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Sucrose is among the main products of photosynthesis that are deemed necessary for plant
growth and survival. It is produced in the mesophyll cells of leaves and translocated to
different parts of the plant through the phloem. Progress in understanding this transport
process remains fraught with experimental difficulties, thereby prompting interest in
theoretical approaches and laboratory studies. The Münch pressure and mass flow model is
one of the accepted hypotheses describing the physics of sucrose transport in the phloem.
It is based on osmosis creating an energy potential difference between the source and the
sink. The flow responding to this energy potential is assumed laminar and described by
the Hagen–Poiseuille equation. This study revisits such osmotically driven flows in tubes
with membrane walls by including the effects of Taylor dispersion on mass transport.
This effect has been overlooked in phloem flow studies. Taylor dispersion can increase the
effective transport of solutes by increasing the apparent diffusion coefficient. It is shown
that, in addition to the conventional diffusive correction derived for impermeable tube
walls, a new adjustment to the mean advective terms arises because of osmotic effects.
Because the molecular Schmidt number is very large for sucrose in water, the sucrose front
speed and travel times have a direct dependence on the Péclet number for different ranges
of the Münch number. This study establishes upper limits on expected Taylor dispersion
enhancement of sucrose transport.
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1. Introduction

The physics of sucrose transport in plants, introduced in the early 1930s by the forestry
scientist E. Münch (Münch 1930), continues to be the workhorse model today, though
this hypothesis is still not free from controversies (Curtis & Scofield 1933; Spanner 1958;
Christy & Ferrier 1973; Fensom 1981; Lang 1983; Thompson & Holbrook 2003a; Minchin
& Lacointe 2005; Ryan & Asao 2014; Knoblauch & Peters 2017; Savage et al. 2017;
Huang et al. 2018; Sevanto 2018). The Münch hypothesis assumes that sucrose molecules
produced during leaf photosynthesis in mesophyll cells are loaded into phloem tubes
(figure 1a). Through osmosis, water is then pulled into the phloem from adjacent cells,
or xylem vessels, creating a positive pressure that pushes water along the phloem tube
towards sink tissues where sucrose is consumed or converted to other forms for storage
(figure 1a). Because the sucrose concentration in these sink tissues is much smaller than
in source tissues, the driving force for water movement in the phloem system can then be
established. The elegance, plausibility, simplicity and partial experimental support gave
this hypothesis a broad acceptance in plant physiology (Wardlaw 1974; Housley & Fisher
1977; Rand 1983; van Bel 2003; Pickard & Abraham-Shrauner 2009; Mencuccini & Hölttä
2010; Jensen et al. 2011; Knoblauch & Oparka 2012; Nikinmaa et al. 2013; Jensen et al.
2016; Knoblauch et al. 2016; Jensen 2018; Konrad et al. 2018).

The main critique of the Münch hypothesis, which continues to draw research interest
even today, is whether such a driving force allows sucrose to be loaded and transported
sufficiently quickly over long distances as may be expected in tall trees (Fensom 1981;
Turgeon 2010). The best estimates of sucrose concentrations in leaves raise some concerns
about the generality and utility of the Münch hypothesis. It has been reported that sucrose
concentration in some leaves of tall trees is smaller than in shorter vegetation (Fensom
1981; Turgeon 2010). Such dependence of the concentration is not compatible with
predictions that require the effective hydraulic conductivity to diminish with increased
tube length (Knoblauch et al. 2016; Knoblauch & Peters 2017; Savage et al. 2017) assumed
to be proportional to plant height.

The focus here is on the inclusion of Taylor dispersion, an overlooked mechanism that
enhances the spread of solute in impermeable tubes (Taylor 1953). It will be shown that
Taylor dispersion in osmotically driven flow such as the one described by the Münch
hypothesis (i.e. tube walls are membranes) leads to further adjustments apart from the
apparent increase in diffusion. The physics of those adjustments and their effects on
phloem flow and sucrose transport rates are uncovered.

In the following sections, the system of equations that describe the physics of sucrose
transport in plants is presented. The governing equations and their associated assumptions
are first discussed. Next, the derivation of Taylor dispersion in osmotically driven flows is
featured after area-averaging the governing equations. A brief description of the so-called
Münch mechanism, which has been derived and reviewed elsewhere (Jensen et al. 2009,
2016), is then presented while accommodating Taylor dispersion. Finally, a scaling analysis
is used to demonstrate the existence of two distinct flow regimes based on the magnitude of
the Münch number, which is defined as the ratio of the axial (mainly viscous) to membrane
flow resistance (Jensen et al. 2009, 2016). The focus of the results and discussion is on
the consequences of Taylor dispersion on velocity and sucrose fluxes within these two
‘end-member’ flow regimes.

2. Theory

The basic equations describing sucrose transport in plants are first reviewed. Since
the focus is on solute mass transport mechanisms, the conductive phloem geometry is
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Figure 1. (a) Water and sucrose transport in the phloem (orange) driven by water inflow from and back into
the xylem (blue) from source (i.e. leaves) to sink (i.e. roots). (b) Schematic of the experiment used by Jensen
et al. (2009) to describe sucrose transport (side and top views). The phloem geometry is assumed to be a long
and narrow tube of length L and radius a. The xylem is assumed to be a naturally filtered water reservoir that
surrounds the semipermeable tube. Sucrose enters the tube at t = 0 in a radially uniform manner and is axially
described by a smooth function f (x). Sucrose is conserved in the tube during the entire experiment because
the tube top is closed (i.e. all sucrose molecules that enter the tube remain in the tube). The axial and radial
coordinates as well as the boundary conditions used are shown.

simplified to permit analytical tractability (figure 1b). It is approximated by a long tube
with length L and radius a connecting sucrose production at the leaf with sinks anywhere
in the tissues below the leaves such as in the roots (figure 1). The phloem sieve tubes are
long and narrow, meaning that any dynamic scaling on flow variables will be subject to
the slender geometry with aspect ratio ε = a/L � 1.

The tube surface area is covered by a membrane with uniform permeability k that allows
water molecules, but not sucrose molecules, to be exchanged with the surrounding aqueous
environment. Because the tube is effectively immersed in a water reservoir, the treatment
of water flow can be achieved by placing the tube in a vertical position so that x defines
the longitudinal direction and r defines the radial direction from the centre of the tube
(figure 1b). In this representation, sucrose molecules enter the bottom of the tube at x = 0
and propagate within the tube until x = L. The tube is closed at x = L.

Throughout, sucrose concentration is denoted as c, fluid pressure as p, longitudinal
velocity component as u, and radial velocity component as v. The u value in plants
is small, and therefore the flow can be approximated as a low-Reynolds-number flow,
where the Reynolds number is defined as Re = 2au/ν � 1, with ν = μ/ρ the kinematic
viscosity, and μ and ρ the dynamic viscosity and density of water, respectively. Hence,
inertial effects in the longitudinal momentum balance can be ignored relative to viscous
stresses. Frictional losses due to the presence of sieve plates within the phloem are also
ignored, though, in some cases, this loss can be significant (Knoblauch et al. 2016).
This set-up does not reproduce all the geometric complexities of the phloem network in
plants. The simplifications here are intended as a logical starting point for exploring Taylor
dispersion in osmotically driven flow in idealized settings. The effects of these losses and
the inhomogeneity produced due to the existence of sieve plates are left for future work.

913 A44-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

56
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2021.56


M. Nakad, T. Witelski, J.C. Domec, S. Sevanto and G. Katul

For mass transport, the molecular Schmidt number Sc, defined as ν/D, where D is the
molecular diffusion coefficient, is large (Sc > 10 000 for sucrose in water). The fact that
sucrose transport occurs at such a high Sc implies that the advective transport term in
the solute mass balance equation cannot be ignored (unlike in the momentum balance).
The strength of solute advective to diffusive contributions are quantified using the Péclet
number Pe = 2au/D, which can also be expressed as Pe = Re Sc. While Re � 1, the
advective transport in the solute mass balance equation need not be small precisely because
Sc � 1.

2.1. The governing equations
It is assumed that water is an incompressible Newtonian fluid with density ρ and viscosity
μ satisfying the continuity equation

1
r

∂(rv)

∂r
+ ∂u

∂x
= 0. (2.1)

For very high c, ρ and μ need not be constant and can vary with c. However, for low c,
this dependence can be ignored. Assuming cylindrical symmetry, the flow of water in the
tube is described by momentum balance equations in the axial and radial directions:

ρ

(
∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂r

)
= −∂p

∂x
+ μ

[
∂2u
∂x2 + 1

r
∂

∂r

(
r
∂u
∂r

)]
,

ρ

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂r

)
= −∂p

∂r
+ μ

[
∂2v

∂x2 + 1
r

∂

∂r

(
r
∂v

∂r

)
− v

r2

]
.

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (2.2)

Equations (2.2) assume that there are no external forces on the fluid and that the
gravitational forces are negligible (Thompson & Holbrook 2003a). The normalized
variables defined by u = u0U, v = v0V , p = p0P, r = aR and x = LX are introduced,
where u0, v0 and p0 are characteristic axial velocity, radial velocity and pressure. The
characteristic length scales in the axial and radial dimensions are the tube length L and
radius a. The radial velocity scale v0 = εu0 is determined from the continuity equation,
and p0 = (Lμu0)/a2 is the viscous pressure scale.

The non-dimensional form for the fluid continuity is then

1
R

∂(RV)

∂R
+ ∂U

∂X
= 0, (2.3)

and the Navier–Stokes equations for the axial and radial velocities at steady state are

Re ε

(
U

∂U
∂X

+ V
∂U
∂R

)
= −∂P

∂X
+ ε2 ∂2U

∂X2 + 1
R

∂

∂R

(
R

∂U
∂R

)
,

Re ε3
(

U
∂V
∂X

+ V
∂V
∂R

)
= −∂P

∂R
+ ε2

[
ε2 ∂2V

∂X2 + 1
R

∂

∂R

(
R

∂V
∂R

)
− V

R2

]
.

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (2.4)

As in lubrication theory, when the reduced Reynolds number tends to zero (i.e. εRe→ 0),
the leading-order terms in (2.4) satisfy

1
R

∂

∂R

(
R

∂U
∂R

)
= ∂P

∂X
,

∂P
∂R

= 0. (2.5a,b)
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The boundary conditions needed to obtain the leading-order term of the axial and radial
velocities as a function of the pressure gradient inside the tube from (2.5a,b) are as follows:

U(R = 1) = 0,
∂U
∂R

∣∣∣∣
R=0

= 0, V(R = 0) = 0. (2.6a–c)

The first boundary condition in (2.6a–c) states that the axial velocity within the membrane
is zero (though the radial velocity is finite at R = 1 due to osmosis, as later discussed).
The second and third boundary conditions are derived from symmetry considerations at
the centre of the pipe.

Combining (2.5a,b) with the continuity equation (2.3) and imposing the aforementioned
boundary conditions (2.6a–c), the axial and radial velocities are given by

U = −1
4

∂P
∂X

(1 − R2), V = 1
4

∂2P
∂X2

(
R
2

− R3

4

)
. (2.7a,b)

For completeness, these equations are also expressed in dimensional form as

u = − 1
4μ

∂p
∂x

(a2 − r2), v = 1
4μ

∂2p
∂x2

(
a2

2
r − r3

4

)
. (2.8a,b)

Equation (2.8a,b) represents the velocity components variation as a first-order
approximation in the limit of small reduced Reynolds number. A more general treatment
can be found elsewhere (Aldis 1988). While the axial velocity profile is identical in
mathematical form to the Hagen–Poiseuille (HP) equation derived for impermeable tubes,
the radial velocity is not. In impermeable tubes, the no-slip condition at the pipe wall
(R = 1) and symmetry considerations at the centre of the pipe (R = 0) necessitate v = 0
everywhere in the pipe, which is not the case here due to osmosis.

The use of the HP approximation to describe water movement in the phloem has been
the subject of some debate (Weir 1981; Phillips & Dungan 1993; Henton et al. 2002;
Thompson & Holbrook 2003a, ; Jensen et al. 2009, 2012; Cabrita, Thorpe & Huber
2013). The main cause of this debate has been the assumption of an externally imposed
constant pressure gradient ∂p/∂x routinely invoked in the conventional derivation of the
HP equation (Phillips & Dungan 1993). A constant ∂p/∂x requires ∂2p/∂x2 = 0 and
consequently v = 0 everywhere (including at the boundary r = a). The expressions for
u and v in (2.8a,b) are compatible with the HP assumptions of a force balance between
pressure gradients and viscous stresses without requiring a constant ∂p/∂x. In osmotically
driven flow, the representation of the pressure and its gradients will be elaborated upon
later. While the combination of the continuity equation and the two momentum balance
equations provide three equations in three unknowns (p, v and u), they remain incomplete
because an additional boundary condition on v at r = a is required. This boundary
condition must be supplied by Darcy’s law and osmoregulation.

The conservation of solute mass, which adds one more unknown and one more equation
for c, is derived using the Reynolds transport theorem. The transport of sucrose in axial
and radial directions follows from advection and molecular diffusion. The equation for the
solute mass balance can be expressed as

∂c
∂t

+ ∂(uc)
∂x

+ 1
r

∂(rvc)
∂r

= D
∂2c
∂x2 + D

1
r

∂

∂r

(
r
∂c
∂r

)
. (2.9)

The initial condition is that at t = 0 (and x = 0) sucrose enters the tube in a radially
uniform manner. However, axially, an initial distribution c = f (x) is prescribed that is the
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same as that used by Jensen et al. (2009) to ensure a smooth initial profile along the
tube (figure 1b). Along the axial direction, a no-mass-flux condition at x = L (the tube is
closed at this end) and an externally specified uniform concentration at the source (x = 0)
are imposed. Along the radial direction, symmetry considerations provide one boundary
condition as before, which is ∂c/∂r = 0 at r = 0, and the no-flux-of-solutes condition at
r = a provides the second boundary condition, where

vc − D
∂c
∂r

= 0. (2.10)

The no-flux-of-solutes condition ensures that the membrane allows for the exchange of
water molecules but not sucrose.

As discussed before, another boundary condition is needed for v at r = a to
mathematically complete the problem formulation. The equation providing closure to both
c and v arises from a pressure difference relation across the membrane. This equation
describes the radial flow of water from the surrounding reservoir into the tube due to
osmosis. This equation is best formulated as a boundary condition that relates the radial
velocity v to the driving gradient for water movement involving the fluid pressure p and the
osmotic potential (which varies with c) at r = a. It is given as a Darcy-type flow expression
v = k( p − Πb) (Iberall & Schindler 1973), where k is the membrane permeability and Πb
is the osmotic potential at the membrane (r = a). For small c, the van ’t Hoff relation
(Π = RgTc) can be used to relate the osmotic potential Π to the sucrose concentration at
the membrane (c = cb at r = a), leading to

vb

k
= p − RgTcb, (2.11)

where Rg is the gas constant and T is the absolute temperature (assumed constant
throughout). Equation (2.11) provides the required boundary condition to link v to p and
c, thereby providing the necessary closure for the problem. It is to be noted that, at high
c, not only does the van ’t Hoff relation require modification but ρ, ν and D also become
dependent on c. This high-sucrose-concentration limit is outside the scope of the Taylor
dispersion analysis featured next.

2.2. Taylor dispersion in osmotically driven flows
To elucidate the role of Taylor dispersion, (2.9) must be averaged over the cross-sectional
area of the tube. The second term on the left-hand side, area-averaged ∂(uc)/∂x, is
interesting, given its connection to the original work of Taylor and is now explored.

Even in impermeable tubes, this term is not ∂ ūc̄/∂x. As noted by Taylor (1953), the
interaction between velocity and concentration variations adds an apparent diffusion term
labelled as dispersion. This dispersion term can be related to the ‘mixed’ Péclet number
Pe = (u0a)/D that describes the influence of the axial velocity on radial variations of
concentration. Its effect is to increase the apparent diffusion coefficient, and whence
the name ‘Taylor dispersion’ (Taylor 1953). However, in osmotically driven flows, the
radial component of the velocity appears due to osmosis. The finite radial velocity results
in a ‘radial’ Péclet number Per = (v0a)/D, which is the ratio of radial advection to
radial diffusion. Both flows will also have an influence from the ‘axial’ Péclet number
Pel = (u0L)/D that describes the ratio of axial advection to axial diffusion. In this section,
the new Taylor dispersion term is derived and its effect on osmotically driven flows for
different limits of Per and Pel is discussed. To arrive at expressions linking uc to ūc̄,
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flow properties are decomposed into area-averaged and deviation components given as
c = c̄(x, t) + c̃(x, r, t), u = ū(x, t) + ũ(x, r, t) and v = v̄(x, t) + ṽ(x, r, t), where

c̄ = 2
a2

∫ a

0
rc dr, (2.12)

and similarly for other quantities. The average of any deviation is identically zero.
Inserting the decomposed variables into (2.9) leads to

c̄t + c̃t + (c̄ū)x + (c̄ũ)x + (c̃ū)x + (c̃ũ)x

+ 1
r
(rc̄v̄)r + 1

r
(rc̄ṽ)r + 1

r
(rc̃v̄)r + 1

r
(rc̃ṽ)r

= Dc̄xx + Dc̃xx + D
1
r
(rc̃r)r + D

1
r
(rc̄r)r, (2.13)

where differentiation is now written with respect to the subscripted variables. Averaging
(2.13) radially while removing the last term on the right-hand side of the equation (c̄ only
varies in x and t), the area-averaged equation is

2
a2

∫ a

0
rc̄t dr + 2

a2

∫ a

0
rc̃t dr + 2

a2

∫ a

0
r(c̄ū)x dr + 2

a2

∫ a

0
r(c̄ũ)x dr

+ 2
a2

∫ a

0
r(c̃ū)x dr + 2

a2

∫ a

0
r(c̃ũ)x dr + 2

a2

∫ a

0
(rc̄v̄)r dr

+ 2
a2

∫ a

0
(rc̄ṽ)r dr + 2

a2

∫ a

0
(rc̃v̄)r dr + 2

a2

∫ a

0
(rc̃ṽ)r dr

= 2
a2 D

∫ a

0
(rc̄xx) dr + 2

a2 D
∫ a

0
(rc̃xx) dr + 2

a2 D
∫ a

0
(rc̃r)r dr. (2.14)

Eliminating terms that are the averages of deviations and evaluating other explicit
integrals, (2.14) becomes

c̄t + (c̄ū)x + 2
a2

∫ a

0
r(c̃ũ)x dr + 2

a

[
cv − D

∂ c̃
∂r

]
r=a

= Dc̄xx. (2.15)

The zero-mass-flux boundary condition at the membrane, vc − D ∂c/∂r|r=a = 0, is
enforced so that no sucrose molecules cross the membrane. Hence, the area-averaged
equation satisfying this boundary condition (while noting that ∂c/∂r = ∂ c̃/∂r) is

c̄t + (c̄ū)x + 2
a2

∫ a

0
r(c̃ũ)x dr = Dc̄xx. (2.16)

To determine the contribution from the integral 2a−2 ∫ a
0 r(c̃ũ)x dr, a separate equation for

c̃ must be derived. This equation is obtained by subtracting (2.16) from (2.13) to yield

c̃t + (c̄ũ)x + (c̃ū)x + (c̃ũ)x − 2
a2

∫ a

0
r(c̃ũ)x dr

+ 1
r
(rc̄v̄)r + 1

r
(rc̄ṽ)r + 1

r
(rc̃v̄)r + 1

r
(rc̃ṽ)r

= Dc̃xx + D
1
r
(rc̃r)r. (2.17)

To proceed further analytically, additional simplifications to (2.17) must be invoked.
It is first assumed that c̃ � c̄, as earlier discussed. Next, a dominant balance argument
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is employed. The most important term on the right-hand side is (1/r)(rc̃r)r because
(1/r)(rc̃r)r = O(c̃/a2) � c̃xx = O(c̃/L2). Unlike impermeable tubes, this term must
balance three dominant terms on the left-hand side rather than just one, where the
two new terms are the result of osmosis (v /= 0). These terms are the second, six and
seventh, because all other terms are O(c̃), which can be neglected when noting that
(1/r)∂(rc̃v)/∂r = O(εuc̃/a) (the sixth term can also be written as c̄v̄/r). This argument
holds when assuming that the boundary layer near the membrane is negligible, as reasoned
elsewhere (Pedley 1983; Aldis 1988; Jensen, Bohr & Bruus 2010; Haaning et al. 2013) and
the term (c̃ũ)x, which, even though averaged, remains smaller than (ũc̄)x. Hence, with
these arguments, the dominant balance leads to a simplified and solvable equation for the
sought c̃ given by

(c̄ũ)x + c̄
v

r
+ c̄ṽr = D

1
r
(rc̃r)r. (2.18)

For the ũ, v/r and ∂ṽ/∂r expressions, the result in (2.8a,b) can be used when noting that
ū = −(a2(8μ)−1)∂p/∂x, u = ū(2 − (2/a2)r2), v̄ = −(7/15)aūx and v = ūx(r3/(2a2) −
r). Hence, ũ, v/r and ∂ṽ/∂r can now be solved as functions of the area-averaged velocity
as

ũ = u − ū = ū
(

1 − 2
a2 r2

)
, ũx = ūx

(
1 − 2

a2 r2
)

, (2.19a)

v

r
= ūx

(
r2

2a2 − 1
)

, ṽr = ūx

(
3

2a2 r2 − 1
)

. (2.19b)

From this result, and noting that the area-averaged concentration is a function only of
axial position and time, (2.18) is now separable in radial and axial positions and can be
solved for c̃ by integrating in r to obtain

c̃ = 1
D

ūc̄x

(
r2

4
− 1

8a2 r4
)

− 1
4D

ūxc̄r2 + A(x, t) ln r + B(x, t), (2.20)

where A and B are integration constants to be determined. For the concentration to be
bounded at r = 0, it is required that A = 0. The area-averaged concentration deviation is
zero by its definition (i.e.

∫ a
0 (rc̃) dr = 0) and leads to B = (a2/8D)ūxc̄ − (a2/12D)ūc̄x.

Hence, c̃ can be approximated as a function of the area-averaged concentration and axial
velocity using

c̃ = 1
D

(
r2

4
− 1

8a2 r4 − a2

12

)
ūc̄x + 1

D

(
−r2

4
+ a2

8

)
ūxc̄. (2.21)

From the concentration deviation given in (2.21) and the velocity deviation given by
(2.19a), the integral in (2.16) can now be determined to include the Taylor dispersion effect.
After some algebra, the new form of the area-averaged equation for conservation of solute
mass can be shown to reduce to

∂ c̄
∂t

+ ∂

∂x

[(
1 + a2

24D
∂ ū
∂x

)
c̄ū
]

= ∂

∂x

[(
a2ū2

48D
+ D

)
∂ c̄
∂x

]
. (2.22)

Some features in (2.22) should be pointed out when comparing it to the impermeable
tube case of Taylor dispersion. The conventional Taylor dispersion term (aū)2/(48D) is
recovered on the right-hand side of (2.22). This term is always positive and must act to
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enhance the apparent diffusion coefficient. However, a new term emerges on the left-hand
side of (2.22) that is absent in impermeable tubes. This term is responsible for transport
into or out of the domain and depends on concentration gradients in the domain. Its
sign is problem- and position-dependent because the mean velocity gradient can be either
negative or positive depending on whether the flow is accelerating or decelerating.

The second equation needed to close the problem in the area-averaged form is (2.11). In
this equation, the radial velocity v at r = a can be formulated from (2.8a,b) as a function
of the area-averaged axial velocity, v|r=a = −(a/2)ūx. The concentration at the boundary
cb can be approximated by the area-averaged concentration c̄. This simplification ignores
any boundary-layer effects at the membrane, though it abides by pragmatic considerations
that k is experimentally determined using averaged quantities when applying pressure
and measuring the average axial velocity. The implication of this assumption is further
discussed in appendix A. After differentiating in x to relate the pressure term to the
area-averaged axial velocity, (2.11) can be written in the following form:

RgT
∂ c̄
∂x

= a
2k

∂2ū
∂x2 − 8μ

a2 ū. (2.23)

Equation (2.22) can be coupled with (2.23) to offer a new closed-form expression that
describes axial sucrose transport in the phloem while accounting for Taylor dispersion.

3. Simplified model

The findings from (2.22) and (2.23) are now interpreted in the context of prior
one-dimensional (axial) theories of phloem transport (Thompson & Holbrook 2003a;
Jensen et al. 2009; Huang et al. 2018). Prior models commence with the assumption that
v � u so that the momentum balance for v can be omitted. Using this assumption, the
area-averaged axial velocity is then directly related to the pressure gradient (for low Re
and neglecting gravitational forces) by the HP approximation

ū = −a2(8μ)−1 ∂p
∂x

, (3.1)

as shown in § 2.1 and discussed elsewhere (Thompson & Holbrook 2003a; Jensen et al.
2009).

The flow through a membrane can be described using conservation of mass for a
constant ρ around a small part of the tube length Δx, where the osmotic potential and
pressure potential are balanced to create an advection difference across Δx between inlet
position i and outlet position i + 1 given as (Jensen et al. 2009)

πa2(ūi+1 − ūi) + 2πaΔx k(Π − p) = 0. (3.2)

As before, for small c, the van ’t Hoff relation Π = RTc̄ can be used to relate the osmotic
potential Π to c̄. Taking the limit Δx→ 0, a relation between c̄, ū and p can now be derived
and is given by

a
2

∂ ū
∂x

= k(RgTc̄ − p). (3.3)

Using (3.1), p can be eliminated, resulting in an equation that is the same as (2.23) as
derived from the boundary condition (2.11) in § 2.2.
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To mathematically close the problem, the area-averaging operation can be applied to the
advection–diffusion equation (2.9), which upon setting uc = ūc̄ leads to

∂ c̄
∂t

+ ∂ ūc̄
∂x

= D
∂2c̄
∂x2 . (3.4)

This resulting transport equation is different from (2.22) due to the approximation uc ≈ ūc̄.
This latter approximation, which ignores Taylor dispersion, has been used extensively in
prior representation of sucrose transport in the phloem (Thompson & Holbrook 2003a;
Jensen et al. 2012, 2016; Huang et al. 2018). Its consequence is that area-averaged
quantities also satisfy the same solute conservation equation. The inclusion of Taylor
dispersion (i.e. arising from uc /= ūc̄) in the aforementioned system of equations and
tracking its consequences on sucrose front speed frames the scope of the work presented
here.

4. Non-dimensional form for both models

This section presents the non-dimensional form for the simplified model derived by Jensen
et al. (2009) and discussed in § 3 and the model that includes Taylor dispersion derived
in § 2.2. Because the non-dimensional forms are used to construct model runs for the
discussion, they are featured here for convenience.

4.1. Non-dimensional form of the simplified model
Choosing the following scaling for the concentration, velocity, length and time, c = c0C
(c0 being the initial concentration released at x = 0), u = u0U, x = LX and t = t0τ ,
equations (2.23) and (3.4) can be made non-dimensional and given by

∂C
∂X

= ∂2U
∂X2 − MU, (4.1a)

∂C
∂τ

+ ∂UC
∂X

= 1
Pel

∂2C
∂X2 , (4.1b)

where t0 = Lu−1
0 is the advection time scale, u0 = 2kRgTc0La−1 is the advection velocity,

M = 16μL2ka−3 is the Münch number, which describes the forces responsible for the
axial variation of c̄ (Jensen et al. 2009), and Pel = u0L/D is the Péclet number in the axial
direction, which can be significant for high Sc even when u0 is small. It is to be noted that
this non-dimensional number is the inverse of D̄ used by Jensen et al. (2009).

In the limiting case where M is very large, the non-dimensional variable U in (4.1a) can
be rescaled by M to yield

∂C
∂X

= 1
M

∂2Û
∂X2 − Û, (4.2a)

∂C
∂τ

+ 1
M

∂ÛC
∂X

= 1
Pel

∂2C
∂X2 , (4.2b)

where U = Û/M and Û = O(1). When M→ ∞, the leading-order axial velocity becomes
entirely driven by the mean concentration gradient (Û = −∂C/∂X). The analytical
solution (when M−1C � 1/Pel) for this equation can be found elsewhere (Jensen et al.
2009) and follows well-established methods for solving such nonlinear diffusion problems
(King & Please 1986).
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4.2. Non-dimensional form of the Taylor dispersion model
Using the same scaling analysis, (2.23) is not affected by the derivation of the Taylor
dispersion (as expected). However, the non-dimensional form for the conservation of
solute mass must be revised to include the radial Péclet number Per. This revision yields

∂C
∂τ

+ ∂

∂X

[(
1 + Per

24
∂U
∂X

)
UC

]
= Per

48
∂

∂X

[(
U2 + 48

PerPel

)
∂C
∂X

]
, (4.3)

where the scaling for the time t0 is the same as in § 4.1. The non-dimensional number
Per = av0/D defines a radial Péclet number, where v0 = εu0, with ε = a/L, as expected
from the continuity equation (2.1) in § 2.1. The non-dimensional number 48Pe−1

l Pe−1
r can

also be written as 48(εPel)
−2, since Per = ε2Pel. This non-dimensional number is always

much smaller than unity (i.e. 48(εPel)
−2 � O(1)) since axial advection is much bigger

than axial diffusion (Pel � O(1), as shown in table 3), which will lead to εPel � O(1).
However, the non-dimensional radial Péclet number Per/24 can be large (>1 when radial
advection dominates) or small (�1 when radial diffusion dominates) depending on the
problem and will affect the overall sucrose transport time scale.

As before, in the limiting case where M is very large, the axial velocity can be rescaled
by M. In this case, using the following change of variable for the axial velocity, U = Û/M,
where Û = O(1), (4.3) can be written in the following form:

∂C
∂τ

+ ∂

∂X

[(
1
M

+ Per

24M2
∂Û
∂X

)
ÛC

]
= Per

48
∂

∂X

[(
1

M2 Û2 + 48
PerPel

)
∂C
∂X

]
. (4.4)

For this case, the order of magnitude of the non-dimensional number Per/(24M2) will
reveal the significance of the new terms in this model. In the results section, the Taylor
dispersion effect for the cases of small to intermediate Münch number (M � 1 or M =
O(1)) and large Münch number (M→ ∞) are presented.

5. Results

The results are divided into two parts. In the first part, a comparison of both the simplified
model and the model including Taylor dispersion with published laboratory experiments
(Jensen et al. 2009) is carried out. These experiments are in the low-Münch -number
regime. From this comparison, indirect evidence of the importance of Taylor dispersion
in osmotically driven flows is established. The second part primarily focuses on the role
of the new term (the radial Péclet number, Per), primarily because 48Pe−1

r Pe−1
l � O(1).

That is, molecular diffusion is smaller than the dispersion coefficient for typical phloem
dimensions. In each M limit, the behaviour of the flow is discussed depending on Per.
The work here explores the flow properties and initial conditions affecting the behaviour
of the sucrose concentration front shape traversing the tube. Flows characterized by small
or negligible M(� 1) are labelled as HP-driven flows, whereas flows characterized by
very large M are labelled as osmotically driven flows. To be clear, both flow regimes are
osmotically driven – and such labelling simply reflects the roles of a fluid property μ and a
membrane property k on the relative magnitudes of the two terms in (2.23). Further details
about the consequences of large or small M on the scaling of p is featured in appendix B
for completeness.
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Runs 1 2 3 4 5

Mean sugar concentration, ĉ (mM) 1.5 ± 0.3 2.1 ± 0.03 2.4 ± 0.2 4.2 ± 0.7 6.8 ± 0.1
Osmotic pressure, Π (bar) 0.14 ± 0.02 0.15 ± 0.01 0.31 ± 0.03 0.39 ± 0.01 0.68 ± 0.02
Membrane tube length, L (cm) 28.5 20.8 28.5 28.5 20.6
Initial front height, l (cm) 4.9 3.7 6.6 6.5 4.8

Table 1. Published (Jensen et al. 2009) experimental conditions for the five runs analysed here. The reported
RgT = 0.1 bar (mM)−1.

5.1. Comparisons with published experiments
Indirect evidence for the significance of Taylor dispersion in osmotically driven laminar
flow is presented based on published experiments. The data used here were extracted
from an experiment described elsewhere (Jensen et al. 2009) where M ∼ 10−8. In this
experiment, the authors compared an analytical solution derived for very small M and
D̄ = 1/Pel with measurements without including Taylor dispersion in their model.

5.1.1. Experimental set-up
The experiment consisted of a tube with L = 30 cm and radius a = 0.5 cm, with
semipermeable membrane walls to allow water but not sucrose to be exchanged with
the tube. This tube was placed vertically in a water reservoir, where the gravitational
forces can be assumed to be negligible compared to the pressure gradient. This set-up,
shown in figure 1(b), was used for five experimental runs in which osmotic pressure and
L were varied. The reported constant values for the dynamic viscosity and molecular
diffusion in these experiments were μ = 1.5 × 10−3 Pa s and D = 6.9 × 10−11 m2 s−1.
Table 1 summarizes the different parameters for the five runs. In all five runs, the two
non-dimensional numbers M and D̄ (=1/Pel) are small (M ∼ 10−8 and D̄ ∼ 10−5) and
are neglected in (4.1a) and (4.1b). In the absence of Taylor dispersion, this approximation
allowed an analytical result to be derived for the mean concentration front position xf (t)
given by (Jensen et al. 2009)

xf

L
= 1 −

(
1 − l

L

)
exp

(
− t

t0

)
, (5.1)

where l is the initial front height at t = 0 and t0 = a(2kRgTĉ)−1 = a(2kΠ)−1.
Figure 2 shows the relative front position (L − xf )/(L − l) as a function of t for the

five runs. Equation (5.1) was used to compare the result of Jensen et al. (2009) with the
experiment. It is to be noted that, in this equation, the reported radius a and length L as
well as the permeability k are in principle constants and the only variable that changes from
one run to another was the osmotic potential, which was reported in table 1. To fit their
analytical result from (5.1) to experiments using their reported osmotic potential, different
values for membrane permeability were needed. These values are shown in table 2. To
be clear, the low velocities across the membrane should yield a constant permeability k
(i.e. no Forchheimer correction is required, meaning the assumptions to use Darcy-type
flow for (2.11) are still valid). Inspecting runs 1 and 4 in table 2, we can see that we have
the same value for k even when the osmotic potential is larger. The need to vary k across
runs led to the conjecture that the term (cu)x may not be (c̄ū)x and Taylor dispersion may
have some impact on this experiment. Other combinations can be formulated by changing
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Figure 2. Log plot for the relative front position as a function of time t for the measured concentration (dashed
line) and the analytical result given by Jensen et al. (2009) for the low-M limit (solid line) for the five different
experimental runs listed in table 2.

Runs 1 2 3 4 5

Osmotic pressure, Π (bar) 0.16 0.16 0.3 0.38 0.68
Permeability, k × 10−10 (cm (Pa s)−1) 1.10 1.35 1.15 1.10 1.30

Table 2. Different k values needed to match the analytical solution to measurements for each run in figure 2.

the osmotic potential for each run while changing the permeability. However, no other
combination led to a constant permeability for all the five runs. For this reason, we use
these values for the model in the following section.

5.1.2. Data–model comparisons
From § 5.1.1, different values of k were necessary to fit the published analytical solution
to the measurements for each run. In this section, the model for xf (t) that includes Taylor
dispersion is now used to fit the data but using a single k value across runs. For both
models, the permeability k was set to a constant k = 0.8 × 10−10 cm (Pa s)−1, which
yielded the best fit for all runs when Taylor dispersion was included (figure 3).

The Taylor dispersion model agrees with measurements for four out of the five runs
(figure 3). Only the second run did not agree well with the proposed model for this k value
at early times. One possible explanation for this discrepancy is that the measured osmotic
potential may have been reported incorrectly since it is related to the mean concentration
ĉ by Π = RgTĉ (published RgT = 0.1 bar (mM)−1 for all runs). From table 1, when the
lower limit for ĉ = 2.07 mM and the upper limit for the osmotic pressure Π = 0.16 bar
are used, the van ’t Hoff relation appears not to be satisfied with published RgT = 0.1 bar
(mM)−1. The osmotic pressure should have attained a higher value, which can increase
the osmotic driving force, leading to a faster flow and rapid xf advancement at early times.

913 A44-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

56
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2021.56


M. Nakad, T. Witelski, J.C. Domec, S. Sevanto and G. Katul

0 1 2 3
–2

–1

0
Run 1

0 1 2 3

–2

–1

0
Run 2

0 5 10 15

t (s)

–2

–1

0
Run 3

0 5 10

t (s)

t (s) t (s)

–2

–1

0
Run 4

0 2 4 6

t (s)

–2

–1

0
Run 5

0.5 1.00

0.5

1.0

(×105) (×105) (×104)

(×104) (×104)

lo
g
((

L
–

x f)
/
(L

–
l)

)
lo

g
((

L
–

x f)
/
(L

–
l)

)

c/
c 0

x/L

(a) (b) (e)

(c) (d ) ( f )

Figure 3. Log plot for the relative front position as a function of time for the experiments (crosses), analytical
model for the low-M limit (dashed line) and Taylor dispersion (solid line) using a single value k = 0.8 × 10−10

cm (Pa s)−1. The last panel shows the concentration profile for the fifth run as a function of the axial position for
the simplified model developed by Jensen et al. (2009) (dashed line) and the Taylor dispersion model proposed
here (solid line). The inclusion of Taylor dispersion increases the front speed.

When revising the driving osmotic pressure to be compatible with the concentration, the
agreement with the proposed model here is satisfactory (not shown).

The last plot of figure 3 presents the axial mean concentration for the fifth run at different
times. The addition of Taylor dispersion leads to a different shape (not characterized by
a front-like behaviour) at small time scales. As shown in figure 3, the longitudinal mean
concentration variation of the Taylor dispersion model is different from the typical wave
equation expected at the low-M limit. At earlier times, the concentration does not advance
with a sharp front because of the highly diffusive behaviour at early times. However, at
later times, the concentration recovers the expected wave-like front.

In figure 4, the relative front position extracted from the data is plotted against the
relative front position calculated from the two different models (circles for the Taylor
dispersion model and crosses for Jensen’s model) for the five different runs using a single
k value, k = 0.8 × 10−10 cm (Pa s)−1. The one-to-one line is shown as a solid line. The
Taylor dispersion model provides a better fit with less scatter than that derived without
Taylor dispersion. As expected, the relative front position for the second run does not lie
on the one-to-one line for reasons related to the published osmotic potential value earlier
noted.

5.2. Results of the models in both regimes
The effects of Taylor dispersion over a broader range of conditions than those covered by
the experiments are now discussed. This discussion is centred on a comparison between
the formulation that retains Taylor dispersion and the standard approach that ignores it.
In appendix C, a comparison between these two models and a model that ignores the
advection term while maintaining the original Taylor dispersion term as a local effect will
be presented as well to describe the effect of the advection term on the flow.
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Figure 4. Published data for the relative front position extracted by us from Jensen et al. (2009) as a function
of the relative front position calculated from the two different models for the five runs. Black circles represent
the Taylor dispersion model (derived here) and grey crosses represent the analytical approximation as derived
by Jensen et al. (2009) for k = 0.8 × 10−10 cm (Pa s)−1.

Now, when designing a broad range of flow conditions (for the finite-Per representation),
it is imperative to assess how high Per can be reached without violating the simplifications
to the Navier–Stokes equations (2.2). To do so, it is assumed that the highest order of
magnitude that the reduced Re (i.e. εRe) can reach is O(10−2). The non-dimensional
numbers εRe and Per can be written as εRe = ερu0a/μ = ρv0a/μ and Per = v0a/D.
This leads to v0a = (μ/ρ)εRe = (μ/ρ)O(10−2), which means that the highest Per is
v0a/D = μ(ρD)−1O(10−2). Inserting the values for ρ, μ and D, the highest order of
magnitude for Per that can be sustained without the addition of inertial terms in the
Navier–Stokes equations is O(10). This result implies that the radial advection can be
equal to or higher than the radial diffusion. Obviously, with such high radial advection,
the osmotic efficiency might be overestimated (Aldis 1988). The implication of this
assumption is further discussed in appendix A.

5.2.1. Results for HP-driven flows
For this type of flow, the axial pressure gradient is the main driving force and is scaled
by viscous forces, hence the name HP-driven flow. It either dominates or has similar
importance as the osmotic potential. As discussed in § 4.1, M is finite (or M→ 0) and
the velocity is scaled by the boundary condition, which, as shown in appendix B, results in
u0 = 2kRgTc0La−1. For this case, the two dimensionless numbers in equation (4.3) for the
conservation of solute mass can be written in the following forms: Per = 2kRgTc0aD−1

and Pel = 2kRgTc0L2a−1D−1.
In this section, the effect of Per for the HP-driven regime will be presented. The case

where Per is very small forms a logical starting point for discussion. Its effect on the flow
when it reaches the aforementioned upper limit is then analysed. To do so, a numerical
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Case 1 Case 2 Case 3 Case 4

L (m) 0.1 2 × 10−1 1 10
a (m) 10−4 10−3 1 × 10−5 1 × 10−4

k (m (Pa s)−1) 10−12 10−11 1 × 10−11 5 × 10−11

c0 (mM) 10 20 10 40
u0 2 × 10−4 8 × 10−4 2 × 10−1 4
t0 5 × 102 2.5 × 102 5 2.5
M 2.4 × 10−4 9.6 × 10−6 2.4 × 102 1.2 × 102

εRe 1.33 × 10−5 2.7 × 10−3 1.3 × 10−5 2.67 × 10−3

Pel 2.9 × 105 2.3 × 106 2.9 × 109 5.8 × 1011

Per 2.9 × 10−1 5.8 × 101 2.9 × 10−1 5.8 × 101

Table 3. List of initial conditions and non-dimensional numbers for the four different cases discussed. All
time scales are advection time scales (including the cases for high Per).

solution is obtained for both models. For the Taylor dispersion model, the system of
equations solved is (4.3) and (4.1a). For the simplified model, it is (4.1b) and (4.1a).

In the case where Per � ε (i.e. Per � 1/Pel), the molecular diffusion compared to the
dispersion due to advection can be neglected and the non-dimensional form of equation
(4.3) for solute mass conservation can be written as

∂C
∂τ

+ ∂

∂X

[(
1 + Per

24
∂U
∂X

)
UC

]
= Per

48
∂

∂X

[
U2 ∂C

∂X

]
. (5.2)

From (5.2), the effect from Taylor dispersion decreases when Per→ 0. At this limit,
the equation exhibits similar behaviour to that derived in (4.1b) in § 4.1, but with two
adjustments: 1/Pel and Per/48 now have different orders of magnitude and the diffusion
term itself is different. To illustrate the difference, a set of variables and initial conditions
have been selected as presented in table 3.

From figures 5(a) and 5(b), the effect of Taylor dispersion on front speed appears small.
The main difference can be seen in figure 5(a), where the front shape is smoother with
the inclusion of Taylor dispersion. As mentioned before, the reason behind this ‘extra’
smoothing is the new dispersion term, and its order of magnitude is larger than molecular
dispersion (i.e. Per/48 ∼ O(10−3) � 1/Pel ∼ O(10−6)).

The second case of interest is high Per. For this type of flow, advection is large enough
to introduce a new behaviour in the flow. Assuming that the only variables that can
be conveniently changed in an experiment are the dimensions of the tube (i.e. radius a
and length L), its property (i.e. the permeability k) and the initial condition (i.e. initial
concentration c0), the set of variables chosen for illustration are shown in table 3.

This flow exhibits a different shape from the previous illustration. In this case, the
advection term (from the analysis in § 2.2) is of the same magnitude as the original
advection term and the dispersion term is of order O(1). From figures 5(c) and 5(d), a
finite Per alters the behaviour of the flow, and the shape of the advancing concentration
front disappears. From figure 5(c), it is also evident that, when including Taylor dispersion,
the concentration front will sense the ‘end of the tube’ (downstream conditions) before the
case where no Taylor dispersion is present. In this case, the advection term due to Taylor
dispersion is larger than the original advection term (i.e. UXPer/24 > 1), leading to a
higher front speed.
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Figure 5. Results of the numerical solution for low M (first and second cases in table 3). (a,b) The low-Per case
for the time evolution of the concentration and velocity profiles. (c,d) The high-Per case for the time evolution
of the concentration and velocity profiles. Solid lines denote the result with Taylor dispersion and dashed lines
denote the result without Taylor dispersion.

5.2.2. Results for osmotically driven flows
For this type of flow, the pressure can be scaled by the osmotic potential (as shown also
in appendix B), hence the name osmotically driven flows. However, to maintain the same
scaling for the velocity and pressure as for the case of low M, the axial velocity U can be
rescaled by M as discussed in § 4.1. In this case, the system of equations used to obtain
the numerical solution is (4.4) and (4.2a) for the Taylor dispersion model, while (4.2b)
and (4.2a) were used for the simplified model. As in § 5.2.1, the discussion on the effect
of Per on this type of flow will be presented. The non-dimensional form for the solute
mass is the same as (4.4). However, to illustrate the importance of Taylor dispersion, the
new non-dimensional form can be written using the linear relation between velocity and
concentration for very high M discussed in § 4.1. This non-dimensional form is given as

∂C
∂τ

= ∂

∂X

[[
Per

48M2

(
∂C
∂X

)2

+ 1
Pel

+
(

1
M

− Per

24M2
∂2C
∂X2

)
C

]
∂C
∂X

]
, (5.3)

From (5.3), the importance of the new terms resulting from Taylor dispersion can be shown
by varying Per/M2. In this case, M will be fixed (M ∼ O(102)) and Per will be varied from
small (i.e Per � 1) to its maximum limit (i.e. O(10)).

For the low-Per limit case, the tube properties and initial conditions, chosen to model
this behaviour, are shown in table 3. As expected, one can see from figures 6(a) and 6(b)
that both models behave approximately the same. The small value for Per/M2 implies
that both models have the same leading-order solution, which was discussed in § 4.1. One
possible difference can be the shape of the moving solute front when M−1C � 1/Pel,
where, in this model, the new Taylor dispersion terms can have a higher order of magnitude
in this region. However, this analysis is tangential to the role of Taylor dispersion in the
phloem and is better left for a future enquiry.
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Figure 6. Results of the numerical solution for high M (third and fourth cases in table 3). (a,b) The low-Per

case for the time evolution of the concentration and velocity Û = MU profiles. (c,d) The high-Per case for the
time evolution of the concentration and velocity Û = MU profiles. Solid lines denote the result with Taylor
dispersion and dashed lines denote the result without Taylor dispersion as before.

As in § 5.2.1, the interesting case is the higher Per. For this reason, the set of initial and
geometrical conditions, shown in table 3 with the resulting Per and εRe, are chosen for
illustration. In figures 6(c) and 6(d), the large dispersion term has appreciably smoothed
the mean longitudinal velocity and concentration along x. Another interpretation for the
effect of Taylor dispersion can be seen from the longitudinal concentration distribution in
figure 6(c), where the two plots differ in behaviour within the vicinity of the solute moving
front. The reason for this difference is evident from (5.3), where the time derivative of
the area-averaged concentration along x is dependent on two new terms due to Taylor
dispersion (advection and diffusion), unlike the case in the simplified model that depends
on a constant term. A simplification can be achieved using an asymptotic analysis for
most of the domain, which ultimately leads to a diffusion coefficient that depends on
concentration C only as discussed elsewhere (Jensen et al. 2009). However, for the moving
solute front, the other terms can be more important. From figures 6(c) and 6(d), the
addition of Taylor dispersion speeds up the self-similar solution compared to the simplified
model.

In this type of flow, the axial velocity U scales as O(1/M). This means that the radial
advection is always much smaller than the radial diffusion even for the case where Per > 1.
For this reason, when M � 1, the effect of Taylor dispersion decreases. However, in
appendix D, a scaling analysis will show how the radial Péclet number can have a bigger
effect if one uses a new scaling for the axial velocity as discussed in appendix B for the
case where M � 1.

The difference in dynamics for both flows can be understood from comparing (5.2)
for small M and (5.3) for large M. The transport described by (5.2) is significantly
different in terms of having an advective term, while (5.3) is a nonlinear diffusion model
with a diffusion coefficient that depends on the concentration and its derivatives. This
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apparent diffusion coefficient results from the linear relation between the velocity and
the concentration (i.e. Û = −∂C/∂X) as a first-order approximation. It is the outcome of
molecular diffusion, typical Taylor dispersion and the advection terms.

5.3. Model applicability in reference to sucrose transport in plants
In this section, the effect of Taylor dispersion on sucrose transport in phloem is discussed.
As shown before, the effect of Taylor dispersion is solely related to Per, which arises
from the radial inflow of water due to osmosis. This radial Péclet number can be written
as Per = 2kRgTc0aD−1 to illustrate the different parameters that affect its significance
in the area-averaged solute balance. Based on typical phloem values (Thompson &
Holbrook 2003a), this non-dimensional number is small (i.e. Per � O(1)), meaning
that the Taylor dispersion effects will be more diffusive than increasing the speed of
sucrose transport. Another limitation of this theory is the simplified geometry of the
tube noted in the introduction. Real phloem tubes consist of series of small sieve
elements connected by porous sieve plates. To accommodate these porous sieve plates,
the pointwise Navier–Stokes equations must be revised to include a blockage term for
the solid component of the plate (no velocity) whereas the porous part allows the flow to
occur (with a velocity speedup to conserve the flow rate). In lieu of this treatment, the
area-averaged Navier–Stokes equations may be amended by including a drag force with
a drag coefficient that depends on the bulk Reynolds number upstream of the plate and
a frontal area that is related to the solid space of the plate obstructing the flow. In either
treatment, the effect of these plates on Taylor dispersion remains an open problem.

Thompson & Holbrook (2003a) showed that head losses due to the presence of sieve
plates may be included as reduced effective hydraulic conductivity of the sieve tube by
adding a reduction factor. This treatment implies that the drag force from the plate can
be replaced by an equivalent sidewall shear stress, thereby ignoring the disturbance the
plate creates on the radial velocity and concentration distribution. Jensen et al. (2016) and
Thompson & Holbrook (2003a) showed that, for low-Reynolds-number flows, the distance
needed to recover the parabolic profile for u starting from a radially uniform velocity is
lp < a. The spacing of sieve elements lsp can be small to moderate (102 to 103 μm for
plants), while a can vary from 10 to 100 μm in plants. It can be surmised that there are
situations where sieve plates introduce local (and minor) distortions to the existing analysis
when lp/lsp � 1. Evidently, there are situations where 0.1 < lp/lsp < 1 and the effect of
Taylor dispersion predicted here is overestimated. In these situations, the analysis here only
offers ‘upper bounds’ on the role of Taylor dispersion in phloem transport.

The new term (a2/D)∂ ū/∂x is shown to be a general feature of Taylor dispersion of
osmotically driven flow but can act as an apparent local source or local sink depending
on ∂ ū/∂x. This gradient is sensitive to the imposed boundary condition at the end of the
tube. A closed tube forces ū = 0 at both ends. This necessitates a ∂ ū/∂x to be positive
in the loading zone (mainly the photosynthetic tissues in leaves) but becomes negative in
the unloading zone (e.g. trunk parenchyma and root apex), thereby switching the sign of
(a2/D)∂ ū/∂x. In plants, it is safe to assume that the flow starts from rest in the loading
zone and ∂ ū/∂x > 0. However, and even though the flow velocity decreases significantly
due to loss of liquid volume during unloading, the exit water flow rate need not be
zero, since water is recycled back, with root-water uptake entering xylem tissue. This
boundary condition poses new challenges to representing the pressure and associated
velocity gradients in the unloading zone. Specifically, |∂ ū/∂x| can be ameliorated in this
zone and the overall effect of (a2/D)∂ ū/∂x may be a reduction in the local sink strength
by Taylor dispersion due to a weakened ∂ ū/∂x < 0.
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6. Conclusion

The description of osmotically driven low-Reynolds-number flows at high Schmidt
number within narrow long tubes was revised to include the effects of Taylor dispersion.
These flow conditions may arise in the phloem when describing sucrose transport in
plants. The conservation of solute mass suggests that the Péclet number, defined by the
product of a low Reynolds number and the high Schmidt number, need not be small. The
immediate consequence of such an argument is that advective solute transport is not small,
necessitating the inclusion of Taylor dispersion.

A theory for longitudinal sucrose transport was proposed by area-averaging three
interrelated expressions: the Hagen–Poiseuille equation, linking velocity and pressure
gradients; a Darcy-type flow expression, linking velocity gradients to pressure and solute
concentration subject to the van ’t Hoff approximation; and the advection–diffusion
equation for solute mass, linking velocity to concentration. The dominant balance subject
to small deviations in concentration from their area-averaged values allowed explicit
governing equations to be derived for the area-averaged pressure, concentration and
velocity.

The Taylor dispersion in the longitudinal direction, originally derived for impermeable
tubes, emerges but with new adjustments due to osmotic effects. These adjustments are
responsible for local sucrose transport into or out of a differential element, though their
overall domain-averaged effect is zero. The analysis highlighted the unexpected role of a
non-dimensional radial Péclet number Per, which acts upon the area-averaged longitudinal
velocity gradient. Unlike the original Taylor dispersion in impermeable tubes, which
increases the overall apparent longitudinal diffusion, a finite Per here makes the degree
of enhancement problem-dependent.

The work presented here is restricted to an idealized setting (long uniform tubes) and
does not take into consideration changing boundary conditions and head losses due to the
presence of sieve plates, sucrose sources and sinks along the phloem path length, variable
viscosity, and water stress variations in the xylem. All these are required for realistic
models of the phloem and are left for future work.
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Appendix A. Refined boundary condition with Per

In § 2.2, the boundary condition (2.11) was forced by the concentration at the membrane
so that cb = c̄(x). This assumption is compatible with c̃/c̄ � 1 at r = a. The inclusion of
a c̃ /= 0 at r = a only is tracked here, and its consequences on the flow are discussed.

The inclusion of c̃ in the boundary condition (linear in c) but ignoring its magnitude in
the solute mass balance may be a concern. To be clear, the objective of this analysis is to
illustrate how deviations from cb = c̄(x) at the boundary impact the final Taylor dispersion
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Figure 7. Results of the numerical solution at high Per and low M: (a) concentration profile at t = 0 and later
time and (b) time evolution of the logarithm of the relative front position. Solid black lines denote the results
from a numerical integration of the HP model (i.e. (2.8a,b), (2.9) and (2.11)), which are then area-averaged and
featured here; solid blue lines denote the result with Taylor dispersion; dashed black lines denote the result with
Taylor dispersion when including c̃ in (2.11) (labelled as TD+); and solid red lines denote the result without
any Taylor dispersion (simplified model).

theory when Per is finite. Given that cb is likely to be smaller than c̄ because the water
bath surrounding the tube has c = 0, the efficiency of the osmotic potential arising from
the boundary is likely to be diminished (Aldis 1988). It is this point that is elaborated upon
here.

To show this effect, a comparison between the Taylor dispersion model derived in § 2.2
(denoted by ‘TD’), the simplified model derived by Jensen et al. (2009) and summarized in
§ 3 (denoted by ‘Simplified model’) and the new model to be derived here, which includes
c̃ at the boundary (denoted by ‘TD+’), will be shown.

Using (2.21) for c̃, (2.11) can be rewritten in non-dimensional form as

∂2U
∂X2 − MU = ∂C

∂X
− Per

12
∂U
∂X

∂C
∂X

+ Per

24
U

∂2C
∂X2 − Per

8
C

∂2U
∂X2 , (A1)

with u0 as described in § 4.1 for low M. From (A1), the appearance of Per shows how
increasing Per impacts the transport. Physically, large Per is due to high radial velocity
induced by high osmotic potential. In this case, the concentration at the membrane
boundary cannot be approximated by the area-averaged equation because the radial
advection is higher than the radial diffusion, meaning the deviation from the c̄ is not small.
This addition slows down the flow because decreasing cb below c̄ will decrease the osmotic
potential.

This conjecture is demonstrated by numerically integrating (2.8a,b), (2.9) and (2.11)
in two dimensions and then comparing the area-averaged solution with the various
approximations invoked. We chose the case with the highest Per to illustrate the maximum
effects of cb < c̄, and this case is featured in figure 7. For all the low-Per cases, we
confirmed that the difference between the two Taylor dispersion approximations and the
two-dimensional (2-D) HP numerical solution are minor (not shown).
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Figure 7 illustrates that the use of c̃ derived from (2.21) overestimates the slowing of the
transport compared to the 2-D solution since it was ignored in the solute mass balance.
This result is presented to illustrate the tendency of the solution to respond to a reduced
concentration at the boundary. It also implies that the Taylor dispersion model with cb = c̄
provides an upper limit (compared to the 2-D solution) for the sucrose transport speed in
such osmotically driven flow. Another interesting result is the nonlinearity in the TD+ and
2-D model profiles compared to the log-linear profile that the TD and simplified models
have, as shown in figure 7(b).

Appendix B. Pressure scale in both regimes

This appendix seeks to clarify the naming of the two flow regimes based on finite M (i.e.
M ∼ O(1) or M � 1) and very large M (i.e. M→ ∞). The two equations needed to obtain
M are (2.23) and (3.1). These two equations can be expressed in non-dimensional form as
(after relating v at r = a to ūx):

∂U
∂X

= 2kRgTc0L
au0

C − 2kLp0

au0
P,

U = a2p0

8μu0L
∂P
∂X

.

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (B1)

In the low-M limit, if the velocity scale is obtained from the osmotic pressure and the
pressure from the HP equation, (B1) becomes

∂U
∂X

= C − MP, U = ∂P
∂X

, (B2a,b)

where u0 = 2kRgTc0La−1, M = 16kμL2a−3 and p0 = 8μu0a−3L = MRgTc0. From this
scaling, M is the ratio of the viscous pressure potential to the osmotic potential. The scaling
for the pressure here originates from the viscous forces. This case represents a flow that
depends on viscosity because the pressure was scaled from the Navier–Stokes equations
and leads to a velocity scaling from the boundary condition.

In the second regime, rescaling by M leads to

1
M

∂U
∂X

= C − P, U = ∂P
∂X

, (B3a,b)

where p0 = RgTc0 and u0 = a2p0(8μL)−1 = a2RgTc0(8μL)−1. In this case, the pressure
is directly dependent on the osmotic potential and the velocity is scaled from the
Navier–Stokes equations. The naming for these two cases was primarily related to the
scaling of the pressure that is implicit in (2.23).

Appendix C. Conventional Taylor dispersion

The new advection correction contribution to velocity and concentration fronts is explored.
A comparison between the solutions that include the new advection term (i.e. TD) and the
solution that ignores the advection term while including the diffusional effect (resembling
in mathematical form the original Taylor dispersion) are discussed. The model that ignores
TD effects entirely is used as a reference (i.e. ‘simplified model’).
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Figure 8. Results of the numerical solution for the second and fourth cases in table 3 (high Per). (a,b) The
low-M case for the concentration and velocity profiles at t = 0 and later time. (c,d) The high-M case for the
concentration and velocity Û = MU profiles at t = 0 and later time. Solid blue lines denote the result with
Taylor dispersion (TD), solid red lines denote the result without Taylor dispersion (simplified model) and
dashed-dotted lines denote the result with original Taylor dispersion.

The formulation for the original Taylor dispersion in the absence of the advection term
is a limit set by assuming that the radial advection term in (2.9) is much smaller than the
diffusion term. In this case, (2.22) reduces to

∂ c̄
∂t

+ ∂

∂x
(c̄ū) = ∂

∂x

[(
a2ū2

48D
+ D

)
∂ c̄
∂x

]
. (C1)

Equation (C1) recovers the original Taylor dispersion result since the effect of the local
advection term is ignored but still the overall scalar mass is preserved. However, the
coupling between p and c̄ is maintained by the Darcy-type flow expression and the
van ’t Hoff relation RgTc̄ = Π , so that ū is fully described by (2.23).

As expected, the original Taylor dispersion model will not affect the model globally,
meaning that the speed of the flow is still approximately the same as the one that includes
both terms. In this case, both models will reach the end of the tube at the same time.
However, locally, the effect is apparent especially for the high-Per cases as shown in
figures 8(a) and 8(c). For low Per, the difference between the two models is minor (not
shown).

For small M, the original Taylor dispersion model is more diffusive because the
advection term that can locally behave as a source or sink is ignored. It is apparent from
these figures that, near X = 0, the removal of the concentration in the full Taylor dispersion
model is much faster, because in this region du/dx is positive. However, at the end of the
tube, both models have the same speed, because in this region the gradient is negative and
will slow down the front speed.
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Figure 9. Results of the numerical solution for high M and P̂er (fourth case in table 3): (a) time evolution
of the concentration and (b) time evolution of the velocity profile. Solid lines denote the result with Taylor
dispersion and dashed lines denote the result without Taylor dispersion as before.

For large M, two differences can arise from neglecting the advection term when
Per > 1. First, the speed to attain a self-similar solution increases by invoking each step of
approximation: fastest for the full TD, slower for original TD, and slowest for the model
that neglects both. Second, the profile in the moving solute front is now different for each
model.

Appendix D. Different scaling variables for osmotically driven flows

The focus here is showing how Per can have a greater effect on the flow for the large-M
regime while ensuring that inertial forces in (2.4) can be neglected. As discussed in § 4.1,
in the large-M case, the axial velocity scales as 1/M. This implies that the dimensional
velocity is small and the radial Péclet number scales as Per ∼ O(10)M−1. In this case, a
new velocity scale can be obtained where the axial velocity is O(1). This scale emerges
when considering the second case in appendix B (i.e. for large M), or by commencing from
(2.23) and using the following scales for the velocity, concentration and time: u = û0U,
c = c0C and t = t̂0τ . In this case, the non-dimensional forms of (2.23) and (2.22) are
the same as (4.2a) and (4.3) with the following differences: U = O(1), C = O(1), û0 =
u0/M, P̂er = Per/M, P̂el = Pel/M and t̂0 = t0M. For this type of flow, the largest order of
magnitude that P̂er can achieve is also O(10) since both εRe and Per were rescaled by M
and their ratio is still the same (i.e. μ(ρD)−1).

For the P̂er � 1 case, the outcomes are similar to the case where Per ∼ O(10) in § 5.2.2
(not shown). As in § 5.2.1, the dynamically interesting case is for higher P̂er. For this
reason, the set of initial and geometrical conditions chosen for illustration are:

k = 6 × 10−10 m (Pa s)−1, L = 5 m, a = 1.5 × 10−4 m and c0 = 200 mM.
It should be noted here that a linear van ’t Hoff relation between the osmotic pressure

and the concentration is used for simplicity even though the value for c0 is higher than
that used in § 5.2.1. Figures 9(a) and 9(b) reveal a different self-similar solution for the
concentration distribution for the Taylor dispersion model than the model that ignores
Taylor dispersion as shown in figure 9(a). Rescaling the problem by P̂er/24 and using a
linear relation between velocity and concentration, the non-dimensional form for this type
of flow can be expressed as

∂C
∂τ

= ∂

∂X

[[(
24
P̂er

− ∂2C
∂X2

)
C + 1

2

(
∂C
∂X

)2
]

∂C
∂X

]
, (D1)
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where the new time scale is defined by t̂0 = 24L(P̂erû0)
−1 and the molecular diffusion

term has been neglected. An interesting result of (D1) is that the leading-order term has a
self-similar solution. However, this analysis is beyond the scope here and is better left for
a future enquiry.
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