller than 5 × 10−3 were not included
in the model. It remains to determine the small-scale modelling parameters αk and εk. The
noise level r.m.s. σk = 〈ε2

k 〉1/2 was chosen to be equal to a constant value σ for all modes
and was estimated to be of the order of σ ∼ αk

∑NT
p�1 λp ∼ 0.1. In order to determine

αk, we use (4.3). The equilibrium state was defined as aeq
1 = ±1, aeq

2 = 0 (no switch
mode), |aeq

2i−1|2 + |aeq
2i |2 = 2 for i = 2, 3 (constant vortex shedding intensity). Given the

eigenvalues λ2 = 0.057, λ3 = 0.015 and λi ∼ 0.01 for i = 3, . . . , 6, (4.3) yields values of
αk in the range [0.85, 1.25]. Since the small-scales modelling is relatively crude, we used
a single value αk = α = 1 for all modes. The system can then be written in normalized
form as

ȧ0 = 0, (4.5)

ȧ1 = A1 + 0.011a1a2 + 0.019a0a3 + 0.023a0a4 + 0.045a3a5 + 0.005a1a6 + ε1, (4.6)

ȧ2 = A2 + 0.12a0a5 + 0.11a0a6 + 0.007a2a3 − 0.018a2
1 + 0.018a2

0 + ε2, (4.7)

ȧ3 = A3 + 1.08a0a4 − 0.02a0a1 + 0.037a1a6 − 0.025a2a4 + ε3, (4.8)

ȧ4 = A4 − 1.08a0a3 − 0.16a0a1 − 0.04a1a5 + 0.025a2a3 + ε4, (4.9)

ȧ5 = A5 + 1.18a0a6 − 0.13a0a2 + 0.035a2a3 − 0.013a1a3 + 0.029a1a4 − 0.013a2
2 + ε5,

(4.10)

ȧ6 = A6 − 1.18a0a5 − 0.26a0a2 − 0.026a2a5 − 0.02a1a3 + ε6, (4.11)

where the numerical quadratic coefficients Q̃kmp are equal to (
√
λmλp/λk)Qkmp, and Ak

is based on the following non-dimensional adaptation of (4.4) to account for the energy
transfer to the unresolved scales:

Ak = αkak

NT∑
p=1

(βk|av,eq
p |2 − |av

p|2) = αak

6∑
p=1

λp(βk|aeq
p |2 − |ap|2), (4.12)

where βk = 1 for k � 2 and βk = 0.8 for k � 3. The mode a0 corresponding to the mean
velocity is equal to 1. We point out that the evolution of a mode of a given symmetry is
governed by interactions of modes obeying the same symmetry. The deviation mode is
therefore controlled by its interaction with the switch mode, but also by cross-interactions
between vortex-shedding modes of opposite symmetries.

4.3. Results
The model was integrated over 20 000 convective time units with and without noise.
We first consider the integration without noise (σ = 0). The time series are represented
in figure 5(a) and can be compared with the normalized amplitudes obtained from the
simulation in figure 4. We can see that the model displays chaotic dynamics characterized
by switches. The inter-switch time is random and of the order of a few thousand units, in
agreement with Grandemange et al. (2013). The duration of the switch itself is O(100)

convective units, in good agreement with the simulation. The intensity of the vortex
shedding increases drastically during the switches (figure 5a, bottom two rows). This
suggests that the shedding modes symmetrize the wake. At the onset of the switch, a2
increases then decreases sharply. It becomes strongly positive and reaches its maximum
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Figure 5. Amplitudes of POD modes 1, 2, 3 and 5 integrated in the model (a) without and (b) with noise.
Vertical dashed lines locate time at which a1 = 0 for two switching examples.

when a1 goes through zero, in agreement with the DNS (figure 4). The model therefore
does not only display spontaneous switches, but also captures the specific dynamics
of the switch mode a2. We then consider the integration of the model with noise.
Figure 5(b) shows the evolution of the amplitudes for a model with a noise r.m.s. of
σ = 0.07. As expected, the inter-switch time interval decreased with an increasing noise
level but remained of the order of 103 units for σ ∈ [0.05, 0.1]. As can be seen in
figure 5(b), the noise may trigger a switch without any shedding intensity increase as
shown for the first switch example (see caption). However, the second switch example
is clearly associated with an a5 increase corresponding to the shedding in the vertical
direction.

The addition of noise leads to time evolutions which are closer to the DNS amplitudes, as
can also be seen in figure 6, which compares the phase portraits in the (a1, a2) space for the
model without noise, the model with noise and the DNS. We note that when noise is added
to the model, a2 can take negative values between switches, which is more consistent with
DNS observations (there is still a discrepancy, which is due to the choice of the particular
equilibrium aeq

2 = 0). This is confirmed by comparison of the spectra shown in figure 7.
The characteristic frequencies associated with vortex shedding are clearly identified in the
model without noise, while an excellent agreement in both the dominant frequencies and
in the general shape and levels of the spectra is observed between the model with noise and
the DNS. The model therefore captures the main time scales of the dynamics, including
those of the switch.

Further insight into the physics of the model can be obtained by artificially manipulating
the energy levels of the modes. The results of these numerical experiments are presented
in figure 8. Excluding the switch mode from the model (see figure 8a) i.e. setting
a2 = 0 suppresses switches in the absence of noise – the system remains near one of
the equilibrium states – and strongly limits them in the presence of noise which was
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Figure 6. Phase portraits in the (a1, a2) space: (a) in model without noise; (b) in model with noise level
σ = 0.07; (c) in DNS.
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Figure 7. Comparison of the spectra of the velocity mode amplitudes ak in the DNS and in the model without
and with a noise level σ .

obtained with the same noise perturbation as in figure 5(b). This is confirmed by linear
stability of the quasi-steady state, according to which the equilibrium is stable if the
switch mode is omitted from the model. The influence of the vortex-shedding intensity
can be examined by modifying the eigenvalues λi → sλi for i = 3, . . . , 6. This leads to
modifications in the quadratic terms Q̃kmp as well as in Ak, with a new equilibrium state
|aeq

2i−1|2 + |aeq
2i |2 = 2s for i = 2, 3 and a new value of α in order to satisfy (4.3), (4.4).

Integration of the model without noise is presented in figure 8(b) for s = 1.5 and s = 0.5.
Spontaneous switching is more frequent when the energy is increased by 50 % (s = 1.5),
as can be seen from comparison with figure 5, and is suppressed when the vortex-shedding
energy is reduced to 50 % (s = 0.5) of its expected value. This suggests that both the switch
and vortex-shedding modes are key players in the switching process. We speculate that the
vortex-shedding modes could be considered as a periodic forcing that introduces chaotic
behaviour at longer time scales in the 2-D system constituted by the deviation and the
switch modes, in a manner that could be reminiscent of forced nonlinear oscillators such
as the Duffing or the Van der Pol equation (Guckenheimer & Holmes 1983).
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Figure 8. Amplitudes of POD modes 1 and 3 in modified models: (a) models with no switch mode a2 = 0
with (solid line) and without noise (dotted line), (b) models with no noise and modified vortex shedding energy
sλi, i = 3, . . . 6 (see text) for s = 1.5 (solid line) and s = 0.5 (dotted line).

5. Conclusion

We have investigated switches of the wake deviation in the flow around an Ahmed body
using POD analysis of the velocity field. Along with the deviation and vortex-shedding
modes that were previously detected in the simulation, a new mode, called the switch
mode, was identified. The effect of the mode during the switch is to speed up fluid on
the upper part of the wake, and to slow it down on its lower part. A six-dimensional
model consisting of the deviation, switch and four modes associated with vortex shedding
was deduced from the Navier–Stokes equations. In the absence of noise, the model
displays chaotic dynamics, with switches occurring intermittently on a time scale of
O(103) convective units and lasting for approximately 100 units. The model captures the
strong variations of the switch mode, which reaches its maximum when the deviation
amplitude is zero, and predicts a sharp increase of the vortex-shedding intensity at the
onset of the switch. The agreement with the simulation is further strengthened when noise
is added to the model, as it results in a very good prediction of the temporal spectra
of the large scales. Numerical experiments highlight the importance of both switch and
vortex-shedding modes in the switching process.
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