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1. Introduction and summary. The advantages of using polynomial approximations
for the purpose of constructing interpolable numerical tables on punched cards have
been pointed out by Sadler (7). The object of this paper is to demonstrate the value of
this method for ordinary published tables.

Powerful polynomial representations of a function/(a;) valid throughout a tabular
interval a^x^a + h are obtained by truncating the expansion of/(x) in Chebyshev
polynomials")", given by

f(a+ph) = ao + 2a1T*(p) + 2a2n(p) + ... ( 0 < ^ l ) , (1-1)

at the term 2anT*(p), and rearranging the result in powers of p in the form

f(a+ph) = co + c1p + c2p
2+...+cnp

n + v(p), (1-2)

where V(P) = %*n+1T*+1(p)+ 2an+tTZ»(p) +... (1-3)

is the truncation error, normally restricted not to exceed half a unit in the last decimal
place retained by making n sufficiently large. The coefficients co,cv...,cn may be
given in the table side by side with/, and interpolation is then carried out by application
of (1-2).

From the standpoint of the user such a method enjoys considerable advantages
over formulae involving differences or modified differences. It is both simpler and
quicker; the whole of the calculation can be carried out on a desk machine without
any intermediate recording, and the use of tables of interpolation coefficients is
dispensed with.

A disadvantage of this method compared with those based on differences or modified
differences is that it requires more space if the same interval in the argument is used.
Even so, if it is desired to save space in a given table without unduly inconveniencing
the user it may still be preferable to use economized polynomials, but with an increased
argument interval. The addition of a term or two to the polynomial permits the
tabular interval to be increased considerably, and the labour of evaluating a poly-
nomial of slightly higher degree is often no greater than that of interpolation at the
smaller interval using other methods. An example of this is given later (§9) together
with a comparison of the speeds of interpolation using various types of interpolation
facilities.

f The notation used here for Chebyshev polynomials is that of Lanczos(5), and is defined by
Tn(x) = cos (n cos-1 x), T*(x) = Tn(2x- 1) = Ttn(yjx).
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The use of economized polynomials in mathematical tables 615

The coefficients cc^a^,... in (1-1) and co,c±,... in (1-2) may be computed in various
ways. For table-making purposes they can be conveniently expressed in terms of the
central differences of/. A point to be noticed is that the value of c0 is not, in general,
equal to /(a), for in constructing the approximation no restrictions are made con-
cerning the actual values to be taken at the end-points of the range. In some circum-
stances, for example, with tables on punched cards, it may be permissible to tabulate
c0 in place of/. Indeed, in these cases it may even be advantageous to construct
optimum- or maximum-interval tables, described by Herget and Clemence(2) and
Sadler (7), in which the tabular interval need not be constant and the function values
are modified drastically so that the argument itself is used as the variable in the
polynomial rather than the fraction of the tabular interval.

In the case of ordinary printed tables, however, it would be undesirable to tabulate
c0 in place of/, and uneconomic to tabulate them both. A preferable procedure is to
modify the representation and replace the constant term by/(a). This can be done in
such a way that the power of the approximation is not seriously impaired, and we
investigate this point in §§2 and 3.

In §4 the rounding errors associated with (1-2) are considered. In §5 the choice of
interpolation polynomials for the range O^p^l is discussed with reference to the
combined effects of truncation and rounding errors. Explicit formulae for the co-
efficients of polynomials of degrees 2 to 6 are given in §6.

Other forms of polynomial approximations are briefly discussed in § 7. In §8 the
evaluation of derivatives using the economized interpolation polynomials is con-
sidered, and in the concluding section (§9) numerical examples are given together
with an account of time tests that have been carried out with various standard
methods of interpolation.

2. The interpolation cubic in 0 ^p < 1. For the purpose of illustration we construct
first the interpolation polynomial of degree 3. Truncating (1-1) at the term 2tx3T*(p),
substituting the formulae given by Miller (4) for the coefficients a0,oclt..., and re-
arranging in powers of p, we obtain the relation (1-2) with n = 3 and the coefficients
c0, cv c2, c3 and v (all of which depend on n) given by

_ 2 2 5 266 6
co - / o - 2T74T<"d£ + 21075]di + 21276!^di~ •••'

16 . , 32 . , 576 R, 1124 . , 57584

V2 24 2! * 26 3! i 28 4! i 210 5! i 212 6!

_ 64 2240
3~2673! i ~ 2io75!d4+---'

(2-2)

Here, in the usual notation, the odd and mean even differences of / at the point
x = a + ^h are denoted by d?""1 and /J£1S(S = 1, 2,...) respectively, and/ o s / (a ) .
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616 C. W. CLENSHAW AND F. W. J. OLVEB

The size of the interval of tabulation will invariably be such that the significant
differences of/ diminish steadily with increasing order. The dominant part of the error
term is accordingly

n ^l* ^ (2-3)
Since | T*(p) | ̂  1 throughout the range 0 ̂ p < 1, it follows thatf | i)(p) \ < \ if

|/t<J||<1536. (2-4)

The maximum error equals | / 0 — c0 | approximately. If we replace c0 in (1-2) by/0,
we obtain

f(a+ph) = / 0 + c1p + c2^
2 + c3^

3 + %(^), (2-5)

where, from (2-3) and the first of (2-1),

Vi(PH^l{Tnp)-l}l^012. (2-6)

To ensure that | r/^p) | does not exceed half a unit we must apply the restriction

(2-7)

because the maximum value of | T*(p) — 11 in O^p^. 1 is 2. The limit (2-7) is sub-
stantially lower than (2-4). Some of the loss can, however, be recovered in the
following way.

Suppose that <j>{p) is a polynomial of degree 3 or less which approximates to T*(p) — 1
throughout O^p^l, and has the property 0(0) = 0. Then it is evident that if we
incorporate the quantity ju,8i<p(p)l3012 in the interpolation cubic, the size of the error
term will be reduced.

A suitable approximation of this kind (see § 3) is given by

(2-8)

where k = 24-16V2 = 1-37..., and

\f(p)\<k ( 0 ^ < l ) . (2-9)

Substituting (2-8) in (2-6) and using (2-5), we obtain

(2-10)

where a1 = C l _ _ _ ^ j a g = c2 + _ _ ^ j a3 = c3, (2-11)

and e(p)=/i8lft(p)l3072. (2-12)

From (2-9) we see that | e(p) \ < \ if

= 1120, (2-13)

on rounding off to the nearest 10, which should be compared with (2-4) and (2-7).
Explicit formulae for alt a2, a3 in terms of the differences are given in § 6.

f Here and elsewhere it is supposed that the units are in terms of the last decimal place
retained.
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The use of economized polynomials in mathematical tables 617

The same procedure may be used for constructing interpolation polynomials of any
degree n. The expressions corresponding to (2-6) for the dominant part of the error
term, when c0 is replaced by/0, are

Pl + l} or ^ L r T * + 1 ( p ) - l } , (2-14)

according as n is even or odd. In order to reduce the error term in the manner described
we need polynomial approximations of degree not exceeding n to the function
T*+1(p) — (— l)n+1. These we proceed to consider.

3. Approximations to T*(p) — ( — l)s. Let us write

\ (3-1)

where 4>(p) is a polynomial of degree not exceeding s— 1, and ^(0) = 0. We wish to
know the (p(p) for which the maximum value of | fr(p) \ in 0 ̂ p ̂  1 is a minimum.

We shall solve the problem with the added condition ^-(1) = 0, so that the approxi-
mation <j){p) has to take the same value as T*(p) — (— l)s at both p = 0 and p = 1.
Although the imposition of this condition weakens the approximation, we see later
(§5) that this is more than compensated by the favourable effect it has on the rounding
error in the application of (1-2).

The problem is solved if xjf(p) has s— 1 turning points p^,p2, •••>Ps-i such that

.<Ps-1<l, (3-2)

and f(Pl) = - i/r(p2) = f(p3) = . . . = ( - ) " ^Ps-i)- (3-3)

For suppose (j>±{p) is a better approximation, and

fAP)^T*{p)-(-lY-UP)- (3-4)

Then ^{p) — ̂ x{p) = (f)1{p) — <j>{p) is a polynomial of degree s— 1 which vanishes at
p = 0 and 1, and changes sign successively at the points p1>p2,..., ps-\- I t is therefore
identically zero.

The solution may now be seen to be

(3-5)

where k is a constant, chosen so that the term in p8 disappears. For this gives

f(p) = ^{^-ljcos^}, (3-6)

which vanishes at p = 0 and 1, and has just the properties required by (3-2) and (3-3).
The value of k is readily found to be

& = sec«J, (3-7)

and the maximum value of | ijr{p) \ in 0 ̂ p < 1 is k.
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618 C. W. CLENSHAW AND F . W. J . OLVER

Numerical formulae for the ^-polynomials, giving the coefficients and the corre-
sponding values of k to two decimals, are

5 = 3 k = 1-54 (j> = 2p,

5 = 4 k =1-37 0 = -

« = 5 k = 1-29 <j> = l6-452>-25-34#2+16-89p3, j. (3-8)

5 = 7 k= 1-19 (j> = 24-73p- 161-55p2 + 418-88^3 -466-77^* +186-71#5..

4. Rounding error. We now examine the effects of rounding errors in the application
of the formula

(4-1)

in which e(p) is the truncation error; we may suppose that

e(0) = e(l) = 0 and | e(̂ >) | <£ in O^p^l. (4-2)

We assume that the function / and the coefficients in (4-1) are computed
originally with at least one guarding figure, and rounded before being given in the
final table. If no special precautions are taken the rounding error in (4-1) may amount
to \{n + 1) units in the last decimal place. This is, of course, undesirably large. The most
obvious way of reducing it is to tabulate the coefficients ax,a2, •.•,an to one more
decimal place than/ , but this is uneconomic and it is preferable to proceed as follows.

L e t / ' and a'm denote the rounded values of/ and am, and let

fo=fo + 9o, fi=fi + 9i> am = a'm + bm (TO = 1,2,...,»), (4-3)

so that l ^ o N i \9i\<h |&ml<i (4-4>

Put t ings = 1 in (4-1) and using (4-2), we obtain

f0 + a1 + a2+...+an. (4-5)

The most unfavourable rounding errors will obviously all have the same sign, giving
the worst possible error at p = 1. I t is natural, therefore, to consider adjusting the
roundings so that (4-5) is satisfied exactly by the rounded values, that is, to satisfy

This can be done systematically by rounding, in the usual way, /0, fx and all but one,
am say, of the coefficients ar, and replacing a'm by a^, where

<=fi-fo-<-a'i-...-a'm_1-a'm+1-...-a^. (4-7)

Then from (4-3), (4-5) and (4-7), we obtain

am-a*l = g1-g0-b1-b2-...-bm_l-bm+l-...-bn. (4-8)

Using this result and (4-1), we see that in the formula

f(a +ph)=fi + a'lP + ...+ <"_1pm-1 + a* pm + a'm+1p
m+* + ...+ a'np

n, (4-9)
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The use of economized polynomials in mathematical tables 619

the total error Em(p)—the amount we must add to produce the correct value of
f(a+ph)—is given by

...+ bnp
m

+ 2 bs(p°-pm). (4-10)
s=¥m

Hence using (4-2), (4-4) and the fact that 0 ̂ p ^ 1, we see that

m—1 n
where Vm(p) = l + (l-pm)+pm + 2 (ps—pm)+ 2 (pm—ps)

8 = 1 s=m+l

= 2+p+p2+...+pm-1+(n-2m+l)pm-pm+1-pm+2-...-pn. (4-12)

The value of m is at our disposal and we now seek the value which makes Vm(p) a
minimum.

From (4-12) we have

Vm(P) ~ Vm+1(p) = (n - 2m) (pm -p^1), (4-13)

which is positive or negative according as m is less or greater than \n, whatever the
value of p in 0 <p < 1. Thus if n is odd the least member of the sequence

VJp) (m=l,2,...,n)

has m = \n + \\ if n is even then V^p) = V^n+1(p), and these are the least members
of the sequence.

Maximum values in 0 ̂ p ^ 1 of the minimum F's are, to two decimals, as follows:

w = 2 F1 = V2= 2+p-p2 max £FX =1-13,

n = 3 V2 = 2+p-p3 max^=l-19,

^ = 4 F2 = F3= 2+p+p2-p3-p* max^F2= 1-31,- (4-14)

n = 5 F3= 2+p+pi-pi-p5 max^F3=l-39,

n =6 V3 = Vi=2+p+p2+p3-pi-p5-p6 max£F3=l-51.

These limits for the total error are a marked improvement on the limit (\n + 1 units)
when no rounding precautions are taken.

5. Choice of interpolation polynomials for the range 0 ̂ p < 1. If, in the error term
(2-14), we substitute the formula (3-1) with s = n+ 1 and <p{p) given by (3-5), and then
incorporate the termf 2~2n~xd)(p) Sn+1l(n+ 1)!

in the interpolation polynomial in the manner described in § 2, the new truncation

error is 2-2n-1ft(p)8%+1l(n+1)!, (5-1)

where i[r{p) is given by (3-6). To ensure that this does not exceed half a unit we must
apply the restriction | Sn+i | < 22n(re + ly^ (5.2)

where k is denned by (3-7) with s = n+ 1. The values of k, for n = 2, 3, 4, 5, 6, are
given in the first row of Table 1 below (cf. (3-8)).

t If n is odd <$£+1 is to be replaced
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620 C. W. CLENSHAW AND F. W. J. OLVER

To a sufficient degree of approximation the truncation error vanishes at p = 0 and
p = 1. Hence if the coefficients ax,..., an of the interpolation polynomial are rounded
in accordance with equation (4-7) with m = [£ft + J], the maximum error in an un-
rounded interpolate is given by (4-14). It is shown in Table 1 in the row marked
'Error A'.

Suppose that instead of (3-5) we had used the more powerful approximation

where -^,
4s

(5-3)

(5-4)

which, it may be verified, is the solution to the problem propounded in the opening
paragraph of §3 without the condition ^(1) = 0. Then in place of (5-2) we have

| (5-5)

Table 1

n

k
Error A

I
Error B
Error C

2

1-54
1 1 3
1-23
1-50
1-40

3

1-37
1 1 9
1 1 7
1-50
1-43

4

1-29
1-31
1 1 3
1-53
1-47

5

1-23
1-39
1 1 1
1-61
1-56

6

1 1 9
1-51
1-09
1-68
1-64

which is less restrictive than (5-2) itself because I < k (see Table 1). Now, however, the
truncation error does not vanish at p = 1, but takes its maximum value there. The
analysis of § 4 may be modified to take account of this, and it is found that the rounding
error is increased. Assuming that the maximum truncation error is half a unit, and
that the best value of m is used, in this case [\n + 1], we find the numerical values of the
total error to be those given in the row 'Error B ' of Table 1.

A fair comparison of the two approximations can be made by assessing the maximum
total error, Error C say, which results if the approximation given by (3-1) and (5-3) is
used with the condition (5-2) in place of (5-5). This is given by

Error C = (Error B - 0-5) + 0-5 x {Ijk),

and appears in the last row of Table 1. In every case it exceeds Error A.
In conclusion, therefore, provided that the coefficients a1,...,an are rounded as in

§4, the approximation (3-5) is to be preferred to (5-3)|.

f Note added in proof: Slightly sharper estimates for Error A can be obtained by taking
advantage in the analysis of §4 of the fact that the truncation error is now of the specific form
(5-1). With the condition (5-2) we obtain | e(p) | < £ | i/r(p)/k \, and substituting this inequality
in (4-10) we find that \Em(p)\ ^Wm(P), Wm{p) = Vm(p)- 1+ | t(p)/k.

The best value of m is again [£n.+ J] and the greatest value of iTF[|n+j](p) in 0 ^ p < 1 is 1*09,
1-19, 1-31, 1-38, 1-47, for n=2, 3, 4, 5, 6, respectively. We can treat Error B in a similar way,
but it is found that the estimates are unaffected to two decimal places, except for n = 5 for
which 1-61 is reduced to 1-59. The general conclusion at the end of the section is unaffected.
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6. Interpolation polynomials for the range O^p^ 1. We now give the expansions in
terms of the differences for the coefficients ava2,..., an in the formula

f(a+ph)=fo + alP + a2p
2 + ... + anP

n + e(p) (O^p^l), (6-1)

together with the maximum value which the (n+ l)th difference may have without
the truncation error | e(p) | exceeding half a unit in the last decimal place. For simplicity
the suffix £ has been omitted from the S's and /id's.

The quantity E given with the formulae is the maximum total error (rounding error
plus truncation error) in an unrounded interpolate obtained from (6-1) with e(p)
neglected, on the assumption that 8n+1 does not exceed the stated limit (see 'Error A'
of Table 1).

Quadratic: 83< 60, E = 1-1:

ax = fx —f0 — a2 (rounded values),

Cubic: <S4<1100, E = 1-2:

ax = 8-^/i82 + ̂ 83 +

a2 = / x — /„ — »! — a3 (rounded values),

a3 = £S3-0-0182S5 +

Quartic: S5< 24000, E = 1-3:

-0-000289-0-001/i8l0+...,

a2 = / i —/o — ai — a3 — a4 (rounded values),

a3 = %83 - jjL/t54 - 0-01795 4<J5 + 0-02326/t<J6 + 0-0026957 - 0-0051/J.88 - 0-0005£9

a4 =

Quintic: 86< 600000, E = 1-4:

+ 0-00355 4/i58 - 0-0002059 - 0-00079/*<J10 + 0-0000511 + ...,

a2 = ^fi8i-l83-^fi8i + ̂ 8i + 0-0050341/i86-0-00274:08'7-0-0006S6/i8a

+ 0-0004459 + 0-00010/i^10 - 0-0001511 - ...,

a3 = / j — f0 — al — a2 — ai — a5 (rounded values),

a4 = A M 4 - ^ 5 -0-01159 4:6/18* + 0-00412 357 + 0-00286 7/i<S8-0-00079£9

a5 = xJo*5- 0-00164 957 + 0-0003259-0-OOOl5n+....
4O Camb. Philos. 51, 4
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Sextic: 5 ' < 17000000, E = 1-5:

ax = 5 - $fi82 + -&S3 + rfe/i8i-TLs8S-£s/i8
6 + 0-00118 87025' + 0-00357 153/t58

-0-00019 7745s-0-00079 37/*510 + 0-00003 59511 + 0-00018 0/iS12- ...,

a2 = ^ 5 2 - £ 5 3 - ^ / i 5 4 + ; i ^ 5 + T ^ 5 6 - 0 - 0 0 2 7 4 3 7 1 3 5 7 - 0 - 0 0 0 8 9 489iM58

+ 0-00043 57459 + 0-00015 96/*510- 0-00007 6 9 5 1 1 - 0-00003 0 / J 5 1 2 + . . . ,

a3 = fx —/„ — ax — a2 — a4 — a5 — a6 (rounded values),
0 - 0 0 4 1 1 1 9 5 8 5 7 + 0-00115 lU/i8a-0-0007876559

-0-00019 74rfi810+ 0-0001544511 + 0-00003 5/i812- ....

0-00152 5 3 0 ^ 8 + 0-00031 50659

- 0-00043 61/iS10 - 0-00006 18511 + 0-00011 5{i812 + . . . ,

I t is supposed (in accordance with § 4) that alt a2,..., an are computed retaining
at least one guarding figure and subsequently rounded, with the exception of a[in+i],
which is evaluated from the rounded values of the other coefficients and the next
tabular value flt as indicated in the formulae. For completeness and checking
purposes, however, we record the expansions of these particular coefficients.

Quadratic: ax = 8- %/i82 + 0-094/t54 + . . . .

Cubic: a2 = i^2-^3-0-09196/w54 + 0-027355 + 0-0195/tt5
6-0-0045'- ....

Quartic: a2 = %/i82 - £53 - ^/tcJ4 + 0-02693155 + 0-00499/i5« - 0-004035'

- 0-0007/*58 + 0-000759 + 0-000/J51 0 - . . . .

Quintic: a3 = £53 - ^ 5 4 + 0-02318 91/ t56- 0-00092 25' -0-00573 5/i88

+ 0-0002359 + 0-00138/i510-0-OOOl5u-.. . .

Sextic: a3 = £53 - TV/i54 + ̂ fiS6 - 0-00091 216457 - 0-00484 484/*58

+ 0-00023 46059 + 0-001l225/i510-0-0000517511-0-00026 2/<512+....

The formulae in this section have been obtained by the method of §2, using the
relations (3-1) and (3-8) to reduce the truncation error (2-14).

7. Other interpolation polynomials. The polynomials we have j ust obtained are not the
only kind which can be developed and we now examine briefly two other possibilities.

(i) Interpolation polynomials for the range — % < p < \. These can be derived from the
Chebyshev expansion

. (-J<1»<1). (7-1)
Expressions for the coefficients fis have been given by Miller (4), in whose notation fis

is replaced by as and Ts(2p) by \ Cs(i6).
If the series (7-1) is truncated at the term 2finTn(2p) and rearranged in powers of p,

polynomials of the form

f(a+ph) = do + d1p + d2p
i+...+dnp

n + £(p) (7-2)
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The use of economized polynomials in mathematical tables 623

(cf. (1-2)) are obtained, £(p) being the truncation error. The coefficient d0 differs
slightly from /0, but by adjusting d1,d2,..., dn we can, if desired, replace d0 by f0

(of. §§2, 3).
These polynomials have two advantages compared with those of §6. First, the

formulae for the coefficients ds are simpler in that mixtures of odd and even differences
do not occur. Secondly, no special precautions need be taken with the rounding of the
coefficients. If the coefficients are computed retaining a guarding figure and rounded
in the ordinary way, then because | p \ < \ the maximum rounding error in an inter-
polate is

Thus if the truncation error C,(p) does not exceed half a unit, the total error in an
unrounded interpolate will not exceed 1^ units.

Both of these advantages, however, affect only the compiler of the tables. From the
standpoint of the user the polynomials! for the range — \ ^p =$ \ are inferior because
the interpolation phase p can be negative. When this happens it complicates the
evaluation of the polynomial and becomes a possible source of mistakes.

The use of negative values of p can be circumvented by computing the function/and
the coefficients ds at points half-way between the tabular arguments and rearranging
the polynomials obtained in powers of p'=p + \. If adequate guarding figures are
retained in the computations then the polynomials obtained in this way are identical
with those given by (1-2). I t may be thought at first that if the coefficients ds are
rounded before rearranging in powers of p + \, then the rounding error in the rearranged
polynomial would be given by (7-3). This is not the case, however, because in the
process of rearrangement the values of ds are multiplied by fractional numbers and so
further roundings are necessary, with the consequent introduction of additional error.
The avoidance of these extra rounding errors by the retention of a guarding figure
in the final coefficients would be uneconomic.

(ii) Everett-type formulae. Various formulae of the type

f(a+ph) = q{fo + X(<l2)}+P{fi + X(P%

where q = 1 — p and x(x2) *s a polynomial in x2, can be obtained by economization of
the power series in Everett's interpolation formula

Typical among such formulae is the following quintic:

fta+ph) = q{fo+(l-q2)(d2,o + d4tOq*)}+p{f1 + (l-p*)(d2il + d4ilp*)}, (7-4)

where d2 = -% 4810+ ...A

+ 0-00231 89(J6-0-00057<5
8 + 0-000l510-..., /

t Expansions corresponding to those of § 6 for the coefficients of these polynomials in terms of
differences have been computed by the writers. It was not until a convenient method (§ 4) had
been devised for reducing the rounding error associated with the polynomials of §6, that the
use of polynomials for the range — J=g£>«£ £ was rejected.

40-2
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and the suffixes 0,1 indicate that these functions are to be evaluated at the points a,
a + h respectively. This formula is validj if |/*£| | < 3 00000 and | <S| | < 27000, under
which restrictions the truncation error will not exceed half a unit in the last decimal
place retained.

The attractive feature of (7-4) compared with the interpolation quintic

f(a+ph) = fo + a1p + a2p
2 + a3p

3 + aip
i + a5p

5, (7-6)

of § 6, which is valid under roughly the same conditions, is that for the same argument
interval it requires half as much space in a printed table; only two coefficients d2, di need
be given in addition t o / , compared with five in the case of (7-6).

The disadvantage of (7-4) compared with (7-6) is that because of its greater com-
plexity it requires twice as much labour to compute. A tabular comparison of the
number of operations involved is as follows:

Formula (7-4)
Formula (7-6)
Quartic

Recordings

3
1
1

Multiplications i Settings

10
5
4

7
6
5

Transfers

7
4
3

I t is assumed that in the evaluation of (7-4) the quantities 1 — q2 and 1 — p2 are calcu-
lated as p(l + q) a,ndq{l+p) respectively, and that q and/0 + ̂ (l + q) (d2i0 + di0q

2) are
recorded as well as the answer.

The last row of this table refers to the quartic polynomial of the type (7-6). This
comparison is not irrelevant because after the cubic formula of the type (7-4) the next
stage of approximation is a quintic and advantage cannot be taken of the cases in
which a quartic would suffice.

The writers believe that if the extra space in a table required by formula (7-6) cannot
be spared, then rather than use (7-4) it may be preferable to double the tabular interval,
using if necessary an interpolation polynomial of the type (7-6) and of degree one
higher.

8. Evaluation of derivatives. A useful property of the interpolation polynomials is
that they can, with care, be used to evaluate the derivative at any point quite quickly.
Differentiating (6-1), we obtain

hf'(a+ph) = a1 + 2a2p + Sa3p
2+...+nanp

n-1 + e'(p). (8-1)

The polynomial part of the right-hand side of this equation can be evaluated on
a calculating machine without any intermediate recording, by arranging it in the form

hf'(a+ph) = [{nanp + (n-l)an_1}p + (n-2)an_2]p + .... (8-2)

The error e'(^) in (8-1), however, may be considerably larger than e(p) itself. Prom
(5-1) we have

•)• In producing (7-4) a device similar to that described in §§2 and 3 has been used. The
formula can also be obtained by rearrangement of (9-1).
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8?+1 being replaced by /I$-L+1 if n is odd. From (3-6), putting s = n+ 1 and differen-
tiating, we find

{ } { } (8-4)
The maximum value of | ijf'{p) | in

2jfc(n+l)cot

\e'(p)l

1 occurs at p = 0 and 1, and is equal to
47T

TT

Hence
7T

(8-5)

(8-6)
I e(P) Imax.

Thus the value of | e'(p) | may be quite large. However, if only a limited accuracy in
the derivative is required, as, for example, in inverse interpolation (§9), formula (8-1)
may be quite useful.

In applying (8-6) it need not be assumed that | e(p) |max_ = \. For example, in the
table from which Table 2 of the next section (§9) is an extract, it is known that
I e(P) Imax. < 0-05 when 0 < x < 2-2. Thus in this range | e'(p) ^^ < 1-6 and the values
of ox are equal to — 0-1 Ai' (— x) to within a unit or two of the eighth decimal.

9. Examples and time tests. Table 2 is a typical extract from an eight-decimal table
of the function Ai (— x) at interval 0-1 in x, which gives the coefficients av a2, a3, a4 of
the interpolation polynomial (6-1) with n = 4. They were computed by means of the
formulae given in § 6.

Table 2

X

20
21

Ai ( - z )

+ 0-22740743
+ 0-16348451

-6182590
-6583406

a2

-227 414
-171670

a3

+ 16836
+ 20351

+ 876
+ 812

We calculate from this table the value of Ai( — x) for x = 2-09439510. Taking
p = 0-94395 10 and working in units of the eighth decimal, we obtain

Ai(-2-09439 510) = [{(876x0-9439510+16 836) x 0-94395 10-227 414} x 0-9439510
- 6182590] x 0-9439510 + 22740743

= +0-16716 902.
As an example of inverse interpolation we calculate the value of x in the range

2-0 < x < 2-1 for which Ai( — x) = 0-2. In effect we have to solve the polynomial
equation a ^ + ^ 2 + ^ 3 + a^i = _ 0-02740 743.

As a first approximation, we have

p=Pl = - 0-02741/aj = 0-4433,

and as a second approximation,

p =p2 =p1-{a2\a1)p\ = 0-4361.

Taking this value, we find that

Ai( - 204361) = [{(876 x 0-4361 +16836) x 0-4361 - 227 414} x 0-4361 - 6182 590]
x 0-4361 + 22740 743

= 0-20002 693,

https://doi.org/10.1017/S0305004100030693 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004100030693


626 C. W. CLENSHAW AND F. W. J. OLVER

and, using (8*2),

- 0-1 Ai'( - 2-04361) = {(4 x 876 x 0-4361 + 3 x 16 836) x 0-4361 - 2 x 227 414}
x 0-4361-6182 590

= -0-063710.

The final approximation is obtained by application of Newton's rule, which yields

P = P2 + (0-20002 693- 0-2)/0-063710 = 0-43652 27.

As a check we interpolate again and find Ai(-2-04365 227) = 0-20000000r Thus to

eight decimals, ^ = 2-04365 227.

Time tests. In order to assess the merit of the present method of interpolation, time
tests have been carried out by a number of computers. Ten (in some cases more)
interpolations were performed using the table from which Table 2 above is an extract,
and they were then repeated using tables of which Tables 3, 4 and 5 are extracts. The

Table 3 Table 4

X

209
210

Ai-(-iB)

+ 017005055
+ 016348451

S2

-3554
- -3433

X

to
 

to )

I

Ai(-a;)

+ 0-22740743
+ 0-16348451

SI

-456984
-345378

Table 5

X

20
2-1

Ai (-*)

+ 0-22740743
+ 0-16348451

d2

+ 76 222
+ 57 617

d4

-180
-171

r4

+ 22
+ 20

speeds of the methods were compared by dividing by the time taken using Table 2 and
afterwards forming the means (with respect to all the computers); these are as follows:

Table 2

1 0

Table 3

1 0

Table 4

(i) («)
21 1-8

Table 5

2-3

Lagrange

3-3

Although the actual speeds varied from one computer to another, the time ratios did
not deviate much from the means.

Details of the ways in which each table was interpolated have an important bearing
on the speeds and we now describe them briefly.

Table 2. I t may be thought that a transfer calculating machine would be the most
suitable for evaluating the interpolation polynomial. Various machines were tried,
and the quickest was usually found to be a hand machine with rapid keyboard setting
but without a mechanical transfer.

Table 3. This is an extract from a published table (l) at interval 0-01 in x. Interpola-
tion was performed using Bessel's formula

f(a+ph) = (l-
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The value of 5? was formed mentally, and B", B'" were obtained from (3). In most
interpolations the term B'"8\ could be neglected.

Table 4. This is at an interval 0-1 in x and gives the modified second difference 8^ and
fourth-difference correction y4 for use in the modified Everett formula ((1), p. B7)

f(a+ph) = (l-p)fo+pf1 + El8lo + E\8l1 + Mi
oyl+Mi7

i
1. (9-1)

(i) No satisfactory single table of all the coefficients E%, E\, M\, M\ exists having
an interval 0-001 in p, but by suitable pretabulation near the required values it was
possible to carry out the time tests on the assumption that such a table was at hand.
The actual values of p used had more than four decimals. In consequence, formula
(9-1) was applied twice, using the two tabular entries nearest to the value of p in
question, and the results interpolated linearly to give the correct answer. This is a little
quicker than the alternative process of interpolating the interpolation coefficients
before applying (9-1).

(ii) The tests were repeated on the assumption that a table of E%, E\, M% and M\
having an interval 0-0001 in the argument p was available. At this interval no inter-
polation in M% and M\ is required, and the quickest way of evaluating (9-1) is to
interpolate and record El and E\ first.

Table 5. This gives the coefficients d2, dA for use with the Everett-type polynomial
(7-4). The evaluation was performed in the manner suggested in §7.

Lagrange's method. This was applied to tabular values of Ai (— x) at interval 0-1 in
x and the eight-point formula was used. The values of the Lagrangian coefficients were
extracted from (6), which is a table at an interval 0-001 in^ . The two nearest tabular
entries were used and the required result then obtained by linear interpolation.

Examining the results of the time tests, we notice that it takes no longer to carry
out an interpolation in Table 2 than it does in Table 3, which has an argument interval
one-tenth the size. Allowing for the fact that the rows in the former table are twice as
long as those of the latter, we see that by using economized interpolation polynomials
instead of second differences, the table of Ai (— x) from which Table 3 is an extract
could be reduced to one-fifth the size without detriment to the user.

Tables 4 and 5, it may be noted, take up even less space than Table 2. But the
cost of the saved space is to double the labour required for an interpolation. Moreover,
because of the increased number of arithmetical operations involved, the risk of making
a blunder in the interpolation is magnified. Similar remarks apply to the use of
Lagrange's formula.

The saving of space and the provision of convenient interpolation facilities are
mutually incompatible requirements between which the compiler of mathematical
tables must effect a compromise. In tables which are not linearly interpolable the
usual modern practice is to provide differences or modified differences for use with
Everett's formula, regarded as so much more convenient than that of Lagrange that
the increased size of the table is tolerated. The writers consider economized polynomials
to be even more convenient than Everett's formula and, if the same interval is used,
the extra size can still be tolerated; space can be saved, however, by increasing both
the degree of the interpolation polynomial and the interval of tabulation, with little
extra inconvenience to the user.
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The work described above has been carried out as part of the research programme
of the National Physical Laboratory, and this paper is published by permission of the
Director of the Laboratory.
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