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On identifying the true sources of
aerodynamic sound

By M. E. GOLDSTEIN
National Aeronautics and Space Administration, Glenn Research Center, Cleveland,

OH 44135, USA

(Received 5 September 2004 and in revised form 8 November 2004)

A space–time filtering approach is used to divide an unbounded turbulent flow into
its radiating and non-radiating components. The result is used to investigate the
possibility of identifying the true sources of the sound generated by this flow.

1. Introduction
Lighthill’s (1952) acoustic analogy approach and its extensions (Phillips 1960; Lilley

1974), remain the principal tools for predicting the noise from high-speed air jets.
In the most general sense, they amount to rearranging the Navier–Stokes equations
into a form that separates out the linear terms and associates them with propagation
effects that can then be determined as part of the solution. The nonlinear terms are
treated as ‘known’ source functions to be determined by modelling and, in more
recent approaches, with some or all of the model parameters being determined from
a steady RANS calculation. (Alternative approaches that attempt to represent the
sound sources as linear instability waves include Crow’s line antenna model; Crow &
Champagne 1971.)

The major drawback with these approaches is that the unsteady effects, which
actually generate the sound, must be included as part of the model. This clearly puts
severe demands on the modelling aspects of the prediction, which usually amount
to assuming a functional form for the two-point time-delayed velocity correlation
spectra. The present paper describes an approach in which the acoustic sources can
be determined as part of the base flow computation and, therefore, do not have to be
modelled.

Goldstein (2003) shows that the Navier–Stokes equations can be recast into
the convective form of the linearized Navier–Stokes (LNS) equations but with
modified dependent variables, with the viscous stress perturbation replaced by a
certain generalized Reynolds stress and with the heat flux perturbation replaced by
a generalized stagnation enthalpy flux. The ‘base flow’ about which the equations are
linearized can be any solution to a very general class of inhomogeneous Navier–Stokes
equations with arbitrarily specified source strengths. The LNS equations are, of course,
still nonlinear but the nonlinearity is effectively contained in the generalized Reynolds
stresses and enthalpy flux which also contain contributions from the base flow sources.
The acoustic analogy methods and their extensions correspond to taking the base
flow to be a (steady) approximation to the mean flow field in the jet and treating the
generalized stresses and enthalpy flux as known source terms that can be estimated
or modelled as in the original Lighthill analysis. The current view is that these are
only apparent sound sources and that the acoustic analogy approach cannot be used
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338 M. E. Goldstein

to identify the ‘true sources of sound’. Fortunately, it is only the correlation of these
sources and not their instantaneous values, that need to be modelled, but this is still
a difficult task that requires a great deal of empiricism.

The so-called hybrid approaches were introduced in an attempt to minimize this
requirement. The base flow is taken to be the large-eddy simulation (LES) equations
in these approaches, i.e. the filtered Navier–Stokes equations with a purely spatial
filter whose width is of the order of or larger than the mesh size. But computer
storage limitations usually require that the latter be very coarse and the resulting
computations are not able to adequately account for the, auditorially important, high-
frequency component of the spectrum. The missing component is then calculated from
the residual equations whose source terms still have to be modelled (Bodony & Lele
2002). Unfortunately, it is now necessary to model their instantaneous values and not
their correlations, which is an extremely difficult task.

The present paper shows that the base flow filter can be chosen to pass almost all of
the non-radiating components of the motion and none of the radiating components.
The residual flow, which primarily consists of the radiating components of the motion,
should therefore be much smaller than the base flow (since it is known that only a
small fraction of the flow energy is radiated as sound) and the largest constituent of
the residual equation source terms should then come from the base flow contribution,
which can be determined as part of the base flow computation. The residual flow,
which can now be identified with the acoustic part of the motion, is then governed by
linear equations and almost entirely generated by known sources. The hope is that the
latter can be identified with the highly elusive ‘true sources of sound’ (Fedorchenko
2001), since they generate only radiating components of the motion.

Most of the jet noise reduction achieved over the past fifty years can be attributed
to reductions in the jet exhaust velocity. Noise suppression devices produce only
relatively small reductions and require considerable (primarily empirical) development
to achieve even these modest results. This is usually attributed to the almost complete
lack of theoretical guidance. The hope is that computations of the non-radiating base
flows developed herein will provide the needed insights.

2. The LNS equations
The Navier–Stokes equations can be written as

∂

∂t
Λν +

∂

∂xj

Γνj , (2.1)

where the summation convention is being used, but with the Greek indices ranging
from 1 to 5, while the Latin indices i, j are restricted to the range 1, 2, 3, and {Λν} =
{ρvi, ρho − p, ρ}, {Γνj } = {ρvivj + δijp − σij , ρvjho + qj − viσij , ρvj },

ho ≡ h + 1
2
v2, (2.2)

denotes the stagnation enthalpy, h denotes the enthalpy, t denotes the time,
x= {x1, x2, x3} are Cartesian coordinates, p denotes the pressure, ρ denotes the
density, v= {v1, v2, v3} is the fluid velocity, σij is the viscous stress tensor, qi is the
heat flux vector and the dependent variables are assumed to satisfy the ideal gas law:

p = ρRT, (2.3)

with R = cp − cv being the gas constant, cp and cv are the specific heats at constant
pressure and volume, respectively, and T the absolute temperature. Goldstein (2003)
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showed that can be recast into the form of the linearized Navier–Stokes equations by
dividing the dependent variables

ρ = ρ + ρ ′, p = p + p′, vi = ṽi + v′
i , (2.4)

as well as the viscous stress σij and heat flux qi , into their ‘base flow’ components
ρ, p, h̃, ṽi , σ ij , qi and into their ‘residual’ components ρ ′, p′, h′, σ ′

ij , q ′
i and

requiring that the former satisfy the inhomogeneous Navier–Stokes equations (where

the source terms are incorporated into the dependent-variable vectors Λ̃ν and Γ̃νj ,
rather then being placed on the right-hand side as is usually done)

∂

∂t
Λ̃ν +

∂

∂xj

Γ̃νj , (2.5)

along with an ideal-gas-law equation of state,

h̃ = cpT̃ =
cp

R

p

ρ
(2.6)

where {Λ̃ν} = {ρ ṽi, ρh̃o − p − H̃o, ρ}, {Γ̃νj } = {ρṽi ṽj + δijp − σ̃ij − T̃ij , ρṽj h̃o + qj −
ṽiσ ij − H̃j − ṽj H̃o, ρṽj },

h̃o = h̃ + 1
2
ṽ2 (2.7)

is the base-flow stagnation enthalpy, and the ‘sources strengths’ T̃ ij , H̃ o and H̃ j which
are assumed to be localized, can otherwise be specified arbitrarily. The reason for
using both overbars and tildes to define the base-flow variables will become clear
when equations (3.1) and (3.2)are introduced below.

The residual variables are governed by the (convective form of the) LNS equations

Lµνuν = sµ, (2.8)

where

{uν} = {ρu′
i , p

′
o, ρ

′} (2.9)

with

ρ̄u′
i ≡ ρv′

i (2.10)

and

p′
o ≡ p′ + (γ − 1)

(
1
2
ρv′2 + H̃o

)
(2.11)

is a five-dimensional (non-linear) dependent-variable vector, Lµν is the five-
dimensional linearized Euler operator defined in the Appendix, the five-dimensional
source vector sµ is given by

sµ ≡ ∂

∂xj

e′
jµ + δµ4 (γ − 1) e′

ij

∂ṽi

∂xj

, (2.12)

γ ≡ cp/cv is the specific heat ratio, the source strengths e′
iν are given by

e′
iν ≡ −ρv′

iv
′
ν − T̃iν + δiν(γ − 1)

(
1
2
ρv′2 + H̃o

)
+ σ ′

iν, (2.13)

for ν =1, 2, . . 4 and zero otherwise and we have put

v′
4 ≡ (γ − 1)

(
h′ + 1

2
v′2) = c2′ +

(γ − 1)

2
v′2, (2.14)

T̃i4 = (γ − 1)(H̃i − T̃ij ṽj ), (2.15)
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and

σ ′
j4 = − (γ − 1)

(
q ′

j − σjlv
′
l

)
. (2.16)

Equation (2.8) is an exact consequence of the original Navier Stokes equations,
but has been rearranged so that its left-hand side is the same as the equation that
would have been obtained by linearizing the convective form of the Euler equations
about a ‘fictitious’ base flow. In other words, it is the linearized inhomogeneous Euler
(LIE) equation but with different (nonlinear) dependent variables, uν , which causes
no particular difficulty because, for the present purpose, they can be treated as five
linear equations in five unknowns that satisfy linear far-field boundary conditions,
since the dependent variables all become linear there. The right-hand side corresponds
to the sources that would be obtained by imposing the external stress perturbation
e′
ij and external energy flux perturbation e′

i4 on the ‘fictitious’ flow. In other words,
the fundamental equation (2.8) is just the Navier–Stokes equations linearized about a
fictitious base flow (or the LNS equations), but with modified dependent variables and
with the viscous stress perturbation replaced by the generalized Reynolds stress and the
heat flux perturbation replaced by the generalized stagnation enthalpy flux.

In this paper we assume, as is usually done in jet acoustics, that solid boundaries
have little or no effect on the sound generation process. Then equation (2.8) can be
solved in terms of the free-space vector Green’s function (Morse & Feshbach 1953,
pp. 878–886) gνσ (x, t |x′, t ′), which satisfies

Lµν gνσ = δµσ δ(x − x′)δ(t − t ′) (2.17)

to obtain

uν(x, t) =

∫ ∞

−∞

∫
V

gνµ(x, t |x′, t ′)sµ(x′, t ′) dx′ dt ′, (2.18)

where the symbol V denotes integration over all space. This then becomes

uν(x, t) = −
∫ ∞

−∞

∫
V

γ̃νjµ(x, t |x′, t ′)e′
µj (x

′, t ′) dx dt ′, (2.19)

where

γ̃νjµ(x, t |x ′, t ′) ≡ ∂

∂x ′
j

gνµ − (γ − 1)
∂ṽµ

∂x ′
j

gν4 (2.20)

when the derivatives acting on the source strengths e′
jµ in (2.12) are transferred to

the Green’s function.

3. The acoustic analogy approaches
As noted in the Introduction, the base flow is taken to be the actual mean flow field

in the jet, or some approximation to that flow, in the acoustic analogy approaches.
The overbar on the dependent base-flow variables would then denote the time average

• ≡ lim
T →∞

∫ T

−T

• (x, t) dt, (3.1)

where the dot is a place holder for ρ, vi, p, and h, and

•̃ ≡ (ρ•)/ρ̄ (3.2)

denotes a Favre-averaged quantity (Lele 1994) for all variables except h̃o, which is
defined by (2.7). Notice that equation (2.6) is completely consistent with the ideal gas
law p = ρRT when the tilde is defined in this fashion.
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The time derivatives now drop out of the base-flow equations (2.5), which do not,
of course, form a closed system. The source strengths are given by

T̃ij = −ρ̄(ṽivj − ṽi ṽj ), (3.3)

H̃ o = 1
2
T̃ii , (3.4)

and

H̃ j = −ρ̄(h̃ovj − h̃oṽj ) − H̃ oṽj . (3.5)

The base flow equations are now the ordinary Reynolds-averaged Navier–Stokes
(RANS) equations, which are usually closed by assuming some sort of model relating
the source terms to the mean flow variables ṽi , ρ, p and their derivatives, such as the
Boussinesq model (Speziale 1991; Speziale & So 1998)

T̃ij = µT

(
∂ṽi

∂xj

+
∂ṽj

∂xi

− 2

3

∂ṽk

∂xk

)
+

2

3
H̃ oδij (3.6)

for the Reynolds stresses, with additional equations to determine the turbulent
viscosity µT and a similar model for H̃j . The fundamental LNS equation (2.8)
remains exact even when these approximations are introduced since, as already noted,
the base-flow source strengths can be arbitrarily specified. But (3.1) would no longer
hold and the base flow would be somewhat different from the actual mean flow in
the jet.

However, when (3.1) does apply, the base-flow sources (3.3) to (3.5) can be written
more compactly as

T̃ij = − ρ̄ṽ′
iv

′
j , (3.7)

T̃i4 = H̃ i − T̃ij ṽj = − ρ̄h̃′
ov

′
i , (3.8)

with H̃o still given by (3.4). Then when the flow is inviscid, the LNS equation source
strengths e′

ij and e′
i4 are proportional to the differences between the fluctuating and

Favre-averaged Reynolds stresses and enthalpy fluxes, which means that they are
true fluctuating quantities with zero time averages which ensures that the residual
variables will have this property as well.

The corresponding LNS equation sources must still be modelled. This is most
easily accomplished by using the fourth (i.e. the pressure-like) component of the
formal Greens function solution (2.19) to express the far-field pressure in terms of the
near- field source distribution which, in view of (2.9), (2.13), (2.20), (3.4), (3.7), and
(3.8), can be written as

p′
o =

∫ ∞

−∞

∫
V

γjµ(x, t |x′, t ′)τµj (x
′, t ′) dx′ dt ′ (3.9)

where

γjµ ≡ − ∂

∂x ′
j

g4µ +
γ − 1

2
δjµ

∂g4l

∂x ′
l

+ (γ − 1)

(
∂ṽµ

∂x ′
j

− γ − 1

2
δjµ

∂ṽl

∂x ′
l

)
g44 (3.10)

and

τµj ≡ −(ρv′
j v

′
µ − ρ̄ṽ′

j v
′
µ) + σ ′

jµ (3.11)

when the bulk viscosity is zero and the base flow is taken to be the actual mean
flow in the jet. So in the inviscid limit, which is of primary interest here, τµj is just a
generalized four-dimensional fluctuating Reynolds stress and equation (3.9) therefore
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provides a direct linear relation between this quantity and the far-field pressure
fluctuation (recall that p′

o reduces to the latter in the far field).
This result can be time averaged to obtain the expression

p2(x, to) =

∫ ∞

−∞

∫
V

∫
V

γ̄jσ lµ(x|y, η, to + τ )τ̄σjµl(y; η, τ ) dy dη dτ (3.12)

for the pressure autocovariance (Pope 2000)

p2(x, to) ≡ 1

2T

∫ T

−T

p′
o(x, t)p′

o(x, t + to) dt, (3.13)

where T denotes some large but finite time interval,

γ̄jσµl ≡
∫ ∞

−∞
γjσ (x|y, t1 + to + τ )γµl(x|y + η, t1) dt1 (3.14)

accounts for the acoustic propagation and mean flow interaction effects and

τ̄σ iµj (y; η, τ ) ≡ 1

2T

∫ T

−T

τσi(y, t ′)τµj (y + η, t ′ + τ ) dt ′ (3.15)

is the density-weighted, fourth-order, two-point, time-delayed fluctuating velocity/
stagnation enthalpy correlation.

This result can be used to relate the mean-square pressure in the far field to the
source correlation function, which means that it is only necessary to model this latter
quantity and not the instantaneous sources themselves. Unfortunately, this is still a
difficult task that requires a great deal of empiricism.

4. The hybrid methods
The so-called hybrid formulations (Bodony & Lele 2002) were introduced in an

attempt to minimize this requirement. They correspond to taking the base flow to be
a large-eddy simulation (LES), which may include the large-scale coherent structures
in the jet. The base-flow equations then correspond to the filtered Navier–Stokes
equations (Goldstein 2000, 2002), which amounts to interpreting the overbars in
equation (2.5) as the filtered variables

f ≡
∫ ∞

−∞

∫
V

g(x − ξ , t − τ )f (ξ , τ ) dξ dτ, (4.1)

where f can be any function and g denotes a generalized filter in both space and
time (Aldama 1990). We have, for reasons that will become apparent, written (4.1)
as a spatial-temporal filter, even though pure spatial filters are used in virtually all
large-eddy simulations. The tilde is defined by equations (3.2) and (4.1), the source
terms T̃ij , H̃o and H̃j are still given by (3.3) to (3.5), and the residual variables, v′

i , p′

and h′, which in the present context might best be referred to as the ‘unresolved
components’ of the flow, are still determined by (2.8) to (2.16).

The base-flow sources must again be modelled in order to close the system and
the most commonly used model is still of the Boussinesq type (3.6) (Rogallo &
Moin 1984). Unfortunately, as noted in the Introduction, the calculations must be
performed on relatively coarse grids and are, therefore, not able to adequately resolve
the high-frequency component of the sound field. This missing component is then
calculated from the residual, or LNS, equations and the complete sound field can, at
least in principle, be determined by adding the latter to the base-flow sound field.
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The governing equations are, in principle, exact, but the LNS equation sources still
have to be modelled and, since the base flow is unsteady, it is no longer possible
to use the procedure described in the acoustic analogy context to relate the far-field
pressure correlation to the correlation of the source function. It is therefore necessary
to model the instantaneous source strengths rather than their correlations, which
is much easier said than done. It may be possible to use some sort of stochastic
source model such as the ones used by Bailly, Lafon & Candel (1995) and Bodony
& Lele (2002). But this requires modelling the time history of the sources which is
much more difficult than modelling their statistics as in the RANS approach. This
difficulty would, however, be overcome if the residual equation source strengths could
be determined from the base flow computation, i.e. if e′

iν were dominated by the base
flow contribution, which would be the case if the residual component of the motion
could be treated as a small perturbation about the base flow component.

5. Non-radiating unsteady base flows
Since the radiated sound is typically four to five orders of magnitude smaller than

the non-radiating component of the motion in virtually all high-speed air jets, as well
as in most other high-speed flows† this effective linearization would be achieved if
the base flow in the decomposition (2.4) were taken to be the entire (or nearly the
entire) non-radiating component of the motion. To construct such a base flow it is
first necessary to demonstrate that the filter g in equation (4.1) can be chosen to
make the base flow non-radiating (Goldstein 2002). This can be done by applying
Lighthill’s (1952) analysis to the base flow equation (2.5) with source term (3.3) to
obtain

∂2ρ̄

∂t2
− c2

o

∂2ρ̄

∂xj∂xj

=
∂2

∂xi∂xj

θ̃ ij (5.1)

where

θij ≡ ρvivj + δij

(
p − c2

oρ
)

(5.2)

denotes the Lighthill stress tensor,

θ̃ ij ≡ ρ̄ṽivj + δij

(
p̄ − c2

oρ̄
)

(5.3)

denotes the corresponding filtered tensor, and the viscous terms, which are believed
to play an insignificant role in the sound generation process, have been omitted.
This equation can be solved to obtain (recall that we are assuming the flow to be
unbounded)

ρ̄ =
1

4πc2
o

∂2

∂xi∂xj

∫
V

θ̃ ij (y, t − |x − y|/co)

|x − y| dy (5.4)

which behaves like

c2
oρ̄ → xixj

4πc2
o| x|3

∂2

∂t2

∫
V

θ̃ ij

(
y, t − |x|

co

+
x · y
|x|co

)
dy as |x| → ∞. (5.5)

† In fact, it is usually many orders of magnitude smaller than the errors incurred in computing
the non-radiating part of the flow. A number of investigators have even suggested that the ‘acoustic
component’ of the numerical solution to the full Navier–Stokes equations would be hopelessly
corrupted by these errors or even by the computational noise itself (Crighton 1993).
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k2

k1

k3

ω/co

Figure 1. Surface of sound-producing wavenumbers.

Taking Fourier transforms yields

P̄ → − 2π2ω2xixje
iω|x|/co

c2
o|x|3 Θ̃ij (ωx/|x|co, ω) as |x| −→ ∞, (5.6)

where k = {k1, k2, k3}, P denotes the Fourier transform with respect to time of c2
oρ

and the remaining capital letters are used to denote the four-dimensional Fourier
transforms

F (k, ω) =
1

(2π)4

∫ ∞

−∞

∫
V

e−i(k ·x−ωt)f (x, t) dx dt (5.7)

of the corresponding lower-case symbols. Equation (5.6) shows that only the wave-
number components lying on the sphere k2 = (ω/co)

2 can radiate to the far field and
that all wavenumbers lying on this sphere will radiate at some angle (see figure 1).
But the convolution theorem (Morse & Feshbach 1953) shows that

Θ̃ij (k, ω) = (2π)4G(k, ω)Θijk, ω), (5.8)

which means that the base flow will be non-radiating if the filter is chosen so that its
Fourier transform G vanishes when k = ± ω/co. An appropriate choice would be

G(k, ω) =
1

(2π)4(1 + 10π)

{
1 + exp (2ω/∆co)

2 − exp

[
−

(
k − ω

co

)2/
∆2

]

− exp

[
−

(
k +

ω

co

)2/
∆2

]}
, (5.9)

where ∆ is a suitably small constant. Other choices are, of course, possible. The filter
can now be constructed by taking the inverse transform of (5.9). Since the source and
nonlinear terms are expected to vanish at large distances from the flow, the base-flow
equations should reduce to the homogeneous linear acoustic equations there, which
ensures that the remaining flow variables will also be non-radiating.
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It is also possible to construct Fourier transform filters G that vanish on only a
portion of the radiating sphere k2 = (ω/co)

2 corresponding to a range of streamwise
wavenumbers, say,

cos θ1 < (cok1/ω) < cos θ2. (5.10)

This would then restrict the acoustic radiation to the range of polar angles
θ1 < θ < θ2 which could be chosen to, say, minimize the environmental impact of the
radiated noise. In higher-Mach-number supersonic flows, it may be desirable to choose
the range of angles so that propagating disturbances that remain within the jet
boundaries are retained as part of the base flow.

It is, of course, still necessary to model the filtered stresses (3.3) to (3.5), which now
account for the effect of the radiating component of the flow on the non-radiating
component. The Boussinesq model is almost certainly inappropriate here, but the
base-flow equations can be closed by replacing vν by ṽν (i.e. neglecting the extremely

small contribution from the radiating part v′
ν) in the T̃ij and the H̃j components of

the source function so that

T̃ ij ≈ −ρ̄(˜̃viṽj − ṽi ṽj ) (5.11)

and

H̃ j ≈ −ρ̄( ˜̃hoṽj − h̃oṽj ) − H̃ oṽj . (5.12)

The result is that the original differential equation is replaced by an integro-
differential equation, which could be difficult to solve numerically. It may be easier to
compute the base flow by using a Fourier–Spectral method with the radiating spectral
base functions eliminated from the computation.

Notice that the first terms in the base-flow source components (3.3) to (3.5), or
(5.11) and (5.12), are non-radiating disturbances but the second terms, which involve
quadratic interactions between the non-radiating components, can generate radiating
wavenumbers. The expectation is that the difference between these two terms will
be much smaller than either of them individually. The complete residual equation
sources e′

iν involve both the base flow sources and quadratic residual components. The
latter, which can either represent true sound sources or nonlinear propagation effects,
are likely to be small at subsonic and moderate supersonic speeds, since, as noted
above, only a very small fraction of the flow energy can radiate, which means that
the base-flow component sources produce most of the sound. The relative importance
of these terms, of course, should shift when the Mach number becomes very large,
causing the radiation field to exhibit a bimodal structure.

Lighthill (1952) argued that the strength of his quadrupole source could be obtained
to a good approximation by calculating its value for an equivalent flow devoid of
sound. The present result provides an analytical basis for that idea. It is, of course,
possible to move the residual stresses to the left side of the equations and calculate the
sound from the full nonlinear equations, but this would make the present approach
more complicated and computationally more expensive than solving the original
Navier–Stokes equations. In fact, the main justification for using the present approach
would be to ensure that the radiating component of the motion is uncontaminated by
errors incurred in computing the non-radiating component, which is best accomplished
by requiring that the residual variables be much smaller than the base-flow variables,
which would, in turn, imply that the LNS equations can, in fact, be linearized. (Recall
that the term linearized Navier–Stokes equation is somewhat of a misnomer in that
they actually contain nonlinear terms that are embedded in the source functions.)
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6. Conclusions
A general set of linearized inhomogeneous Euler (LIE) equations is used to develop

a non-acoustic analogy approach to aerodynamic noise prediction. The ‘base flow’
about which the equations are linearized can be any solution to a very general class of
inhomogeneous Navier–Stokes equations with arbitrarily specified source strengths.
The acoustic analogy methods and their extensions correspond to taking the base
flow to be a (steady) approximation to the mean flow field in the jet and treating the
source terms as known quantities that can be estimated or modelled as in the original
Lighthill analysis. The more recently developed hybrid approaches amount to taking
the base flow to be the LES equations, i.e. the filtered Navier–Stokes equations with
a purely spatial filter (but see Bodony & Lele 2003).

Since the Fourier transform filter width, in (5.9), can be made arbitrarily small, the
present result shows that the base-flow can be chosen so that it is nearly the entire
non-radiating component of the motion. The residual component of the LNS equation
source term should therefore be small compared to the base-flow component, which
can be calculated as part of the base-flow computation. The residual flow, which
consists almost entirely of the radiating components of the motion, therefore satisfies
linear equations and is largely generated by known sources.

This decomposition has certain computational advantages in that the nonlinear
but non-radiating (and therefore relatively localized) base flow can be calculated by
using conventional well-established computational fluid dynamic (CFD) techniques.
The sound field can then be determined from the linear residual equations (with
radiation boundary conditions) by using methods designed to accurately capture the
propagating wave motion. Even more importantly, however, it also has, as noted
in the Introduction, certain theoretical significance in that it provides a rigorous
mechanism for identifying the highly elusive ‘true sources of sound’.

Ever since Kovasnay (1953) showed that a small-amplitude inviscid motion on
a completely uniform flow could be decomposed into its acoustic and vortical
components in the sense that the acoustic component carries all the pressure
fluctuations but no vorticity, there have been numerous unsuccessful attempts to
find similar decompositions for the small-amplitude motion on other base flows (e.g.
Fedorchenko 2001). Part of the difficulty is that the term ‘acoustic component’ is
usually not defined or, at best, only vaguely defined. Here we consider only relatively
low-Mach-number unbounded flows and identify the ‘acoustic component’ with the
radiating part of the motion. Unfortunately, the prevailing view seems to be that
the acoustic field is just an unavoidable by-product of any compressible motion and
that it is impossible to decompose an arbitrary flow into ‘acoustic’ and ‘non-acoustic’
components of this type. The present result is consistent with this idea in the sense
that the filter width cannot be set to zero even though the radiating wavenumbers
occupy zero volume in wavenumber space. The radiating part of the motion will
therefore always contain some non-radiating component – it can, however, be made
arbitrarily small. The implication is that an arbitrary motion can be decomposed into
a non-radiating (i.e. non-acoustic) component and a nearly acoustic component –
in the sense that it is almost completely, but not entirely, radiating.

Appendix
The five-dimensional linear Euler operator can be written as

Lµv ≡ δµvDo + δv4∂µ + ∂v(c̃2δµ4 + δµ5) + Kµv, (A 1)
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with

Kµv ≡ ∂vṽµ − 1

ρ̄

∂τ̃µj

∂xj

δv5 + (γ − 1)

(
∂ṽj

∂xj

δv4 − 1

ρ̄

∂τ̃vj

∂xj

)
δµ4, (A 2)

τ̃ij ≡ δij p̄ − T̃ij − σ̄ij ,
(A 3)

∂µ ≡ ∂

∂xi

, i = µ =1, 2, 3,

∂µ, τ̃µ and τ̃µj all equal to zero when µ > 3 and Do being the linear operator

Do ≡ ∂

∂t
+

∂

∂xj

ṽj . (A 4)

It is easy to see that the fifth component of the base-flow equation (2.5) can be
used to put (2.8) into convective form.
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