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Synthesis of nonuniformly spaced linear
array of parallel and collinear dipole with
minimum standing wave ratio using
evolutionary optimization techniques

banani basu

In this paper, the author proposes a method based on two recent evolutionary algorithms (EAS): particle swarm optimization
(PSO) and differential evolution (DE) to design nonuniformly placed linear arrays of half-wavelength long dipoles. The objec-
tive of the work is to generate pencil beam in horizontal (for parallel array) and vertical (for collinear array) plane with
minimum standing wave ratio (SWR) and fixed side lobe level (SLL). Dynamic range ratio (DRR) of current amplitude dis-
tribution is kept at a fixed value. Two different examples have been presented having different array alignments. For both the
configurations parallel and collinear, the excitation distribution and geometry of individual array elements are perturbed to
accomplish the designing goal. Coupling effect between the elements is analyzed using induced electromotive force (EMF)
method and minimized in terms of SWR. Numerical results obtained from both the algorithms are statistically compared
to present a comprehensive overview. Beside this, the article also efficiently computes the trade-off curves between SLL,
beam width, and number of array elements for nonuniformly spaced parallel array. It featured the average element
spacing versus SWR curve for nonuniformly separated arrays. Furthermore, minimum achievable SLL performances of uni-
formly and nonuniformly spaced parallel arrays are compared for same average spacing in the proposed work.
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I . I N T R O D U C T I O N

Motivating the exploration of the better design technique is an
essential need for increased antenna performances. Antenna
engineers find an existing design that may have the desired elec-
tromagnetic characteristics. If this structure has an analytical
expression that precisely predicts its performance, we try to
find the optimal parameters. This paper describes the synthesis
of nonuniformly excited and nonuniformly spaced linear
arrays. The analysis of nonuniformly spaced linear arrays was
first proposed by Unz [1], who developed a matrix formulation
to obtain the current distribution necessary to generate a
desired radiation pattern. Array geometry was calculated
either by thinning array elements selectively or positioning
the array elements randomly along the desired direction.

Skolnik employed dynamic programming for zeroing
elements [2]. Mailloux and Cohen [3] utilized the statistical thin-
ning of arrays with quantized element weights to improve side

lobe level (SLL) performance. The genetic algorithm and simu-
lated annealing were used to thin an array [4–7]. Razavi and
Forooragi [8] used pattern search algorithm for array thinning.

Harrington [9] developed an iterative method to reduce the
sidelobe levels of uniformly excited and nonuniformly spaced
linear arrays (NULSAs). Literature described in [10–12] pro-
posed different analytical methods for nonuniformly spaced
array synthesis. In [10], the particle swarm optimization was
applied for optimization of nonuniformly spaced antenna
arrays and SLL was reduced. In [11], with neural network and
in [12] with least mean square, nonuniformly spaced array was
synthesized. Most works consider the minimization of the SLL
at a fixed beam width without considering mutual coupling
effect. In a few recent works driving point impedance matching
has been derived with unequal spacing of elements [13].

In this work, two different antenna optimization problems
of designing unequally spaced parallel and collinear arrays are
presented. Radiation patterns are synthesized to obtain a speci-
fied SLL and dynamic range ratio (DRR) at a fixed beamwidth.
Coupling effect between different array elements is also taken
into account. Induced electromotive force method is used to
estimate the coupling effect of individual elements in terms of
VSWR. Reported algorithms are applied to compute the
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excitation and geometry of the individual elements in order to
optimize the array performances.

An improved particle swarm optimization (PSO)-based
technique is proposed to accommodate these complex design
problems of coupling compensation [14–18]. Proposed
method is adapted introducing velocity modulation technique
where maximum particle velocity decreases as the number of
iterations increases in order to favor the exploitation. Another
improved differential evolution (DE)-based technique is also
applied to the same problem and results obtained from both
the algorithms are compared [19–22]. In the proposed DE
scheme the scale factor and cross over rate are tuned depending
on the fitness of individual population member. As the DE
vector moves near to the optima it should suffer from lesser per-
turbation. So scale factor reduces decreasing the mutation step
sizes. At the same time crossover rate also decreases allowing
more genetic information to be passed to the offspring. On
the contrary if the vector goes away from the optimal region
DE parameters are tuned automatically for providing adequate
population diversity.

Beside this the article presented a trade-off solution between
different array objectives. It plotted the trade-off curves
between minimum achievable SLL and number of elements
for specified beam width. It also computed the curve featuring
standing wave ratio (SWR) versus average array spacing for
unequally spaced array. Moreover, the article presented a com-
parison of SLL performances of equally spaced linear array
(ELSA) and NULSA for same average spacing.

I I . F O R M U L A T I O N

In this paper, two different array alignments are presented.

A) Parallel dipole array
Consider a linear array of 2N half-wavelength long center-fed
very thin parallel dipole antennas along the x-axis with inter-
element spacing dn,n 21 between any two consecutive dipoles
as shown in Fig. 1. Excitation and geometry both are assumed

symmetric with respect to the center of the array in order to
generate symmetric broadside pencil beam patterns in
azimuth (x–y) plane.

The far-field pattern F(f) in the horizontal xy plane in
absence of any ground plane is given by equation (1) as in
[23]. Element pattern has been assumed omnidirectional
in horizontal plane in the absence of ground plane:

F(f) =
∑N

n=1

2In cos [kdn cosf]. (1)

B) Collinear dipole array
Next, a collinear array of 2N number of identical half-
wavelength dipoles spaced a distance dn,n 21 apart (center to
center) along the Z-axis as shown in Fig. 2 is considered.
Excitation and geometry both are assumed symmetric with
respect to the center of the array. Assuming sinusoidal current
distribution of a very thin half-wavelength dipole directed
along the Z-axis, the element pattern can be calculated using

Elepat(u) = cos (0.5p cos u)
sin u

. (2)

Fig. 1. Linear array of parallel dipoles along-axis. Fig. 2. Collinear dipole array.
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The far-field pattern F(u) in the principal plane (yz plane)
considering the element pattern is given by

F(u) =
∑N

n=1

2In cos [kdn cos u] × Elepat(u). (3)

Normalized power pattern in dB for both the cases can be
expressed as follows:

P(g) = 10 log10

|F(g)|
|F(g)|max

[ ]2

= 20 log10

|F(g)|
|F(g)|max

[ ]
, (4)

where g ¼ f for parallel array and g ¼ u for collinear array.
For both the cases n is the element number, k ¼ 2p /l, the
free-space wave number, l is the wavelength at the design fre-
quency, dn is the distance of center of the nth element from
origin, f and u are the azimuth and polar angles of the far
field, In is the complex excitation current of nth element,
[V ] is the voltage matrix of size N × 1 obtained from the
given expression

V = ZI, (5)

where Z is the mutual impedance matrix of size N.
Self-impedances Znn and mutual impedances Znm are calcu-
lated using Hansen’s expressions [24] (which assume the
current distribution on the dipoles to be sinusoidal).

Using the rigorous electric field formulation of Schelkunoff
and Friis [25], and the geometry of Fig. 3, the mutual impe-
dance can be written as

Zmn =− 30

[ ∫1/2+h

h
sinb(z − h) +

∫l+h

1/2+h
sinb(l + h − z)

{ }

× −je−jbr1

r1
+−je−jbr2

r2
+2j cosble−jbr0

r0

( )
dz

]
, (6)

where r0=
��������
d2+z2

√
, r1 =

���������������
d2+(l/2−z)2

√
, r2=

���������������
d2+(l/2+z)2

√
.

Mutual impedance is approximated by putting h ¼ 0 and
l ¼ l/2 for parallel alignment and d ¼ 0 and l ¼ l/2 for colli-
near arrangement and used for our design.

It is obvious that the value of Zn,m depends on the geometry
of the dipoles and their mutual geometric relations. Improved
PSO- and DE-based techniques are used to optimize the pro-
posed antenna arrays shown in Figs 1 and 2. The radiation
patterns produced by these arrays are required to satisfy the
condition of minimum bearable SWR and specified SLL and

DRR value. In order to optimize the arrays according to the
above three conditions, a cost function J is formed as a
weighted sum of three respective terms, as given by the follow-
ing equation:

J =w1∗(SLL − SLLd )2 + w2∗SWRmax

+ w3∗(DRR − DRRd )2 , (7)

where SWRmax is the maximum SWR offered by the array
elements (SWR is different for every array element). SLL,
SLLd, DRR, DRRd are obtained and desired values of corre-
sponding terms. DRR is computed from the given expression

DRR = max(In)/min(In). (8)

The characteristic impedance Z0 of the transmission line
that feeds the element for efficient radiation is considered 50
V. Reflection coefficient at the input of the nth element is
derived by the expression

Rn = (Zn,n − Z0)/(Zn,n − Z0). (9)

Using Rn SWR is calculated at the input of the nth element,

SWR = (1 + |Rn|)/(1 − |Rn|). (10)

For obtaining impedance matching condition, the
maximum tolerable value of SWR is set at 2. The coefficients
w1 , w2, and w3 are weight factors and they describe the impor-
tance of the corresponding terms that compose the cost func-
tion. Proposed optimization techniques attempt to minimize
the cost function to meet the desired pattern specification.

This paper carried out a simultaneous optimization of exci-
tation and geometry to reduce SLL and SWR value. To gener-
ate desired pencil beam, excitation current amplitude is varied
in the range 0–1. Excitation current phase is kept fixed at
0 degree. Spacing is computed randomly within the range
0.4–0.8 for the parallel array and from 0.7 to 1.1 for collinear
array. All the array parameters are assumed symmetric about
the center of the array. Algorithms run independently for
several iterations to optimize both the configurations, parallel
and collinear.

I I I . O V E R V I E W O F P S O

PSO is a robust stochastic evolutionary computation tech-
nique based on the movement and intelligence of swarms
looking for the most fertile feeding location [14–18]. PSO’s
foundation is based on the principle that each solution can
be represented as a particle in a swarm. Each agent has a pos-
ition and velocity vector and each position coordinate rep-
resents a parameter value. The algorithm requires a fitness
evaluation function that assigns a fitness value to each particle
position. The position with the best fitness value in the entire
run is called the global best. Each agent also keeps track of its
best fitness value. The location of this value is called its per-
sonal best. Each agent is initialized with a random position
and random velocity. The velocity in each of n dimensions
is accelerated toward the global best and its own personal
best to converge to the desired solution.Fig. 3. Two antennas separated by d and staggered by h.
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In PSO velocity and position of each particle is updated
using the following equations:

Vt
id = w∗V t−1

id + c1∗rand1t
id∗(pbest t−1

id − X t−1
id )

+ c2∗rand2t
id∗(gbest t−1

id − X t−1
id ), (11)

Vt
id = min(Vmax

d , max(Vmin
d , Vt

id)), (12)

Xt
id = Xt−1

id + Vt
id, (13)

where c1, c2 are acceleration constants, equal to 1.4945, w is
the inertia weight decreases linearly from 0.9 to 0.4 up to 80%
of the maximum number of iterations and thereafter it
remains at 0.4 for rest of the iterations, and rand1 and
rand2 are two uniformly distributed random numbers
between 0 and 1.

Equation (12) is used to clamp the velocity along each
dimension within a specified region if they try to cross the
desired domain of interest. The maximum velocity is set to
the upper limit of the dynamic range of the search. Later it
is linearly modified from Vd

max to 0.1∗Vd
max over the full

range of search [15]. Thus the modification introduced in
the particle velocity improves the balance between exploration
and exploitation and leads to a better PSO. Position clipping
technique is avoided in modified PSO algorithm. Moreover,
the cost evaluations of errant particles (positions outside the
domain of interest) are discarded to improve the speed of
the algorithm.

I V . D I F F E R E N T I A L E V O L U T I O N

DE proposed by Storn and Price [19, 20], Storn et al. [21], and
Das et al. [22] is well known as a simple and efficient method
of global optimization over continuous spaces.

DE utilizes NP D-dimensional parameter vectors as a
population for each generation G:

�Xi,G = [x1,i,G, x2,i,G, x3,i,G, . . . , xD,i,G]. (14)

For each parameter there may be a definite region where
better search results are likely to be found. The initial popu-
lation should cover the entire search space constrained by
the specified minimum and maximum bounds:

�Xmin = {x1,min, x2,min, . . . , xD.min} and

�Xmax = {x1,max, x2,max, . . . , xD.max}.

Hence the jth component of the ith vector can be initialized as

xj,i,0 = xj,min + randi,j(0, 1)(xj,max − xj,min), (15)

where randi,j (0,1) is a uniformly distributed random number
lying between 0 and 1. The subsequent steps of DE are
mutation, crossover, and selection, which are explained in
the following subsections.

A) Mutation
DE creates a donor vector �Vi,G corresponding to the
best individual �Xbest,G that generates minimum cost value
in the population at generation G through mutation:

�Vi,G = �Xbest,G + Fi(�Xri
1 ,G − �Xri

2 ,G). (16)

The indices r1
i and r2

i are mutually exclusive and randomly
chosen integers. Fi is called scaling factor that is tuned auto-
matically depending on the value of the cost function gener-
ated by each vector.

If the objective function value of any vector nears the objec-
tive function value attained by �Xbest,G, Fi is estimated as
follows:

Fi = 0.8∗ DJi

d+ DJi

( )
, (17)

where d ¼ 10214 + DJi/10, DJi ¼ J(Xi) 2 J(Xbest) and DJi ,

2.4.
The expression results a lesser value of Fi causing

lesser perturbation in the solution. So it will undergo a

Table 1. Desired and obtained result for parallel array.

Algorithms PSO Modified PSO Modified DE

SLL (dB) 30.6409 30.4887 30.39
SWR 1.3639 1.2301 1.1218
DRR 6.7870 7.0112 6.8613

Table 2. Current amplitude, spacing, and SWR value for parallel array.

n PSO Modified PSO Modified DE

Current
amplitude

Spacing
( from origin)

SWRn Current
amplitude

Spacing
( from origin)

SWRn Current
amplitude

Spacing
( from origin)

SWRn

1 0.9115 0.2 1.3251 0.72996 0.2 1.2300 0.6877 0.2 1.0780
2 1 0.6491 1.3504 0.9782 0.7361 1.0355 0.8460 0.7508 1.1180
3 0.99471 1.0929 1.0498 0.92068 1.3615 1.0098 0.6175 1.2182 1.0960
4 1 1.6087 1.0852 0.76413 1.9643 1.0813 0.8148 1.764 1.1094
5 0.68544 2.1202 1.0762 0.56663 2.5637 1.0084 0.5618 2.3076 1.0582
6 0.60002 2.5693 1.1890 0.52112 3.1383 1.0558 0.6225 2.8566 1.0796
7 0.63223 3.0877 1.0484 0.39552 3.7767 1.0083 0.6337 3.5963 1.1119
8 0.32488 3.6531 1.0916 0.26575 4.4246 1.1370 0.4458 4.3427 1.0642
9 0.17528 4.0931 1.3639 0.21856 5.0237 1.0030 0.3183 5.1261 1.1218
10 0.14734 4.5331 1.3589 0.13952 5.7035 1.1640 0.1233 5.8694 1.0690

434 banani basu

https://doi.org/10.1017/S1759078711000560 Published online by Cambridge University Press

https://doi.org/10.1017/S1759078711000560


fine search within a small neighborhood of the suspected
optima.

If DJi . 2.4 Fi is selected obeying the following relation:

Fi = 0.8∗(1 − e−DJi ). (18)

Equation (18) results a greater value of Fi that ultimately
boosts the exploration ability of the algorithm within the
specified search volume.

B) Crossover
To increase the potential diversity of the population, crossover
operation is introduced. In crossover the donor vector
exchanges its components with the target vector �Xi,G to

obtain the trial vector Ui,G:

uj,i,G = vj,i,G if (randi,j(0, 1) ≤ Cri or j = jrand),
xj,i,G otherwise.

{
(19)

randi,j (0,1) [ [0, 1] is a uniformly distributed random
number and Cri is a constant called crossover rate. jrand [
[1,2, . . ., D] is a randomly chosen index, which ensures that
�Ui,G gets at least one parameter from Vi,G and does not
become exact replica of the parent vector. The number of par-
ameters inherited from the donor has a (nearly) binomial
distribution.

The parameter Cri is updated automatically depending on
the value of the cost function produced by the donor vector. If
the donor vector yields a cost value lesser than the minimum
value attained by that population, Cri value is chosen high to
pass more genetic information into the trial vector otherwise it
remains small. Cri is determined accordingly:

Cri =
Crconst if J(�Vi) ≤ J(�Xbest),

Crmin +
Crmax

1 + DJi
otherwise,

⎧⎨
⎩ (20)

where DJi = |J(�Vi) − J(�Xbest)|, Crmin ¼ 0.1, Crmax ¼ 0.7, and
Crconst ¼ 0.95.

C) Selection
Selection is introduced to decide whether the target vector sur-
vives to the next generation. The trial vector is compared with
the target vector using the following criterion:

�Xi,G+1 =
�Ui,G if J(�Ui,G) ≤ J(�Xi,G),

�Xi,G if J( U
Q

i,G) . J(�Xi,G).

{
(21)

If the new trial vector yields an equal or lower cost value, it
substitutes the corresponding target vector in the next gener-
ation. Otherwise the target is retained in the population.

V . R E S U L T S A N D D I S C U S S I O N S

Two linear arrays consist of 20 dipoles of length 0.5l and radius
0.005l are considered. In the first case, synthesis of parallel array

Fig. 4. Normalized absolute power patterns in dB for parallel array.

Table 3. Desired and obtained result for collinear array.

Algorithms PSO Modified PSO Modified DE

SLL (in dB) 29.5 29.9 30.01
SWR 1.6844 1.7103 1.5896
DRR 6.89 6.53 6.9979

Table 4. Current amplitude, spacing, and SWR value for collinear array.

n PSO Modified PSO Modified DE

Current
amplitude

Spacing
( from z 5 0)

SWRn Current
amplitude

Spacing
( from z 5 0)

SWRn Current
amplitude

Spacing
( from z 5 0)

SWRn

1 0.9061 0.45 1.6407 1 0.45 1.6556 0.9944 0.45 1.5896
2 0.869 1.2547 1.6038 0.9309 1.2273 1.6538 0.9205 1.3347 1.4734
3 0.8408 2.0099 1.629 0.7653 1.9532 1.7103 0.9257 2.2054 1.4780
4 0.6921 2.8241 1.5759 0.7957 2.7314 1.6743 0.8391 3.1074 1.4831
5 0.6175 3.6585 1.5813 0.674 3.4937 1.6272 0.6722 4.0589 1.4690
6 0.4967 4.451 1.5779 0.6188 4.2902 1.5752 0.6286 4.8711 1.5222
7 0.4073 5.2828 1.563 0.4796 5.1243 1.5197 0.4393 5.798 1.4476
8 0.3273 6.0977 1.6109 0.3608 6.0141 1.4876 0.3985 6.6836 1.4871
9 0.1325 6.8622 1.6423 0.278 6.9029 1.5135 0.3513 7.6222 1.5328
10 0.1313 7.6753 1.6844 0.153 7.7221 1.581 0.1421 8.5669 1.4156
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has been illustrated. To generate pencil beam, excitation current
amplitude and inter-element spacing is varied in the range 0–1
and 0.4–0.8 wavelengths, respectively. Phase is kept at 08.
Desired DRR value of amplitude distribution is prefixed at 7.

Because of symmetry, only 10 amplitudes and 9 inter-
element distances are to be optimized. Algorithms are designed
to generate a vector of 19 real values between 0 and 1. The first
10 values of the vector are mapped and scaled to the desired
amplitude weight (0–1) range and the last 9 values are
mapped and scaled to the desired intermediate spacing
weight (0.4–0.8) range. It is assumed that the first element is
placed at a prefixed distance (0.2) from the origin.

All three algorithms (PSO, modified PSO, and modified
DE) are run for 100 iterations to compute amplitude weight
and element spacing of each element. Table 1 shows the
desired and obtained values of SLL, SWR, and DRR of the
array in absence of ground plane. There is a good agreement
between desired and synthesized results using all the algor-
ithms. Table 2 presents the excitation, spacing from origin,
and SWR value of each array element. Because of symmetry,
remaining 10 elements are also be excited with the same par-
ameters. Using the proposed technique SLL value can be
further lowered along with a very good SWR.

Radiation patterns using the optimized data are plotted
above. Figure 4 shows the normalized absolute power patterns
(pencil-beam) in dB for nonuniformly spaced parallel array.
Patterns are shown in phi space ranging from 0 to 1808.

Next, the collinear array consists of 20 wire dipoles is ana-
lyzed. To optimize the array, excitation amplitude is set within
the interval [0,1] and spacing is varied in the range 0.7–1.1
wavelength. Inter-element distance is measured from center
to center where first element is placed at a prefixed distance
(0.45) from the origin. Algorithms are run for 100 iterations
and results are presented in Tables 3 and 4.

Ten elements are considered for optimization because of
symmetry like before. Remaining 10 elements are excited
with the same excitation and geometry.

Radiation patterns using the optimized data are plotted
above. Figure 5 shows the normalized absolute power patterns
(pencil-beam) in dB for nonuniformly spaced collinear array.
Patterns are shown in u space ranging from 0 to 1808.

Lowering the desired value of SLL it can be lowered further
for the same beamwidth and same number of array elements.
Parallel configuration is more effective to compensate mutual
coupling effect than collinear one.

All three algorithms are run independently to justify their
effectiveness. Convergence curves of the two best performing
algorithms are presented in Figs 6 and 7. It is seen that DE
algorithm converges faster and proved most effective to
yield the global minimum compared to its other two compe-
titors. It produces similar results over repeated runs, which is
an indication of its robustness. Among the remaining two
algorithms modified particle swarm optimization performed
better. Use of velocity clipping technique in MPSO signifi-
cantly improves its performances compared to standard
PSO. Although the modifications introduced in PSO and
DE slow down the execution speed of the algorithms com-
pared to standard PSO.

Standard PSO, modified PSO, and DE are compared in a
statistical manner. Since the distribution of the best objective
function values do not follow a normal distribution, the
Wilcoxon rank sum test was used to compare the objective
function mean values, standard deviations, and P values
of each algorithm [26] and those values are listed in table 5.
Each algorithm was executed for 50 times and the best
result for each run is considered.

DE yields statistically better results compared to other two
optimization approaches. P values obtained through the rank

Fig. 5. Normalized absolute power patterns in dB for collinear array.

Fig. 6. Convergences curve of the cost function using modified PSO.

Fig. 7. Convergences curve of the cost function using DE.
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sum test between the best algorithm and each of the contest-
ants are presented. Here NA stands for “not applicable” and it
occurred for the best performing algorithm. As the P values
calculated for both the cases are less than 0.05 (5% significance
level), null hypotheses is rejected and the results produced by
DE are considered statistically significant.

The article also studied the behavior of the trade-off curve
between different array objectives. Figure 8 shows the tradeoff
between minimum achievable SLL and number of elements
for nonuniformly spaced parallel array. Patterns are simulated
for different pre-specified beamwidths (6 and 88). As the 3 dB
beamwidth increases the tradeoff between SLL and number of
antenna elements N becomes improved.

Figure 9 illustrates the tradeoff between VSWR and average
element spacing for the nonuniformly spaced array. It is seen

that minimum bearable VSWR is obtained when the average
element spacing is set within an optimum range relative to
the element excitation.

Finally Fig. 10 shows the improvement in tradeoff between
minimum achievable SLL and average element spacing for
NULSA compared to ESLA. In ESLA grating lobe appears
for d . 0.95l. However NULSA produces a reasonable SLL
beyond this region. All the experiments are carried out assum-
ing that the excitations of individual element are equal and all
unity.

The main objective of this paper is to illustrate the impor-
tance of the evolutionary multi-objective optimization tech-
niques in the design of antenna arrays. The algorithms are
applied to improve the radiation characteristics and compen-
sate the coupling effect for nonuniformly spaced parallel and
collinear array. Trade-off solutions presented in this section
will make the array more suitable for using in wireless sensor
networks. Proposed concept can be further extended in design-
ing sparse array where maximum spatial resolution is needed
incorporating the concept of Golomb ruler [27–29]. Coupling
effect of these minimum redundancy arrays can be reduced
by suitably computing the element excitation weight.

V . C O N C L U S I O N

The use of optimization techniques based on PSO and DE in
the synthesis of nonuniformly spaced linear array of half wave
parallel and collinear dipoles is discussed here. Numerical
results show that DE converges faster and with more certainty
compared to other optimization approaches. It yields
minimum fitness value and offers better statistical accuracy.
Both the array alignments are analyzed in order to obtain
lower value of SLL and SWR. In both the cases unknown

Table 5. Mean cost values, standard deviations, and P values.

Parallel array Collinear array

Algorithms PSO Modified PSO Modified DE Algorithms PSO Modified PSO Modified DE

Mean cost function 1.41416 1.27981 1.16559 Mean cost function 1.8913 1.7631 1.604
Standard deviation 0.017374 0.001127 0.000504 Standard deviation 0.001538 0.001284 0.001046
P value 7.7734e 2 10 4.8934e 2 7 NA P value 2.7482e 2 11 6.88824e 2 8 NA

Fig. 9. VSWR for different average element spacing for NULSA.
Fig. 10. Minimum achievable SLL versus average element spacing for ESLA
and NULSA.

Fig. 8. Minimum achievable SLL versus N for different BW using NULSA.
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excitation and unknown spacing are used and phase is pre-
fixed at 08. Result shows that the parallel array arrangement
is more effective to minimize SWR. The excitation and geome-
try both are symmetric in nature that greatly simplifies the
feed network. Mutual impedance matrix is calculated using
induced EMF method. Fixing the DRR of excitation current
amplitude to a lower value with little compromise on the
design specifications further reduces the effect of coupling.
It is seen that array performance is significantly enhanced
by perturbing the inter-element spacing. The work also pro-
vides a trade-off solution between SLL-BW and number of
array elements. SWR value is estimated for different average
element separation for unequally spaced array. Finally, the
work presents a comparison of SLL performances of ELSA
and NULSA for same number of elements. Application of
more powerful global search algorithm in antenna synthesis
can be a topic of future research. Proposed technique is
capable of optimizing more complex geometries and therefore
is suitable for many applications in communication area.
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