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Abstract. The main purpose of this paper is to show that ideas of deformation theory
can be applied to ‘infinite-dimensional geometry’. We develop the deformation theory of
Brody curves. A Brody curve is a kind of holomorphic map from the complex plane to
the projective space. Since the complex plane is not compact, the parameter space of the
deformation can be infinite-dimensional. As an application we prove a lower bound on the
mean dimension of the space of Brody curves.

1. Introduction
1.1. Main results. Let z = x + y

√
−1 be the natural coordinate in the complex plane C.

For a holomorphic curve f = [ f0 : f1 : · · · : fN ] : C→ CP N with holomorphic functions
f0, f1, . . . , fN , we define the pointwise norm |d f | ≥ 0 (with respect to the Fubini–Study
metric) by

|d f |2 =
1

4π
1 log(| f0|

2
+ | f1|

2
+ · · · + | fN |

2)

(
1 :=

∂2

∂x2 +
∂2

∂y2

)
. (1)

We call f a Brody curve if it satisfies |d f | ≤ 1 (cf. Brody [2]). Let M(CP N ) be the space
of Brody curves in CP N with the compact-open topology. Then M(CP N ) becomes an
infinite dimensional compact space and it admits a natural C-action:

( f (z), a) 7→ f (z + a) for a Brody curve f (z) and a ∈ C. (2)

This paper studies the ‘mean dimension’ dim(M(CP N ) : C). Mean dimension is a
notion defined by Gromov [5] (see also Lindenstrauss–Weiss [8] and Lindenstrauss [7]).
Mean dimension is a ‘dimension of an infinite-dimensional space’. Intuitively (the precise
definition will be given in §2),

‘dim(M(CP N ) : C)= dim M(CP N )/vol(C)’.
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1642 M. Tsukamoto

When we study the space of holomorphic maps from a compact Riemann surface, its
(virtual) dimension can be derived from the deformation theory (and the index theorem).
The main purpose of this paper is to develop a new deformation theory which can be
applied to the computation of dim(M(CP N ) : C).

For a Brody curve f we define the Shimizu–Ahlfors characteristic function T (r, f ) by

T (r, f ) :=
∫ r

1

dt

t

∫
|z|<t
|d f |2 dx dy ≤ πr2/2.

We define the ‘mean energy’ e( f ) (see Tsukamoto [12]) by

e( f ) := lim sup
r→∞

2

πr2 T (r, f ) ∈ [0, 1].

Let e(CP N ) be the supremum of e( f ) over f ∈M(CP N ). From the definition we have
e(CP N ) ∈ [0, 1], but actually we can prove (see Tsukamoto [10, 12])

0< e(CP N ) < 1.

We call f ∈M(CP N ) an elliptic Brody curve if there exists a lattice 3⊂ C such that
f (z + λ)= f (z) for all z ∈ C and λ ∈3. If f is a non-constant elliptic Brody curve, then
e( f ) > 0. Let e(CP N )ell be the supremum of e( f ) over elliptic Brody curves f in CP N .
Obviously 0< e(CP N )ell ≤ e(CP N ). Using the argument in Tsukamoto [10, §4], we can
prove that e(CP N )ell and e(CP N ) asymptotically become equal to 1:

lim
N→∞

e(CP N )ell = lim
N→∞

e(CP N )= 1. (3)

Our main result on the mean dimension is the following inequality.

THEOREM 1.1.

2e(CP N )ell (N + 1)≤ dim(M(CP N ) : C)≤ 4e(CP N )N .

This theorem has the following two consequences.

THEOREM 1.2.

4e(CP1)ell ≤ dim(M(CP1) : C)≤ 4e(CP1).

THEOREM 1.3.

2≤ lim inf
N→∞

dim(M(CP N ) : C)/N ≤ lim sup
N→∞

dim(M(CP N ) : C)/N ≤ 4.

Theorem 1.2 is the special case of Theorem 1.1. Theorem 1.3 comes from (3). The point
of Theorem 1.3 is that the estimate is explicit. (The mean dimension dim(M(CP N ) : C)
is a very transcendental object.)

Theorem 1.2 leads us to the following conjecture (actually a second main purpose of
this paper is to propose this conjecture to the mathematical community).
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CONJECTURE 1.4.
e(CP1)ell = e(CP1).

If this is true, then we get the following (index-theorem-like) result:

dim(M(CP1) : C)= 4e(CP1). (4)

I think this formula is (if it is true) astonishing because the definitions of the left-hand side
and right-hand side of (4) are very different. (Mean dimension is a topological quantity of
the space, and mean energy is defined by using the energy distribution of Brody curves.)
Note that Conjecture 1.4 itself is a purely function-theoretic problem. It does not contain
any notion in the mean dimension theory.

The upper bound, dim(M(CP N ) : C)≤ 4e(CP N )N , in Theorem 1.1 is already proved
in Tsukamoto [12, Theorems 1.5 and 1.6] by using the Nevanlinna theory†. The task of this
paper is to prove the lower bound: dim(M(CP N ) : C)≥ 2e(CP N )ell(N + 1). In order
to prove this, we will develop a deformation theory of Brody curves. This deformation
theory is a step toward the ‘infinite-dimensional geometry’: the parameter space of the
deformation can be infinite-dimensional. (But this is very natural because the space of
Brody curves is an infinite-dimensional space.)

A technical new feature of our deformation theory is the following: usually we construct
deformation theory within the framework of ‘L2-theory’ (or sometimes L p-theory for
p <∞). But (I think that) L2-theory is not suitable for our purpose and it is better to
construct the theory in the settings of ‘L∞-theory’. (The fact that L∞ is suitable for
the mean dimension theory is also suggested by [11]. In [11] it is shown that the mean
dimension of the unit ball in `p(0) is zero, where 1≤ p <∞ and 0 is a finitely generated
infinite amenable group.) But the analysis in the L∞-settings is more complicated than
that of L2, and it is the main technical task of the paper.

1.2. Remark on Conjecture 1.4. An elliptic function f constructed below might be
a good candidate for the function which attains the supremum of e( f ). Actually the
following f is an extremal function of the Bloch-constant-type problem solved in Bonk–
Eremenko [1]. Put

e1 := 1/
√

2, e2 := e2π
√
−1/3/

√
2, e3 := e4π

√
−1/3/

√
2, e4 :=∞.

These four points become the vertices of a regular tetrahedron inscribed in the Riemann
sphere S2

= CP1. Let ω1 be a positive real number (which will be fixed later) and set
ω2 := ω1 exp(π

√
−1/3). Let 1⊂ C be the regular triangle whose vertices are 0, ω1,

ω2, and 1̃⊂ CP1 the spherical regular triangle whose vertices are e1, e2, e4. From
the Riemann mapping theorem there exists a (unique) one-to-one holomorphic map
f :1→ 1̃which sends 0, ω1, ω2 to e1, e4, e2 respectively. From the reflection principle, f
can be extended to an elliptic function whose period lattice is3 := Z(2ω1)⊕ Z(2ω2)⊂ C.
The set of critical points of f is Zω1 + Zω2 ⊂ C, and the critical values are e1, e2, e3, e4.
We have deg( f : C/3→ CP1)= 2. f satisfies

( f ′)2 = K ( f − e1)( f − e2)( f − e3)= K ( f 3
− 1/
√

8)

† For the upper bound, see also Gromov [5, p. 396, (c)] and Tsukamoto [12, Remark 1.7].
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for some positive constant K . ω1 can be derived from K by

ω1 =
1
√

K

∫
∞

1/
√

2

dx√
x3 − 1/

√
8
=

21/4
√

K

∫
∞

1

dx
√

x3 − 1
.

The spherical derivative |d f |(z) defined in (1) is given by

|d f |2 =
1
π

| f ′|2

(1+ | f |2)2
=

K

π

| f 3
− 1/
√

8|

(1+ | f |2)2
.

Some calculation shows

sup
z∈C

|z3
− 1/
√

8|

(1+ |z|2)2
= 1/
√

8.

Therefore

sup
z∈C
|d f |2(z)=

K

π
√

8
.

We choose ω1 so that K = π
√

8. Then supz∈C |d f |(z)= 1 and f becomes an elliptic
Brody curve. Since the volume of the fundamental domain of 3 in C is given by
|C/3| = 2

√
3ω2

1, we have

e( f )=
2
|C/3|

=
2π
√

3

( ∫
∞

1

dx
√

x3 − 1

)−2

= 0.615 019 867 8198 · · · .

From Theorem 1.2,

dim(M(CP1) : C)≥
8π
√

3

( ∫
∞

1

dx
√

x3 − 1

)−2

= 2.460 079 471 279 · · · .

This inequality might be an equality.

1.3. Remark on residual dimension. We want to remark about the ‘residual dimension’
introduced by Gromov (see [5, p. 330 and p. 346]). This subsection is logically independent
of the proof of Theorem 1.1, and readers can skip it. (But the idea of this subsection is
implicitly used in §3.) Let 3⊂ C be a lattice and M(CP N )3 be the set of Brody curves
f satisfying f (z + λ)= f (z) for all λ ∈3. M(CP N )3 is the set of fixed-points of the
natural action of3 on M(CP N ). In other words, M(CP N )3 is the space of holomorphic
maps f : C/3→ CP N satisfying |d f | ≤ 1. The usual deformation theory gives (cf. §3)

1
|C/3|

dim M(CP N )3 ≤ 2(N + 1) sup
f ∈M(CP N )3

e( f )≤ 2e(CP N )ell(N + 1).

In particular, Theorem 1.1 gives

res dim(M(CP N ) : {n3}n≥1) := lim inf
n→∞

1
|C/n3|

dim M(CP N )n3,

≤ 2e(CP N )ell(N + 1)≤ dim(M(CP N ) : C). (5)

Moreover some consideration shows

sup
3⊂C

res dim(M(CP N ) : {n3}n≥1)= 2e(CP N )ell(N + 1),

where 3 runs over all lattices in C.
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Remark 1.5. In (5) the residual dimension is not bigger than the mean dimension. But
in general the residual dimension can be bigger than the mean dimension: consider the
natural action of Z on [0, 1]Z. For n ≥ 1 let Fn ⊂ [0, 1/n]Z be the set of fixed points of
the action of nZ on [0, 1/n]Z. Set X :=

⋃
n≥1 Fn . X becomes a Z-invariant closed set in

[0, 1]Z. Let Xn (n ≥ 1) be the set of fixed points of the action of nZ on X . Since Fn ⊂ Xn ,
we have dim Xn = n. Therefore, res dim(X : {nZ}n≥1) := lim infn→∞ dim Xn/n = 1. On
the other hand, it is not difficult to see dim(X : Z)= 0.

1.4. Remark: twisted-elliptic Brody curves. For a Brody curve f : C→ CP N , we call
f a twisted-elliptic Brody curve if there exist a lattice 3⊂ C and a homomorphism (of
groups) φ :3→ PU (N + 1) such that

f (z + λ)= φ(λ) f (z) for all z ∈ C and λ ∈3.

Note that the projective unitary group PU (N + 1) is the holomorphic-isometry group of
CP N . Perhaps it might be possible to apply the methods in this paper to twisted-elliptic
Brody curves also. I think this is a natural generalization. But I don’t know whether this
improves the estimate of the mean dimension or not. So I don’t study this case in this
paper. If there is a reader who has an interest in this case, please pursue it.

1.5. Organization of the paper. In §2 we review the definition and basic properties of
the mean dimension. In §3 we prove Theorem 1.1, assuming an analytic result about the
‘deformation theory of Brody curves’ proved in §5. Section 4 is a preparation for §5. In §5
we develop the deformation theory of Brody curves and complete the proof of Theorem 1.1.
We give a remark about Gromov’s conjecture on rational curves and mean dimension in §6.

2. Review of mean dimension
We review the definitions of mean dimension. For the detail, see Gromov [5] or
Lindenstrauss–Weiss [8]. Let (X, d) be a compact metric space, Y a topological space. For
ε > 0, a continuous map f : X→ Y is called an ε-embedding if we have Diam f −1(y)≤ ε
for all y ∈ Y . Let Widimε(X, d) be the minimum number n ≥ 0 such that there are an
n-dimensional polyhedron K and an ε-embedding from X to K . The following is proved in
Gromov [5, p. 333]. (This is a basic result for us. So we will give its proof in Appendix A.)

PROPOSITION 2.1. Let (V, ‖ · ‖) be an n-dimensional normed linear space (over R). Let
B ⊂ V be the closed ball of radius r > 0 with the distance d(x, y) := ‖x − y‖. Then

Widimε(B, d)= n for all ε < r .

Suppose the Lie group C continuously acts on the compact metric space X . For any
positive number R, we define the distance dR(·, ·) on X by

dR(p, q) := sup
z∈C, |z|≤R

d(z.p, z.q) for p, q ∈ X .

Set

Widimε(X : C) := lim
R→∞

1

πR2 Widimε(X, dR).
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This limit always exists (see Gromov [5, pp. 335–338] and Lindenstrauss–Weiss [8,
Appendix]). We define the mean dimension dim(X : C) by setting

dim(X : C) := lim
ε→0

Widimε(X : C).

dim(X : C) is a topological invariant, i.e. it does not depend on the given distance d.
Let 3= Zω1 ⊕ Zω2 ⊂ C be a lattice (ω1, ω2 ∈ C). Then 3 also acts on X and we can

define the mean dimension dim(X :3) as follows: for any positive integer n we set

�n := {xω1 + yω2 ∈3 | x, y ∈ Z, 0≤ x, y ≤ n − 1}. (6)

We define the distance d�n (·, ·) on X by

d�n (p, q) := max
z∈�n

d(z.p, z.q) for p, q ∈ X . (7)

Set (the following limit always exists)

Widimε(X :3) := lim
n→∞

1

n2 Widimε(X, d�n ).

We define the mean dimension dim(X :3) by

dim(X :3) := lim
ε→0

Widimε(X :3).

The following gives the relation between dim(X : C) and dim(X :3). (This is given in
Gromov [5, p. 329] and Lindenstrauss–Weiss [8, Proposition 2.7]. For its proof, see also
Tsukamoto [12, Proposition 4.5].)

PROPOSITION 2.2.
dim(X :3)= |C/3| dim(X : C),

where |C/3| denotes the volume the fundamental domain of 3 in C.

3. Proof of Theorem 1.1
Let 3⊂ C be a lattice and π : C→ C/3 be the natural projection. Let ϕ : C/3→ CP N

be a non-constant holomorphic map satisfying |dϕ|< 1, and set ϕ̃ := ϕ ◦ π : C→ CP N .
We have

e(ϕ̃)= deg ϕ/|C/3|,

where deg ϕ = 〈c1(ϕ
∗O(1)), [C/3]〉. Let T ′CP N be the holomorphic tangent bundle of

CP N and consider its pullback E := ϕ̃∗T ′CP N over C. E is equipped with the Hermitian
metric induced by the Fubini–Study metric. We define a Banach space V as the space of
bounded holomorphic sections of E with the sup-norm ‖ · ‖∞:

V :=

{
u : C→ E | u is a holomorphic section and satisfies ‖u‖∞ := sup

z∈C
|u(z)|<∞

}
.

(8)
The following result is the keystone of the proof of Theorem 1.1.

PROPOSITION 3.1. There are positive numbers δ and C such that for any u ∈ V with
‖u‖∞ ≤ δ there exists a Brody curve fu : C→ CPn satisfying the following.
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(i) f0 = ϕ̃.
(ii) The map Bδ 3 u 7→ fu ∈M(CP N ) is3-equivariant. Here Bδ = {u ∈ V |‖u‖∞ ≤ δ}

and we have considered the natural 3-action on E and V .
(iii) For any u, v ∈ V with ‖u‖∞, ‖v‖∞ ≤ δ, we have

C−1
‖u − v‖∞ ≤ sup

z∈C
d( fu(z), fv(z))≤ C‖u − v‖∞,

where d(·, ·) denotes the distance on CP N defined by the Fubini–Study metric.

We will prove this proposition in §5 by constructing a ‘deformation theory’ of ϕ̃. (Each
fu is a ‘small deformation’ of ϕ̃.) Here we prove Theorem 1.1, assuming Proposition 3.1.

Proof of Theorem 1.1. To begin with, we define the distance d(·, ·) on M(CP N ) by

d( f, g) :=
∑
n≥1

2−n sup
|z|≤n

d( f (z), g(z)) for f, g ∈M(CP N ).

Let 3= Zω1 ⊕ Zω2 ⊂ C be a lattice in C (ω1, ω2 ∈ C). For any positive integer n we set

Kn := {xω1 + yω2 ∈ C | x, y ∈ R, 0≤ x, y ≤ n}. (9)

Kn is a fundamental domain of n3 in C. There is a positive constant C1 = C1(3) such
that

sup
z∈K1

d( f (z), g(z))≤ C1 d( f, g) for f, g ∈M(CP N ).

Then for any n > 0 we have

sup
z∈Kn

d( f (z), g(z))≤ C1 d�n ( f, g) for f, g ∈M(CP N ), (10)

where �n and d�n (·, ·) are defined by (6) and (7).
Let ϕ : C/3→ CP N be a non-constant holomorphic map satisfying |dϕ|< 1. We

define ϕ̃, E and V as before. For any positive integer n, let πn : C/n3→ C/3 be the
natural n2-fold covering map, and set ϕn := ϕ ◦ πn : C/n3→ CP N . Consider

Vn := H0(C/n3, O(ϕ∗n T ′CP N )).

Vn is the space of holomorphic sections of ϕ∗n T ′CP N over C/n3, and it can be identified
with the subspace of V consisting of n3-invariant holomorphic sections of E . From the
Riemann–Roch formula and the vanishing of H1 (cf. §5), we have

dim Vn = 2 dimC Vn = 2〈ϕ∗n c1(CP N ), [C/n3]〉 = 2n2(N + 1) deg ϕ.

(Actually we need only the inequality dim Vn ≥ 2n2(N + 1) deg ϕ in this proof. Hence
we don’t need H1

= 0.) Let δ, C be the positive constants in Proposition 3.1. Set
Bδ(Vn) := {u ∈ Vn|‖u‖∞ ≤ δ}. For any u ∈ Bδ(Vn) there exists a Brody curve fu . From
the 3-equivariance in Proposition 3.1(ii), fu is n3-invariant (i.e. it can be considered as a
holomorphic map from C/n3 to CP N ). Then from Proposition 3.1(iii) and (10), for any
u, v ∈ Bδ(Vn)

‖u − v‖∞ ≤ C sup
z∈C

d( fu(z), fv(z))= C sup
z∈Kn

d( fu(z), fv(z))≤ CC1 d�n ( fu, fv).
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Moreover Proposition 3.1 shows that the map Bδ(Vn)→M(CP N ), u 7→ fu , is
continuous. Therefore for any ε > 0

Widimε(M(CP N ), d�n )≥WidimCC1ε(Bδ(Vn), ‖ · ‖∞),

where Bδ(Vn) is equipped with the distance ‖u − v‖∞. Then Proposition 2.1 implies, for
ε < δ/CC1,

Widimε(M(CP N ), d�n )≥ dim Vn = 2n2(N + 1) deg ϕ.

Note that δ/CC1 is independent of n (this is the crucial point). Hence

Widimε(M(CP N ) :3)= lim
n→∞

1

n2 Widim(M(CP N ), d�n )≥ 2(N + 1) deg ϕ,

for any ε < δ/CC1. Thus

dim(M(CP N ) :3)≥ 2(N + 1) deg ϕ.

Using Proposition 2.2, we get

dim(M(CP N ) : C) =
1
|C/3|

dim(M(CP N ) :3),

≥ 2(N + 1) deg ϕ/|C/3| = 2(N + 1)e(ϕ̃). (11)

Then we can prove Theorem 1.1. Let f ∈M(CP N ) be any elliptic Brody curve. Take
a positive number c < 1 and set g(z) := f (cz). Then g is an elliptic Brody curve satisfying
|dg|< 1, and we can apply (11) to g:

dim(M(CP N ) : C)≥ 2(N + 1)e(g)= 2c2(N + 1)e( f ).

Let c→ 1. Then
dim(M(CP N ) : C)≥ 2(N + 1)e( f ).

This shows Theorem 1.1. 2

Remark 3.2. In the above proof, each Bδ(Vn) describes a small deformation of ϕn :

C/n3→ CP N . The small deformations of each ϕn can be constructed by the usual
deformation theory. The point of Proposition 3.1 is that we can construct the deformations
of all ϕn with the estimates independent of n; this is essential in the above proof.

4. Analytic preliminaries
This section is a preparation for the proof of Proposition 3.1.

4.1. Helmholtz equation. We will need some elementary facts about the Helmholtz
equation on the plane R2:

(−1+ λ)w = 0, where λ > 0 and1=
∂2

∂x2 +
∂2

∂y2 . (12)

Set

wλ(z) :=
1

2π

∫ 2π

0
exp
√
λ(x cos θ + y sin θ) dθ. (13)

wλ satisfies (12) and wλ > 0. The following fact can be easily checked.

LEMMA 4.1. The minimum value of wλ is wλ(0)= 1, and wλ(z)→+∞ as |z| →∞.
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4.2. L∞-estimate. Let F be a holomorphic vector bundle over the complex plane C
with a Hermitian metric h. Let ∂̄ :�0(F)→�0,1(F) be the Dolbeault operator, and ∇ the
canonical connection on (F, h). We denote the formal adjoint of ∂̄ and ∇ by ∂̄∗ and ∇∗.
We have the following Weintzenböck formula: for any ξ ∈�0,1(F)

∂̄ ∂̄∗ξ = 1
2∇
∗
∇ξ + Rξ, (14)

where Rξ = [∇∂/∂z, ∇∂/∂ z̄]ξ . Note that for ξ = u ⊗ dz̄ (u ∈ 0(F)) we have

∇∂/∂zξ = (∇∂/∂zu)⊗ dz̄, ∇∂/∂ z̄ξ = (∇∂/∂ z̄u)⊗ dz̄.

For ξ = u ⊗ dz̄ and η = v ⊗ dz̄ (u, v ∈ 0(F)), we set 〈ξ, η〉 := 2h(u, v). We suppose that
F is ‘positive’ in the following sense: there exists a positive number a such that for any
ξ ∈�0,1(F)

〈Rξ, ξ 〉 ≥ a|ξ |2. (15)

PROPOSITION 4.2. Let ξ ∈�0,1(F) be an F-valued (0, 1)-form of class C 2, and set
η := ∂̄ ∂̄∗ξ . If ‖ξ‖∞, ‖η‖∞ <∞, then

‖ξ‖∞ ≤
8
a
‖η‖∞.

Proof. There is a point z0 ∈ C satisfying |ξ(z0)| ≥ ‖ξ‖∞/2. We suppose z0 = 0 for
simplicity. We have

1|ξ |2 =−2 Re〈∇∗∇ξ, ξ 〉 + 2|∇ξ |2.

Using the Weintzenböck formula (14) and η = ∂̄ ∂̄∗ξ , we have

1|ξ |2 = −4 Re〈η, ξ 〉 + 4〈Rξ, ξ 〉 + 2|∇ξ |2,

≥ −4 Re〈η, ξ 〉 + 4a|ξ |2.

Set M := 4‖ξ‖∞‖η‖∞. We have (−1+ 4a)|ξ |2 ≤ M .
Set w(z) := Mw2a(z)/2a, where w2a is a function defined in (13). w(z) satisfies

(−1+ 2a)w = 0, w ≥ M/2a.

Then (−1+ 4a)w = 2aw ≥ M . Therefore

(−1+ 4a)(w − |ξ |2)≥ 0.

Since ‖ξ‖∞ <∞ and w(z)→∞ (|z| →∞), we have w(z)− |ξ |2 > 0 (|z| � 0). Then
we can apply the minimum principle (see Gilbarg–Trudinger [3, Ch. 3, Corollary 3.2]),
and get

w(0)− |ξ(0)|2 ≥ 0.

Therefore

‖ξ‖2∞/4≤ |ξ(0)|
2
≤ w(0)= M/2a = 2‖ξ‖∞‖η‖∞/a.

Thus ‖ξ‖∞ ≤ 8‖η‖∞/a. 2
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4.3. Perturbation of a Hermitian metric. We briefly discuss a perturbation technique
of a Hermitian metric. M. Gromov also discuss it in [5, p. 399]. Let 3⊂ C be a lattice
and ϕ : C/3→ CP N a non-constant holomorphic map. Let ϕ∗T ′CP N

→ C/3 be the
pullback of the holomorphic tangent bundle T ′CP N with the Hermitian metric h induced
by the Fubini–Study metric. Since the holomorphic bisectional curvature of the Fubini–
Study metric is positive, there is c > 0 such that for any u ∈ 0(ϕ∗T ′CP N )

h(Ru, u)≥ c|dϕ|2|u|2, (16)

where R is the curvature defined by Ru := [∇∂/∂z, ∇∂/∂ z̄]u (∇ is the canonical connection).

LEMMA 4.3. There is a Hermitian metric h′ on ϕ∗T ′CP N satisfying the following: there
exists a > 0 such that for any u ∈ 0(ϕ∗T ′CP N )

h′(R′u, u)≥ a|u|2,

where R′ is the curvature of h′.

Proof. Set h′ = e− f h where f is a real-valued function defined later. Then for any
u ∈ 0(ϕ∗T ′CP N )

R′u = 1
4 (1 f )u + Ru and h′(R′u, u)= e− f

{
1
4 (1 f )|u|2 + h(Ru, u)}.

Set {p ∈ C/3| dϕ(p)= 0} =: {p1, . . . , pn}. Let δ > 0 be a sufficiently small number and
set A :=

∐
i Bδ(pi )⊂ C/3; Bδ(pi ) is the closed ball of radius δ centered at pi . From (16)

there is c′ > 0 such that

h(Ru, u)≥ c′|u|2 for u ∈ (ϕ∗T ′CP N )p at p ∈ Ac
= (C/3) \ A.

Let g be a real valued function on C/3 satisfying

(i) g > 0 on A, (ii) g ≥−c′/2 on Ac, (iii)
∫
C/3

g dx dy = 0.

From the condition (iii), there exists f satisfying 1 f/4= g. Therefore

h′(R′u, u)= e− f (g |u|2 + h(Ru, u)).

From the conditions (i) and (ii), it is easy to see that there exists a > 0 such that
h′(R′u, u)≥ a|u|2 for all sections u. 2

5. Deformation theory

In this section we prove Proposition 3.1 by constructing ‘deformation theory’.

Remark 5.1. M. Gromov gives a certain ‘deformation’ argument different from ours in
[5, pp. 399–400].
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5.1. Deformation and the proof of Proposition 3.1. Let 3⊂ C be a lattice and π :
C→ C/3 the natural projection. Let ϕ : C/3→ CP N be a non-constant holomorphic
map satisfying |dϕ|< 1 and set ϕ̃ := ϕ ◦ π . Let E := ϕ̃∗T ′CP N be the pullback of the
holomorphic tangent bundle T ′CP N . E is equipped with the Hermitian metric h induced
by the Fubini–Study metric. E admits the natural 3-action.

Let k be a non-negative integer and α a real number satisfying 0< α < 1. We want to
define the Hölder spaces C k,α(E) and C k,α(�0,1(E)). Let {Un}

m
n=1, {U ′n}

m
n=1 and {U ′′n }

m
n=1

be open coverings of C/3 satisfying the following (i), (ii), (iii).

(i) Ūn ⊂U ′n and Ū ′n ⊂U ′′n , and all Un , U ′n , U ′′n are smooth regions, i.e. their boundaries
are smooth.

(ii) The covering map π : C→ C/3 can be trivialized on each U ′′n , i.e. there is a disjoint
union π−1(U ′′n )=

∐
λ∈3 U ′′n,λ such that each U ′′n,λ is a connected component of

π−1(U ′′n ) and π |U ′′n,λ :U
′′
n,λ→U ′′n is biholomorphic. Set Un,λ := π

−1(Un) ∩U ′′n,λ
and U ′n,λ := π

−1(U ′n) ∩U ′′n,λ, then π |Un,λ :Un,λ→Un and π |U ′n,λ :U
′
n,λ→U ′n are

biholomorphic and we have disjoint unions π−1(Un)=
∐
λ∈3 Un,λ and π−1(U ′n)

=
∐
λ∈3 U ′n,λ.

(iii) A bundle trivialization of ϕ∗T ′CP N is given on each U ′′n , i.e. we have a holomorphic
bundle isomorphism ϕ∗T ′CP N

|U ′′n →U ′′n × CN . Then we also have a trivialization
of E over each U ′′n,λ through the isomorphisms U ′′n,λ→U ′′n .

Let u be a section of E (not necessarily holomorphic). From (iii) in the above, u|U ′′n,λ
can be seen as a vector-valued function on U ′′n,λ. Hence we can define its C k,α-norm
‖u‖C k,α(Ūn,λ)

over Ūn,λ as a vector-valued function (see Gilbarg–Trudinger [3, Ch. 4]).

We define the C k,α(E)-norm of u by

‖u‖C k,α(E) := sup
n,λ
‖u‖C k,α(Ūn,λ)

.

We define the Hölder space C k,α(E) as the space of sections of E whose C k,α(E)-norms
are finite. For ξ = u ⊗ dz̄ ∈�0,1(E) (u ∈ 0(E)) we define its C k,α(�0,1(E))-norm by

‖ξ‖C k,α(�0,1(E)) :=
√

2‖u‖C k,α(E),

and we define C k,α(�0,1(E)) := C k,α(E)⊗ dz̄. Then C k,α(E) and C k,α(�0,1(E)) become
Banach spaces. (In the above definition of the Hölder spaces we have not used the open
sets U ′n,λ. They will be used in the next subsection.)

The holomorphic tangent bundle T ′CP N is the eigenspace of the complex structure
J on T CP N

⊗R C of eigenvalue
√
−1. We naturally identify T ′CP N with the tangent

bundle T CP N by

T CP N
3 u←→ u −

√
−1Ju ∈ T ′CP N .

So E can be identified with ϕ̃∗T CP N .

Consider (cf. McDuff–Salamon [9, Ch. 3])

8 : C 1,α(E)→ C 0,α(�0,1(E)) u 7→ Pu(∂̄ exp u)⊗ dz̄.
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Here, exp : T CP N
→ CP N is the exponential map defined by the Fubini–Study

metric, and Pu : Texp uCP N
→ Tϕ̃CP N is the parallel transport along the geodesic

exp tu (0≤ t ≤ 1). ∂̄ exp u ∈ Texp uCP N is defined by

∂̄ exp u :=
1
2

(
∂

∂x
exp u + J

∂

∂y
exp u

)
.

8 is a smooth map between the Banach spaces, and it is 3-equivariant. The map
C 3 z 7→ exp u(z) ∈ CP N becomes a holomorphic curve if and only if 8(u)= 0. The
derivative of 8 at the origin is the Dolbeault operator:

(d8)0 = ∂̄ : C 1,α(E)→ C 0,α(�0,1(E)). (17)

PROPOSITION 5.2. The small deformation of ϕ̃ is unobstructed, i.e. there exists a
3-equivariant bounded linear operator Q : C 0,α(�0,1(E))→ C 1,α(E) satisfying
∂̄ ◦ Q = 1.

This proposition will be proved later. Let V := ker ∂̄ be the kernel of (17) (this definition
coincides with (8)). Note that V is a complement of the image of Q in C 1,α(E) and that it
is 3-invariant. From the elliptic regularity (cf. §5.2), we have

‖u‖∞ ≤ const · ‖u‖C 1,α(E) ≤ const′ · ‖u‖∞ for any u ∈ V ,

where const and const′ are independent of u.
For r > 0 set Br := {u ∈ V |‖u‖∞ ≤ r}. From Proposition 5.2 and the implicit function

theorem, there are δ > 0 and a 3-equivariant smooth map g : Bδ→ Image(Q) satisfying

(i) g(0)= 0, (ii)8(u + g(u))= 0 for all u ∈ Bδ, (iii) (dg)0 = 0. (18)

Set fu := exp(u + g(u)) : C→ CP N for u ∈ Bδ . We want to show that these fu satisfy the
conditions in Proposition 3.1. From (i) and (ii) in (18), f0 = ϕ̃ and each fu is a holomorphic
curve. Since |dϕ|< 1, if we choose δ sufficiently small, all fu (u ∈ Bδ) become Brody
curves, i.e. |d fu | ≤ 1. Since g is 3-equivariant, the map Bδ 3 u 7→ fu ∈M(CP N ) is also
3-equivariant.

If we choose δ > 0 sufficiently small, then there exists K > 0 such that for all u, v ∈ Bδ

K−1
‖u + g(u)− v − g(v)‖∞ ≤ sup

z∈C
d( fu(z), fv(z))≤ K‖u + g(u)− v − g(v)‖∞

(this is a standard property of the exponential map) and we have

‖g(u)− g(v)‖∞ ≤ 1
2‖u − v‖∞.

Here we have used the condition (iii) in (18). Hence

1
2 K−1

‖u − v‖∞ ≤ sup
z∈C

d( fu(z), fv(z))≤ 3
2 K‖u − v‖∞.

Then all the conditions in Proposition 3.1 have been proved (assuming Proposition 5.2).
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5.2. Proof of Proposition 5.2. To begin with, we consider a perturbation of the
Hermitian metric on E . E has the Hermitian metric h induced by the Fubini–Study metric.
From Lemma 4.3, ϕ∗T ′CP N admits a Hermitian metric which is ‘positive’ in the sense of
Lemma 4.3. Then, pulling back this metric to E , E admits a 3-invariant Hermitian metric
h′ satisfying (15) for some a > 0. In this subsection we use this h′ as the Hermitian metric
on E . Note that the definitions of the Hölder spaces C k,α(E) and C k,α(�0,1(E)) do not use
the Hermitian metric. So they are independent of the choice of the Hermitian metric. (The
sup-norm ‖ · ‖∞ depends on the Hermitian metric, but the sup-norms defined by h and h′

are equivalent to each other.)
We prove Proposition 5.2 by showing that

∂̄ ∂̄∗ : C 2,α(�0,1(E))→ C 0,α(�0,1(E)) (19)

is an isomorphism. (Note that the Dolbeault operator ∂̄ is independent of the Hermitian
metric h′, but its formal adjoint ∂̄∗ depends on h′.) Then Q := ∂̄∗(∂̄ ∂̄∗)−1 gives a
3-equivariant right inverse of ∂̄ . The injectivity of (19) directly follows from the L∞-
estimate in Proposition 4.2. So the problem is its surjectivity.

LEMMA 5.3. If η ∈ C 0,α(�0,1(E)) has a compact support, then there exists ξ ∈ C 2,α

(�0,1(E)) satisfying ∂̄ ∂̄∗ξ = η.

Proof. We set
L2

1(�
0,1(E)) := {ξ ∈ L2(�0,1(E)) | ∇ξ ∈ L2

},

where ∇ξ is the distributional derivative of ξ . (The L2-norm and the L2-space are defined
by using the Hermitian metric h′.) Let ξ ∈�0,1(E) be a compact-supported smooth
section. From the Weitzenböck formula (14),

‖∂̄∗ξ‖2L2 = (∂̄ ∂̄
∗ξ, ξ)L2 = ( 1

2∇
∗
∇ξ + Rξ, ξ)L2 ,

≥
1
2‖∇ξ‖

2
L2 + a‖ξ‖2L2 .

Therefore for any ξ ∈ L2
1(�

0,1(E))

‖∂̄∗ξ‖2L2 ≥
1
2‖∇ξ‖

2
L2 + a‖ξ‖2L2 .

This means that the inner product (∂̄∗ξ1, ∂̄
∗ξ2)L2 (ξ1, ξ2 ∈ L2

1(�
0,1(E))) is equivalent to

the natural inner product (ξ1, ξ2)L2
1
:= (∇ξ1, ∇ξ2)L2 + (ξ1, ξ2)L2 on L2

1(�
0,1(E)).

η defines a bounded functional (·, η)L2 : L2
1(�

0,1(E))→ C. From the Riesz representa-
tion theorem, there (uniquely) exists ξ ∈ L2

1(�
0,1(E)) satisfying (∂̄∗φ, ∂̄∗ξ)L2 = (φ, η)L2

for all φ ∈ L2
1(�

0,1(E)) and

‖ξ‖L2
1
:= (ξ, ξ)

1/2
L2

1
≤ const · ‖η‖L2 . (20)

In particular, ∂̄ ∂̄∗ξ = η in the sense of distribution. (The above is a standard argument in
the ‘L2-theory’.)

We want to show ξ ∈ C 2,α(�0,1(E)). Remember the open covering C=
⋃

n,λ
Un,λ =

⋃
n,λ U ′n,λ =

⋃
n,λ U ′′n,λ (n = 1, . . . , m, λ ∈3) used in the definition of the
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Hölder spaces. Each ξ |U ′′n,λ can be seen as a vector-valued function. From the Sobolev

embedding L2
2 ↪→ C 0, the elliptic regularity (see Gilbarg–Trudinger [3, Ch. 8]) and (20),

‖ξ |Un,λ‖∞ ≤ constn · ‖ξ |Un,λ‖L2
2
≤ const′n(‖ξ |U ′n,λ‖L2

1
+ ‖η|U ′n,λ

‖L2)

≤ const′′n · ‖η‖L2 ,

where constn , const′n and const′′n are positive constants which depend on n = 1, . . . , m.
The point is that they are independent of λ ∈3; this is owing to the 3-symmetry of the
equation. Then

‖ξ‖∞ ≤ const · ‖η‖L2 .

From the Schauder interior estimate (see Gilbarg–Trudinger [3, Ch. 6]),

‖ξ‖C 2,α(Ūn,λ)
≤ constn(‖ξ‖∞ + ‖η‖C 0,α(Ū ′n,λ)

)≤ const(‖η‖L2 + ‖η‖C 0,α(�0,1(E))).

Here we have used the following fact (which can be easily checked):

sup
n,λ
‖η‖C 0,α(Ū ′n,λ)

≤ const · ‖η‖C 0,α(�0,1(E))
(
= const · sup

n,λ
‖η‖C 0,α(Ūn,λ)

)
. (21)

Thus ‖ξ‖C 2,α(�0,1(E)) <∞ and ξ ∈ C 2,α(�0,1(E)). 2

Then we can prove that (19) is surjective (and hence isomorphic). Take an arbitrary η ∈
C 0,α(�0,1(E)). Let φk (k ≥ 1) be cut-off functions on the plane C such that 0≤ φk ≤ 1,
φk(z)= 1 for |z| ≤ k and φk(z)= 0 for |z| ≥ k + 1. Set ηk := φkη. From Lemma 5.3, there
exists ξk ∈ C 2,α(�0,1(E)) satisfying ∂̄ ∂̄∗ξk = ηk . From the L∞-estimate in Proposition 4.2,

‖ξk‖∞ ≤ const · ‖ηk‖∞ ≤ const · ‖η‖∞. (22)

Using the Schauder interior estimate on each U ′n,λ, we get

‖ξk‖C 2,α(Ūn,λ)
≤ constn(‖ηk‖C 0,α(Ū ′n,λ)

+ ‖ξk‖∞)≤ const′n(‖ηk‖C 0,α(Ū ′n,λ)
+ ‖η‖∞).

Since ηk |U ′n,λ
= η|U ′n,λ

for k� 1 (for each fixed (n, λ)), {ξk |Un,λ}k≥1 is a bounded sequence

in C 2,α(Ūn,λ). Hence, if we choose a subsequence, {ξk |Un,λ}k≥1 becomes a convergent
sequence in C 2(Ūn,λ) (by Arzela–Ascoli’s theorem). Therefore (by using the diagonal
argument) there exists ξ ∈�0,1(E) of class C 2 such that {ξk |Un,λ}k≥1 converges to ξ |Un,λ

in C 2(Ūn,λ) for each (n, λ). Since ∂̄ ∂̄∗ξk = ηk , we have ∂̄ ∂̄∗ξ = η. From (22), ‖ξ‖∞
≤ const · ‖η‖∞ <∞. Using the Schauder interior estimate, we get

‖ξ‖C 2,α(Ūn,λ)
≤ constn(‖η‖C 0,α(Ū ′n,λ)

+ ‖ξ‖∞)≤ const′n(‖η‖C 0,α(Ū ′n,λ)
+ ‖η‖∞).

From (21),

‖ξ‖C 2,α(�0,1(E)) ≤ const · ‖η‖C 0,α(�0,1(E)) <∞.

Therefore we get ξ ∈ C 2,α(�0,1(E)) satisfying ∂̄ ∂̄∗ξ = η. Then (19) is an isomorphism,
and the proof of Proposition 5.2 is finished (and hence the proof of Theorem 1.1 is
completed).
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6. Remark on Gromov’s conjecture on rational curves and mean dimension
Gromov gives the following (very beautiful) conjecture in [5, p. 329].

CONJECTURE 6.1. Let X ⊂ CP N be a projective manifold, and M(X) the space of Brody
curves in X. Then dim(M(X) : C) > 0 if and only if X contains a rational curve.

The ‘if’ part is easy and the problem is the ‘only if’ part. The purpose of this section is
to show the following proposition.

PROPOSITION 6.2. There exists a compact Hermitian manifold X such that X contains no
rational curve and satisfies dim(M(X) : C) > 0. Here M(X) is the space of holomorphic
maps f : C→ X satisfying

sup
z∈C
|d f |(z) := sup

z∈C

√
2|d f (∂/∂z)| ≤ 1.

This shows that the projectivity (or the Kähler condition) is essential in Conjecture 6.1.
(Actually I feel that the following argument suggests that the true conjecture might be
something like the following: if dim(M(X) : C) > 0 then there are ‘many’ elliptic curves
in X (cf. Gromov [5, p. 330, EXAMPLE]).) We prove Proposition 6.2 by using an
argument similar to that of §3. (But this case is much easier than the proof of Theorem 1.1;
we don’t need a serious analytic argument. In particular we do not use the results in
§§4, 5. Perhaps we can also prove Proposition 6.2 by applying the argument in Gromov
[5, pp. 385–388] to the following construction.)

The compact Hermitian manifold X constructed below is actually known as a counter-
example of the ‘bend-and-break’ technique for general complex manifolds (see Kollár–
Mori [6, Example 1.8]). We follow the description of [6, Example 1.8].

Let C/3 be an elliptic curve (3 is a lattice in C). Let L be a holomorphic line bundle
of deg≥ 2 over C/3 such that there exists two holomorphic sections s, t of L satisfying
{z ∈ C/3| s(z)= t (z)= 0} = ∅. Set F := L ⊕ L . The vector bundle F has the following
four sections:

(s, t), (
√
−1s,−

√
−1t), (t,−s), (

√
−1t,
√
−1s).

These are R-linearly independent all over C/3. (Therefore F becomes a product bundle
as a real vector bundle.) Hence we can define a lattice bundle 0 ⊂ F by

0 := {x1(s, t)+ x2(
√
−1s,−

√
−1t)+ x3(t,−s)+ x4(

√
−1t,
√
−1s) |

x1, x2, x3, x4 ∈ Z}.

We define a compact complex threefold X by X := F/0. (Topologically X = T 2
× T 4

= T 6.) Obviously X contains no rational curve. But X can contain lots of Brody curves as
we will see below.

We give a Hermitian metric (of a complex vector bundle) to F and a Hermitian metric
(of a complex manifold) to X . Let π : C→ C/3 be the natural projection and E := π∗F
the pullback of F by π . E is equipped with the 3-invariant Hermitian metric induced
by the metric on F . Let V be the (Banach) space of bounded holomorphic sections of E
with the sup-norm ‖ · ‖∞, and set Bδ(V ) := {u ∈ V |‖u‖∞ ≤ δ} for δ > 0. Let p : F→ X
be the natural projection. If we choose δ sufficiently small and consider some scale
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change of the Hermitian metric of X , then, for any u ∈ Bδ(V ), p ◦ u : C→ X belongs
to M(X) and the map 8 : Bδ(V ) 3 u 7→ p ◦ u ∈M(X) becomes injective. (Here we
consider u ∈ Bδ(V ) as a map from C to F .) We define a distance d(·, ·) on Bδ(V ) by

d(u, v) :=
∑
n≥1

2−n sup
|z|≤n
|u(z)− v(z)| for any u, v ∈ Bδ(V ).

We consider the topology defined by this distance on Bδ(V ). Then Bδ(V ) becomes
compact, and 8 : Bδ(V )→M(X) becomes a 3-equivariant continuous embedding
(here we consider the compact-open topology on M(X)). Hence dim(M(X) :3)≥
dim(Bδ(V ) :3). Let πn : C/n3→ C/3 be the natural n2-fold covering. Then the
argument in Section 3 shows

dim(Bδ(V ) :3)≥ lim
n→∞

1

n2 dim H0(C/n3 :O(π∗n F))= 2 deg(F) > 0.

(This is an inequality of the type ‘mean dimension greater than or equal to residual
dimension’.) Therefore

dim(M(X) : C)= dim(M(X) :3)/|C/3|> 0.

Remark 6.3. The above X does not admit a Kähler metric. In fact the space of holomorphic
1-forms in X is (complex) one-dimensional. Since the first Betti number of X = T 6 is 6,
the Hodge theory implies that there is no Kähler metric on X .
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A. Appendix. Proof of Proposition 2.1
Gromov [5, p. 333] proved Proposition 2.1 by using the notion ‘filling radius’. (Filling
radius is a notion introduced in his celebrated paper [4].) Our following proof is a variant
of the argument of Lindenstrauss–Weiss [8, Lemma 3.2].

It is enough to prove that for the unit ball B := {x ∈ V | ‖x‖ ≤ 1} we have

Widimε(B, d)= dim V = n for ε < 1.

Suppose there exists ε < 1 such that Widimε(B, d)≤ n − 1. Then there is a finite open
covering {Ui }i∈I of B such that δ :=maxi∈I Diam Ui < 1 and its order is ≤ n − 1, i.e.
Ui1 ∩Ui2 ∩ · · · ∩Uin+1 = ∅ for distinct i1, i2, . . . , in+1 ∈ I .

Let {φi }i∈I be a partition of unity on B satisfying supp φi ⊂Ui . Take an arbitrary point
pi in Ui . We define a map f : B→ B by f (x) := −

∑
i∈Iφi (x) · pi . For any x ∈ B we

have

‖ f (x)+ x‖ =

∥∥∥∥∑
i∈I

φi (x)(x − pi )

∥∥∥∥≤ δ∑
i∈I

φi = δ. (23)
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For each x ∈ B we have ]{i ∈ I |φi (x) 6= 0} ≤ n. Therefore f (B) is contained in a union
of at most (n − 1)-dimensional polyhedrons. In particular f (B) does not contain an inner
point. Hence there exists a ∈ B such that a /∈ f (B) and ‖a‖ ≤ 1− δ. Then we can define
g : B→ ∂B by g(x) := ( f (x)− a)/‖ f (x)− a‖. This g does not have a fixed point.
In fact if g(x)= x , then x ∈ ∂B and f (x)− a = x‖ f (x)− a‖. Then f (x)+ x − a =
x(1+ ‖ f (x)− a‖) and ‖ f (x)+ x − a‖ = 1+ ‖ f (x)− a‖> 1. From (23),

1< ‖ f (x)+ x − a‖ ≤ ‖ f (x)+ x‖ + ‖a‖ ≤ δ + ‖a‖ ≤ 1.

This is a contradiction. Therefore g does not have a fixed point, and this contradicts the
Brouwer fixed-point theorem.
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