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Mader proved that every strongly k-connected n-vertex digraph contains a strongly k-

connected spanning subgraph with at most 2kn − 2k2 edges, where equality holds for

the complete bipartite digraph DKk,n−k . For dense strongly k-connected digraphs, this

upper bound can be significantly improved. More precisely, we prove that every strongly

k-connected n-vertex digraph D contains a strongly k-connected spanning subgraph with

at most kn + 800k(k + Δ(D)) edges, where Δ(D) denotes the maximum degree of the

complement of the underlying undirected graph of a digraph D. Here, the additional term

800k(k + Δ(D)) is tight up to multiplicative and additive constants. As a corollary, this

implies that every strongly k-connected n-vertex semicomplete digraph contains a strongly

k-connected spanning subgraph with at most kn + 800k2 edges, which is essentially optimal

since 800k2 cannot be reduced to the number less than k(k − 1)/2.

We also prove an analogous result for strongly k-arc-connected directed multigraphs.

Both proofs yield polynomial-time algorithms.

2010 Mathematics subject classification: Primary 05C20

Secondary 05C40

1. Introduction

Given a strongly connected digraph, what is the minimum number of edges of a strongly

connected spanning subgraph? This minimum spanning strongly connected subgraph

problem (or MSSS) is NP-hard, since it generalizes the Hamiltonian cycle problem. The

problem is closely related to both extremal graph theory and combinatorial optimization

from the perspective of studying the properties of extremal graphs and algorithmic aspects,

and especially to industry, in order to build well-connected road systems with minimal

cost. Even though the problem is NP-hard, it is known that the problem is polynomial-time
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Figure 1. DK4,4 and the directed multigraph obtained from the 7-vertex tree whose edges are replaced by two

directed 2-cycles.

solvable for various classes of digraphs [4, 6], and there are algorithms that approximate

the minimum number of edges of a strongly connected spanning subgraph [5, 22].

One of the natural generalizations of the MSSS problem is the problem of determining

the minimum number of edges in a strongly k-connected (or k-arc-connected) spanning

subgraph of a strongly k-connected (or k-arc-connected, respectively) digraph. Even though

the problem is known to be NP-hard [11], there are algorithms that approximate the

minimum number of edges of a strongly k-connected (or k-arc-connected) spanning

subgraph [8]. For more on algorithmic aspects of both problems and their variants, the

readers are referred to [1], [2, Chapter 12] and the recent survey [3] on tournaments and

semicomplete digraphs.

We investigate an upper bound of the minimum number of edges in a strongly k-

connected spanning subgraph and a strongly k-arc-connected spanning subgraph. The

following are well-known results for general digraphs and directed multigraphs.

(1) (Mader [17]) For integers k � 1 and n � 4k + 3, every strongly k-connected n-vertex

digraph contains a strongly k-connected spanning subgraph with at most 2k(n − k)

edges.

(2) (Dalmazzo [9]) For integers k, n � 1, every strongly k-arc-connected n-vertex directed

multigraph contains a strongly k-arc-connected spanning subgraph with at most

2k(n − 1) edges.

(3) (Berg and Jordán [7]) There exists a function h(k) such that for integers k � 1 and

n � h(k), every strongly k-arc-connected n-vertex digraph contains a strongly k-arc-

connected spanning subgraph with at most 2k(n − k) edges.

The upper bounds for these three cases are best possible; the digraph DKk,n−k obtained

from Kk,n−k
1 by replacing each edge with a directed 2-cycle shows that the upper bounds

given in (1) and (3) are tight, and a directed multigraph obtained from an n-vertex tree

by replacing each edge with k directed 2-cycles shows that (2) cannot be improved (see

Figure 1).

1 An undirected graph Kk,n−k is a complete bipartite graph with two independent sets of size k and size n − k,

respectively.
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Nevertheless, one may ask whether those upper bounds given in (1)–(3) can be improved

for dense digraphs, because all of these extremal examples are sparse. As a starting point,

Bang-Jensen, Huang and Yeo [5] proved the following result, which improves the result

of Berg and Jordán for tournaments.

Theorem 1.1 (Bang-Jensen, Huang and Yeo [5]). For all integers k, n � 1, every strongly

k-arc-connected n-vertex tournament contains a strongly k-arc-connected spanning subgraph

with at most kn + 136k2 edges.

They also proved that the number 136k2 of additional edges cannot be reduced to the

number less than (k(k − 1))/2, so the result is essentially best possible. In 2009, Bang-

Jensen [1] asked whether there is a function g(k) such that every strongly k-connected

n-vertex tournament contains a strongly k-connected spanning subgraph with at most

kn + g(k) edges. Recently, Kim, Kim, Suh and the author [13] answered the question

affirmatively.

Theorem 1.2 (Kang, Kim, Kim and Suh [13]). For all integers k, n � 1, every strongly k-

connected n-vertex tournament contains a strongly k-connected spanning subgraph with at

most kn + 750k2 log2(k + 1) edges.

In particular, they answered the question of Bang-Jensen with g(k) = 750k2 log2(k + 1).

Since an example of Bang-Jensen, Huang and Yeo [5] shows that g(k) � (k(k − 1))/2, there

is a gap between the lower bound (k(k − 1))/2 and the upper bound 750k2 log2(k + 1) of

g(k). We close this gap by showing that g(k) = Θ(k2) and generalize both Theorems 1.1

and 1.2 to a larger class of directed digraphs and directed multigraphs, respectively.

Before stating the results, let us begin with some terminology. Let UG(D) be an

underlying graph of a directed multigraph D, a simple undirected graph obtained from D

by removing orientations of edges and multiple edges. Let Δ(D) be the maximum degree

of the complement of UG(D), which is equal to maxv∈V (D)|{w ∈ V (D) \ {v} : (v, w), (w, v) /∈
E(D)}|. A directed multigraph D is semicomplete if Δ(D) = 0.

Bang-Jensen, Huang and Yeo [5, Theorem 8.3] proved that every strongly connected

digraph D contains a strongly connected spanning subgraph with at most n + Δ(D) edges.

We generalize this to strongly k-connected digraphs and strongly k-arc-connected directed

multigraphs as follows.

Theorem 1.3. For integers k, n � 1, the following hold.

(1) Every strongly k-connected n-vertex digraph D contains a strongly k-connected spanning

subgraph with at most kn + 800kΔ(D) + 800k2 edges.

(2) Every strongly k-arc-connected n-vertex directed multigraph D contains a strongly k-

arc-connected spanning subgraph with at most kn + 670kΔ(D) + 670k2 edges.

Remark.

(1) Theorem 1.3 gives the better result for ‘dense’ digraphs and directed multigraphs.

Given any 0 < ε < 1, part (1) of Theorem 1.3 implies that any strongly k-connected
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n-vertex digraph D with Δ(D) < (1 − ε)n/800 has a strongly k-connected spanning

subgraph of D with at most (2 − ε)kn + 800k2 edges, improving the result of Mader

[17] for these dense digraphs. Similarly, the result of Dalmazzo [9] is also improved

for strongly k-arc-connected n-vertex directed multigraphs with Δ(D) < (1 − ε)n/670.

(2) Both additional terms 800k(k + Δ(D)) and 670k(k + Δ(D)) are optimal up to mul-

tiplicative and additive constants. In Section 3, it is proved that for all integers

k � 1, Δ � 0 and n � max(5k + 2, 4k + Δ + 3), there is a strongly k-connected n-

vertex oriented graph G with Δ(G) � Δ such that every spanning subgraph D with

δ+(D), δ−(D) � k contains at least kn + max((k(k − 1))/2, kΔ) edges.

Note that the class of tournaments is a subclass of the class of semicomplete digraphs.

Theorem 1.3 proves that g(k) = O(k2) suffices, which improves Theorem 1.2 and provides

a function that is asymptotically sharp for the question of Bang-Jensen. Moreover,

Theorem 1.3 extends Theorems 1.1 and 1.2 to semicomplete directed multigraphs.

Corollary 1.4. For all integers k, n � 1, the following hold.

(1) Every strongly k-connected n-vertex semicomplete digraph D contains a strongly k-

connected spanning subgraph with at most kn + 800k2 edges.

(2) Every strongly k-arc-connected n-vertex semicomplete directed multigraph D contains a

strongly k-arc-connected spanning subgraph with at most kn + 670k2 edges.

One of the main ideas of the proof is the use of transitive subtournaments that dominate

almost all vertices in order to link the vertices, which builds on the recent methods (see

[13, 14, 15, 16, 19, 20]). Another main idea of the proof is called a sparse linkage structure,

which is introduced in [13] and will be discussed in Section 2. With some new ingredients,

both ideas are extensively used in the proof of Theorem 1.3.

The proof of Theorem 1.3 is constructive so that there is a polynomial-time al-

gorithm which, given a strongly k-connected digraph (strongly k-arc-connected directed

multigraph) D with Δ(D) � Δ, outputs a strongly k-connected (strongly k-arc-connected,

respectively) spanning subgraph with at most kn + 800kΔ + 800k2 (kn + 670kΔ + 670k2,

respectively) edges. Since every strongly k-arc-connected n-vertex directed multigraph has

at least kn edges, the algorithm approximates the minimum number of edges of a strongly

k-connected (or strongly k-arc-connected) spanning subgraph of G within an additive

error O(k(k + Δ)).

Organization of the paper. We introduce terminology and tools used in the proof in

Section 2. We discuss a lower bound on the minimum number of edges in a strongly

k-connected subgraph and a strongly k-arc-connected subgraph in Section 3. We briefly

sketch the proof of the main theorems in Section 4. Before the proof of the main results, we

introduce some basic objects and notions for the construction of sparse highly connected

subgraphs in Section 5. The main theorems are proved in Section 6, and we discuss

questions related to the main results in Section 7.
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2. Preliminaries

2.1. Basic notions and lemmas

We begin with some basic definitions.

Sets and orderings. For any integer N � 0, let [N] denote the set {1, . . . , N} if N � 1, ∅
otherwise. For any m-element finite set S = {s1, . . . , sm}, a linear ordering σ = (s1, . . . , sm)

is a map from [m] to S such that σ(i) := si for 1 � i � m. For two integers p and q,

σ(p, q) := σ({p, . . . , q} ∩ [m]) if p � q, and ∅ otherwise.

Directed graphs, directed multigraphs, oriented graphs. A directed graph (or digraph) D is a

pair (V , E) with a finite set V of vertices and a set of E edges in (V × V ) \ {(v, v) : v ∈ V }.
A directed multigraph D is a pair (V , E) with a finite set V of vertices and a multiset E of

edges in (V × V ) \ {(v, v) : v ∈ V }. For simplicity, uv denotes a 2-tuple (u, v) ∈ V (D) × V (D)

for u, v ∈ V (D). For two directed multigraphs D1 = (V1, E1) and D2 = (V2, E2), its union

D1 ∪ D2 is a directed multigraph (V1 ∪ V2, E1 ∪ E2). For a set S ⊆ V (D), D[S] denotes the

subgraph of D induced by S . An underlying graph UG(D) of a directed multigraph D is a

simple undirected graph obtained from D by removing its orientation and multiple edges.

An oriented graph is a digraph obtained from an undirected graph by orienting each

edge. An oriented graph G is transitive if uv, vw ∈ E(G) then uv ∈ E(G). For a vertex

v ∈ D, a set N+
D (v) is the set of out-neighbours of v, and N−

D (v) is the set of in-neighbours

of v. A set δ+
D (v) is the multiset of edges out of v, and δ−

D (v) is the multiset of edges into v.

Let d+
D(v) := |δ+

D (v)| and d−
D(v) := |δ−

D (v)| be the out-degree and in-degree of v, respectively.

Let δ+(D) and δ−(D) be the minimum out-degree and minimum in-degree of any vertex in

D, respectively. For two sets X,Y ⊆ V (D), let ED(X,Y ) be the multiset of edges from X

to Y , and eD(X,Y ) := |ED(X,Y )|. A vertex v ∈ V (D) is a source if the in-degree of v is 0,

and a vertex v is a sink if the out-degree of v is 0. A vertex w is a non-neighbour of v if w is

neither v nor an in-neighbour of v nor an out-neighbour of v. Let Δ(D) be the maximum

number of non-neighbours of any vertex in D, equivalently, the maximum degree of the

complement of UG(D). A digraph or a directed multigraph D is semicomplete if Δ(D) = 0,

and a semicomplete oriented graph is called a tournament. We frequently use the following

fact that Δ(D′) � Δ(D) for every induced subgraph D′ of a multigraph D.

For any integer k � 1, a directed multigraph D is k-regular if, for every v ∈ V (D),

d+
D(v) = d−

D(v) = k. A set A ⊆ V (D) indominates a vertex v ∈ V (D) if v ∈ A or there exists

a ∈ A with va ∈ E(D). A set B ⊆ V (D) outdominates a vertex u ∈ V (D) if u ∈ B or there

exists b ∈ B with bu ∈ E(D).

Paths and fans. A path P = (v1, . . . , vs) is a digraph with the set V (P ) := {v1, . . . , vs}
of s distinct vertices and the set E(P ) := {vivi+1 : 1 � i � s − 1} of edges. The set of

endvertices of P is {v1, vs}, and the set Int(P ) of internal vertices is V (P ) \ {v1, vs}. A path

P = (v1, . . . , vs) in a directed multigraph D is minimal if vivj /∈ E(D) for 2 � i + 1 < j � s.

Let k � 1 be an integer and S ⊆ V (D). For a vertex v ∈ V (D) \ S , a k-fan from v to S

(from S to v) is a collection of k paths from v to vertices in S (from vertices in S to v,

respectively) such that each of them contains exactly one vertex in S , and any two of them

have only the vertex v in common. A k-arc-fan from v to S (from S to v) is a collection
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of k paths from v to vertices in S (from vertices in S to v, respectively) such that each of

them contains exactly one vertex in S , and any two of them have no edge in common.

Connectivity. A directed multigraph D is strongly connected if, for every u, v ∈ V (D),

there is a path from u to v. For any integer k � 1, a directed graph D is strongly k-

connected if |V (D)| � k + 1 and for every S ⊆ V (D) of |S | � k − 1, the directed multigraph

D − S is strongly connected. A directed multigraph D is strongly k-arc-connected if,

for every T ⊆ E(D) with |T | � k − 1, the directed multigraph D − T remains strongly

connected. A directed multigraph D is minimally strongly k-connected (minimally strongly

k-arc-connected ) if D is strongly k-connected (strongly k-arc-connected, respectively) and

D − {e} is not strongly k-connected (strongly k-arc-connected, respectively) for every

e ∈ E(D).

We often use the following well-known facts easily deduced from Menger’s theorem.

Proposition 2.1. Let k � 1 be an integer, and let D be a directed multigraph and ∅ 	= S ⊆
V (D).

(1) If D is strongly k-connected and |S | � k, then for every v ∈ V (D) \ S , there are a k-fan

from v to S and a k-fan from S to v.

(2) If D is strongly k-arc-connected, then for every v ∈ V (D) \ S , there are a k-arc-fan from

v to S and a k-arc-fan from S to v.

(3) If D is strongly k-connected and a1, . . . , ak, b1, . . . , bk ∈ V (D) are 2k distinct vertices of

D, then there are k vertex-disjoint paths P1, . . . , Pk such that there is a permutation

σ : [k] → [k] and for i ∈ [k], Pi is a path from ai to bσ(i).

(4) If D is strongly k-arc-connected and a1, . . . , ak, b1, . . . , bk ∈ V (D) are 2k distinct vertices

of D, then there are k edge-disjoint paths P1, . . . , Pk such that there is a permutation

σ : [k] → [k] and for i ∈ [k], Pi is a path from ai to bσ(i).

Now we prove the following elementary lemma, which extends [13, Lemma 2.1] to dense

directed multigraphs.

Lemma 2.2. For integers k � 1, n � 2, Δ � 0 with n � k, let D be an n-vertex directed

multigraph with Δ(D) � Δ. Then D has k vertices having at least (n − k − Δ)/2 in-neighbours

in D and k vertices having at least (n − k − Δ)/2 out-neighbours in D.

Proof. Let x1, . . . , xk be k vertices such that |N−
D (x1)| � · · · � |N−

D (xk)| and |N−
D (xi)| �

|N−
D (v)| for every v ∈ V (D) \ {x1, . . . , xk} and 1 � i � k. Since D′ = D − {x1, . . . , xk−1}

contains n − k + 1 vertices and Δ(D′) � Δ,

∑
x∈V (D′)

|N−
D′(x)| = |E(D′)| � |E(UG(D′))| � 1

2
|V (D′)|(n − k − Δ),
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and there is x ∈ V (D′) such that |N−
D′(x)| � (n − k − Δ)/2 since |V (D′)| � 1. Therefore, for

1 � i � k,

|N−
D (xi)| � |N−

D (xk)| � |N−
D (x)| � |N−

D′(x)| � n − k − Δ

2
.

Similarly, there are k vertices having at least (n − k − Δ)/2 out-neighbours in D.

2.2. Sparse linkage structures

We need some notions introduced in [13, Section 3]. For any n-vertex digraph D and a

linear ordering σ = (v1, . . . , vn) of V (D), a digraph D is (σ, k, t)-good for positive integers k

and t, if the following hold.

(a) If vivj ∈ E(D) for 1 � i, j � n, then i < j.

(b) Every vertex vj for 1 � j � n − t has out-degree at least k in D.

(c) Every vertex vj for t + 1 � j � n has in-degree at least k in D.

The following lemma easily follows from the definition of (σ, k, t)-good digraphs. Note

that (1) of the lemma follows by [13, Claim 3.1], and (2) is easily deduced from (1).

Lemma 2.3. For integers n � 1, t � k � 1 and a (σ, k, t)-good n-vertex digraph D, the

following hold.

(1) Let S ⊆ V (D) be a set of at most k − 1 vertices. For every u ∈ V (D) \ S , there are

vertices v ∈ σ(1, t) \ S and w ∈ σ(n − t + 1, n) \ S such that D − S contains a path from

v to u and a path from u to w.

(2) Let F ⊆ E(D) be a set of at most k − 1 edges. For every u ∈ V (D), there are vertices

v ∈ σ(1, t) and w ∈ σ(n − t + 1, n) such that D − F contains a path from v to u and a

path from u to w.

The following proposition, the heart of the proof of Theorem 1.3, asserts that if D is

dense, then we can always find a sparse linkage structure (see [13, Lemma 3.4]).

Proposition 2.4 (Kang, Kim, Kim and Suh [13]). For integers k, n � 1 and Δ � 0, let D

be an n-vertex directed multigraph with Δ(D) � Δ. There is a linear ordering σ of V (D) and

a (σ, k, 2k + Δ − 1)-good digraph D′, where D′ is a spanning subgraph of D with at most

kn − k + kΔ edges.

Indeed, the proof of [13, Lemma 3.4] yields a polynomial-time algorithm that outputs

D′ in time O(n3 + kn2.5) using the algorithm of Hopcroft and Karp [12] that finds a

maximum matching in a bipartite graph.

We also need the following applications of Lemma 2.3 and Proposition 2.4.

Lemma 2.5. For integers k, n � 1 and Δ � 0, let D be a digraph with Δ(D) � Δ. Let U be

a non-empty subset of V (D). Then there are a spanning subgraph D′ of D[U], and subsets

Ui,Uo ⊆ U satisfying the following.

(1) |E(D′)| � k|U| − k + kΔ.
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(2) |Ui|, |Uo| � 2k + Δ − 1.

(3) For every S ⊆ V (D) with |S | � k − 1 and for every u, v ∈ U \ S , the digraph D′ − S has

a path from u to a vertex in Uo \ S , and a path from a vertex in Ui \ S to v.

Proof. The proof is immediate from Lemma 2.3 and Proposition 2.4.

Lemma 2.6. For integers k, n � 1 and Δ � 0, let D be a digraph with Δ(D) � Δ, and

{P1, . . . , Pk} be a collection of k vertex-disjoint minimal paths in D such that Pi is a path

from ai ∈ V (D) to bi ∈ V (D).

For every non-empty U ⊆
⋃k

i=1 Int(Pi), there are a spanning subgraph D′ of D[U] −⋃k
i=1 E(Pi), and subsets Ui,Uo ⊆ U satisfying the following.

(1) |E(D′)| � (k − 1)|U| + (k − 1)(Δ + 1).

(2) |Ui|, |Uo| � 2k + Δ − 1.

(3) For every S ⊆ V (D) with |S | � k − 1 and for every u, v ∈ U \ S , the subgraph D − S

has a path from u to a vertex in (Uo ∪ {b1, . . . , bk}) \ S using only edges in E(D′) ∪⋃k
i=1 E(Pi), and a path from a vertex in (Ui ∪ {a1, . . . , ak}) \ S to v only using edges in

E(D′) ∪
⋃k

i=1 E(Pi).

Proof. Let Epath :=
⋃k

i=1 E(Pi). Since Δ(D) � Δ and every vertex intersects at most one

path in {P1, . . . , Pk}, we have Δ(D[U] − Epath) � Δ + 2. By Proposition 2.4, there are a

linear ordering σ of U and a (σ, k − 1, 2k + Δ − 1)-good spanning subgraph D′ of D[U] −
Epath that satisfies (1). Let Ui := σ(1, 2k + Δ − 1) and Uo := σ(|U| − 2k − Δ + 2, |U|). Then

|Ui|, |Uo| � 2k + Δ − 1, satisfying (2).

Now it remains to prove (3). Let S ⊆ V (D) with |S | � k − 1 and u ∈ U \ S . We aim to

prove that there is a path P in D − S from u to a vertex in (Uo ∪ {b1, . . . , bk}) \ S with

E(P ) ⊆ E(D′) ∪ Epath. Let us write σ = (v1, . . . , v|U|) and let i be the maximum index such

that u can reach vi by a directed path in D′ − S .

If i � |U| − 2k − Δ + 2, then vi ∈ Uo. Let P be a directed path in D′ − S from u to vi
and we are done. We may assume that i � |U| − 2k − Δ + 1. By the maximality of i, we

have S = N+
D′(vi) since every vertex in σ(1, |U| − 2k − Δ + 1) has out-degree at least k − 1

in D′ and |S | � k − 1. From the definition of U, there is t ∈ [k] such that vi ∈ V int(Pt),

where Pt is a minimal path in D from at to bt. Let Q be the subpath of Pt from vi
to bt, and wi be the out-neighbour of vi in Q. Since Pt is a minimal path in D, we

have V (Q) ∩ N+
D (vi) = {wi}. Hence it follows that V (Q) ∩ N+

D′(vi) = V (Q) ∩ S = ∅ since

E(D′) ∩ E(Q) ⊆ E(D′) ∩ Epath = ∅. Therefore, there is a path P in D − S from u to bt with

E(P ) ⊆ E(D′) ∪ Epath, as desired. Similarly, for every v ∈ U \ S , there is a path P ′ in D − S

from a vertex in Ui ∪ {a1, . . . , ak} to v with E(P ′) ⊆ E(D′) ∪ Epath.

Both Lemmas 2.5 and 2.6 have the following variations with the identical proofs. When

applying Proposition 2.4, we may assume that D is a digraph by removing multiple edges.
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Lemma 2.7. For integers k, n � 1 and Δ � 0, let D be a directed multigraph with Δ(D) � Δ.

Let U be a non-empty subset of V (D). Then there are a spanning subgraph D′ of D[U], and

subsets Ui,Uo ⊆ U satisfying the following.

(1) |E(D′)| � k|U| − k + kΔ.

(2) |Ui|, |Uo| � 2k + Δ − 1.

(3) For every F ⊆ E(D) with |F | � k − 1 and for every u, v ∈ U, the digraph D′ − F has a

path from u to a vertex in Uo, and a path from a vertex in Ui to v.

Lemma 2.8. For integers k, n � 1 and Δ � 0, let D be a directed multigraph with Δ(D) � Δ

and {P1, . . . , Pk} be a collection of k edge-disjoint paths in D such that for i ∈ [k], Pi is a

path from ai ∈ V (D) to bi ∈ V (D).

For every non-empty U ⊆
⋃k

i=1 Int(Pi), there are a spanning subgraph D′ of D[U] −⋃k
i=1 E(Pi), and subsets Ui,Uo ⊆ U satisfying the following.

(1) |E(D′)| � (k − 1)|U| + (k − 1)(Δ + 2k − 1).

(2) |Ui|, |Uo| � 4k + Δ − 3.

(3) For every F ⊆ E(D) with |F | � k − 1 and for every u, v ∈ U, a subgraph D − F has a

path from u to a vertex in Uo ∪ {b1, . . . , bk} using only edges in E(D′) ∪
⋃k

i=1 E(Pi), and

a path from a vertex in Ui ∪ {a1, . . . , ak} to v using only edges in E(D′) ∪
⋃k

i=1 E(Pi).

Proof. Let Epath :=
⋃k

i=1 E(Pi). Since Pi intersects every vertex at most once for i ∈
[k] and Δ(D) � Δ, we have Δ(D[U] − Epath) � Δ + 2k. By Proposition 2.4, there are

a linear ordering σ of U and a (σ, k − 1, 4k + Δ − 3)-good digraph D′, where D′ is

a spanning subgraph of D[U] − Epath that satisfies (1). Let Ui := σ(1, 4k + Δ − 3) and

Uo := σ(|U| − 4k − Δ + 4, |U|). Then |Ui|, |Uo| � 4k + Δ − 3, satisfying (2).

Now it remains to prove (3). Let F ⊆ E(D) with |F | � k − 1 and u ∈ U. We aim to

prove that there is a path P in D − F from u to a vertex in Uo ∪ {b1, . . . , bk} with

E(P ) ⊆ E(D′) ∪ Epath. Let us write σ = (v1, . . . , v|U|) and let i be the maximum index such

that u can reach vi by a directed path in D′ − F .

If i � |U| − 4k − Δ + 4, then vi ∈ Uo. Let P be a directed path in D′ − F from u to vi
and we are done. We may assume that i � |U| − 4k − Δ + 3. By the maximality of i, we

have F = δ+
D′(vi) since every vertex in σ(1, |U| − 4k − Δ + 4) has out-degree at least k − 1

in D′ and |F | � k − 1. From the definition of U, there is t ∈ [k] such that vi ∈ V int(Pt),

where Pt is a path in D from at to bt. Let Q be a subpath of Pt from vi to bt. Since

E(D′) ∩ Epath = ∅, it follows that E(Q) ∩ F = ∅. Therefore, there is a path P in D − F

from u to bt with E(P ) ⊆ E(D′) ∪ Epath, as desired. Similarly, for every v ∈ U, there is a

path P ′ in D − F from a vertex in Ui ∪ {a1, . . . , ak} to v with E(P ′) ⊆ E(D′) ∪ Epath.

2.3. Minimally strongly k-connected digraphs

For any undirected graph G, a subgraph C = (v1, . . . , vt) is a circuit in G if v1, . . . , vt ∈ V (G)

and vivi+1 ∈ E(G) for 1 � i � t, where we define vt+1 = v1 and these t edges are distinct.

Note that the vertices v1, . . . , vt are not necessarily distinct, and we regard a circuit C as a

subgraph of G, such that V (C) := {v1, . . . , vt} and E(C) := {vivi+1 : 1 � i � t}.
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For a digraph D, a subgraph C = (v1, . . . , v2m) is an anti-directed trail in D if v1, . . . , v2m ∈
V (D), v2i−1v2i ∈ E(D) and v2i+1v2i ∈ E(D) for 1 � i � m, where we define v2m+1 = v1 and

these 2m edges are distinct. Note that the vertices v1, . . . , v2m are not necessarily distinct,

and we regard an anti-directed trail C as a subgraph of D, such that V (C) := {v1, . . . , v2m}
and E(C) :=

⋃m
i=1{v2i−1v2i, v2i+1v2i}.

For a digraph D = (V , E), let V ′ := {v′ : v ∈ V } and V ′′ := {v′′ : v ∈ V } be two disjoint

copies of V . A bipartite representation BG(D) of D is an undirected bipartite graph with

V (BG(D)) := V ′ ∪ V ′′ and E(BG(D)) := {{x′, y′′} : (x, y) ∈ E(D)}.
It is easy to see that a subgraph D′ of D is an anti-directed trail if and only if its

bipartite representation BG(D′) is a circuit in BG(D). Therefore, if D has no anti-directed

trail then

|E(D)| = |E(BG(D))| � |V (BG(D))| − 1 = 2|V (D)| − 1,

since BG(D) is a forest. This proves the following proposition (see [17, Lemma 2]), which

characterizes digraphs without anti-directed trails.

Proposition 2.9. A digraph D does not contain an anti-directed trail if and only if BG(D)

is a forest. In particular, |E(D)| � 2|V (D)| − 1 if D has no anti-directed trail.

For a directed multigraph D = (V , E) and a vertex u ∈ V , a spanning subgraph T is an

out-branching (in-branching) of D rooted at u if T is an oriented graph obtained from a

tree by orienting edges and u is the only vertex with in-degree (out-degree, respectively)

zero in T . We make the use of the following theorem (see [10] or [2, Theorem 9.3.1]).

Theorem 2.10 (Edmonds [10]). Let D = (V , E) be a directed multigraph with a vertex u ∈
V (D). Then the following hold.

(1) D contains k edge-disjoint out-branchings rooted at u if and only if, for every ∅ 	= S ⊆
V (D) \ {u}, eD(V (D) \ S, S) � k.

(2) D contains k edge-disjoint in-branchings rooted at u if and only if, for every ∅ 	= S ⊆
V (D) \ {u}, eD(S, V (D) \ S) � k.

Theorem 2.10 has the following corollary, which extends the result of Dalmazzo [9]

that every strongly k-arc-connected n-vertex directed multigraph contains a strongly k-

arc-connected subgraph with at most 2k(n − 1) edges (see [2, Theorem 5.6.1]).

Corollary 2.11. Let k � 1 be an integer and let D be a minimally strongly k-arc-connected

directed multigraph and ∅ 	= U ⊆ V (D). Then |E(D[U])| � 2k(|U| − 1).

Proof. Fix u ∈ U. By Theorem 2.10, there are k edge-disjoint out-branchings T+
1 , . . . , T+

k

rooted at u, and k edge-disjoint in-branchings T−
1 , . . . , T−

k rooted at u. Since
⋃k

i=1 T
+
i ∪⋃k

i=1 T
−
i is a strongly k-arc-connected spanning subgraph of D, we have D =

⋃k
i=1 T

+
i ∪

https://doi.org/10.1017/S0963548318000469 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548318000469


Sparse Highly Connected Spanning Subgraphs in Dense Directed Graphs 433

⋃k
i=1 T

−
i . As |E(T+

i [U])| � |U| − 1 and |E(T−
i [U])| � |U| − 1 for every i ∈ [k], we have

|E(D[U])| �
k∑

i=1

|E(T+
i [U])| +

k∑
i=1

|E(T−
i [U])| � 2k(|U| − 1),

as desired.

We use the following theorem by Mader (see [18] or [2, Corollary 5.6.20]).

Theorem 2.12 (Mader [18]). For any integer k � 2 and a minimally strongly k-connected

digraph D = (V , E), let D′ = (V , E ′) be a strongly (k − 1)-connected spanning subgraph of

D. Then the digraph (V , E \ E ′) contains no anti-directed trail.

The following proposition proves that, if a digraph D is minimally strongly k-connected,

then for any U ⊆ V (D), the induced subgraph D[U] contains only a few edges. This also

proves that every strongly k-connected digraph D contains a strongly k-connected spanning

subgraph with at most 2k|V (D)| edges, which is slightly weaker than the result of Mader

[17].

Proposition 2.13. For any integer k � 1, let D be a minimally strongly k-connected digraph

and ∅ 	= U ⊆ V (D). Then |E(D[U])| � 2k|U| − k − 1.

Proof. We prove by induction on k. If k = 1, the proposition follows from Corollary 2.11,

as D is minimally strongly 1-arc-connected. Now we may assume that k � 2. Let D′

be a minimally strongly (k − 1)-connected spanning subgraph of D. By the induction

hypothesis, |E(D′[U])| � 2(k − 1)|U| − k.

By Theorem 2.12, the digraph D′′ := (V , E \ E ′) has no anti-directed trail by The-

orem 2.12. As its induced subgraph D′′[U] also has no anti-directed trail, it has at most

2|U| − 1 edges by Proposition 2.9. Hence

|E(D[U])| = |E(D′[U])| + |E(D′′[U])| � (2(k − 1)|U| − k) + (2|U| − 1) � 2k|U| − k − 1,

as desired.

3. Lower bounds

Inspired by the construction of Tn,k in [5, Section 2], we define a strongly k-connected

(n1 + n2 + Δ + 1)-vertex oriented graph Gn1 ,n2 ,k,Δ
for integers n1, n2 � 2k + 1 as follows (see

Figure 2). Let G1 be an (Δ + 1)-vertex digraph with no edges. Let T2 be an n1-vertex

tournament obtained from an �(n1 − 1)/2�th power2 of a directed cycle of length n1

by adding arbitrary edges to ensure that T2 is a tournament. Since �(n1 − 1)/2� � k, the

tournament T2 is strongly k-connected and δ+(T2), δ
−(T2) � �(n1 − 1)/2�. Similarly, let T3

2 A kth power of a digraph D is a digraph that has the vertex-set V (D) and (u, v) is an edge when the distance

from u to v is at most k in D.
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G1

T2 T3

a1

a2

b1

b2

Figure 2. The oriented graph G5,5,2,4.

be an n2-vertex tournament obtained from an �(n2 − 1)/2�th power of a directed cycle of

length n2 by adding arbitrary edges. Since �(n2 − 1)/2� � k, the tournament T3 is strongly

k-connected and δ+(T3), δ
−(T3) � �(n2 − 1)/2�. We may assume that V (G1), V (T2), and

V (T3) are disjoint. Let a1, . . . , ak ∈ V (T2) and b1, . . . , bk ∈ V (T3) be 2k distinct vertices and

define

V (Gn1 ,n2 ,k,Δ
) := V (G1) ∪ V (T2) ∪ V (T3),

E(Gn1 ,n2 ,k,Δ
) := (V (G1) × V (T3)) ∪ (V (T2) × V (G1))

∪ ((V (T2) × V (T3)) \ {aibi : 1 � i � k}) ∪ {biai : 1 � i � k}.

Note that Gn1 ,n2 ,k,Δ
has the following properties.

• Gn1 ,n2 ,k,Δ
is strongly k-connected.

• Δ(Gn1 ,n2 ,k,Δ
) � Δ.

• The minimum in-degree and the minimum out-degree are at least

min

(⌊
n1 − 1

2

⌋
,

⌊
n2 − 1

2

⌋)
.

If n = n1 + n2 + Δ + 1 and |n1 − n2| � 1, then

min(n1, n2) � n − Δ − 2

2
and min

(⌊
n1 − 1

2

⌋
,

⌊
n2 − 1

2

⌋)
�

⌊
n − Δ

4

⌋
− 1.
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Let D be a spanning subgraph of Gn1 ,n2 ,k,Δ
with δ+(D), δ−(D) � k. Since every vertex in

G1 has in-degree at least k in D,∑
v∈V (T2)

d+
D(v) −

∑
w∈V (T2)

d−
D(w) � eD(V (T2), V (G1)) − eD(V (T3), V (T2)) � k(Δ + 1) − k

and thus ∑
v∈V (T2)

d+
D(v) �

∑
w∈V (T2)

d−
D(w) + kΔ � kn1 + kΔ.

Hence

|E(D)| =
∑

u∈V (G1)

d+
D(u) +

∑
v∈V (T2)

d+
D(v) +

∑
w∈V (T3)

d+
D(w)

� k|V (G1)| +
∑

v∈V (T2)

d+
D(v) + k|V (T3)| � k(n1 + n2 + Δ + 1) + kΔ.

Let us define Tn1 ,n2 ,k to be an (n1 + n2 + k)-vertex tournament obtained from an

(n1 + n2 + k)-vertex oriented graph Gn1 ,n2 ,k,k−1 by replacing G1 with a k-vertex transitive

tournament T1. Note that Tn1 ,n2 ,k has the following properties.

• Tn1 ,n2 ,k is strongly k-connected.

• The minimum in-degree and the minimum out-degree are at least

min

(⌊
n1 − 1

2

⌋
,

⌊
n2 − 1

2

⌋)
.

Let D be a spanning subgraph of Tn1 ,n2 ,k with δ+(D), δ−(D) � k. Let σ = (v1, . . . , vt) be

a transitive ordering of the transitive tournament T1. Since d−
D(vi) � k for 1 � i � k, we

have eD(V (T2), vi) + eD(V (T1), vi) � k. In particular, eD(V (T2), vi) � k − i + 1, and thus

eD(V (T2), V (T1)) �
k∑

i=1

(k − i + 1) =
k(k + 1)

2
.

Hence∑
v∈V (T2)

d+
D(v) −

∑
w∈V (T2)

d−
D(w) � eD(V (T2), V (T1)) − eD(V (T3), V (T2)) � k(k + 1)

2
− k

and thus

|E(D)| =
∑

u∈V (G1)

d+
D(u) +

∑
v∈V (T2)

d+
D(v) +

∑
w∈V (T3)

d+
D(w)

� k|V (G1)| +
∑

v∈V (T2)

d+
D(v) + k|V (T3)| � k(n1 + n2 + k) +

k(k − 1)

2
.

If n = n1 + n2 + k and |n1 − n2| � 1, then

min(n1, n2) � n − k − 1

2
and min

(⌊
n1 − 1

2

⌋
,

⌊
n2 − 1

2

⌋)
�

⌊
n − k − 3

4

⌋
.

The construction above proves the following proposition.
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Proposition 3.1. Let k � 1 and Δ � 0 be integers.

(1) For any integer n � 4k + Δ + 3, there is a strongly k-connected n-vertex oriented graph G

with Δ(G) � Δ and δ+(G), δ−(G) � �(n − Δ)/4� − 1, such that every spanning subgraph

D with δ+(D), δ−(D) � k contains at least kn + kΔ edges.

(2) For any integer n � 5k + 2, there is a strongly k-connected n-vertex tournament T

with δ+(T ), δ−(T ) � �(n − k − 3)/4�, such that each spanning subgraph D with δ+(D),

δ−(D) � k contains at least kn + (k(k − 1))/2 edges.

4. Brief idea of the proof of Theorem 1.3

Before introducing tools used in the proof, we illustrate the brief idea of the proof

of (1) of Theorem 1.3 for Δ = 0, where the given digraph D is semicomplete (see

Figure 3).

In order to provide enough intuition, we assume the simplest case. First, let us assume

that we have 3k disjoint sets A1, . . . , A3k ⊆ V (D) and 3k disjoint sets B1, . . . , B3k ⊆ V (D) \⋃3k
i=1 Ai satisfying the following.

• |Ai| = |Bi| = 5 for 1 � i � 3k.

• D[Ai] contains a spanning transitive tournament T [Ai] with a sink ai and D[Bi]

contains a spanning transitive tournament T [Bi] with a source bi for 1 � i � 3k.

• Every vertex

v ∈ V (D) \
( 3k⋃

i=1

Ai ∪
3k⋃
i=1

Bi

)

is indominated by Ai and outdominated by Bi for 1 � i � 3k.

We may assume that

d−
D[{a1 ,...,a3k}](a1) � · · · � d−

D[{a1 ,...,a3k}](a3k) and d+
D[{b1 ,...,b3k}](b1) � · · · � d+

D[{b1 ,...,b3k}](b3k)

by permuting indices in [3k]. By Lemma 2.2, d−
D[{a1 ,...,a3k}](ai) � k and d+

D[{b1 ,...,b3k}](bi) � k

for 1 � i � k.

Since D is strongly k-connected, we can use Menger’s theorem. There exists a permuta-

tion σ : [k] → [k] such that for 1 � i � k, there exists a path Pi from ai to bσ(i) in D. We

may assume that σ is an identity map by permuting indices in [k]. As we only permute

indices in [k] here, it is still preserved that d−
D[{a1 ,...,a3k}](ai) � k and d+

D[{b1 ,...,b3k}](bi) � k for

1 � i � k.

Let A =
⋃3k

i=1 Ai and B =
⋃3k

i=1 Bi. Using escapers (see Lemma 5.8), there exist a set

Eescape ⊆ E(D) of edges and a set Vout ⊆ V (D) \ (A ∪ B) of vertices such that |Eescape| =

O(k2) and |Vout| = O(k2), where they allow vertices in A ∪ B, can easily escape from A ∪ B

using these edges, in the following sense.

(A4.1) For any S ⊆ V (D) with |S | � k − 1 and u ∈ (A ∪ B) \ S , there is a path from u to

a vertex in Vout in D − S using only edges in Eescape.

(A4.2) For any S ⊆ V (D) with |S | � k − 1 and u ∈ (A ∪ B) \ S , there is a path from a

vertex in Vout to u in D − S using only edges in Eescape.
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Ui

Uo

A1

A2

B1

B2

a1

a2

b1

b2

P1

P2

Figure 3. Indominating sets A1, A2 and outdominating sets B1, B2 with two paths P1 and P2 connecting pairs

of vertices (a1, b1) and (a2, b2), respectively. The paths P1 and P2 may intersect other vertices in A ∪ B. The thick

lines depict that after removing one vertex in V (D), each remaining vertex in V (D) \ (A ∪ B) can be reached

from a vertex in Ui and can reach a vertex in Uo via sparse linkage structure.

Now we use the sparse linkage structure introduced in Section 2. Let us apply Lemma 2.5

to D[Vout] and D[V (D) \ (A ∪ B ∪
⋃k

i=1 V
int(Pi) ∪ Vout)], where we get a spanning subgraph

D′ of D[Vout], U
′
i , U

′
o ⊆ Vout, a spanning subgraph D′′ of

D

[
V (D) \

(
A ∪ B ∪

k⋃
i=1

V int(Pi) ∪ Vout

)]

and

U ′′
i , U

′′
o ⊆ V (D) \

(
A ∪ B ∪

k⋃
i=1

V int(Pi) ∪ Vout

)
.

Similarly, let us apply Lemma 2.6 to

D

[ k⋃
i=1

V int(Pi) \ (A ∪ B ∪ Vout)

]
,

where we get a spanning subgraph D′′′ of

D

[ k⋃
i=1

V int(Pi) \ (A ∪ B ∪ Vout)

]
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and

U ′′′
i , U

′′′
o ⊆

k⋃
i=1

V int(Pi) \ (A ∪ B ∪ Vout).

Given any S ⊆ V (D) with |S | � k − 1, they satisfy the following.

• |E(D′)| � k|Vout| − k.

• |E(D′′)| � k|V (D) \ (A ∪ B ∪
⋃k

i=1 V
int(Pi) ∪ Vout)| − k.

• |E(D′′′)| � (k − 1)|
⋃k

i=1 V
int(Pi) \ (A ∪ B ∪ Vout)| + (k − 1).

• |U ′
i |, |U ′

o|, |U ′′
i |, |U ′′

o |, |U ′′′
i |, |U ′′′

o | � 2k − 1.

(B4.1) For any vertex w ∈ V (D′) \ S , there exist a path from w to a vertex in U ′
o \ S in

D′ − S and a path from a vertex in U ′
i \ S to w in D′ − S .

(B4.2) For any vertex w ∈ V (D′′) \ S , there exist a path from w to a vertex in U ′′
o \ S in

D′′ − S and a path from a vertex in U ′′
i \ S to w in D′′ − S .

(B4.3) For any vertex w ∈ V (D′′′) \ S , there exist a path from w to a vertex in (U ′′′
o ∪

{b1, . . . , bk}) \ S in D′′′ − S and a path from a vertex in (U ′′′
i ∪ {a1, . . . , ak}) \ S to w

in D′′′ − S .

In the following section, an object absorber will be related to these properties above.

Let

Uo := U ′
o ∪ U ′′

o ∪ U ′′′
o , Ui := U ′

i ∪ U ′′
i ∪ U ′′′

i .

For any u ∈ Uo and 1 � i � 3k, as u ∈ V (D) \ (A ∪ B), u is indominated by Ai and there

exists a path Pu,i of length at most two from u to ai, since D[Ai] contains a spanning

transitive subtournament with a sink ai. Similarly, for any v ∈ Ui and 1 � i � k, v is

outdominated by Bi and there exists a path Qv,i of length at most two from bi to v, since

D[Bi] contains a spanning transitive subtournament with a source bi.

Let us define

E ′ := E(D[A ∪ B]) ∪
⋃
u∈Uo

3k⋃
i=1

E(Pu,i) ∪
⋃
v∈Ui

3k⋃
i=1

E(Qv,i).

Then |E ′| = O(k2), as |Uo| � 6k and |Ui| � 6k.

Let S ⊆ V (D) with |S | � k − 1 and u ∈ Uo \ S . For any 1 � t � k with at /∈ S , we claim

that there exists a path from u to at in D only using edges in E ′. Indeed, let 1 � i � 3k be

an index with ai ∈ N−
D (at) and Ai ∩ S = ∅, which is guaranteed by d−

D[{a1 ,...,a3k}](at) � k and

the disjointness of A1, . . . , A3t. Since Ai ∩ S = ∅ and at /∈ S , the path P ∗
u,t := Pu,i ∪ (ai, at)

does not intersect S and is from u to at only using edges in E ′. Similarly, for any v ∈ Ui \ S

and bt /∈ S with 1 � t � k, there exists a path from bt to v in D only using edges in E ′. In

summary:

(C4.1) For any S ⊆ V (D) with |S | � k − 1, u ∈ Uo \ S and at /∈ S with 1 � t � k, there

exists a path from u to at in D only using edges in E ′.

(C4.2) For any S ⊆ V (D) with |S | � k − 1, v ∈ Ui \ S and bt /∈ S with 1 � t � k, there

exists a path from bt to v in D only using edges in E ′
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In the following section, an object hub will attain these properties above. Now, let Dsparse

be a spanning subgraph of D with the edge set

k⋃
i=1

E(Pi) ∪ Eescape ∪ E(D′) ∪ E(D′′) ∪ E(D′′′) ∪ E ′.

Then it is straightforward to see that |E(Dsparse)| = k|V (D)| + O(k2). Now we claim that

Dsparse is strongly k-connected. Let S ⊆ V (D) with |S | � k − 1 and u, v ∈ V (D) \ S . We aim

to find a path from u to v in Dsparse − S . Let i ∈ [k] be an index such that V (Pi) ∩ S = ∅.

Now it suffices to find a path from u to u∗ ∈ Uo \ S in Dsparse − S and a path from

v∗ ∈ Ui \ S to v in Dsparse − S . Indeed, by (C4.1) and (C4.2) we have a path from u∗ to ai
and a path from bi to v∗. Together with the path Pi, there exists a path from u to v in

Dsparse − S , as desired.

• If u ∈ A ∪ B, then by (A4.1), there exists a path from u to u′ ∈ Vout in Dsparse − S . By

(B4.1), there exists a path from u′ to u∗ ∈ Uo \ S in Dsparse − S .

• If u ∈
⋃k

i=1 V
int(Pi) \ Vout, then by (B4.3) there is a path P from u to a vertex w ∈ Uo ∪

{b1, . . . , bk} in D′′′ − S . If w ∈ Uo, then let u∗ := w. Otherwise, w ∈ {b1, . . . , bk} ⊆ A ∪ B,

where this case has already been considered above.

• If u ∈ V (D) \ (A ∪ B ∪
⋃k

i=1 V
int(Pi)), then by (B4.1) and (B4.2) there is a path from u

to a vertex u∗ ∈ Uo \ S in Dsparse − S .

Similarly, one can find a path from a vertex v∗ ∈ Ui \ S to v. This proves that Dsparse is

strongly k-connected.

Note that this proof only works when for 1 � i � 3k, every vertex in V (D) \ (A ∪ B)

that is indominated by Ai is also outdominated by Bi, and Ai and Bi have small size. As

we cannot guarantee the existence of these subsets of vertices, this ideal situation might

not happen. Nevertheless, we are able to force all vertices in V (D) \ (A ∪ B) to satisfy the

conditions close to the ideal one as follows.

Using Lemma 5.3, we choose 5-indominators A1, . . . , A5k and 5-outdominators B1, . . . , B5k

(see Definitions 5.1 and 5.2). Each of these 5-indominators Ai (5-outdominators Bi) would

indominate (outdominate, respectively) all vertices in V (D) \ (A ∪ B) but a few exceptional

vertices U+
i (U−

i , respectively). As the size of U+
i or U−

i could be Ω(n), we utilize the

following two observations to reduce the size. First, we do not need to force all vertices

to in/outdominated by all 5k 5-in/outdominators. Second, if the size of U+
i (U−

i ) is

big enough, then all vertices in U+
i (U−

i , respectively) have large out-degree (in-degree,

respectively) so they can easily escape from U+
i (U−

i , respectively).

Hence, we regard any vertex v ∈ V (D) \ (A ∪ B) as an exceptional vertex only when there

are more than k indices i ∈ [5k] such that v is not indominated by Ai (not outdominated

by Bi) and |U+
i | (|U−

i |, respectively) is not big enough. Let O+ (O−, respectively) be the

set of all these vertices in V (D) \ (A ∪ B) and O∗ := O+ ∪ O− be the set of exceptional

vertices. In summary, it can be shown that 5-indominators A1, . . . , A5k , 5-outdominators

B1, . . . , B5k and O∗ attain the following properties (see Lemma 5.5).

https://doi.org/10.1017/S0963548318000469 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548318000469


440 D. Y. Kang

• |O∗| = O(k).

• For any vertex w ∈ V (D) \ (A ∪ B ∪ O∗), there exist a path of length at most two from

w to a vertex in Ai for at least 4k indices i ∈ [5k], and a path of length at most two

from a vertex in Bi to w for at least 4k indices i ∈ [5k].

Indeed, as every vertex in V (D) \ (A ∪ B) is not in/outdominated by all 5-in/out-

dominators, we cannot simply follow the proof illustrated in this section and it is required

to develop more ideas. In the following section, we introduce the objects according to the

modification discussed as above.

5. Basic objects in the construction

As the proof of the main result consists of many technical parts, we divide the proof

into statements constructing objects called dominators, trios, escapers, hubs and absorbers.

Dominators are the most basic objects, very simple but useful in controlling the length

of many disjoint paths. A collection of many dominators with many good properties are

called a trio, which is our main interest when involving collections of many dominators.

Based on trios, we construct hubs and absorbers, and combine them into a highly

connected spanning subgraph with few edges to prove Theorem 1.3.

5.1. Dominators

In this subsection, we define indominators and outdominators in digraphs, which are the

most basic objects in constructing a sparse highly connected spanning subgraph.

Definition 5.1. Let t � 1 be an integer. A t-indominator is a quadtuple (D,A, x, a) such

that D is a directed multigraph, A is a subset of V (D) with at most t vertices, and x, a ∈ A,

satisfying the following.

(ID1) D[A] contains a spanning transitive tournament with a source x and a sink a.

(ID2) x has at least 2t−1|U+| out-neighbours in D, where U+ :=
⋂

v∈A N
+
D (v) \

⋃
v∈A N

−
D (v).

Definition 5.2. Let t � 1 be an integer. A t-outdominator is a quadtuple (D,B, x′, b) such

that D is a directed multigraph, B is a subset of V (D) with at most t vertices, and x′, b ∈ B,

satisfying the following.

(OD1) D[B] contains a spanning transitive tournament with a source b and a sink x′.

(OD2) x′ has at least 2t−1|U−| in-neighbours in D, where U− :=
⋂

v∈B N−
D (v) \

⋃
v∈B N+

D (v).

The following lemma guarantees the existence of a t-in/outdominator in directed

multigraphs. This is a variation of [19, Lemma 2.3] proved for tournaments.

Lemma 5.3. Let t � 1 be an integer. For each vertex x of a directed multigraph D, there

exist A ⊆ V (D) and a ∈ A such that (D,A, x, a) is a t-indominator, and B ⊆ V (D) and b ∈ B

such that (D,B, x, b) is a t-outdominator.

Proof. We only prove that there exist A ⊆ V (D) and a ∈ A such that (D,A, x, a) is a

t-indominator. The rest of the proof follows by reversing orientations of all edges.
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Let G be an oriented graph obtained from D by removing multiple edges and exactly

one edge from each directed 2-cycle. Let V1 := N+
G (x) and v1 := x. Let s be the maximum

integer that satisfies 1 � s � t and v1, . . . , vs ∈ V (D) and V1, . . . , Vs ⊆ V (D) satisfying the

following properties.

(i) For 1 � i < j � s, vj ∈ N+
G (vi).

(ii) For 1 � i � s, Vi :=
⋂i

k=1 N
+
G (vk).

(iii) For 1 � i < s, |Vi+1| � 1
2
|Vi|.

Note that such s exists as (i), (ii) and (iii) hold for s = 1. We claim that Vs = ∅ or s = t.

Otherwise, let vs+1 ∈ Vs with d+
G[Vs]

(vs+1) � |Vs|/2. Indeed, since G is an oriented graph,

G[Vs] contains at most (|Vs|(|Vs| − 1))/2 edges, proving that there is a vertex in Vs with

out-degree at most (|Vs| − 1)/2. Let us define Vs+1 := N+
G[Vs]

(vs+1) = Vs ∩ N+
G (vs+1), then

|Vs+1| � |Vs|/2, contradicting the maximality of s.

Therefore, Vs = ∅ or s = t. Let us define A := {v1, . . . , vs} with a := vs. Then G[A] is a

transitive tournament with a source x and a sink a. Let V+ := Vs =
⋂s

k=1 N
+
G (vk). Since

|V+| � 2−t+1|V1| by (iii), we deduce |N+
G (x)| = |V1| � 2t−1|V+|. Now we claim that⋂

v∈A
N+

D (v) \
⋃
v∈A

N−
D (v) ⊆

⋂
v∈A

N+
G (v).

For every w ∈
⋂

v∈A N
+
D (v) \

⋃
v∈A N

−
D (v) we have w ∈

⋂
v∈A N

+
G (v), otherwise there exists

v ∈ A such that wv, vw ∈ E(D), implying that w ∈
⋃

v∈A N
−
D (v) and contradicting the

assumption on w. Therefore, |V+| � |U+| and we have

|N+
D (x)| � |N+

G (x)| � 2t−1|V+| � 2t−1|U+|,

where U+ :=
⋂

v∈A N
+
D (v) \

⋃
v∈A N

−
D (v). This proves that (D,A, x, a) is a t-indominator.

Throughout the proof, it is worth noting that t will always be 5 when regarding

t-indominators and t-outdominators.

5.2. Trios

In Section 4, we sketched the proof provided that every vertex in V (D) \ (A ∪ B) is in-

dominated by A1, . . . , A3k and outdominated by B1, . . . , B3k . However, we cannot guarantee

these sets in/outdominate all other vertices, but they in/outdominate almost all other

vertices by Lemma 5.3. In this subsection, we introduce the object called a trio, allowing

that most of the vertices can reach many 5-indominators and can be reached from many

5-outdominators by paths of length at most two. The other subsections will introduce

other objects to follow the sketched proof in Section 4 according to this modification.

Definition 5.4. Let d, k, t1, t2 � 1, m � k, Δ � 0 be integers, and let u > 0 be a real number.

Let D be a directed multigraph with Δ(D) � Δ. A 3-tuple (A,B, O∗) is called a (t1, t2, d, m, u)-

trio in D if A is a collection of m distinct 5-indominators {(Di, Ai, xi, ai)}mi=1, and B is a

collection of m distinct 5-outdominators {(D′
i , Bi, x

′
i, bi)}mi=1, and a subset O∗ ⊆ V (D) of

vertices satisfying the following properties, where

U+
i :=

⋂
w∈Ai

N+
Di

(w) \
⋃
w∈Ai

N−
Di

(w) and U−
i :=

⋂
w∈Bi

N−
D′
i
(w) \

⋃
w∈Bi

N+
D′
i
(w).
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(T1) For every i ∈ [m], Di is a subgraph of D, and contains D − (
⋃m

i=1 Ai ∪
⋃m

i=1 Bi) as a

subgraph.

(T2) For every i ∈ [m], D′
i is a subgraph of D −

⋃m
i=1 Ai, and contains D − (

⋃m
i=1 Ai ∪⋃m

i=1 Bi) as a subgraph.

(T3) A1, . . . , Am, B1, . . . , Bm are disjoint subsets.

(T4) For every i ∈ [k],

|N−
D[{a1 ,...,am}](ai)| � m − k − Δ

2
and |N+

D[{b1 ,...,bm}](bi)| � m − k − Δ

2
.

(T5) For every v ∈ V (D) \ (
⋃m

i=1 Ai ∪
⋃m

i=1 Bi ∪ O∗), there are at least m − t1 − t2 indices

i ∈ [m] such that either v is indominated by Ai, or v is in U+
i with |U+

i | � u.

(T6) For every v ∈ V (D) \ (
⋃m

i=1 Ai ∪
⋃m

i=1 Bi ∪ O∗), there are at least m − t1 − t2 indices

i ∈ [m] such that either v is outdominated by Bi, or v is in U−
i with |U−

i | � u.

(T7) For every u ∈ U+
i with i ∈ [m] and |U+

i | � u, the vertex u has at least d + |U+
i |

out-neighbours in Di.

(T8) For every u ∈ U−
i with i ∈ [m] and |U−

i | � u, the vertex u has at least d + |U−
i |

in-neighbours in D′
i .

(T9) |O∗| is small enough; |O∗| is at most

2mu

t1
+

10Δm

t2
,

and if t2 � Δ then

|O∗| � 2mu

t1
.

The following lemma guarantees a (t1, t2, d, m, u)-trio for dense digraphs.

Lemma 5.5. Let d, k, n, m, t1, t2 � 1, Δ � 0 be integers with m � k, and let u > 0 be a real

number. Let D be an n-vertex directed multigraph with Δ(D) � Δ. If n � 10m and u � d/15,

then D contains a (t1, t2, d, m, u)-trio (A,B, O∗).

Proof. First of all, we construct m distinct 5-indominators satisfying some properties.

Claim 1. There exist a collection A of m distinct 5-indominators {(Di, Ai, xi, ai)}mi=1 satisfy-

ing the following. For every 1 � i � m,

(1) Di := D −
⋃i−1

j=1 Aj ,

(2) xi is a vertex in Di with the smallest number of out-neighbours in V (Di),

(3) (Di, Ai, xi, ai) is a 5-indominator.

Proof of Claim 1. As |V (D)| = n � 5m, the claim follows by successively applying

Lemma 5.3.

Let us define A :=
⋃m

i=1 Ai. Now we construct m distinct 5-outdominators satisfying

some properties.

https://doi.org/10.1017/S0963548318000469 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548318000469


Sparse Highly Connected Spanning Subgraphs in Dense Directed Graphs 443

Claim 2. There exist a collection B of m distinct 5-outdominators {(D′
i , Bi, x

′
i, bi)}mi=1 satis-

fying the following. For every 1 � i � m,

(1) D′
i := D − (A ∪

⋃i−1
j=1 Bj),

(2) x′
i is a vertex in D′

i with the smallest number of in-neighbours in V (D′
i),

(3) (D′
i , Bi, x

′
i, bi) is a 5-outdominator.

Proof of Claim 2. Since |V (D) \ A| � n − 5m � 5m, the claim follows by successively

applying Lemma 5.3.

Let us define B :=
⋃m

i=1 Bi, and for every i ∈ [m], let us define

U+
i :=

⋂
v∈Ai

N+
Di

(v) \
⋃
v∈Ai

N−
Di

(v), U−
i :=

⋂
v∈Bi

N−
D′
i
(v) \

⋃
v∈Bi

N+
D′
i
(v).

By (ID2) and (OD2), for every i ∈ [m] we have

|N+
Di

(xi)| � 16|U+
i |, |N−

D′
i
(xi)| � 16|U−

i |. (5.1)

Since both Di and D′
i contain D − (A ∪ B) as a subgraph for 1 � i � m, this proves (T1)

and (T2) of Definition 5.4. From the construction of A and B, (T3) is clear.

By Lemma 2.2 and permuting indices, we may assume that for every i ∈ [k],

|N−
D[{a1 ,...,am}](ai)| � m − k − Δ

2
, |N+

D[{b1 ,...,bm}](bi)| � m − k − Δ

2
,

which proves (T4) of Definition 5.4.

For 1 � i � m, let

F+
i := V (Di) \

(
Ai ∪ U+

i ∪
⋃
v∈Ai

N−
Di

(v)

)
, F−

i := V (D′
i) \

(
Bi ∪ U−

i ∪
⋃
v∈Bi

N+
D′
i
(v)

)
,

where F+
i is the set of vertices v in V (Di) \ Ai that are not indominated by Ai and are

non-neighbours of some vertices in Ai, and F−
i is the set of vertices v in V (D′

i) \ Bi that

are not outdominated by Bi and are non-neighbours of some vertices in Bi.

Since every vertex in D has at most Δ other non-neighbour vertices and |Ai|, |Bi| � 5

for i ∈ [m], it follows that

|F+
i |, |F−

i | � 5Δ. (5.2)

It is easy to observe the following, from the definitions of U+
i , F+

i , U−
i and F−

i .

Observation 5.6. For every vertex v ∈ V (D) \ (A ∪ B) and i ∈ [m], the following hold.

• Either v is indominated by Ai, or v is in U+
i , or v is in F+

i .

• Either v is outdominated by Bi, or v is in U−
i , or v is in F−

i .

Let us define

I+ := {i ∈ [m] : |U+
i | < u}, I− := {i ∈ [m] : |U−

i | < u},
O+ := {v ∈ V (D) : |{i ∈ I+ : v ∈ U+

i }| > t1},

https://doi.org/10.1017/S0963548318000469 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548318000469


444 D. Y. Kang

F+ := {v ∈ V (D) : |{i ∈ [m] : v ∈ F+
i }| > t2},

O− := {v ∈ V (D) : |{i ∈ I− : v ∈ U−
i }| > t1},

F− := {v ∈ V (D) : |{i ∈ [m] : v ∈ F−
i }| > t2},

O := O+ ∪ O−,

F := F+ ∪ F−.

Let O∗ := O ∪ F . By Observation 5.6 and the definition of O∗, both (T5) and (T6) of

Definition 5.4 are satisfied.

Claim 3. The following hold.

(1) For every i ∈ [m] \ I+ and v ∈ V (Di) \ Ai, |N+
Di

(v)| � d + |U+
i |.

(2) For every i ∈ [m] \ I− and w ∈ V (D′
i) \ Bi, |N−

D′
i
(w)| � d + |U−

i |.

(3) |O| � (2mu)/t1.

(4) |F | � (10Δm)/t2. Moreover, if t2 � Δ, then F = ∅.

Proof of Claim 3. For every i ∈ [m], we have |N+
Di

(xi)| � 16|U+
i | and |N−

D′
i
(x′

i)| � 16|U−
i |

by (5.1). From the definition of xi and x′
i, it follows that for every v ∈ V (Di) \ Ai and

w ∈ V (D′
i) \ Bi, we have

|N+
D (v)| � |N+

Di
(xi)| � 16|U+

i |,
|N−

D−A(w)| � |N−
D′
i
(x′

i)| � 16|U−
i |,

by Claims 1 and 2.

For every i ∈ [m] \ I+ and v ∈ V (Di) \ Ai, since |U+
i | � u it follows that |N+

Di
(v)| �

16|U+
i | � d + |U+

i | since u � d/15. Similarly, for every i ∈ [m] \ I− and w ∈ V (D′
i) \ Bi, we

have |N−
D′
i
(w)| � d + |U−

i |. This proves (1) and (2).

Since every vertex in O+ is in U+
i for more than t1 indices i ∈ I+,

t1|O+| �
∑
i∈I+

|U+
i | � |I+| · u � m · u

and |O+| � (m · u)/t1. Similarly, |O−| � (m · u)/t1, implying that |O| � (2mu)/t1. This

proves (3).

If Δ = 0, then (4) is trivial. We may assume that Δ > 0. Since every vertex in F+ is in

F+
i for more than t2 indices i ∈ [m] and by (5.2),

t2|F+| �
∑
i∈[m]

|F+
i | � m · 5Δ

and |F+| � (5Δm)/t2. Similarly, |F−| � (5Δm)/t2, implying that |F | � (10Δm)/t2.

If t2 � Δ, then for every v ∈ F+, there are more than Δ indices i ∈ [m] such that

v ∈ F+
i and there is w ∈ Ai with (v, w), (w, v) /∈ E(D), implying that v has more than Δ

non-neighbours. Hence F+ = ∅. Similarly, we have F− = ∅. This proves (4).
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Since O∗ = O ∪ F ,

|O∗| � |O| + |F | � 2mu

t1
+

10Δm

t2

by Claim 3. If t2 � Δ, then F = ∅ and thus |O∗| � |O| � (2mu)/t1. Hence (A,B, O∗) is a

(t1, t2, d, m, u)-trio since (T7)–(T9) hold by Claim 3.

5.3. Escapers

In this subsection, we consider objects called escapers. Roughly speaking, given a directed

multigraph D and a small set U ⊆ V (D), a k-escaper is a set of edges such that every

vertex in U can escape from U to V (D) \ U by a path, after we remove fewer than

k vertices of D. Finding k-escapers with few edges is one of the most crucial parts in

constructing a sparse strongly k-connected subgraph of D.

Definition 5.7. Let k � 1 be an integer and let D be a digraph. A k-escaper in D is a triple

(Eescape, U,Uout) of a subset Eescape of E(D) and subsets U and Uout of V (D) satisfying the

following.

(E1) Uout ⊆ V (D) \ U.

(E2) For every S ⊆ V (D) with |S | � k − 1 and any vertex u ∈ U \ S , a subgraph D − S

contains a path from u to a vertex in Uout only using edges in Eescape.

(E3) For every S ⊆ V (D) with |S | � k − 1 and any vertex v ∈ U \ S , a subgraph D − S

contains a path from a vertex in Uout to v only using edges in Eescape.

The following lemma is the main lemma of this subsection, which allows us to find a

sparse k-escaper of a set U of vertices.

Lemma 5.8. Let k, n � 1 be integers. Let D be a strongly k-connected digraph, and U ⊆
V (D). If |U| � |V (D)| − k, then there is a k-escaper (Eescape, U,Uout) in D such that |Eescape| �
4k|U| and |Uout| � 2k|U|.

Proof. Let D′ be a minimally strongly k-connected spanning subgraph of D. Since

|V (D) \ U| � k, we can apply Proposition 2.1 as follows. For every u ∈ U, there are a

k-fan {P+
u,i}ki=1 from u to V (D) \ U and a k-fan {P−

u,i}ki=1 from V (D) \ U to u.

Let us define

Eescape :=
⋃
u∈U

( k⋃
i=1

E(P+
u,i) ∪

k⋃
i=1

E(P−
u,i)

)
, (5.3)

Uout :=
⋃
u∈U

( k⋃
i=1

V (P+
u,i) ∪

k⋃
i=1

V (P−
u,i)

)
\ U, (5.4)

which proves (E1).
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For every u ∈ U, it follows that

∣∣∣∣Uout ∩
k⋃

i=1

V (P+
u,i)

∣∣∣∣ = k,

∣∣∣∣Uout ∩
k⋃

i=1

V (P−
u,i)

∣∣∣∣ = k, (5.5)

and thus |Uout| � 2k|U| and |Eescape| � |E(D′[U])| + |Uout| � 4k|U| by Proposition 2.13.

Since Eescape ⊆ E(D′), it is a subset of E(D). Now we claim that (Eescape, U,Uout) is

a k-escaper. For every S ⊆ V (D) with |S | � k − 1 and u ∈ U \ S , there is i ∈ [k] with

V (P+
u,i) ∩ S = ∅. Since E(P+

u,i) ⊆ Eescape and by the definition of Uout, this proves (E2).

Similarly (E3) holds by the same proof.

We also define an edge version of escapers.

Definition 5.9. Let k � 1 be an integer and let D be a directed multigraph. A k-arc-escaper

in D is a 3-tuple (Eescape, U,Uout) satisfying the following.

(E1′) Uout ⊆ V (D) \ U.

(E2′) For every F ⊆ E(D) with |F | � k − 1 and any vertex u ∈ U, a subgraph D − F

contains a path from u to a vertex in Uout only using edges in Eescape.

(E3′) For every F ⊆ E(D) with |F | � k − 1 and any vertex v ∈ U, a subgraph D − F

contains a path from a vertex in Uout to v only using edges in Eescape.

Replacing Proposition 2.13 by Corollary 2.11 in the proof of Lemma 5.8, the following

lemma easily follows.

Lemma 5.10. Let k, n � 1 be integers. Let D be an n-vertex strongly k-arc-connected dir-

ected multigraph, and U � V (D). Then there exists a k-arc-escaper (Eescape, U,Uout) in D

such that |Eescape| � 4k|U| and |Uout| � 2k|U|.

5.4. Hubs

In this subsection, we consider objects called hubs, which allow us to connect a set of

vertices with the vertices of dominators. Hubs are one of the main tools when constructing

highly connected sparse spanning subgraphs of dense digraphs.

Definition 5.11. Let k be an integer and let D be a digraph. Then a k-hub H in D is

a 5-tuple (Ehub, A0, B0, Uo, Ui) that consists of a set Ehub ⊆ E(D), two sets A0, B0 ⊆ V (D)

with |A0| = |B0| = k, and subsets Uo,Ui ⊆ V (D) satisfying the following.

(H1) A0 =: {a1, . . . , ak}, B0 =: {b1, . . . , bk} and A0 ∩ B0 = ∅.

(H2) For every t ∈ [k] and S ⊆ V (D) with |S | � k − 1, if u ∈ Uo \ S and at /∈ S , then

D − S contains a path from u to at only using edges in Ehub.

(H3) For every t ∈ [k] and S ⊆ V (D) with |S | � k − 1, if v ∈ Ui \ S and bt /∈ S , then D − S

contains a path from bt to v only using edges in Ehub.

We also define an edge version of hubs.
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Definition 5.12. Let k be an integer and let D be a directed multigraph. A k-arc-hub

H in D is a 5-tuple (Ehub, A0, B0, Uo, Ui) that consists of a set Ehub ⊆ E(D), two sets

A0, B0 ⊆ V (D) with |A0| = |B0| = k, and subsets Uo,Ui ⊆ V (D) satisfying the following.

(H1′) A0 =: {a1, . . . , ak}, B0 =: {b1, . . . , bk} and A0 ∩ B0 = ∅.

(H2′) For every t ∈ [k], u ∈ Uo and F ⊆ E(D) with |F | � k − 1, the subgraph D − F

contains a path from u to at only using edges in Ehub.

(H3′) For every t ∈ [k], v ∈ Ui and F ⊆ E(D) with |F | � k − 1, the subgraph D − F

contains a path from bt to v only using edges in Ehub.

The following lemma guarantees the existence of a k-hub under some conditions for

dense digraphs.

Lemma 5.13. Let d, k, m, t1, t2 � 1, Δ, w � 0 be integers with m � k d � 6m + 5Δ and a

real number u � d/15. Let D be a digraph with Δ(D) � Δ and at least 10m vertices. If D

contains a (t1, t2, d, m, u)-trio (A,B, O∗) such that

• (A,B, O∗) satisfies the assumptions in Lemma 5.5,

• A consists of 5-indominators {(Di, Ai, xi, ai)}mi=1, and

• B consists of 5-outdominators {(D′
i , Bi, x

′
i, bi)}mi=1.

then for every Wo,Wi ⊆ V (D) \ (
⋃m

i=1 Ai ∪
⋃m

i=1 Bi ∪ O∗) with |Wo|, |Wi| � w, then D satis-

fies the following.

(1) If m � t1 + t2 + k, then there is Econn ⊆ E(D) with |Econn| � 6w(m − t1 − t2) such that

for every S ⊆ V (D) with |S | � k − 1, if u ∈ Wo \ S , then there is t ∈ [m] such that D − S

contains a path from u to at only using edges in Econn, and if v ∈ Wi \ S then there is

t′ ∈ [m] such that D − S contains a path from bt′ to v only using edges in Econn.

(2) If m > 2t1 + 2t2 + 3k + Δ − 2, then D contains a k-hub

H := (Ehub, {a1, . . . , ak}, {b1, . . . , bk},Wo,Wi)

with |Ehub| � 2km + 6w(m − t1 − t2).

Proof. Since D is a digraph with Δ(D) � Δ and |V (D)| � 10m, there is (A,B, O∗) such

that

(A,B, O∗) is a (t1, t2, d, m, u)-trio in D, (5.6)

by Lemma 5.5, where A consists of m distinct 5-indominators {(Di, Ai, xi, ai)}mi=1, B consists

of m distinct 5-outdominators {(D′
i , Bi, x

′
i, bi)}mi=1, |O∗| < (2mu)/t1 if t2 � Δ and otherwise

|O∗| � 2mu

t1
+

10Δm

t2
.

Let A :=
⋃m

i=1 Ai and B :=
⋃m

i=1 Bi. For 1 � i � m, let

U+
i :=

⋂
v∈Ai

N+
Di

(v) \
⋃
v∈Ai

N−
Di

(v), U−
i :=

⋂
v∈Bi

N−
D′
i
(v) \

⋃
v∈Bi

N+
D′
i
(v).

For each i ∈ [m], let F+
i ⊆ V (Di) \ Ai be the set of vertices in V (Di) \ Ai that are not

indominated by Ai and not in U+
i , and let F−

i ⊆ V (D′
i) \ Bi be the set of vertices in

https://doi.org/10.1017/S0963548318000469 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548318000469


448 D. Y. Kang

V (D′
i) \ Bi that are not outdominated by Bi and not in U−

i . Since every vertex of D has

at most Δ non-neighbours and each |Ai|, |Bi| � 5 for i ∈ [m], we have

|A|, |B| � 5m, (5.7)

|F+
i |, |F−

i | � 5Δ. (5.8)

Let Wo and Wi be any subsets of V (D) \ (A ∪ B ∪ O∗) with |Wo|, |Wi| � w. For each

u ∈ Wo, let I+
0 (u) be the set of indices i ∈ [m] such that Ai indominates u, and let

I+
1 (u) ⊆ [m] \ I+

0 (u) be the set of indices i ∈ [m] \ I+
0 (u) such that u ∈ U+

i and |U+
i | � u.

Let S+(u) := {ai : i ∈ I+
0 (u) ∪ I+

1 (u)}. By (T5), we have |S+(u)| � m − t1 − t2. By removing

some elements in I+
0 (u) and I+

1 (u), we may assume that

|S+(u)| = m − t1 − t2. (5.9)

Now we construct a |S+(u)|-fan {P+
u,i}i∈I+

0 (u)∪I+
1 (u) from u to S+(u) as follows. For each

i ∈ I+
0 (u), since Ai indominates u we pick any vertex ui ∈ Ai ∩ N+

D (u). If ui 	= ai, then we can

define P+
u,i to be the path (u, ui, ai) since D[Ai] contains a spanning transitive tournament

by (ID1) and (5.6). If ui = ai, then we define P+
u,i to be the path (u, ai).

For each i ∈ I+
1 (u), we have d � 6m + 5Δ by the assumption of the lemma. By (T7), (5.7)

and (5.8),

|N+
Di

(u)| � d + |U+
i | � 6m + 5Δ + |U+

i | � m + |U+
i | + |A| + |F+

i |.

Thus we may choose ui ∈ N+
Di

(u) \ (A ∪ U+
i ∪ F+

i ) for each i ∈ I+
1 (u), so that ui 	= uj for

two distinct i, j ∈ I+
0 (u) ∪ I+

1 (u) as |I+
0 (u) ∪ I+

1 (u)| � m.

For each i ∈ I+
1 (u), ui ∈ V (Di) \ (Ai ∪ U+

i ∪ F+
i ) by (T1). This shows that ui is in-

dominated by Ai in Di and thus we can pick any u′
i ∈ N+

Di
(ui) ∩ Ai. If u′

i 	= ai, then we

define P+
u,i to be the path (u, ui, u

′
i, ai), otherwise we define P+

u,i to be the path (u, ui, ai).

Since ui /∈ A, {P+
u,i}i∈I+

0 (u)∪I+
1 (u) is an (m − t1 − t2)-fan from u to S+(u). Note that each path

in the |S+(u)|-fan is of length at most 3.

Similarly, for each v ∈ Wi, let I−
0 (v) be the set of i ∈ [m] such that Bi outdominates

v, and let I−
1 (v) := [m] \ I−

0 (v) be the set of indices i ∈ [m] \ I−
0 (v) such that v ∈ U−

i and

|U−
i | � u. Let S−(v) := {bi : i ∈ I−

0 (v) ∪ I−
1 (v)}. By (T6), we have |S−(v)| � m − t1 − t2. By

removing some elements in I−
0 (v) and I−

1 (v), we may assume that

|S−(v)| = m − t1 − t2. (5.10)

Now we construct a |S−(v)|-fan {P−
v,i}i∈I−

0 (v)∪I−
1 (v) from S−(v) to v. For each i ∈ I−

0 (v),

since Bi outdominates u we pick any vertex vi ∈ Bi ∩ N−
D (u). If vi 	= bi, then we can define

P−
v,i to be the path (bi, vi, u) since D[Bi] contains a spanning transitive tournament by

(OD1) and (5.6). If vi = bi, then we define P−
v,i to be the path (bi, v).

For each i ∈ I−
1 (v), we have d � 6m + 5Δ by the assumption of the lemma. By (T8), (5.7)

and (5.8),

|N−
D′
i
(v)| � d + |U−

i | � 6m + 5Δ + |U−
i | � m + |U−

i | + |B| + |F−
i |.

Thus we may choose vi ∈ N−
D′
i
(u) \ (B ∪ U−

i ∪ F−
i ) for each i ∈ I−

1 (v), so that vi 	= vj for

two distinct i, j ∈ I−
0 (v) ∪ I−

1 (v) as |I−
0 (v) ∪ I−

1 (v)| � m.
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For each i ∈ I−
1 (v), vi ∈ V (D′

i) \ (Bi ∪ U−
i ∪ F−

i ) by (T2). This shows that vi is out-

dominated by Bi in D′
i and thus we can pick any v′

i ∈ N−
D′
i
(vi) ∩ Bi. If v′

i 	= bi, then we

define P−
v,i to be the path (bi, v

′
i , vi, v), otherwise we define P−

v,i to be the path (bi, vi, v). Since

vi /∈ A ∪ B, {P−
v,i}i∈I−

0 (v)∪I−
1 (v) is an (m − t1 − t2)-fan from S−(v) to v. Note that each path in

the |S−(v)|-fan is of length at most 3.

Now we prove (1). For m � t1 + t2 + k, let us define

Econn :=
⋃
u∈Wo

⋃
i∈S+(u)

E(P+
u,i) ∪

⋃
v∈Wi

⋃
i∈S−(v)

E(P−
v,i).

By |Wo|, |Wi| � w, (5.9) and (5.10), we have

|Econn| � 6w(m − t1 − t2). (5.11)

For every S ⊆ V (D) with |S | � k − 1, since for u ∈ Wo, |S+(u)| � m − t1 − t2 � k and

for v ∈ Wi, |S−(v)| � m − t1 − t2 � k, there are t ∈ I+
0 (u) ∪ I+

1 (u) with V (P+
u,t) ∩ S = ∅.

Similarly, there is t′ ∈ I−
0 (v) ∪ I−

1 (v) with V (P−
v,t′ ) ∩ S = ∅. This proves (1).

Now we prove (2). Let us assume that m � 2t1 + 2t2 + 3k + Δ − 2. Note that m �
t1 + t2 + k and thus (1) is satisfied. Let us define

Ehub := ED({a1, . . . , ak}, {a1, . . . , am}) ∪ ED({b1, . . . , bk}, {b1, . . . , bm}) ∪ Econn.

By (5.11), we have

|Ehub| � 2km + |Econn| � 2km + 6w(m − t1 − t2).

We prove that (Ehub, {a1, . . . , ak}, {b1, . . . , bk},Wo,Wi) satisfies (H2). Let S ⊆ V (D) be a

set of at most k − 1 vertices. For t ∈ [k] with at /∈ S and u ∈ Wo \ S , it follows that at
has at least (m − k − Δ)/2 in-neighbours in D[{a1, . . . , am}] by (T4) and (5.6). There is

a |S+(u)|-fan from u to S+(u) ⊆ A0 and |S+(u)| = m − t1 − t2 by (5.9); it follows that

there are at least m − t1 − t2 − k + 1 i’s with i ∈ I+
0 (u) ∪ I+

1 (u) and V (P+
u,i) ∩ S = ∅. Since

m > 2t1 + 2t2 + 3k + Δ − 2 by the assumption of the lemma, we have

|N−
D[{a1 ,...,am}](at)| + |S+(u)| − |S | � m − k − Δ

2
+ (m − t1 − t2) − (k − 1) > m

and by the pigeonhole principle, there is i ∈ I+
0 (u) ∪ I+

1 (u) with V (P+
u,i) ∩ S = ∅ and ai ∈

N−
D (at). Then P := P+

u,i ∪ (ai, at) is a path from u to at that does not intersect with S . Note

that E(P ) ⊆ Ehub, as P+
u,i ⊆ Ehub and aiat ∈ Ehub. The proof of (H3) is similar.

The following lemma guarantees a k-arc-hub for dense digraphs under some conditions.

Since the proof is almost identical to the proof of Lemma 5.13 except for a few parts,

we only sketch the proof. The proof differs from the proof of Lemma 5.13 for two parts.

For every i ∈ I+
1 (u), we choose each ui ∈ N+

Di
(u) \ (U+

i ∪ F+
i ) which may be in A, since

the paths in |S+(u)|-fan are not necessarily vertex-disjoint. Similarly, for i ∈ I−
1 (v), we

choose vi ∈ N−
D′
i
(u) \ (U−

i ∪ F−
i ) which may be in B, since the paths in |S−(v)|-fan are not

necessarily vertex-disjoint. Therefore, we only need d � m + 5Δ in the assumption. As the

rest of the proof is identical, we omit the proof.
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Lemma 5.14. Let d, k, m, t1, t2 � 1, Δ, w � 0 be integers with m � k d � m + 5Δ and a real

number u � d/15. Let D be a directed multigraph with Δ(D) � Δ and at least 10m vertices.

If D contains a (t1, t2, d, m, u)-trio (A,B, O∗) such that

• (A,B, O∗) satisfies the assumptions in Lemma 5.5,

• A consists of 5-indominators {(Di, Ai, xi, ai)}mi=1, and

• B consists of 5-outdominators {(D′
i , Bi, x

′
i, bi)}mi=1.

then for any Wo,Wi ⊆ V (D) \ (
⋃m

i=1 Ai ∪
⋃m

i=1 Bi ∪ O∗) with |Wo|, |Wi| � w, then D satisfies

the following.

(1) If m � t1 + t2 + k, then there is Econn ⊆ E(D) with |Econn| � 6w(m − t1 − t2) such that

for every F ⊆ E(D) with |F | � k − 1, if u ∈ Wo then there is t ∈ [m] such that D − F

contains a path from u to at only using edges in Econn, and if v ∈ Wi then there is t′ ∈ [m]

such that D − F contains a path from bt′ to v only using edges in Econn.

(2) If m > 2t1 + 2t2 + 3k + Δ − 2, then D contains a k-arc-hub

H := (Ehub, {a1, . . . , ak}, {b1, . . . , bk},Wo,Wi)

with |Ehub| � 2km + 6w(m − t1 − t2).

5.5. Absorbers

In this subsection, we consider objects called absorbers. Roughly speaking, even though we

remove a few vertices from a digraph, we can connect vertices to a small set of vertices by

a path in an absorber. This plays an important role in preserving the vertex-connectivity

in a spanning subgraph, and finding sparse absorbers are directly related to finding highly

connected sparse spanning subgraphs.

Definition 5.15. Let k � 1 be an integer and let D be a digraph. We say that a k-absorber

is a 5-tuple (Eabs, Vex,P ,Wi,Wo) that consists of a set Eabs ⊆ E(D), a set Vex ⊆ V (D), a

collection P = {Pi}ki=1 of k vertex-disjoint paths, and sets Wi,Wo ⊆ V (D) satisfying the

following.

(A1) For every t ∈ [k], both endvertices of Pt are in Vex.

(A2)
⋃k

t=1 E(Pt) ⊆ Eabs.

(A3) For every S ⊆ V (D) with |S | � k − 1 and u ∈ V (D) \ S , the subgraph D − S has a

path from u to a vertex in Wo \ S only using edges in Eabs.

(A4) For every S ⊆ V (D) with |S | � k − 1 and v ∈ V (D) \ S , the subgraph D − S has a

path from a vertex in Wi \ S to v only using edges in Eabs.

We also define an edge version of absorbers.

Definition 5.16. Let k � 1 be an integer and let D be a directed multigraph. A k-

arc-absorber is a 5-tuple (Eabs, Vex,P ,Wi,Wo) that consists of a set Eabs ⊆ E(D), a set

Vex ⊆ V (D), a collection P = {Pi}ki=1 of k edge-disjoint paths, and sets Wi,Wo ⊆ V (D)

satisfying the following.

(A1′) For each t ∈ [t], both endvertices of Pt are in Vex.

https://doi.org/10.1017/S0963548318000469 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548318000469


Sparse Highly Connected Spanning Subgraphs in Dense Directed Graphs 451

(A2′)
⋃k

t=1 E(Pt) ⊆ Eabs.

(A3′) For every F ⊆ E(D) with |F | � k − 1 and u ∈ V (D), the subgraph D − F has a path

from u to a vertex in Wo using only edges in Eabs.

(A4′) For every F ⊆ E(D) with |F | � k − 1 and v ∈ V (D), the subgraph D − F has a path

from a vertex in Wi to v using only edges in Eabs.

The following lemma guarantees the existence of a k-absorber that uses only few edges

in dense digraphs.

Lemma 5.17. Let k, n � 1 and Δ � 0 be integers, and let D be a strongly k-connected

n-vertex digraph with Δ(D) � Δ. Let Vex ⊆ V (D) with |V (D) \ Vex| � 39k + 38Δ, and P
be a collection of k vertex-disjoint paths {P1, . . . , Pk} such that Pi is a minimal path with

endvertices in Vex for every i ∈ [k].

Then D has a k-absorber D = (Eabs, Vex,P ,Wi,Wo) satisfying the following.

(1) Wi,Wo ⊆ V (D) \ Vex and |Wi|, |Wo| = 3k.

(2) |Eabs| � kn + 226k(k + Δ) + 38(k + Δ) + (5k + 1)|Vex|.

Proof. For t ∈ [k], let us define Epath :=
⋃k

t=1 E(Pt) and D′ := D − Vex.

Since |V (D′)| � 39k + 38Δ � 10 · 3k, by applying Lemma 5.5 to D′ we deduce that

there is a

(
k, k, 18k + 5Δ, 3k,

18k + 5Δ

15

)
-trio (A′,B′, S∗) in D′, (5.12)

where A′ consists of 3k distinct 5-indominators {(Di, A
′
i, yi, a

′
i)}3k

i=1, B consists of 3k distinct

5-outdominators {(D′
i , B

′
i , y

′
i , b

′
i)}3k

i=1, and |S∗| � 8k + 32Δ.

Let us define

A′ :=

3k⋃
i=1

A′
i, B′ :=

3k⋃
i=1

B′
i , V ′

ex := Vex ∪ A′ ∪ B′ ∪ S∗,

and

V+
i :=

⋂
v∈A′

i

N+
Di

(v) \
⋃
v∈A′

i

N−
Di

(v), V−
i :=

⋂
v∈B′

i

N−
D′
i
(v) \

⋃
v∈B′

i

N+
D′
i
(v)

for every i ∈ [3k].

Since |A′|, |B′| � 5 · 3k, it follows that

|A′ ∪ B′| � 30k, (5.13)

|A′ ∪ B′ ∪ S∗| � 38(k + Δ), (5.14)

|V ′
ex| � |Vex| + 38(k + Δ). (5.15)

Since

|V (D) \ V ′
ex| � |V (D) \ Vex| − |A′ ∪ B′ ∪ S∗|

� 39k + 38Δ − 38(k + Δ) � k,
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by applying Lemma 5.8 to a set V ′
ex, there is a k-escaper (Eescape, V

′
ex, Vout) with Vout ⊆

V (D) \ V ′
ex such that

|Vout| � 2k|V ′
ex| � 2k|Vex| + 76k(k + Δ), (5.16)

|Eescape| � 4k|V ′
ex| � 4k|Vex| + 152k(k + Δ). (5.17)

Let us define

X ′
1 :=

k⋃
i=1

V int(Pi) \ (V ′
ex ∪ Vout), (5.18)

X1 := V (D) \ (V ′
ex ∪ Vout ∪ X ′

1). (5.19)

Claim 4. There exist sets U0
i , U

0
o ⊆ Vout, a set E0 ⊆ E(D), sets U1

i , U
1
o ⊆ X1, a set E1 ⊆

E(D), sets U ′1
i , U

′1
o ⊆ X ′

1 and a set E ′
1 ⊆ E(D) satisfying the following.

(1) |E0| � k|Vout| − k + kΔ.

(2) There are U0
i , U

0
o ⊆ Vout such that |U0

i |, |U0
o | � 2k + Δ − 1, and for every S ⊆ V (D)

with |S | � k − 1 and for every u, v ∈ Vout \ S , the subgraph D − S has a path from u to

a vertex in U0
o \ S , and a path from a vertex in U0

i \ S to v such that both paths only

use edges in E0.

(3) |E1| � k|X1| − k + kΔ.

(4) There are U1
i , U

1
o ⊆ X1 such that |U1

i |, |U1
o | � 2k + Δ − 1, and for every S ⊆ V (D) with

|S | � k − 1 and for every u, v ∈ X1 \ S , the subgraph D − S has a path from u to a

vertex in U1
o \ S , and a path from a vertex in U1

i \ S to v such that both paths only use

edges in E1.

(5) |E ′
1| � (k − 1)|X ′

1| + (Δ + 1)(k − 1).

(6) There are U ′1
i , U

′1
o ⊆ X ′

1 such that |U ′1
i |, |U ′1

o | � 2k + Δ − 1, and for every S ⊆ V (D)

with |S | � k − 1 and for every u, v ∈ X ′
1 \ S , the subgraph D − S has a path from u to

a vertex in (U ′1
o ∪ Vex) \ S , and a path from a vertex in (U ′1

i ∪ Vex) \ S to v such that

both paths only use edges in Epath ∪ E ′
1.

Proof of Claim 4. By applying Lemma 2.5 to D[Vout] and D[X1], (1), (2), (3) and (4)

follow. Similarly, applying Lemma 2.6 to D[X ′
1], (5) and (6) follow.

Let us define

Uo := U0
o ∪ U1

o ∪ U ′1
o , Ui := U0

i ∪ U1
i ∪ U ′1

i . (5.20)

Then |Ui|, |Uo| � 3(2k + Δ).

Claim 5. There is a set Econn ⊆ E(D′) of edges satisfying the following.

(1) |Econn| � 18k(2k + Δ).

(2) For every S ⊆ V (D) with |S | � k − 1 and u ∈ Uo \ S , there is t ∈ [3k] such that D′ − S

contains a path from u to a′
t, only using edges in Econn.
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(3) For every S ⊆ V (D) with |S | � k − 1 and v ∈ Ui \ S , there is t ∈ [3k] such that D′ − S

contains a path from b′
t to v, only using edges in Econn.

Proof. Note that Uo,Ui ⊆ V (D) \ V ′
ex ⊆ V (D′). By (5.12), (A′,B′, S∗) satisfies the require-

ments of Lemma 5.13, hence the claim follows by (1) of Lemma 5.13.

Now let us define

Eabs := Epath ∪ Eescape ∪ E0 ∪ E1 ∪ E ′
1 ∪ Econn, (5.21)

Wo := {a′
1, . . . , a

′
3k}, (5.22)

Wi := {b′
1, . . . , b

′
3k}. (5.23)

Then Wo,Wi ⊆ V (D′) = V (D) \ Vex. Since
⋃k

t=1 Int(Pt) ⊆ V ′
ex ∪ Vout ∪ X ′

1, we have

|Epath| � |V ′
ex| + |Vout| + |X ′

1| + k by (5.15).

Note that V (D) = V ′
ex ∪ Vout ∪ X1 ∪ X ′

1 by (5.19). By (5.15), (5.16), (5.17), Claim 4,

Claim 5, and V (D) = V ′
ex ∪ Vout ∪ X1 ∪ X ′

1 we have

|Eabs| � |Eescape| + |Epath| + |E0| + |E1| + |E ′
1| + |Econn|

� 4k|V ′
ex| + (|V ′

ex| + |Vout| + |X ′
1| + k) + (k|Vout| − k + kΔ) + (k|X1| − k + kΔ)

+ ((k − 1)|X ′
1| + k − 1 + kΔ) + 18k(2k + Δ)

� k(|V ′
ex| + |Vout| + |X1| + |X ′

1|) + (3k + 1)|V ′
ex| + |Vout| + 3kΔ + 18k(2k + Δ)

� kn + (3k + 1)|Vex| + 114k(k + Δ) + 38(k + Δ) + |Vout| + 36k(k + Δ)

� kn + 226k(k + Δ) + 38(k + Δ) + (5k + 1)|Vex|. (5.24)

Let us define

D := (Eabs, Vex,P ,Wi,Wo).

Claim 6. D is a k-absorber in D.

Proof. Both (A1) and (A2) are clear. Let S ⊆ V (D) with |S | � k − 1, and u, v ∈ V (D) \ S

be two distinct vertices.

(a) If u ∈ V ′
ex, then since (Eescape, V

′
ex, Vout) is a k-escaper, there is a path from u to u′ ∈ Vout

in D − S using only edges in Eescape, and there is a path from u′ to a vertex u′′ ∈ Uo

in D − S only using edges in E0 by Claim 4. By Claim 5, there is a path from u′′ to a

vertex u+ ∈ Wo in D − S only using edges in Econn.

(b) If u ∈ X ′
1, then there is a path from u to u′ ∈ Uo ∪ Vex in D − S only using edges in

Epath ∪ E ′
1 by Claim 4. If u′ ∈ Uo, then there is a path from u′ to a vertex u+ ∈ Wo in

D − S only using edges in Econn by Claim 5. Otherwise if u′ ∈ Vex \ S , then there is a

path from u′ to a vertex u+ ∈ Wo in D − S only using edges in Eabs by (a).

(c) If u ∈ Vout ∪ X1, then there is a path from u to a vertex u′ ∈ Uo in D − S using only

edges in E0 ∪ E1 by Claim 4. By Claim 5, there is a path from u′ to a vertex u+ ∈ Wo

in D − S only using edges in Econn.
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Hence there is a path in D − S from u to u+ ∈ Wo only using edges in Eabs, proving

(A3). Similarly, there is a path in D − S from a vertex v+ ∈ Wi to v only using edges in

Eabs, proving (A4). This proves the claim.

By Claim 6 and (5.24), this completes the proof of the lemma.

Similarly, the following lemma guarantees the existence of a k-arc-absorber that uses

only a few edges in dense digraphs.

Lemma 5.18. Let k, n � 1 and Δ � 0 be integers, and let D be a strongly k-connected n-

vertex directed multigraph with Δ(D) � Δ. Let Vex ⊆ V (D) with |V (D) \ Vex| � 33k + 32Δ,

and let P be a collection of k edge-disjoint paths {P1, . . . , Pk} such that Pi is a path with

endvertices in Vex for every i ∈ [k].

Then D has a k-arc-absorber D = (Eabs, Vex,P ,Wi,Wo) satisfying the following.

(1) Wi,Wo ⊆ V (D) \ Vex and |Wi|, |Wo| = 3k.

(2) |Eabs| � kn + 210k(k + Δ) + 32(k + Δ) + (5k + 1)|Vex|.

Proof. For t ∈ [k], let us define Epath :=
⋃k

t=1 E(Pt) and D′ := D − Vex.

Since |V (D′)| � 33k + 32Δ � 10 · 3k, by applying Lemma 5.5 to D′ we deduce that

there is a

(
k, k, 3k + 5Δ, 3k,

3k + 5Δ

15

)
-trio (A′,B′, S∗) in D′, (5.25)

where A′ consists of 3k distinct 5-indominators {(Di, A
′
i, yi, a

′
i)}3k

i=1, B consists of 3k distinct

5-outdominators {(D′
i , B

′
i , y

′
i , b

′
i)}3k

i=1, and |S∗| � 1.2k + 32Δ.

Let us define

A′ :=

3k⋃
i=1

A′
i, B′ :=

3k⋃
i=1

B′
i , V ′

ex := Vex ∪ A′ ∪ B′ ∪ S∗,

and

V+
i :=

⋂
v∈A′

i

N+
Di

(v) \
⋃
v∈A′

i

N−
Di

(v), V−
i :=

⋂
v∈B′

i

N−
D′
i
(v) \

⋃
v∈B′

i

N+
D′
i
(v)

for every i ∈ [3k].

Since |A′|, |B′| � 5 · 3k, it follows that

|A′ ∪ B′| � 30k, (5.26)

|A′ ∪ B′ ∪ S∗| � 32(k + Δ), (5.27)

|V ′
ex| � |Vex| + 32(k + Δ). (5.28)

The rest of the proof is almost identical to the proof of Lemma 5.17, except for a few

parts. We use Lemma 5.10 for k-arc-escapers instead of Lemma 5.8 for k-escapers. Since

the paths in {P1, . . . , Pk} are edge-disjoint and each Pi is not necessarily minimal, we use

Lemmas 2.7 and 2.8 instead of Lemmas 2.5 and 2.6 respectively. Note that Lemma 2.8 has

a slightly worse bound than Lemma 2.6. Finally, we replace Lemma 5.13 by Lemma 5.14

in the proof of Claim 5.
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Since

|V (D) \ V ′
ex| � |V (D) \ Vex| − |A′ ∪ B′ ∪ S∗|

� 33k + 32Δ − 32(k + Δ) � k,

by applying Lemma 5.10 to a set V ′
ex, there is a k-arc-escaper (Eescape, V

′
ex, Vout) with

Vout ⊆ V (D) \ V ′
ex such that

|Vout| � 2k|V ′
ex| � 2k|Vex| + 64k(k + Δ), (5.29)

|Eescape| � 4k|V ′
ex| � 4k|Vex| + 128k(k + Δ). (5.30)

Let us define

X ′
1 :=

k⋃
i=1

V int(Pi) \ (V ′
ex ∪ Vout), (5.31)

X1 := V (D) \ (V ′
ex ∪ Vout ∪ X ′

1). (5.32)

Claim 7. There exist sets U0
i , U

0
o ⊆ Vout, a set E0 ⊆ E(D), sets U1

i , U
1
o ⊆ X1, a set E1 ⊆

E(D), sets U ′1
i , U

′1
o ⊆ X ′

1 and a set E ′
1 ⊆ E(D) satisfying the following.

(1) |E0| � k|Vout| − k + kΔ.

(2) There are U0
i , U

0
o ⊆ Vout such that |U0

i |, |U0
o | � 2k + Δ − 1 and for every F ⊆ E(D) with

|S | � k − 1 and for every u, v ∈ Vout, the subgraph D − F has a path from u to a vertex

in U0
o , and a path from a vertex in U0

i to v such that both paths only use edges in E0.

(3) |E1| � k|X1| − k + kΔ.

(4) There are U1
i , U

1
o ⊆ X1 such that |U1

i |, |U1
o | � 2k + Δ − 1 and for every F ⊆ E(D) with

|F | � k − 1 and for every u, v ∈ X1, the subgraph D − F has a path from u to a vertex

in U1
o , and a path from a vertex in U1

i to v such that both paths only use edges in E1.

(5) |E ′
1| � (k − 1)|X ′

1| + (k − 1)(Δ + 2k − 1).

(6) There are U ′1
i , U

′1
o ⊆ X ′

1 such that |U ′1
i |, |U ′1

o | � 4k + Δ − 3 and for every F ⊆ E(D)

with |F | � k − 1 and for every u, v ∈ X ′
1 \ S , the subgraph D − F has a path from u to

a vertex in U ′1
o ∪ Vex , and a path from a vertex in U ′1

i ∪ Vex to v such that both paths

only use edges in Epath ∪ E ′
1.

Proof of Claim 7. By applying Lemma 2.7 to D[Vout] and D[X1], (1), (2), (3) and (4)

follow. Similarly, applying Lemma 2.8 to D[X ′
1], (5) and (6) follow.

Let us define

Uo := U0
o ∪ U1

o ∪ U ′1
o , Ui := U0

i ∪ U1
i ∪ U ′1

i . (5.33)

Then |Ui|, |Uo| � 8k + 3Δ.

Claim 8. There is a set Econn ⊆ E(D′) of edges satisfying the following.

(1) |Econn| � 6k(8k + 3Δ).
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(2) For every S ⊆ V (D) with |S | � k − 1 and u ∈ Uo \ S , there is t ∈ [3k] such that D′ − S

contains a path from u to a′
t, only using edges in Econn.

(3) For every S ⊆ V (D) with |S | � k − 1 and v ∈ Ui \ S , there is t ∈ [3k] such that D′ − S

contains a path from b′
t to v, only using edges in Econn.

Proof. Note that Uo,Ui ⊆ V (D) \ V ′
ex ⊆ V (D′). By (5.25), (A′,B′, S∗) satisfies the require-

ments of Lemma 5.14, hence the claim follows by (1) of Lemma 5.14.

Now let us define

Eabs := Epath ∪ Eescape ∪ E0 ∪ E1 ∪ E ′
1 ∪ Econn, (5.34)

Wo := {a′
1, . . . , a

′
3k}, (5.35)

Wi := {b′
1, . . . , b

′
3k}. (5.36)

Then Wo,Wi ⊆ V (D′) = V (D) \ Vex. Since
⋃k

t=1 Int(Pt) ⊆ V ′
ex ∪ Vout ∪ X ′

1 , we have

|Epath| � |V ′
ex| + |Vout| + |X ′

1| + k by (5.28).

Note that V (D) = V ′
ex ∪ Vout ∪ X1 ∪ X ′

1 by (5.32). By (5.28), (5.29), (5.30), Claim 7,

Claim 8 and V (D) = V ′
ex ∪ Vout ∪ X1 ∪ X ′

1, we have

|Eabs| � |Eescape| + |Epath| + |E0| + |E1| + |E ′
1| + |Econn|

� 4k|V ′
ex| + (|V ′

ex| + |Vout| + |X ′
1| + k) + (k|Vout| − k + kΔ) + (k|X1| − k + kΔ)

+ ((k − 1)|X ′
1| + (k − 1)Δ + 2k2 − 3k + 1) + 6k(8k + 3Δ)

� k(|V ′
ex| + |Vout| + |X1| + |X ′

1|) + (3k + 1)|V ′
ex| + |Vout| + 50k2 + 21kΔ

� kn + (3k + 1)|Vex| + 96k(k + Δ) + 32(k + Δ) + |Vout| + 50k2 + 21kΔ

� kn + (210k2 + 181kΔ) + 32(k + Δ) + (5k + 1)|Vex|. (5.37)

Let us define

D := (Eabs, Vex,P ,Wi,Wo).

Claim 9. D is a k-arc-absorber in D.

Proof. Both (A1′) and (A2′) are clear. Let F ⊆ E(D) with |F | � k − 1, and u, v ∈ V (D)

be two distinct vertices.

(a) If u ∈ V ′
ex, then since (Eescape, V

′
ex, Vout) is a k-arc-escaper, there is a path from u to

u′ ∈ Vout in D − F using only edges in Eescape, and there is a path from u′ to a vertex

u′′ ∈ Uo in D − F only using edges in E0 by Claim 7. By Claim 8, there is a path from

u′′ to a vertex u+ ∈ Wo in D − F only using edges in Econn.

(b) If u ∈ X ′
1, then there is a path from u to u′ ∈ Uo ∪ Vex in D − F only using edges in

Epath ∪ E ′
1 by Claim 7. If u′ ∈ Uo, then there is a path from u′ to a vertex u+ ∈ Wo

in D − F only using edges in Econn by Claim 8. Otherwise, if u′ ∈ Vex, then there is a

path from u′ to a vertex u+ ∈ Wo in D − F only using edges in Eabs by (a).
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(c) If u ∈ Vout ∪ X1, then there is a path from u to a vertex u′ ∈ Uo in D − F using only

edges in E0 ∪ E1 by Claim 7. By Claim 8, there is a path from u′ to a vertex u+ ∈ Wo

in D − F only using edges in Econn.

Hence there is a path in D − F from u to u+ ∈ Wo only using edges in Eabs, proving

(A3′). Similarly, there is a path in D − F from a vertex v+ ∈ Wi to v only using edges in

Eabs, proving (A4′).

By Claim 9 and (5.37), this completes the proof of the lemma.

6. Proof of the main result

We divide Theorem 1.3 into two parts as follows. First of all, the following theorem

establishes the upper bound of the minimum number of edges in a strongly k-connected

spanning subgraph.

Theorem 6.1. For all integers k, n � 1 and Δ � 0, every strongly k-connected n-vertex di-

graph D with Δ(D) � Δ contains a strongly k-connected spanning subgraph with at most

kn + 790kΔ + 790k2 edges.

Secondly, the following theorem establishes the upper bound of the minimum number

of edges in a strongly k-arc-connected spanning subgraph.

Theorem 6.2. For all integers k, n � 1 and Δ � 0, every strongly k-arc-connected n-vertex

directed multigraph D with Δ(D) � Δ contains a strongly k-arc-connected spanning subgraph

with at most kn + 666kΔ + 666k2 edges.

Both Theorems 6.1 and 6.2 prove Theorem 1.3. Now we are ready to prove Theorem 6.1.

Proof of Theorem 6.1. Let D be a strongly k-connected n-vertex digraph with Δ(D) � Δ.

For n < 4k + 3, we have

|E(D)| � 2

(
n

2

)
< 16k2 + 20k + 6 � 790k(k + Δ).

For 4k + 3 � n < 200(k + Δ), let D′ be a minimally strongly k-connected spanning sub-

graph of D. By the result of Mader [17], we have |E(D′)| � 2kn � 400k(k + Δ) � 790k(k +

Δ).

We may assume that n � 200(k + Δ). By Lemma 5.5, D contains a 3-tuple (A,B, O∗)

such that

(A,B, O∗) is a

(
k + Δ, Δ, 30k + 35Δ, 5(k + Δ),

7(k + Δ)

3

)
-trio, (6.1)

where A consists of 5(k + Δ) distinct 5-indominators {(Di, Ai, xi, ai)}5(k+Δ)
i=1 , B consists of

5(k + Δ) distinct 5-outdominators {(D′
i , Bi, x

′
i, bi)}

5(k+Δ)
i=1 , and |O∗| � 24(k + Δ).
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Let A :=
⋃5(k+Δ)

i=1 Ai and B :=
⋃5(k+Δ)

i=1 Bi. For i ∈ [5(k + Δ)], let

U+
i :=

⋂
v∈Ai

N+
Di

(v) \
⋃
v∈Ai

N−
Di

(v) and U−
i :=

⋂
v∈Bi

N−
D′
i
(v) \

⋃
v∈Bi

N+
D′
i
(v).

Since |A|, |B| � 5 · 5(k + Δ) and |O∗| < 24(k + Δ), it follows that

|A ∪ B ∪ O∗| � 74(k + Δ).

By Menger’s theorem, let P1, . . . , Pk be k vertex-disjoint paths from {a1, . . . , ak} to

{b1, . . . , bk} such that there is a permutation σ : [k] → [k], and for i ∈ [k], Pi is a path

from ai to bσ(i). Without loss of generality, we may assume that Pi is a minimal path from

ai to bσ(i) for i ∈ [k]. Let P := {P1, . . . , Pk}.
Since |V (D)| − |A ∪ B ∪ O∗| � 200(k + Δ) − 74(k + Δ) � 39k + 38Δ, we apply

Lemma 5.17 so that D contains a k-absorber

D := (Eabs, A ∪ B ∪ O∗,P ,Wi,Wo)

with Wi,Wo ⊆ V (D) \ (A ∪ B ∪ O∗), |Wi|, |Wo| = 3k, and

|Eabs| � kn + 226k(k + Δ) + 38(k + Δ) + (5k + 1)|A ∪ B ∪ O∗|
� kn + 596k(k + Δ) + 112(k + Δ), (6.2)

since |A ∪ B ∪ O∗| � 74(k + Δ).

Since Wi,Wo ⊆ V (D) \ (A ∪ B ∪ O∗) with |Wi|, |Wo| = 3k and (6.1), we apply

Lemma 5.13 with 3k playing the role of w. By (2) of Lemma 5.13, D has a k-hub

H := (Ehub, {a1, . . . , ak}, {b1, . . . , bk},Wo,Wi)

such that

|Ehub| � 82k(k + Δ). (6.3)

Let EL := Eabs ∪ Ehub. By (6.2) and (6.3),

|EL| � |Eabs| + |Ehub|
� kn + 596k(k + Δ) + 82k(k + Δ) + 112(k + Δ)

� kn + 678k(k + Δ) + 112(k + Δ)

� kn + 790k(k + Δ).

Let D′ := (V (D), EL) be a spanning subgraph of D. Now it remains to prove that D′

is strongly k-connected. Let S ⊆ V (D′) with |S | � k − 1 and u, v ∈ V (D′) \ S . Let i ∈ [k]

be an index such that V (Pi) ∩ S = ∅. If u ∈ Wo, then u′ := u. Otherwise, D′ − S contains

a path from u to a vertex u′ ∈ Wo \ S since D is a k-absorber in D. Since H is a k-hub,

D′ − S contains a path from u′ to ai, showing that D′ − S contains a path from u to ai.

Similarly, D′ − S contains a path from bσ(i) to v. Connecting from ai to bσ(i) by Pi, we

deduce that D′ − S contains a path from u to v, as desired.

Now we prove Theorem 6.2, and the proof is analogous to the proof of Theorem 6.1.
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Proof of Theorem 6.2. Let D be a strongly k-arc-connected n-vertex digraph with Δ(D) �
Δ. For n < 100(k + Δ), let D′ be a minimally strongly k-arc-connected spanning subgraph

of D. By the result of Dalmazzo [9], we have |E(D′)| � 2kn � 200k(k + Δ) � 666k(k + Δ).

We may assume that n � 100(k + Δ). By Lemma 5.5, D contains a 3-tuple (A,B, O∗)

such that

(A,B, O∗) is a

(
k + Δ, Δ, 5k + 10Δ, 5(k + Δ),

k + 2Δ

3

)
-trio, (6.4)

where A consists of 5(k + Δ) distinct 5-indominators {(Di, Ai, xi, ai)}5(k+Δ)
i=1 , B consists

of 5(k + Δ) distinct 5-outdominators {(D′
i , Bi, x

′
i, bi)}

5(k+Δ)
i=1 , and |O∗| � (10k + 20Δ)/3 �

4k + 7Δ.

Let A :=
⋃5(k+Δ)

i=1 Ai and B :=
⋃5(k+Δ)

i=1 Bi. For i ∈ [5(k + Δ)], let

U+
i :=

⋂
v∈Ai

N+
Di

(v) \
⋃
v∈Ai

N−
Di

(v) and U−
i :=

⋂
v∈Bi

N−
D′
i
(v) \

⋃
v∈Bi

N+
D′
i
(v).

Since |A|, |B| � 5 · 5(k + Δ) and |O∗| < 4k + 7Δ, it follows that

|A ∪ B ∪ O∗| � 57(k + Δ).

By Menger’s theorem, let P1, . . . , Pk be k edge-disjoint paths from {a1, . . . , ak} to

{b1, . . . , bk} such that there is a permutation σ : [k] → [k] where for i ∈ [k], Pi is a path

from ai to bσ(i). Let P := {P1, . . . , Pk}.
The rest of the proof is analogous to the proof of Theorem 6.1. As |V (D)| − |A ∪ B ∪

O∗| � 100(k + Δ) − 57(k + Δ) � 33k + 32Δ, we apply Lemma 5.18 so that D contains a

k-arc-absorber

Darc := (Eabs, A ∪ B ∪ O∗,P ,Wi,Wo)

with Wi,Wo ⊆ V (D) \ (A ∪ B ∪ O∗), |Wi|, |Wo| = 3k, and

|Eabs| � kn + 210k(k + Δ) + 32(k + Δ) + (5k + 1)|A ∪ B ∪ O∗|
� kn + 495k(k + Δ) + 89(k + Δ), (6.5)

since |A ∪ B ∪ O∗| � 57(k + Δ).

Since Wi,Wo ⊆ V (D) \ (A ∪ B ∪ O∗) with |Wi|, |Wo| = 3k and (6.4), we apply

Lemma 5.14 with 3k playing the role of w. By (2) of Lemma 5.14, D has a k-arc-hub

Harc := (Ehub, {a1, . . . , ak}, {b1, . . . , bk},Wo,Wi)

such that

|Ehub| � 82k(k + Δ). (6.6)

Let EL := Eabs ∪ Ehub. By (6.5) and (6.6),

|EL| � |Eabs| + |Ehub|
� kn + 495k(k + Δ) + 82k(k + Δ) + 89(k + Δ)

� kn + 577k(k + Δ) + 89(k + Δ)

� kn + 666k(k + Δ).
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Let D′ := (V (D), EL) be a spanning subgraph of D. Now it remains to prove that D′

is strongly k-arc-connected. Let F ⊆ E(D′) with |F | � k − 1 and u, v ∈ V (D′). Let i ∈ [k]

be an index such that E(Pi) ∩ F = ∅. If u ∈ Wo, then u′ := u. Otherwise, D′ − F contains

a path from u to a vertex u′ ∈ Wo since Darc is a k-arc-absorber in D. Since Harc is a

k-arc-hub, D′ − F contains a path from u′ to ai, showing that D′ − F contains a path from

u to ai. Similarly, D′ − F contains a path from bσ(i) to v. Connecting from ai to bσ(i) by Pi,

we deduce that D′ − F contains a path from u to v, as desired.

7. Concluding remarks

7.1. Improving the upper bound

For any integer k � 1 and a digraph D, let h(k, D) be the minimum number of edges in

a spanning subgraph D′ of D with δ+(D′), δ−(D′) � k. Bang-Jensen, Huang and Yeo [5]

proved that h(k, T ) � k|V (T )| + (k(k + 1))/2 for every tournament T with δ+(T ), δ−(T ) �
k, and h(k, T ) � k|V (T )| + (k(k − 1))/2 if the tournament T is strongly k-arc-connected

(see [5, Proposition 2.1]). They also conjectured that h(k, T ) is equal to the minimum

number of edges in a strongly k-arc-connected spanning subgraph of T , for every strongly

k-arc-connected tournament T . Using the ideas of the proof of [5, Proposition 2.1], we

prove the following.

Proposition 7.1. For integers k, n � 1 and an integer Δ � 2k − 1, h(k, D) � kn + kΔ for

every strongly k-arc-connected n-vertex digraph D with Δ(D) � Δ.

Proof. Let V1 := {v1 : v ∈ V (D)} and V2 := {v2 : v ∈ V (D)} be two disjoint copies of

V (D). Let N be a network with a vertex-set {s, t} ∪ V1 ∪ V2 and an edge-set

{sv1 : v ∈ V (D)} ∪ {v2t : v ∈ V (D)} ∪ {u1v2 : uv ∈ E(D)}.

We may assume that s, t /∈ V1 ∪ V2. Let � : E(N ) → R�0 be a lower bound function such

that �(sv1) = �(v2t) = k for every v ∈ V (D), and �(e) = 0 for the other edges e ∈ E(N ).

Let c : E(N ) → R�0 ∪ {∞} be a capacity function such that c(sv1) = c(v2t) = ∞ for every

v ∈ V (D) and c(u1v2) = 1 for every uv ∈ E(D). One can easily check that the minimum (s, t)-

flow of N is equal to h(k, D). By Min-Flow Max-Demand Theorem (see [2, Theorem 4.9.1]),

the minimum (s, t)-flow is equal to the maximum of �(S, T ) − c(T , S), where {S, T } is a

partition of V (N ) with s ∈ S and t ∈ T .

Let {S, T } be a partition of V (N ) with s ∈ S and t ∈ T . For A,B ∈ {S, T }, let VA,B :=

{v ∈ V (D) : v1 ∈ A, v2 ∈ B}. Then

�(S, T ) = k(VT,S + VT,T ) + k(VS,S + VT,S ) = k|V (D)| + k|VT,S | − k|VS,T |,
c(T , S) = eD(VT,S ∪ VT,T , VS,S ∪ VT,S ) = |E(D[VT,S ])| + eD(VT,S , VS,S )

+ eD(VT,T , VS,S ∪ VT,S ).

Now we aim to prove �(S, T ) − c(T , S) � kn + kΔ. If there are at least three empty sets

in {VS,S , VS,T , VT ,S , VT ,T }, then it is easy to check that �(S, T ) − c(T , S) � kn. Hence we

may assume that there are at least two non-empty sets in {VS,S , VS,T , VT ,S , VT ,T }. We claim
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that

�(S, T ) − c(T , S) � kn + k|VT,S | − |E(D[VT,S ])| − k � kn + kΔ.

If VS,T = VT,T = ∅ then eD(VT,T , VS,S ∪ VT,S ) = 0 and eD(VT,S , VS,S ) � k, implying

�(S, T ) − c(T , S) � kn + k|VT,S | − |E(D[VT,S ])| − k. If VS,T = ∅ and VT,T 	= ∅ then

eD(VT,T , VS,S ∪ VT,S ) � k since D is strongly k-arc-connected. Therefore, either |VS,T | �
1 or eD(VT,T , VS,S ∪ VT,S ) � k. In either case, it follows that �(S, T ) − c(T , S) � kn +

k|VT,S | − |E(D[VT,S ])| − k.

Since |E(D[VT,S ])| � max(0, |VT,S |(|VT,S | − 1 − Δ)/2), we have

k|VT,S | − |E(D[VT,S ])| �

⎧⎪⎨
⎪⎩
k|VT,S | if |VT,S | < Δ + 1,

k|VT,S | − |VT,S |
2

(|VT,S | − Δ − 1) otherwise.

If |VT,S | < Δ + 1, then k|VT,S | − |E(D[VT,S ])| < kΔ + k and thus �(S, T ) − c(T , S) <

kn + kΔ. Let us assume that |VT,S | � Δ + 1. Since the function f(x) = (x(2k + Δ + 1−x))/2

is a decreasing function for x � k + (Δ + 1)/2 and |VT,S | � Δ + 1 � k + (Δ + 1)/2, we have

k|VT,S | − |E(D[VT,S ])| � k|VT,S | − |VT,S |
2

(|VT,S | − Δ − 1) = f(|VT,S |)

� f(Δ + 1) = kΔ + k.

and thus

�(S, T ) − c(T , S) � kn + k|VT,S | − |E(D[VT,S ])| − k � kn + kΔ.

This completes the proof.

As the oriented graph Gn1 ,n2 ,k,Δ
in Section 3 with n = n1 + n2 + Δ + 1 satisfies

h(k, Gn1 ,n2 ,k,Δ
) � kn + kΔ if Δ � 2k − 1, Proposition 7.1 implies that h(k, Gn1 ,n2 ,k,Δ

) = kn + kΔ

when Δ � 2k − 1.

For k = 1, Bang-Jensen, Huang and Yeo [5, Theorem 8.3] proved that every strongly

connected n-vertex digraph D with Δ(D) � Δ contains a spanning strongly connected

subgraph with at most n + Δ edges. We conjecture that the multiplicative constant of kΔ

of Theorem 1.3 can be improved to 1, which is best possible.

Conjecture 7.2.

(1) There is C > 0 such that for integers k, n � 1 and Δ � 0, every strongly k-connected

n-vertex digraph D with Δ(D) � Δ contains a strongly k-connected spanning subgraph

with at most kn + kΔ + Ck2 edges.

(2) There is C ′ > 0 such that for integers k, n � 1 and Δ � 0, every strongly k-arc-connected

n-vertex directed multigraph D with Δ(D) � Δ contains a strongly k-arc-connected span-

ning subgraph with at most kn + kΔ + C ′k2 edges.
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Since Mader [17] proved that every strongly k-connected n-vertex digraph contains a

strongly k-connected spanning subgraph with at most 2kn − k(k + 1) edges, Conjecture 7.2

is true for Δ � n − k − 1.

7.2. Almost-regular spanning subgraphs

There are many studies regarding finding spanning regular subgraphs in tournaments.

One of the typical examples of spanning regular subgraphs is a union of edge-disjoint

Hamiltonian cycles, and there are some results relating edge-disjoint Hamiltonian cycles

and the vertex-connectivity of tournaments. Thomassen [21] conjectured that there is a

function f : N → N such that every strongly f(k)-connected tournament contains k edge-

disjoint Hamiltonian cycles, and Kühn, Lapinskas, Osthus and Patel [15] proved that

f(k) = O(k2(log k)2) suffices and constructed a strongly ((k − 1)2)/4-connected tournament

with no k edge-disjoint Hamiltonian cycles. Recently, Pokrovskiy [20] proved that f(k) =

O(k2) suffices, which is asymptotically sharp.

As a variation of the problem, one may ask the minimum m = m(k) such that every

strongly mk-connected tournament T contains a spanning k-regular subgraph. The next

lemma proves that m � (k + 1)/2, and the result of Pokrovskiy [20] is asymptotically best

possible even if we relax the condition of existence of k edge-disjoint Hamiltonian cycles to

the existence of spanning k-regular subgraph. Recall that Tn1 ,n2 ,k is a strongly k-connected

(n1 + n2 + k)-vertex tournament defined in Section 3. We remark that an almost identical

construction can be found in [15, Proposition 5.1].

Lemma 7.3. Let m, k � 1 be integers. For a (5mk + 2)-vertex tournament T2mk+1,2mk+1,mk ,

every spanning subgraph D of T2mk+1,2mk+1,mk satisfying δ+(D), δ−(D) � k contains at least

(k − 2m + 1)/5m vertices of either in-degree or out-degree more than k in D.

Proof. Let T2mk+1,2mk+1,mk be the tournament with subtournaments T1, T2 and T3 defined

in Section 3.

Let D be any spanning subgraph of T such that δ+(D), δ−(D) � k. Let S+ ⊆ V (T2) be

the set of vertices v in V (T2) such that d+
D(v) > k.

Since d+
T (v) � 5mk + 1 for any v ∈ V (T2) and every vertex in V (T1) has in-degree

at least k in D, it follows that (5mk + 1)|S+| + k(2mk + 1 − |S+|) �
∑

v∈V (T2)
d+
D(v) and

eD(V (T2), V (T1)) is at least (k(k + 1))/2. Hence

(5mk + 1)|S+| + k(2mk + 1 − |S+|) �
∑

v∈V (T2)

d+
D(v)

� eD(V (T2), V (T1)) − eD(V (T3), V (T2)) +
∑

w∈V (T2)

d−
D(w)

� k(k + 1)

2
− mk + k(2mk + 1),

implying that

|S+| � k(k + 1 − 2m)

2(5mk − k + 1)
� k + 1 − 2m

10m
.
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Let S− ⊆ V (T3) be the set of vertices v in V (T3) such that d−
D(v) > k. Similarly,

|S−| � k + 1 − 2m

10m
,

and it follows that D contains at least (k − 2m + 1)/5m vertices with either in-degree or

out-degree more than k in D.

Rather than finding spanning regular subgraphs in semicomplete digraphs, we may

consider finding almost regular spanning subgraph (all vertices except a few vertices

have the same in/out-degrees) in semicomplete digraphs. Corollary 1.4 implies that every

strongly k-connected semicomplete digraph contains a strongly k-connected spanning

subgraph such that all vertices except for O(k2) vertices have both in-degree and out-

degree exactly k. We conjecture the following.

Conjecture 7.4.

(1) For integers k, n � 1 and given a strongly k-connected semicomplete digraph D, there

exists a set S ⊆ V (D) with |S | = O(k) such that there is a strongly k-connected span-

ning subgraph D′ of D with d+
D′ (v) = d−

D′(v) = k for every v ∈ V (D) \ S , and d+
D′ (w) =

d−
D′ (w) = O(k) for every w ∈ V (D).

(2) For integers k, n � 1 and given a strongly k-arc-connected semicomplete directed multi-

graph D, there exists a set S ⊆ V (D) with |S | = O(k) such that there is a strongly k-arc-

connected spanning subgraph D′ of D with d+
D′ (v) = d−

D′(v) = k for every v ∈ V (D) \ S ,

and d+
D′(w) = d−

D′(w) = O(k) for every w ∈ V (D).

Note that the statements in Conjecture 7.4 imply that |E(D′)| � k|V (D)| + O(k2),

strengthening Corollary 1.4. By Lemma 7.3, we remark that the size O(k) of S cannot

be improved further, since every spanning subgraph D of a tournament T2k+1,2k+1,k with

δ+(D), δ−(D) � k contains at least (k − 1)/4 vertices of either in-degree or out-degree

more than k in D.
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