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BIAS IN SELECT MORTALITY INVESTIGATIONS

BY R. G. CHADBURN, Ph.D., F.I.A.

ABSTRACT

The bias inherent in select mortality investigations where data are grouped by coincident or non-
coincident rate intervals is analysed and compared. The key to the bias is shown to be the particular
patterns of non-uniform 'exposure frequency' inherent in each method. It is shown that the bias using
non-coincident rate intervals is sensitive to a non-uniform distribution of new entrants by age, while
the use of coincident rate intervals is sensitive to making appropriate assumptions regarding the
distribution of policy anniversaries over life-time, p(s). Under both methods a significant proportion
of the bias is retained after graduation. It is shown that non-coincident rate intervals may be preferred
where p(s) is unknown, as in the CMI Bureau's investigations, while coincident rate intervals would
be preferred where p(s) is known and taken into account in deriving the age for the estimated rates.
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1. INTRODUCTION

1.1 Roberts (1986) has observed that bias in non-select mortality (or other)
investigations depends upon the underlying shape of the survival curve and of the
relative frequency of exposure over the rate interval. In particular, he observes
that in all cases bias is minimised when exposure over the rate interval is
uniform.

1.2 All mortality investigations, in practice, are generally subject to data
censoring: that is where some individuals are only observed for part of the year
of age (or duration) at a particular age (or duration) label, due to commencing or
ceasing observation during the rate interval involved. Individuals present at the
start or end of the investigation will contribute such partial exposures, as will
those who are observed as increments or decrements during the investigation
period. This will, therefore, cause unequal exposure frequencies of the kind
studied by Roberts. Such bias may well arise in select mortality investigations,
particularly in the first policy year, during which voluntary discontinuance rates
may be especially high. As all policyholders in their first policy year are observed
from exact duration 0 (apart from those existing at the start of the investigation
period), the relative exposure towards the start of the year of duration [0,1] may
be considerably higher than that towards the end of that policy year, causing bias.

1.3 In the present paper I am going to neglect the effect on bias caused by
censoring. The purpose of this paper is to identify and to analyse the effect of the
unequal exposure frequencies inherent in select mortality investigations, even
when the effect of censoring is excluded. The bias caused by censoring in select
mortality investigations is, therefore, a subject for further research.
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158 Bias in Select Mortality Investigations

1.4 It is usual, in select mortality investigations, to assume either that the
force of mortality is constant over the rate interval(s) involved (see Forfar,
McCutcheon & Wilkie, 1988 (referred to as FMW)) or, less restrictively, to
assume that exposure is uniform over the rate interval(s) involved (see Scott,
1982, 1991). This latter assumption can also be criticised, however, particularly
for select investigations. The main argument against its use is that it is unrealistic
to assume that a life, who exits from observation at exact duration n, will be
replaced by another life entering observation elsewhere in the investigation at the
exact same duration n, even in the limit, as more lives will (in general) enter
observation at duration 0 than at any later duration. Nevertheless, it probably
remains preferable to the assumption of a constant force of mortality for select
rate estimation because:
(1) it is accepted that mortality is a smoothly progressing continuous function of

age and duration; and
(2) mortality is known to vary relatively rapidly and non-linearly at early

durations in particular.

1.5 The assumption of replacement would intuitively suggest that all parts of
the rate interval(s) are equally represented in the exposed to risk, and that, as a
consequence, no bias could arise; that this is not true for select investigations is
clearly demonstrated in this paper.

1.6 This paper, therefore, analyses the bias inherent in select mortality
investigations where the replacement assumption is made.

2. EXPOSURE FREQUENCY

2.1 Method 1: Current Age Method with Non-Coincident Rate Intervals
2.1.1 Definition

Consider a select mortality investigation where data are grouped by current age
(and by current duration), which implies grouping by 'non-coincident' rate
intervals (see Chadburn, Cooper & Haberman, 1995 (referred to as CCH)). The
simplest example would be where data are grouped by age last birthday y, and by
curtate duration t, where y and t are integers.

We can obtain a central exposed to risk (or 'waiting time') for the joint label
y,t, by summing the individual periods of observation for which individuals are
both within the rate interval y (the year of age from y to y+1) and the rate interval
t (the year of duration from t to t+l) during the investigation period. It is easy to
see that these individual contributions will vary between almost zero and almost
unity, depending upon where exactly the _yth birthday occurs relative to the fth
policy adversary. However, following CCH, if it is assumed that the yth birthday
is equally likely to fall on any particular day within the period of duration t-\ to
t+l for any life labelled y and t, then, on average, the rate intervals can be
considered to be coincident; that is, the central exposed to risk can be assumed
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to represent the sum of individual contributions to exposure over a year of age
and duration, at the beginning of which lives were aged exactly y and had exact
duration t.

If we now make the following replacement assumption (after Scott, 1982): all
exits during the investigation with the label y,t are immediately replaced by lives
who join the investigation at exactly the same age and duration as the lives who
left; then this, and the assumption that the rate intervals are coincident, would
imply that all parts of the rate intervals y and / are equally represented in the
exposed to risk. Hence, following Scott (1991), we can say that the random
number of deaths labelled y,t in the investigation (D(y,t,l), say) is Poisson
distributed with parameter:

E(y,t,l)jn(y + r,

where:

jj.{y + x,t + r)= the force of mortality appropriate to a life of exact age y+x
and exact duration t+r

(= l\y+x-i-r\¥t+r m conventional notation)
and

E(y,t,l) = the central exposed to risk for method 1, as described above.

Hence, assuming the rate intervals are coincident, the above Poisson parameter
can be written:

l

2.1.2 The effect of non-coincident rate intervals
We will now relax the assumption that the rate intervals are coincident. That

not all parts of the rate intervals y and / are equally represented in the exposed
to risk will be clear by examining the exposure time contributed to each rate
interval by individual lives. This is best illustrated by the use of a Lexis diagram,
such as described in Hill, Laplanche & Rezvani (1985), and used by Renshaw
(1988). In Figure 1, policy duration is shown on the horizontal axis and age on
the vertical axis. An individual commences exposure at exact duration 0 at a
particular exact age, and that individual's age and duration development through
time is tracked by following the appropriate diagonal from south-west to north-
east across the diagram.

For example, the life shown in Figure 1 enters exposure at exact duration 0 and
exact age y-V4. This life is therefore labelled y-1,0 (i.e. y-l last birthday and
curtate duration 0) until he or she reaches his or her yth birthday. By tracking
along the diagonal it can be seen that the life is exposed:
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y+2
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Figure 1. Lexis diagram showing the progress of a life effecting a policy at exact
age y-J/4, using method 1

— for a quarter of a year as label y-1,0;
— for three-quarters of a year as label y,0; and
— for a quarter of a year as label y,l;

and so on. In general, it can be seen that lives contribute to exposure with the
label y,t if they pass through any part of the square (t,y), (t,y+l), (t+1, y+1),
(t+1, y), and this is shown in Figure 2.

Lives with the label y,t can be grouped into two types, depending on whether
they enter the y,t square through its base (for example, life 1 in Figure 2), in
which case they are referred to as type A, or through its side (life 2 in Figure 2),
in which case they are referred to as type B. It will be apparent that the two types
have the following features.

For type A, labelled y,t:
(1) all lives enter label y,t on passing the yth birthday;
(2) all lives leave label y,t on passing the M-lth policy anniversary;
(3) all lives are exposed at exact age y, none at age y+1, with a decreasing

gradient of exposure at intermediate ages; and
(4) no life is exposed at exact duration t, while all are exposed at duration t+1,

with an increasing gradient of exposure at intermediate durations.
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Figure 2. Lexis diagram showing the exposure square for label y, t using method 1

For type B, labelled y,t:
(1) all lives enter label y,t on passing the fth policy anniversary;
(2) all lives leave label y,t on passing the y+lth birthday;
(3) no life is exposed at exact age y, while all are exposed at age y+l, with an

increasing gradient of exposure at intermediate ages; and
(4) all lives are exposed at exact duration t, none at duration f+1, with a

decreasing gradient of exposure at intermediate durations.

2.1.3 Patterns of exposure frequency
Let us define:

fiy+x, A) = proportion of type A lives exposed to risk at exact age y+x
(0<x< 1);

g(t+r, A) = proportion of type A lives exposed to risk at exact duration t+r
(0 < r < 1)

= Xy+1-r, A);
f(y+x, B) = proportion of type B lives exposed to risk at exact age y+x

(0 < x < 1); and
g(t+r, B) - proportion of type B lives exposed to risk at exact duration t+r

(0 < r < 1)
= fly+l-r,B).

These functions can be described as 'exposure frequency' functions. Typical
patterns of exposure frequency for a very small investigation, involving 10 lives
of each type, are illustrated in Figure 3.

The pattern of exposure frequency in any investigation depends on the location
of the yth birthday in relation to the rth policy anniversary for each life. For the
ith life labelled y,t in the investigation, we could therefore define:
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Figure 3a. Age, type A

1 - .—

0.9

0.8

0.7

0.6

g(t*r> 0.5

0.4 •

0.3

0.2

0.1 r-

Figure 3b. Duration, type A

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Figure 3c. Age, type B Figure 3d. Duration, type B

Figure 3. Simulated actual exposure frequencies, N = 10, p(s)=l, method 1
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5, = time (in years) between any birthday and the following policy anniversary

which is a random variable with probability density p(s), say. The exposure
frequency functions are, therefore, random proportions, which can be shown to
have the following expected values (see Chadburn, 1993):

E{f(y+xA)}= \p,)
{ (2-1)

E{g(t+r,A)}=jp(s).ds

E{f(y+x,B)}=jp(s).ds
o ^ ' '

E{g(t+r,B)} =

2.1.4 Assumptions for p(s)
In practice the form of p(s) might be assessed by reference to the data. In this

paper two alternative models for p(s) will be assumed, in order to illustrate the
possible effect that varying p(s) might have on bias. These will be:
(1) p(s) = 1; and
(2) p(s) = 2s.

Model (1) is clearly the assumption that policy anniversaries are uniformly
distributed over the year of age. In model (2) a policy anniversary has zero
probability of occurring on a birthday, and has a linearly increasing probability of
occurring through the year of age. The expected (or average) age at which the
policy anniversary occurs is:

l

E{y+Si} = y + js.p(s).ds
o

= y+V2 forp(s)=l

= y + 2/3 for p(s) = 2s.
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p(s) = 2s is then not a particularly extreme model to assume for the distribution
of policy anniversaries in relation to birthdays.

The resulting expected exposure frequencies for each function and type are
given in Table 1 and shown in Figures 4 and 5.

Table 1. Expected exposure frequencies for method 1

Exposure frequency E x P e c t e d e x P o s u r e f r e 1 u e n c i e s

function p(s) = 1 p(s) = 2s

fly+xA) 1 - x I -x2

fty+x,B) x x2

g(t+rA) r 1 - (1-r)2

g(t+r,B) 1 - r (1-r)2

Chadburn (1991) demonstrated that simulated random exposures to risk of as
few as 100 lives produce exposure frequency patterns which are barely
distinguishable from these expected patterns. In the rest of this paper the exposure
frequency will therefore be taken as its appropriate expected value.

2.2 Method 2: the Entry Age Method, or Current Age Method with Coincident
Rate Intervals

2.2.1 Consider a select mortality investigation where:

D(y,t,2) = number of deaths during the investigation aged y-1 last birthday at entry
and curtate duration t at death.

2.2.2 This definition, along with the corresponding definition for the exposed
to risk E(y,t,2), implies a policy year rate interval running from exact duration t,
where lives are aged y last birthday, i.e:

y last
birthday

Duration -»
Age ->

t+1
y+\ last
birthday

2.2.3 If we now assume that the j>th birthday is equally likely to be located
anywhere between exact durations t-\ and t, then E(y,t,2) can be assumed to
represent the sum of individual contributions to exposure over a year of age, at
the beginning of which lives were aged exactly y+V2 and had exact duration t.
(Note: the assumption of a uniform distribution of birthdays over the policy year
is not always made, as described in H3.3.3.)

2.2.4 On this basis, and assuming replacement (see Section 2.1.1, H3), we
would conclude that the random number of deaths D(y,t,2) is Poisson distributed
with parameter:

I

r, t + r)dr.
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Figure 4a. Age, type A Figure 4b. Age, type B

Figure 4c. Duration, type A Figure 4d. Duration, type B

Figure 4. Expected exposure frequencies assuming p(s) = 1, method 1
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Figure 5a. Age, type A
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Figure 5. Expected exposure frequencies assuming p(s) = 2s, method 1
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y+2 I -

Age

Durat ion

Figure 6. Lexis diagram showing the exposure rhombus for label y,t
using method 2

2.2.5 The reality of the situation is, however, shown by the Lexis diagram for
this method (Figure 6), which takes the form of a rhombus rather than a square
as under method 1.

2.2.6 It is clear from Figure 6 that all lives are exposed at all durations
between t and t+1, which is, of course, easily apparent from general reasoning;
i.e:

g(t+r) =1 for 0 < r < l .

2.2.7 Now consider f(y+x):
(1) no life is exposed at exact age y and at exact age y+2, while all lives are

exposed at exact age y+1; and
(2) there is an increasing gradient of exposure between ages y and y+1, and a

decreasing gradient of exposure between ages y+1 and y+2.
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Hence for (0 < x < 1):
X

E{f(y+x)}= jp(s)ds. (2.5)
o

For (1 < x < 2):
I

E{ fty+x) } = \p{s)ds. (2.6)
x-\

2.2.8 Using the same assumptions for p(s) as in Section 2.1.4, HI, the
expected exposure frequencies are given in Table 2 and shown in Figure 7.

Table 2. Expected exposure frequencies for method 2
Exposure frequency function = fij+x)

Range p(s) = 1 p(s) = 2s
0 < x < 1 x x2

1 < x < 2 2-x 1 - (x-\f

3. CALCULATING THE BIAS CAUSED BY UNEQUAL EXPOSURE FREQUENCIES

3.1 The Mortality Model
3.1.1 A model for mortality must be assumed in which the age and duration

components can be separately identified. Currie & Waters (1991) describe a
multiplicative model for select mortality, involving separate functions for age and
duration, plus an interaction term. This model was used successfully by them to
graduate CMI data over the whole range of age and duration.

3.1.2 For the present investigation, however, it is only necessary to model
mortality over short ranges of age and duration. It was considered that a simple
additive model would be adequate for this purpose, to be fitted to existing
standard tabular rates, although it would be interesting to observe the extent to
which a multiplicative model might produce different results. It is possible that
the differences would not be great.

3.1.3 Hence we define:

(3.1)

where H(y,t) is a constant (with respect to x and r), and/x(y + x,r)and n{y,t + r)
are continuous functions of age and duration respectively.

3.2 Calculating the Expected Deaths
3.2.1 Method 1

Assume that the investigation involves N(y,tyA) type A lives labelled y (last
birthday) and (curtate) duration f. Consider the number of these type A lives
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Figure 7a. p{s) = 1
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Figure 7b. p(s) = 2s

Figure 7. Expected exposure frequencies for method 2
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attaining age y between exact durations [t+r,t+r+dr], where dr is small (see
Figure 2). Given the distribution of policy anniversaries over lifetime as defined
by p(s), then the expected number of such lives is:

N(y,t,A).p(l-r).dr. (3.2)

Now the assumption of replacement implies that the number of lives at every
point along the diagonal from duration t+r and age y+l-r (i.e. between durations
[f+r,f+l] and ages [Xy+l-'"]) is equal to the amount in equation (3.2). Hence, in
the limit, as N(y,t,A) —> °°, the number of deaths arising from this 'line of
exposure' has a Poisson distribution with parameter:

X(y, t + r,A) = N(y,t,A).p(l- f).dr J \i{y + s,t + r + s)ds

(\-r

N(y,t,A).p(l-r).dr\ jn(y,t)ds
V o

l-r \-r

(3.3)

which is, therefore, the expected number of deaths from this exposure. (Note: I
will refer to parameters X.() as asymptotic Poisson parameters, reflecting the
requirement for N( ) —> °°.)
Summing equation (3.3) over all possible durations at entry into the y,t exposure
square, we obtain the total expected deaths from individuals of type A:

f\

0

1 r

0 0

which can be rearranged as:

X{y,t,A) = N(y,t,A)

i I I

J />(•*) ds + J H{y,t + r) J p{s) ds dr
\-r

1
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Using equations (2.1) and (2.2), and omitting the expected value notation for
exposure frequencies for brevity, we obtain:

X(y,t,A) = N(y,t,A)

» Oj f{y + r,A)dr+\ \L(y, t + r).g(t + r, A) dr
o o

1

+ j \i(y + r, t).f(y + r, A) dr
• (3-4)

Note that, as f[y+r,A) = g(t+l-r,A), then we can equally write:

for the first element of X(y,t,A).
Since:

it follows that equation (3.4) is the asymptotic Poisson parameter for the total
number of type A deaths.

Repeating the above with respect to type B deaths, we obtain the following for
the total expected number of deaths under method 1:

/ 1 1

, Oj fiy + r, A) dr +j \i(y, t + r).g(t + r,A)dr

+N(y,t,B)

', i)j f(y + r,B)dr +] \i(y, t + r).g{t + r, B) dr
o o

(3-5)
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which is the asymptotic Poisson parameter for the total number of deaths under
method 1, where N(y,t,B) is the total number of type B lives observed in the
investigation with the label y,t.

3.2.2 Method 2
Assume that there are E(y,t,2) lives labelled y,t in the investigation. Consider

the number of these lives attaining exact duration t between ages \y+r,y+r+dr],
where dr is small (see Figure 6.) The expected number of such lives, given p(s),
is:

E(y,t,2).p(r).dr.

Assuming replacement as before, then the expected number of deaths from the
diagonal of exposure between ages [_y+r,>>+l+rj and durations [t,t+l] is:

I

X(y + r, t, 2) = E(y, t, 2).p(r).dr
o

which is the asymptotic Poisson parameter for the number of deaths arising from
this exposure. Hence the expected total number of deaths arising under method 2
will be:

I l iJ
0 0

r+1

= E(y, t, 2) \\i(y, t) + J \i(y, t + s) ds + J p(r) J \i(y + s, t) ds dr
V 0 Or

= E(y,t,2) 2

] + r,t)\p(s)dsdr
1 r-\

I 1
= E(y, t, 2) n(y, t) + J ii(y, t + s) ds + J [l(y + r, t). f(y + r)dr\ (3.6)
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using equations (2.5) and (2.6). The asymptotic Poisson parameter for the total
number of deaths labelled y,t under method 2 is given by equation (3.6).

3.3 Calculating Bias
3.3.1 Bias can now be calculated as the proportionate difference between the

actual expected deaths and the expected deaths according to the usual Poisson
models in each case (see Section 2.1.1, H3 and Section 2.2A.)

3.3.2 Hence, if B(y,t,l) and B(y,t,2) represent bias under methods 1 and 2
respectively, we have:

B(y,t,l) = - ^ 1 (3.7)

and

B(y,t,2) = ^(Ml) i. ( 3 . 8 )

E ( 2 ) j ( ^ )d

3.3.3 A refinement of method 2 is possible if the form of p(s) is taken into
account when determining the average entry age to which the estimated rates
relate. For example, in the case where p(s) = 2s, investigation of the data will
lead to the conclusion that the average age at entry is y-t+2/2 rather than y-t+V2

(see Section 2.1.4, 1F2.) If the investigator takes this factor into account when
interpreting the data, then in the bias formula the denominator becomes:

l i + r,t + r)dr. (3.9)
o

4.. SOME OBSERVATIONS

4.1 Method 1
(1) If N(y,tA) = N(y,t,B) and/and g are both equal to their expected values, then

B(y,t,l) = 0. Hence, if there are equal numbers of individuals of types A and
B in the exposed to risk, then the expected bias is zero (i.e. E{ B(y,t,\) }=0).

(2) There will be zero bias if the force of mortality is constant over both rate
years.

It is usually unrealistic to make the assumption of constant mortality,
particularly at the shorter durations, as discussed in 111.4. It is, therefore,
necessary to investigate the expected bias when
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4.2 Method 2
(1) There will be zero bias if the force of mortality is constant over the age

range y to y+2.
(2) There will be zero expected bias if the force of mortality varies linearly over

the age range y to y+2, and policy anniversaries are uniformly distributed
over the life year (i.e. p(s) = 1).

Situation 1 is likely to be unrealistic. Situation 2 is more plausible, however, and
this suggests that the method is likely to lead to less potential bias than method
1. The point mentioned in H3.3.3 should also be borne in mind.

4.3 An important difference between method 1 and method 2 is that in the
latter (the age at entry method) no assumption is necessary regarding the variation
in mortality by duration in order to avoid bias.

5. NUMERICAL EXAMPLES

5.1 Calculating Expected Bias
5.1.1 Mortality was assumed to be according to the A1967-70[5] table. The

model was fitted to the tabular values using simple quadratic functions (see
Chadburn, 1993, for details.)

5.1.2 The full range of results is shown in Chadburn (1993.) The main
findings are presented here.

5.2 Method 1
5.2.1 Table 3 shows how the expected bias per cent using method 1 varies

with the proportion of type A lives in the exposed to risk (denoted by N{A)/N),
for age 25 and duration 0, for p(s) - 1. Bias at duration 1 showed an identical
pattern to duration 0, but at a consistently lower level:

5(25,1,1) = (0.6).5(25,0,l) for all N(A)/N.

Table 3. fl = 100xE{ fi(25,0,l) } for p(s) = 1
N(A)/N 0 0.2 0.4 0.6 0.8 1.0

B -5.23 -3.14 -1.05 1.05 3.14 5.23

5.2.2 Clearly the greater the deviation of N(A)IN from 50%, the greater the
absolute values of the expected bias.

5.2.3 Similar patterns are observed at other ages, but at different overall
levels of bias. Examples are shown in Table 4 for N(A)/N = 0 (i.e. assuming only
type B lives are present in the exposed to risk).

5.2.4 Hence, according to this mortality assumption, at nearly all ages bias is
negative where N(y,tyA) < N(y,t,B) and positive where N(y,t^A) > N(y,t,B).
Expected absolute bias decreases between ages 25 and 40, increasing with
increasing age.
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Table 4. B=100x E{ B(y,t,l) } for N(A)/N = 0, p(s) = 1

Age
20
25
30
35
40
45
50
55
60
65
70
75
80

Duration 0
-4.46
-5.23
-4.24
-2.30
-1.47
-1.65
-2.32
-3.21
-4.25
-5.40
-6.66
-8.03
-9.50

Duration 1
-3.47
-3.11
-1.58
-0.14
0.28
0.09

-0.30
-0.73
-1.17
-1.59
-2.01
-2.40
-2.79

5.2.5 It was also found that the bias for p(s) = 2s bears a fixed relationship
to the bias for p(s) = 1 for a particular value of N(A)/N, regardless of age or
duration. Examples of this relationship are shown in Table 5.

Table 5. Comparison of bias between p(s) = 2s and p(s) = 1

N(A)/N

R

iV -

0

1.51

B(y,t,X

0.2

1.26

) [P(s) =

0.4

1.08

t]

0.6

0.94

0.8

0.84

1.0

0.76

5.2.6 The asymmetrical nature of the bias when p(s) = 2s should be noted.
5.2.7 Explanation for these observations lies in the patterns of exposure

frequencies (as shown in Figures 4 and 5) and the way in which mortality in the
A1967-70[5] mortality table varies by age and duration. Where mortality
increases with both age and duration, as it does over most of the age range above
about age 30, then the effect of exposure frequencies on bias will cancel out, to
an extent, for each type. Thus mortality for type A will be weighted towards the
start of the year of age (where mortality is lower), and towards the end of the
year of duration (where mortality is higher), and vice versa for type B. Where
mortality decreases with increasing age, and increases with duration, then there
will be a compounding effect on bias. This explains the relatively high levels of
bias observed below age 30 in Table 4, where mortality decreases with decreasing
age following the 'accident hump' at ages 17-20. The increasingly negative bias
among the type B lives with increasing age thereafter (Table 4), reflects the
increasing rate of change of mortality with duration at the older ages, compared
with the rate at which it varies by age. (Increasingly positive bias would be
observed for type A).
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5.2.8 At later durations the rate of increase in mortality with duration
becomes much slower. This explains the positive shift in bias observed for the
type B lives in Table 4 between durations 0 and 1, (with an equivalent negative
shift for type A). This positive shift will continue for still later durations, as the
influence of the change in mortality with age becomes dominant over duration.

5.2.9 It should be noted that of paramount importance in the overall extent of
bias is the ratio of types A and B in the exposed to risk, and that the effect of the
other factors (p(s), mortality basis, age and duration) is conditional upon the
extent to which the numbers of A-type and fl-type individuals differ no expected
bias is obtained under any circumstance where N(y,t,A) = N(y,t,B).

5.3 Method 2
5.3.1 Expected values of B(y,0,2) for p(s) = 1 are shown in Table 6,

alongside a range of example values of B(y,0,l) for comparison.
5.3.2 Table 7 shows equivalent figures where p(s) = 2s. Column T shows the

total bias involved when the investigator simply assumes a uniform distribution
of policy anniversaries over lifetime, i.e. that the average age at entry is y+V2

according to equation (3.8). Column R shows the residual bias when the
investigator correctly allows for the average entry age of y+% using equation
(3.9).

5.3.3 The following observations can be made:
(1) The bias for p(s) = 1 is extremely small, less than one quarter of one per cent

at all ages, broadly similar in absolute terms to method 1 bias, where only a
slight deviation from equal numbers of types A and B is assumed (e.g. 48%
type A).

(2) The total bias for p{s) = 2s (column T in Table 7) is an order of magnitude
higher than for p(s) = 1. At nearly all ages this equates with method 1,
assuming 0 - 40% type A, depending on age.

(3) The residual bias for p(s) = 2s is negligible, at all ages smaller in absolute
terms than for p(s) = 1.

(4) The bias is positive at nearly all ages.

5.3.4 Provided the distribution of policy anniversaries over lifetime is taken
into account when fixing the age to which the rates apply, the bias from method
2 is clearly negligible and can be safely ignored. Where, however, p(s) is
assumed incorrectly to be unity when determining the age to which the rates
apply, more significant bias can be introduced.

5.3.5 The bias is mainly positive, due to the fact that the first and second
derivatives of the force of mortality are positive at most ages. The implication is
that none of the bias will be removed by the graduation process.
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Table 6. 100 x E{ B(y,0) } under methods 1 and 2, assuming p(s) = 1

Vge

20
25
30
35
40
45
50
55
60
65
70
75
80

0

-4.46
-5.23
-4.24
-2.30
-1.47
-1.65
-2.32
-3.21
-4.25
-5.40
-6.66
-8.03
-9.50

Method 1

0.2

-2.68
-3.14
-2.54
-1.38
-0.88
-0.99
-1.39
-1.93
-2.55
-3.24
-4.00
-4.82
-5.70

for N(A)/N =

0.4

-0.89
-1.05
-0.85
-0.46
-0.29
-0.33
-0.46
-0.64
-0.85
-1.08
-1.33
-1.61
-1.90

0.48

-0.18
-0.21
-0.17
-0.09
-0.06
-0.07
-0.09
-0.13
-0.17
-0.22
-0.27
-0.32
-0.38

Method 2

-0.02
0.03
0.12
0.19
0.21
0.21
0.21
0.20
0.21
0.21
0.22
0.23
0.24

Table 7. 100 x E{ B(y,0) } under methods 1 and 2, assuming /?(s) = 2s

20
25
30
35
40
45
50
55
60
65
70
75
80

0
-6.73
-7.91
-6.42
-3.47
-2.20
-2.48
-3.49
-4.84
-6.42
-8.17
-10.08
-12.16
-14.40

Method
0.2

-3.37
-3.95
-3.21
-1.74
-1.10
-1.24
-1.74
-2.42
-3.21
-4.08
-5.04
-6.08
-7.20

where
and

(see

1 for N(A)/N =
0.4

-0.96
-1.13
-0.92
-0.50
-0.31
-0.35
-0.50
-0.69
-0.92
-1.17
-1.44
-1.74
-2.06

R = Residual

0.48
-0.18
-0.21
-0.17
-0.09
-0.06
-0.07
-0.09
-0.13
-0.17
-0.22
-0.27
-0.33
-0.39

bias
T = Total bias

f5.3.2 for explanation.)

Method
T

-1.41
-0.79
0.81
2.14
2.51
2.47
2.34
2.23
2.15
2.11
2.09
2.09
2.11

2
R

-0.01
0.02
0.08
0.13
0.14
0.14
0.13
0.13
0.14
0.14
0.15
0.15
0.16

6. IMPLICATIONS FOR MORTALITY INVESTIGATIONS

6.1 Use of Method 1
6.1.1 General

The overall bias inherent in method 1 is somewhat hard to determine, as it is
so dependent on the proportions of types A and B in the exposed to risk. Clearly,
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in extreme situations (e.g. 100% of either type) the bias can be considerable.
However, if the ratio were to fluctuate randomly, in the region of 50:50 from age
to age, bias at individual ages would be low and would also be likely to be
largely removed by graduation.

6.1.2 The proportions of types A and B in method 1 investigations
In order to assess the bias that can be expected using method 1 in practice,

some idea of the proportions of types A and B in the actual experience needs to
be assessed.

Chadburn (1991, 1993) shows that, assuming replacement:

N(y,0,B) = U(y)
and N(y,0A) = U(y-l)
where: U(y) = the number of new entrants aged y last birthday at entry.

The distribution of new entrants during the investigation by age last birthday at
entry can, therefore, be used to assess fairly accurately the numbers of types A
and B for duration 0 at each age.

A similar approach can be devised for other durations, but, as bias is less at
these durations, consideration will here be given to duration 0 only.

6.1.3 Empirical example: CMI data
The example chosen is the duration 0 data from the CMI investigation into

male Permanent Assured lives mortality for 1979-82. The data are presented by
FMW, which forms the basis of this analysis.

FMW give the central exposed to risk and the observed deaths at each age. It
will be assumed that the central exposed to risk at duration 0 can be taken to be
approximately proportionate to the number of new entrants at each age. This will
then be used as a realistic example of the distribution of new entrants by age for
this type of investigation: no further implication for this particular CMI
investigation is being made (indeed, the mortality assumptions used to calculate
the bias would be inappropriate for this purpose).

A summary of the results is given in Table 8 (full details can be found in
Chadburn, 1993).

Table 8. Empirical results for expected bias using CMI 'new entrant' data

Age range

18-
3 6 •

56 •

•35
• 5 5

• 75

Min
-0.44

0
-1.32

p(s) = 1
Median
-0.06
0.06
0.59

100

Max
0.07
0.24
1.62

x expected bias

fKs)
Min
-0.46

0
-1.45

= 2x
Median
-0.06
0.06
0.58

Max
0.07
0.23
1.50

Percentage of
ages where bias

is positive

22%
100%
90%
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The mostly negative bias up to the mid-thirties reflects generally increasing
new entrant numbers by age, and the mainly positive bias thereafter reflects
generally declining numbers. The most important features of these results are:
(a) actual levels of expected bias at most ages are generally very low;
(b) the distribution of bias according to its sign is distinctly non-random over the

age range; and
(c) compared with method 2, the difference in bias caused by a change in the

form of p(s) is negligible.

Observation (b) means that the bias, however small, will only be partly
removed by the graduation process. The result will be that, according to the
assured lives mortality basis, the graduated rates will understate the true mortality
at the younger ages and will overstate the true mortality at the older ages.

6.1.4 Bias after graduation
For a description of the graduation process, see FMW.
Example deaths were generated by random simulation assuming D(y,0,l) is

Poisson distributed with parameter A(y,O,l) with mortality according to A1967-
70[5]. Hence the expected bias at each age was fully consistent with the
underlying mortality of the experience.

The same set of random numbers was used to calculate actual deaths under the
two assumptions for p(s). The following crude rates were graduated in each case,
where G(y,O,l) is the simulated realised value of D(y,0,l):

^ E(y,O,l)

^ = l+B(y,O, 1)

producing graduated functions /i (y) and / i ^ respectively. Following FMW,

p^ and p^ were determined by fitting GM(2,2) functions to the respective
crude rates by the method of maximum likelihood, where:

GM(2,2) = a (0) + a (l).y + exp()S (0) + fi (l).y)

where a (0), a (1), ft (0), and /3 (1) are the fitted parameters.
The 'graduated' bias at each age could then be obtained from the ratio:
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0.75

Bias%

15 20 25 30 35 40 45 50 55 60 65 70 75

0.25 -

-0.25

-0.5

Figure 8a. p(s) = 1

0.75

Bias %

0.25

-0.25

-0.5
15 20 25 30 35 40 45 55 60 65 70 75

Agey

Figure 8b. p(s) - 2s

Figure 8. Graduated bias using method 1, assuming new entrant distribution
according to CMI data

and the results are shown in Figure 8.
It can be seen from Figure 8 that graduated bias has a curious shape, with an

initial peak at around age 30, falling then rising again at increasingly older ages.
Graduated bias is positive for this experience at nearly all ages.
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6.2 Method 2
6.2.1 The figures for method 2, shown in Tables 6 and 7, effectively give the

graduated bias for this method. These figures are compared with the equivalent
figures for method 1 in Table 9.

Table 9. Comparison of 'graduated bias' between methods 1 and 2

Method
Age
20
25
30
35
40
45
50
55
60
65
70
75

1

-0.05
0.29
0.50
0.43
0.30
0.23
0.24
0.30
0.39
0.50
0.63
0.78

2

-0.02
0.03
0.12
0.19
0.21
0.21
0.21
0.20
0.21
0.21
0.22
0.23

where R =
T =

1

-0.14
0.14
0.33
0.29
0.20
0.16
0.18
0.24
0.33
0.44
0.57
0.70

Residual bias
Total bias

2(R)

-0.01
0.02
0.08
0.13
0.14
0.14
0.13
0.13
0.14
0.14
0.15
0.15

2(7)

-1.41
-0.79
0.81
2.14
2.51
2.47
2.34
2.23
2.15
2.11
2.09
2.09

6.2.2 Where p(s) = 1 method 2 gives lower absolute values of bias at every
age than method 1. Over about age 35 the bias for method 2 is also much more
stable with increasing age than method 1, with a total range of 0.19% to 0.23%
compared with 0.23% to 0.78% for method 1.

6.2.3 For p(s) = 2s the comparison is similar to that described in H6.2.2,
except that all the values are slightly lower, provided that in method 2 the
expected average age for the rates is recognised as being y+2/3. Where the age is
taken as y+V2, however, the bias under method 2 is significantly higher than for
method 1.

7. CONCLUSIONS

7.1 The significant factors affecting bias under the two methods are
summarised in W7.2 and 7.3.

7.2 Method 1:
(1) bias is effectively dependent upon the distribution of new entrants from age

to age;
(2) part of the bias will be removed by graduation; however, to the extent that
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new entrants are non-randomly distributed by age, bias will be retained in the
graduated rates; and

(3) apart from where the distribution of new entrants shows severe
discontinuities with age, overall bias after graduation appears likely to be
very low, probably well less than 1% over most of the age range.

7.3 Method 2:
(1) bias is effectively dependent upon the extent to which the assumed age at

entry differs from the actual average age at entry;
(2) where the assumed and actual average entry ages are different, bias can be

relatively and consistently high, for example of the order of 2% where the
assumed entry age is y+'/2 compared with an actual average entry age of
y+%; and

(3) where actual and assumed entry ages are equal, bias is negligible and quite
stable over the age range.

7.4 Where p(s) is unknown or unobtainable, method 1 appears the more
robust of the two methods in that it shows least sensitivity to variations in p(s).
Under these circumstances it would seem that method 1 should be preferred.
Given that the CMI Bureau is likely to be in this position regarding its data, it
would be concluded that the CMI Bureau is happily correct in having adopted
method 1 for its select investigations. (Note that the age definition used in the
CMI implies exposure between ages [y-'/^y+Vy rather than between [y,y+l]: bias
observed for this age definition would, of course, be almost indistinguishable
from that reported here. However, the CMI committee's choice of age definition
also helps to reduce the effect of the possible non-uniform distribution of policy
anniversaries over the life year, caused by many policyholders effecting their
policies just before (or just after) a birthday. By grouping by age nearest birthday,
this increased density of policy anniversaries near the birthday occurs around the
middle of the rate interval, rather than at one end. This will more closely
approximate to an assumption of p(s) = 1 than if an age last (or next) birthday
definition had been used.)

7.5 For investigations on a smaller scale, (for example those carried out by
individual life offices or for pension schemes), method 2 might be considered
preferable, provided the average ages at entry can be assessed. In smaller
experiences, the distribution of new entrants from age to age is likely to fluctuate
more widely than is the case for the CMI, for example, while the distribution of
policy anniversaries over lifetime may be relatively more stable.

7.6 It is, perhaps, hard to draw firmer conclusions without some knowledge
of the form of p(s) in empirical examples. This is a possible area for further
research.

7.7 A few additional points regarding method 1 are worth noting.
(1) Where there are significant discontinuities in the progression of new entrants

by age, the exposed to risk will be almost entirely either of type A or of type
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B, which can lead to bias at these individual ages of the order of 5% or more
in some cases. For example the exposed to risk at the minimum entry age
would be 100% type B, while that for the age one more than the maximum
entry age would be 100% type A. It is suggested that these data should either
be excluded from the graduation, or the inherent bias at these ages allowed
for individually in some way. It should be noted that the CMI data used in
this paper exclude the sharp discontinuity in new entrants that occurs
between ages 16 and 17.

(2) The situation where mortality varies by age and duration in opposite
directions gives rise to somewhat higher levels of bias. Possible examples
where this might occur include the mortality experience of ill-health retired
pensioners, with duration measured from retirement, and the mortality
experience of 'sick' lives in sickness investigations, with duration measured
from the date of sickness inception. This effect does not occur when using
coincident rate intervals. This situation is also investigated in Chadburn
(1993).
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