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Given a sequence of polynomials {xk(q)}k�0, define the transformation

yn(q) = an
n∑

i=0

(n

i

)
bn−ixi(q)

for n � 0. In this paper, we obtain the relation between the Jacobi continued
fraction of the ordinary generating function of yn(q) and that of xn(q). We also
prove that the transformation preserves q-TPr+1 (q-TP) property of the Hankel
matrix [xi+j(q)]i,j�0, in particular for r = 2, 3, implying the r-q-log-convexity of the
sequence {yn(q)}n�0. As applications, we can give the continued fraction
expressions of Eulerian polynomials of types A and B, derangement polynomials
types A and B, general Eulerian polynomials, Dowling polynomials and
Tanny-geometric polynomials. In addition, we also prove the strong q-log-convexity
of derangement polynomials type B, Dowling polynomials and Tanny-geometric
polynomials and 3-q-log-convexity of general Eulerian polynomials, Dowling
polynomials and Tanny-geometric polynomials. We also present a new proof of the
result of Pólya and Szegö about the binomial convolution preserving the Stieltjes
moment property and a new proof of the result of Zhu and Sun on the binomial
transformation preserving strong q-log-convexity.

Keywords: log-convexity; strong q-log-convexity; k-q-log-convexity; total positivity;
hankel matrix; continued fraction
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1. Introduction

Given a sequence {xn}n�0, define the binomial transformation

yn =
n∑

i=0

(
n

i

)
xi

for n � 0, which often arises in combinatorics. In fact, it has the general combina-
torial interpretation from the famous sieve method or inclusion-exclusion-principle
[19, Chaper IV]. It is very useful in studying the log-concavity and log-convexity.
For instance, it is well known that the binomial transformation preserves the
log-concavity property and log-convexity property (see Karlin [23] for instance).
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Zhu and Sun [42] also proved that the binomial transformation preserves the
strong q-log-concavity property. More generally, the log-convexity property and
log-concavity property are preserved under the binomial convolution and the ordi-
nary multinomials convolution, see Davenport and Pólya [20], Wang and Yeh [36]
and Ahmia and Belbachir [1], respectively. However, there is still a gap for linear
transformations preserving higher order q-log-convexity. This is one motivation for
this paper.

For the convenience of the readers and for the sake of clarity of exposition,
recall some definitions. Let {ak}k�0 be a sequence of nonnegative numbers. The
sequence is called log-convex (log-concave, resp.) if akak+2 � a2

k+1 (akak+2 � a2
k+1,

resp.) for all k � 0. The log-convex and log-concave sequences arise often in com-
binatorics and have been extensively investigated. We refer the reader to [10,32]
for the log-concavity and [25,39] for the log-convexity. For two polynomials with
real coefficients f(q) and g(q), denote f(q) �q g(q) if the difference f(q) − g(q) has
only nonnegative coefficients. For a polynomial sequence {fn(q)}n�0, it is called
q-log-concave suggested by Stanley if

fn(q)2 �q fn+1(q)fn−1(q),

for n � 1 and is called q-log-convex introduced by Liu and Wang if

fn(q)2 �q fn+1(q)fn−1(q),

for any n � 1. It is also called strongly q-log-convex defined by Chen et al. if

fn+1(q)fm−1(q) − fn(q)fm(q) �q 0

for any n � m � 1. Obviously, the q-log-concavity (q-log-convexity) reduces to the
log-concavity (log-convexity) for q = 0. The q-log-concavity and q-log-convexity of
polynomials have been extensively studied, see Butler [12], Leroux [24], Sagan [31],
and Su, Wang and Yeh [33] for q-log-concavity, and refer to Chen et al. [15–17],
Liu and Wang [25], Zhu [39,40], and Zhu and Sun [42] for q-log-convexity.

Motivated by the notion of infinite log-concavity [26], Chen [13] defined the r-q-
log-convexity as follows. Define the operator L which maps a polynomial sequence
{fi(q)}i�0 to a polynomial sequence {gi(q)}i�0 given by

gi(q) := fi−1(q)fi+1(q) − fi(q)2.

Then the q-log-convexity of the polynomial sequence {fi(q)}i�0 is equivalent to
the q-positivity of L{fi(q)}, that is, the coefficients of gi(q) are nonnegative for
all i � 1. If the polynomial sequence {gi(q)}i�1 is q-log-convex, then {fi(q)}i�0 is
called 2-q-log-convex. In general, {fi(q)}i�0 is called r-q-log-convex if the coefficients
of Lr{fi(q)} are nonnegative for i � r. In general, it is much more difficult to show
the r-q-log-convexity for r � 2.

Let A = [an,k]n,k�0 be a matrix of real numbers. It is called totally positive
(TP for short) if all its minors are nonnegative and is called TPr if all minors
of order � r are nonnegative. When each entry of A is a polynomial in q with
nonnegative coefficients, then we have the similar concepts for q-TP (resp. q-TPr)
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if all its minors (resp. if all minors of order � r) are polynomials with nonneg-
ative coefficients. Total positivity of matrices plays an important role in various
branches of mathematics, statistics, probability, mechanics, economics, and com-
puter science, see Karlin [23] and Pinkus [28] for instance. Theory of total positivity
has successfully been applied to log-concavity and log-convexity problems in com-
binatorics, see Brenti [11] and Zhu [39,41]. The total positivity of a kind of
matrix called Hankel matrix is related to the continued fractions. In addition,
the continued fractions often arise in combinatorics and have general combinato-
rial interpretations. Zhu [39,41] also gave criterions for strong q-log-convexity and
higher order q-log-convexity from the famous Jacobi continued fractions, respec-
tively. For brevity, we let JCF[gn(q)z,hn+1(q)z2] denote the Jacobi continued
fraction

1

1 − g0(q)z − h1(q)z2

1 − g1(q)z − h2(q)z2

1 − g2(q)z − . . .

,

where {gn(q)}n�0 and {hn(q)}n�1 are sequences of polynomials with nonnegative
coefficients.

The following is the main result of this paper.

Theorem 1.1. Let {xi(q)}i�0 be a sequence of polynomials. Assume the transfor-
mation

yn(q) = an
n∑

j=0

(
n

j

)
bn−jxj(q),

for n � 0. Let r be a nonnegative integer.

(i) If the generating function

∞∑
k=0

xk(q)zk = JCF[gn(q)z,hn+1(q)z2],

then we have
∞∑

k=0

yk(q)zk = JCF[a(gn(q) + b)z, a2hn+1(q)z2].

(ii) Let a and b be positive. If the Hankel matrix [xi+j(q)]i,j�0 is q-TPr+1, then
so is [yi+j(q)]i,j�0. In particular, {yi(q)}i�0 is r-q-log-convex for 1 � r � 3.

(iii) Let a and b be positive. If the Hankel matrix [xi+j(q)]i,j�0 is q-TP, then so
is the Hankel matrix [yi+j(q)]i,j�0.

Barry also obtained (i) of theorem 1.1 for a = 1 using a different method [3].
Note that a sequence of polynomials {xn(q)}n�0 is strongly q-log-convex if and
only if the Hankel matrix [xi+j(q)]i,j�0 is q-TP2. Thus, for a = b = r = 1, the (ii)
of theorem 1.1 gives another proof of the following result [42].
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Corollary 1.2. [42] If the sequence of polynomials {xi(q)}i�0 is strongly q-log-
convex, then so is the binomial transformation

yn(q) =
n∑

j=0

(
n

j

)
xj(q),

for n � 0.

In particular, the following result is immediate from (ii) and (iii) of theorem 1.1
and lemma 2.2.

Theorem 1.3. Let {xi}i�0 be a sequence of nonnegative real numbers. Assume the
binomial transformation

yn =
n∑

j=0

(
n

j

)
xjq

j ,

for n � 0. Let r be a nonnegative integer.

(i) If the Hankel matrix [xi+j ]i,j�0 is TPr+1, then {yi}i�0 is r-log-convex for 1 �
r � 3 and q = 1.

(ii) If [xi+j ]i,j�0 is TP, then [yi+j ]i,j�0 is q-TP.

(iii) If {xi}i�0 is a Stieltjes moment sequence, then so is {yi}i�0 for q = 1.

A sequence {ak}k�0 is called a Stieltjes moment (SM for short) sequence if its
Hankel matrix [ai+j ]i,j�0 is TP. It is well known that it is a Stieltjes moment
sequence if and only if it has the form

ak =
∫ +∞

0

xk dμ(x), (1.1)

where μ is a non-negative measure on [0,+∞), see [28, theorem 4.4] for instance.
Stieltjes moment problem is one of the classical moment problems and arises natu-
rally in many branches of mathematics [35]. Note that Pólya and Szegö [29, Part
VII, theorem 42] proved the following result.

Theorem 1.4. If both {xn}n�0 and {yn}n�0 are Stieltjes moment sequences, then
so is their binomial convolution

zn =
n∑

k=0

(
n

k

)
xkyn−k, n = 0, 1, 2, . . . .

Remark 1.5. Wang and Zhu [37] gave a new proof for theorem 1.4. It is known [6,
theorem 6] that if a triangular linear transformation preserves the Stieltjes moment
property, then the same goes for its convolution. Thus by (iii) of theorem 1.3, we
have another proof for theorem 1.4.
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The organization of this paper is as follows. In § 2, we present the proof of theorem
1.1. In § 3, as applications of theorem 1.1, we give the continued fraction expres-
sions of Eulerian polynomials of types A and B, derangement polynomials types A
and B, general Eulerian polynomials, Dowling polynomials and Tanny-geometric
polynomials. In addition, we also prove the strong q-log-convexity of derange-
ment polynomials type B, Dowling polynomials and Tanny-geometric polynomials
and 3-q-log-convexity of general Eulerian polynomials, Dowling polynomials and
Tanny-geometric polynomials.

2. Proof of theorem 1.1

In this paper, the total positivity of matrices plays an important role in our proof.
In order to present our proof, we need the following some basic results from total
positivity of matrices. The first of the following lemmas follows from the clas-
sic Cauchy-Binet formula and the second can be obtained from the properties of
determinants.

Lemma 2.1. If two matrices are q-TPr, then so is their product.

Lemma 2.2. If [xi+j(q)]i,j�0 is q-TPr, then so is [(a + bq)i+jxi+j(q)]i,j�0 for
nonnegative real numbers a and b.

Using the total positivity of matrices, Zhu [41] proved the following criterion for
higher order q-log-convexity. In order to make the proof self-contained, we will state
the proof here.

Proposition 2.3. Let {an(q)}n�0 be a sequence of polynomials with nonnegative
coefficients. If the Hankel matrix [ai+j(q)]i,j�0 is q-TPr+1, then {an(q)}n�0 is r-q-
log-convex for 1 � r � 3.

Proof. For brevity, we write ak for ak(q). Note for r = 1 that

L(ak) = ak+1ak−1 − a2
k =

∣∣∣∣ ak−1 ak

ak ak+1

∣∣∣∣ .

Thus it is obvious that {an(q)}n�0 is q-log-convex if the Hankel matrix [ai+j ]i,j�0

is q-TP2. Furthermore, for r = 2, we get that

L2(ak) = L(ak−1)L(ak+1) − [L(ak)]2

=
(
ak+2ak − a2

k+1

) (
akak−2 − a2

k−1

) − (
ak+1ak−1 − a2

k

)2

= ak

(
2ak−1akak+1 + akak+2ak−2 − a3

k − a2
k+1ak−2 − a2

k−1ak+2

)

= ak

∣∣∣∣∣∣
ak−2 ak−1 ak

ak−1 ak ak+1

ak ak+1 ak+2

∣∣∣∣∣∣ , (2.1)

which implies that if the Hankel matrix [ai+j(q)]i,j�0 is q-TP3 then {an(q)}n�0 is
2-q-log-convex.
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In the following, we proceed to consider the case for r = 3. By (2.1), we have

L3(ak) = L2(ak−1)L2(ak+1) −
[L2(ak)

]2

= ak+1ak−1

∣∣∣∣∣∣
ak−1 ak ak+1

ak ak+1 ak+2

ak+1 ak+2 ak+3

∣∣∣∣∣∣
∣∣∣∣∣∣
ak−3 ak−2 ak−1

ak−2 ak−1 ak

ak−1 ak ak+1

∣∣∣∣∣∣

− a2
k

∣∣∣∣∣∣
ak−2 ak−1 ak

ak−1 ak ak+1

ak ak+1 ak+2

∣∣∣∣∣∣
2

= (ak+1ak−1 − a2
k)

×

⎛
⎜⎜⎝a2

k

∣∣∣∣∣∣∣∣

ak−3 ak−2 ak−1 ak

ak−2 ak−1 ak ak+1

ak−1 ak ak+1 ak+2

ak ak+1 ak+2 ak+3

∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣
ak−3 ak−2 ak−1

ak−2 ak−1 ak

ak−1 ak ak+1

∣∣∣∣∣∣
∣∣∣∣∣∣
ak−1 ak ak+1

ak ak+1 ak+2

ak+1 ak+2 ak+3

∣∣∣∣∣∣

⎞
⎟⎟⎠ .

So if the Hankel matrix [ai+j(q)]i,j�0 is q-TP4 then {an(q)}n�0 is 3-q-log-convex.
This completes the proof. �

For a triangular array A = [An,k]n,k�0, define its row generating function

An(z) =
n∑

k=0

An,kzk.

The following result will be used in the proof of theorem 1.1, which was proved in
[8] for the case of real sequences.

Proposition 2.4. Let A,B,C be three infinite matrices. For a sequence
{xn(q)}n�0, define a sequence {yn(q)}n�0 by

yn(q) =
n∑

i=0

An,ixi(q) (2.2)

for n � 0. Let the infinite Hankel matrices Y = [yi+j(q)]i,j�0 and X = [xi+j

(q)]i,j�0. If Ai+j(z) = Bi(z)Cj(z), for all i, j � 0, then we have Y = BXC ′.

Proof. By (2.2), we deduce for i, j � 0 that

yi+j(q) =
∑
k�0

Ai+j,kxk(q)

=
∑
k�0

k∑
r=0

Bi,rCj,k−rxk(q)

=
∑
r�0

⎛
⎝∑

k�r

Cj,k−rxk(q)

⎞
⎠ Bi,r

=
∑
r�0

∑
k�0

Bi,rCj,kxk+r(q),
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which implies that Y = BXC ′. �

Proof of theorem 1.1. (i) : Since
∞∑

k=0

xk(q)zk = JCF[gn(q)z,hn+1(q)z2],

the sequence {xn(q)}n�0 can be arranged as the first column of a triangular
array [An,k(q)]n,k�0 satisfying the recurrence relation

An,k(q) = An−1,k−1(q) + gk(q)An−1,k(q) + hk+1(q)An−1,k+1(q),

An,0(q) = g0(q)An−1,0(q) + h1(q)An−1,1(q)

for n � 1 and k � 1, where A0,0(q) = 1, A0,k(q) = 0 for k > 0, see [22] for
instance. Let bn−k

(
n
k

)
= Tn,k for n � k � 0. It is clear that [Tn,k]n,k�0 is an

array of nonnegative numbers satisfying the recurrence relation

Tn,k = bTn−1,k + Tn−1,k−1 (2.3)

with Tn,k = 0 unless 0 � k � n and T0,0 = 1.
Let T = [Tn,k]n,k�0, A = [An,k(q)]n,k�0 and B = TA = [Bn,k]n,k�0. We claim the

following. �

Claim 2.5. The triangular array [Bn,k]n,k�0 satisfies the recurrence relation

Bn,k = Bn−1,k−1 + [gk(q) + b]Bn−1,k + hk+1(q)Bn−1,k+1, (2.4)

Bn,0 = [g0(q) + b]Bn−1,0 + h1(q)Bn−1,1

for n � 1 and k � 0, where B0,0 = 1, B0,k = 0 for k > 0.

Proof. We will complete the proof by induction on n. It is obvious for n = 0. For
n � 1, it follows from B = TA that

Bn,k =
n∑

i=0

Tn,iAi,k(q). (2.5)

Thus, by the recurrence relation of Tn,i, we have

Bn,k =
∑

i

Tn,iAi,k(q)

=
∑

i

[Tn−1,i−1 + bTn−1,i]Ai,k(q)

=
∑

i

Tn−1,iAi+1,k(q) +
n−1∑
i=0

bTn−1,iAi,k(q)

=
∑

i

Tn−1,i[Ai,k−1(q) + (gk(q) + b)Ai,k(q) + hk+1(q)Ai,k+1(q)]

= Bn−1,k + [gk(q) + b]Bi,k + hk+1(q)Bi,k+1,

as desired. This proves the claim. �
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By (2.5), we get

Bn,0 =
n∑

i=0

Tn,iAi,0(q) =
n∑

i=0

Tn,ixi(q) =
n∑

i=0

(
n

i

)
bn−ixi(q). (2.6)

Hence by claim 2.5, we have

∞∑
k=0

Bk,0(q)zk = JCF[(gn(q) + b)z,hn+1(q)z2].

Thus

∞∑
k=0

yk(q)zk =
∞∑

k=0

akBk,0z
k = JCF[a(gn(q) + b)z, a2hn+1(q)z2].

In the following, we will present the proofs of (ii) and (iii). Let L = (Li,j)i,j�0 be
the infinite Pascal matrix, where Li,j =

(
i
j

)
is binomial coefficients. Note that

Li+j(z) = Li(z)Lj(z) = (1 + z)i+j .

Thus, if the infinite Hankel matrices Z = [zi+j(q)]i,j�0 and X∗ = [b−i−jxi+j(q)]i,j�0,
where zn =

∑n
k=0

(
n
k

)
b−kxk(q), then we get

Z = LX∗L′

from proposition 2.4 by taking A = B = C = L. Note that L is a TP matrix (see
[23, p. 132]), so is L′. Thus the classical Cauchy–Binet theorem implies that Z
is q-TPr+1 since the Hankel matrix X∗ is q-TPr+1 by lemma 2.2. It follows from
lemma 2.2 that

[yi+j(q)]i,j�0 = [(ab)i+jzi+j(q)]i,j�0

is q-TPr+1. So {yi(q)}i�0 is r-q-log-convex by proposition 2.3 for 1 � r � 3. This
proves that (ii) holds. Similarly, the q-TP property of X also implies that of Y by
the classical Cauchy–Binet theorem. Thus (iii) holds. We complete the proof. �

3. Applications

In this section, we give some applications of the results obtained in § 1.

3.1. The classical Eulerian polynomials

Let π = a1a2 · · · an be a permutation of [n]. An element i ∈ [n − 1] is called a
descent of π if ai > ai+1. The Eulerian number A(n, k) is defined as the number of
permutations of [n] having k − 1 descents. Moreover, the Eulerian numbers satisfy

https://doi.org/10.1017/prm.2018.26 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2018.26


Positivity and continued fractions from the binomial transformation 839

the recurrence

A(n, k) = kA(n − 1, k) + (n − k + 1)A(n − 1, k − 1),

whose generating function, that is, the classical Eulerian polynomials, is denoted by
An(q). It is known that the exponential generating function of {An(q)}n�0 [19] is

∑
n�0

An(q)
xn

n!
=

(1 − q)
1 − qex(1−q)

, (3.1)

and the ordinary generating function of {An(q)}n�0 is

∑
k�0

Ak(q)xk = JCF[[n + (n + 1)q] x, (n + 1)2qx2]

=
1

1 − qx − qx2

1 − (1 + 2q)x − 4qx2

1 − (2 + 3q)x − · · ·
(see [22] for instance).

3.2. The Eulerian polynomials of type A

Given a finite Coxeter group W , define the Eulerian polynomials of W by

Pn(W, q) =
∑
π∈W

qdW (π),

where dW (π) is the number of W -descents of π. We refer the reader to Björner [8]
for relevant definitions.

For Coxeter groups of type A, it is known that Pn(A, q) = An(q)/q, the shifted
Eulerian polynomials. Note that the exponential generating function is

∑
n�0

Pn(A, q)
xn

n!
=

(1 − q)ex(1−q)

1 − qex(1−q)
. (3.2)

So combining (3.1) and (3.2), we have

Pn(A, q) =
n∑

k=0

(
n

k

)
(1 − q)n−kAk(q). (3.3)

Thus, by (3.3) and theorem 1.1(i) for a = 1 and b = 1 − q, we have
∑
k�0

Pk(A, q)xk = JCF[(nq + n + 1)x, (n + 1)2qx2] (3.4)

n � 0, that is, the next corollary.
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Corollary 3.1. [4]

∑
k�0

Pk(A, q)xk =
1

1 − x − qx2

1 − (q + 2)x − 4qx2

1 − (2q + 3)x − 9qx2

1 − (3q + 4)x − · · ·

.

3.3. The derangement polynomials

A bijection π : T �→ T , with T ⊆ Z is a derangement if π(i) �= i for all i ∈ T .
The set of all derangements on [1, n] is denoted by Dn. Brenti [11] defined the
derangement polynomials (to type A) by d0(q) = 1 and

dn(q) :=
∑

σ∈Dn

qexc(σ)

for n � 1. The following formula is given in [14, theorem 1.1] and it is derived from
[11]. For n � 0,

dn(q) =
n∑

k=0

(−1)n−k

(
n

k

)
Pk(A, q). (3.5)

Thus, combining (3.4) and (3.5), we have the next result for derangement polyno-
mials by theorem 1.1(i) for a = 1 and b = −1.

Proposition 3.2. For n � 0,

∑
k�0

dk(q)xk = JCF[(nq + n) x, (n + 1)2qx2]

=
1

1 − qx2

1 − (q + 1)x − 4qx2

1 − (2q + 2)x − 9qx2

1 − (3q + 3)x − · · ·

.

3.4. The Eulerian polynomials of type B

Denote by Bn the group of all bijections σ in S([−n, n] \ 0) such that σ(−i) =
−σ(i) for all i ∈ [−n, n] \ 0, with composition as the group operation. This
group is usually known as the group of signed permutations on [1, n], or as the
hyperoctahedral group of rank n.

Bagno and Garber [2] introduced a definition of excedance on the set of signed
permutations, called colored excedance, excClr(σ) := 2excA(σ) + neg(σ). Mongelli
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[27] defined the generating function of the colored descent statistic on Bn by

Pn(B, q) =
∑

σ∈Bn

qexcClr(σ)

and proved

Pn(B, q) = (1 + q)nPn(A, q). (3.6)

Let Dn(B) denote the set of all derangements on Bn and dn(B, q) be the
generating function of the colored excedances on the set Dn(B), that is

dn(B, q) :=
∑

σ∈Dn(B)

qexcClr(σ).

The derangement polynomial dn(B, q) shares most of the main properties of
dn(q), for instance,

dn(B, q) =
n∑

k=0

(−1)n−k

(
n

k

)
Pk(B, q). (3.7)

Thus applying theorem 1.1 to (3.6) and (3.7), by corollary 3.1 we have the next
result.

Proposition 3.3. For n � 0,∑
k�0

Pk(B, q)xk = JCF[(nq + n + 1)(q + 1)x, (n + 1)2q(q + 1)2x2]

=
1

1 − (q + 1)x − q(q + 1)2x2

1 − (q + 2)(q + 1)x − 4q(q + 1)2x2

1 − (2q + 3)(q + 1)x − · · ·
and ∑

k�0

dk(B, q)xk = JCF[[n(q + 1)2 + q]x, (n + 1)2q(q + 1)2x2]

=
1

1 − qx − q(q + 1)2x2

1 − [(q + 1)2 + q]x − 4q(q + 1)2x2

1 − [2(q + 1)2 + q]x − · · ·

.

Proposition 3.4. The sequences {Pk(B, q)}k�0 and {dk(B, q)}k�0 are both
strongly q-log-convex. In addition, {Pk(B, q)}k�0 is 3-q-log-convex.

Proof. It follows from Pk(B, q) = (1 + q)kPk(A, q) that

Pk(B, q) = (1 + q)kAk(q)/q.

Thus the q-total positivity of [Ai+j(q)]i,j�0 [37] implies that of [Pi+j(B, q)]i,j�0.
So {Pk(B, q)}k�0 is strongly q-log-convex and 3-q-log-convex by proposition 2.3.
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Note that Zhu [39, proposition 3.13] proved that for the continued fraction
expansion ∑

k�0

xk(q)zk = JCF[gn(q)z,hn+1(q)z2]

with gn(q) �q 0 and hn+1(q) �q 0 for n � 0, the sequence {xn(q)}n�0 is strongly
q-log-convex if gn(q)gn+1(q) �q hn+1(q). So by proposition 3.3 the continued
fraction expansion

∑
k�0

dk(B, q)xk = JCF[[n(q + 1)2 + q]x, (n + 1)2q(q + 1)2x2],

we have gn = n(q + 1)2 + q and hn = n2q(q + 1)2. Thus

gngn+1 − hn+1

= n + n2 + (4n + 3n2)q + (1 + 6n + 4n2)q2 + (4n + 3n2)q3 + (n + n2)q4

�q 0,

which implies that {dk(B, q)}k�0 is strongly q-log-convex. �

3.5. The general Eulerian polynomials

Recently, Xiong, Tsao and Hall [38] defined the general Eulerian numbers
An,k(a, d) associated with an arithmetic progression {a, a + d, a + 2d, a + 3d, . . .}
as

An,k(a, d) = (−a + (k + 2)d)An−1,k(a, d) + (a + (n − k − 1)d)An−1,k−1(a, d),

where A0,−1 = 1 and An,k = 0 for k � n or k � −2. In particular, when a = d = 1,
An,k(1, 1) = An,k, the classical Eulerian numbers which enumerate the number of
An with k − 1 descents. Similarly, the general Eulerian polynomials associated with
an arithmetic progression {a, a + d, a + 2d, a + 3d, . . .} can be defined as

Pn(q, a, d) =
n−1∑

k=−1

An,k(a, d)qk+1.

It was proved that the exponential generating function of {Pn(q, a, d)}n�0 has the
following expression

∑
n�0

Pn(q, a, d)
xn

n!
=

(1 − q)eax(1−q)

1 − qedx(1−q)
(3.8)

and

Pn(q, a, d) =
n∑

k=0

(
n

k

)
dkPk(A, q)(aq − a)n−k. (3.9)

Using the exponential Riordan Arrays, Barry [5] proved the next result. We will
give a new proof by theorem 1.1(i).

https://doi.org/10.1017/prm.2018.26 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2018.26


Positivity and continued fractions from the binomial transformation 843

Corollary 3.5. [5]

∑
n�0

Pn(q, a, d)xn =
1

1 − s0(q)x − t1(q)x2

1 − s1(q)x − t2(q)x2

1 − s2(q)x − t3(q)x2

1 − s3(q)x − · · ·

with si(q) = (di + a)q + (di + d − a) and ti+1(q) = (d(i + 1))2q for i � 0.

Proof. Because

∑
k�0

Pk(A, q)xk = JCF[(nq + n + 1)x, (n + 1)2qx2],

which implies

∑
k�0

Pk(A, q)dkxk = JCF[d(nq + n + 1)x, (n + 1)2qd2x2].

Thus, by (3.9) and theorem 1.1(i), we have

∑
k�0

Pk(q, a, d)xk =
∑
k�0

Pk(q, a, d)
[a(q − 1)]k

[a(q − 1)x]k

= JCF[[d(nq + n + 1) + aq − a]x, (n + 1)2qd2x2]

= JCF[[(dn + a)q + dn + d − a]x, (n + 1)2d2qx2].

�

Proposition 3.6. The sequence {Pk(q, a, d)}k�0 is 3-q-log-convex for d � a � 0.

Proof. Note that Zhu [41] proved that for the continued fraction expansion

∑
k�0

xk(q)zk = JCF[gn(q)z,hn+1(q)z2]

with gn(q) �q 0 and hn+1(q) �q 0 for n � 0, the sequence {xn(q)}n�0 is 3-q-log-
convex if gk(q)gk+1(q) �q hk+1(q) and

gk(q)gk+1(q)gk+2(q)gk+3(q) − gk+2(q)gk+3(q)hk+1(q) − gk(q)gk+3(q)hk+2(q) −
gk(q)gk+1(q)hk+3(q) + hk+1(q)hk+3(q) �q 0

for k � 0. Thus, by corollary 3.5, using Mathematic, it is easy to check these
inequalities for the case of {Pk(q, a, d)}k�0, whose details are omitted for brevity.
So {Pk(q, a, d)}k�0 is 3-q-log-convex for d � a � 0. �
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3.6. The Dowling polynomials

In [34], Tanny introduced the geometric polynomials Fn(q) =
∑n

k=0 k!Sn,kqk. In
addition, it was shown

Fn(q) =
n∑

k=1

A(n, k)qn−k+1(q + 1)k−1 = qnPn

(
A,

q + 1
q

)
, (3.10)

where A(n, k) is the Eulerian numbers.
The Dowling lattice Qn(G) is a geometric lattice of rank n over a finite group

G of order m and has many remarkable properties, see [7,21]. When m = 1, that
is, G is the trivial group, Qn(G) is the lattice

∏
n+1 of partitions of an (n + 1)-

element set. So the Dowling lattices can be viewed as group-theoretic analogs of
the partition lattices. Let Wm(n, k) be the Whitney numbers of the second kind,
which satisfy the recurrence relation

Wm(n, k) = (mk + 1)Wm(n − 1, k) + Wm(n − 1, k − 1).

Benoumhani [7] defined the Dowling polynomials Dm(n, q) =
∑n

k=0 Wm(n, k)qk

and the Tanny-geometric polynomials Fm(n, q) =
∑n

k=0 k!Wm(n, k)qk. It was
proved that

Dm(n, q) =
n∑

k=0

(
n

k

)
mkBk

( q

m

)
, (3.11)

Fm(n, q) =
n∑

k=0

(
n

k

)
mkFk

( q

m

)
, (3.12)

see [30] for instance. For a generalization of Whitney numbers of the second kind,
the r-Whitney numbers of the second kind, denoted by Wm,r(n, k), satisfy the
recurrence relation

Wm,r(n, k) = (mk + r)Wm,r(n − 1, k) + Wm,r(n − 1, k − 1),

whose generating function Dm,r(n, q) =
∑n

k=0 Wm,r(n, k)qk is called the r-Dowling
polynomial [18]. In [18], it was proved

Dm,r(n, q) =
n∑

k=0

(
n

k

)
(r − 1)n−kDm(k, q). (3.13)

Proposition 3.7. For any positive integers m and r, we have the following
results.

(i) The generating function of r-Dowling polynomials

∞∑
k=0

Dm,r(k, q)xk = JCF[(q + mn + r)x, (n + 1)mqx2].
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(ii) The generating function of Tanny-geometric polynomials
∞∑

k=0

Fm(k, q)xk = JCF[[(2n + 1)q + mn + 1]x, (n + 1)2q(q + m)x2].

(iii) Both sequences {Dm,r(n, q)}n�0 and {Fm(n, q)}n�0 are strongly q-log-convex
and 3-q-log-convex.

Proof. Since the continued fraction expression of the generating function of Bell
polynomials

∞∑
k=0

Bk(q)xk = JCF[(q + n)x, (n + 1)qx2],

we deduce that
∞∑

k=0

Bk

( q

m

)
mkxk = JCF

[( q
m

+ n
)

mx,
(n + 1)qm2x2

m

]

= JCF[(q + mn)x, (n + 1)mqx2].

It follows that
∞∑

k=0

Dm(k, q)xk = JCF[(q + mn + 1)x, (n + 1)mqx2] (3.14)

by (3.11) and theorem 1.1(i). Thus we get
∞∑

n=0

Dm,r(n, q)xn = JCF[(q + mn + 1 + r − 1)x, (n + 1)mqx2]

= JCF[(q + mn + r)x, (n + 1)mqx2]

by (3.13) and theorem 1.1(i). Therefore, we prove that (i) holds.
(ii) Because the continued fraction expression of the generating function of the

Eulerian polynomials of Type A∑
k�0

Pk(A, q)xk = JCF
[
(nq + n + 1)x, (n + 1)2qx2

]
,

it follows from (3.10) that
∞∑

k=0

Fk(q)xk = JCF
[(

n
q + 1

q
+ n + 1

)
qx,n2 q + 1

q
(qx)2

]

= JCF
[
[(2n + 1)q + n]x,n2q(q + 1)x2

]
.

So
∞∑

k=0

mkFk

( q

m

)
xk = JCF

[[
(2n + 1)

q
m

+ n
]
mx,n2 q

m
(
q
m

+ 1)m2x2
]

= JCF[[(2n + 1)q + mn]x,n2q(q + m)x2].
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Thus we get

∞∑
k=0

Fm(k, q)xk = JCF[[(2n + 1)q + mn + 1]x,n2q(q + m)x2]

by (3.10) and theorem 1.1(i).
(iii) We first show that 3-q-log-convexity of the sequence {Dm,r(n, q)}n�0 as fol-

lows. Since the Hankel matrix [Bi+j(q)]i,j�0 is q-TP [37], so is [mi+jBi+j(q/m)]i,j�0

by lemma 2.2. Thus by (3.11) and theorem 1.1(iii), we get that [Dm(i + j, q)]i,j�0

is q-TP. It follows from (3.13) that [Dm,r(i + j, q)]i,j�0 is q-TP by lemma 2.2 and
theorem 1.1 (iii). Thus the sequence {Dm,r(n, q)}n�0 is strongly q-log-convex and
3-q-log-convex by proposition 2.3.

Since the Hankel matrix [Ai+j(q)]i,j�0 is q-TP [37], so is [Pi+j(A, q)]i,j�0 since
Pn(A, q) = An(q)/q. Hence we deduce that the Hankel matrix [Fi+j(q)]i,j�0 is q-TP
from (3.10). Thus, applying theorem 1.1(iii) to (3.12), we get that [Fm(i + j, q)]i,j�0

is q-TP by lemma 2.2, which implies strong q-log-convexity and 3-q-log-convexity
of {Fm(n, q)}n�0 by proposition 2.3. The proof is complete. �
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