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Language-specific orthography (i.e., letters or bigrams that exist in only one language) is known to facilitate language

membership recognition. Yet the contribution of continuous sublexical and lexical statistics to language membership

decisions during visual word processing is unknown. Here, we used pseudo-words to investigate whether continuous
sublexical and lexical statistics bias explicit language decisions (Experiment 1) and language attribution during naming

(Experiment 2). We also asked whether continuous statistics would have an effect in the presence of orthographic markers.

Language attribution in both experiments was influenced by lexical neighborhood size differences between languages, even

in presence of orthographic markers. Sublexical frequencies of occurrence affected reaction times only for unmarked

pseudo-words in both experiments, with greater effects in naming. Our results indicate that bilinguals rely on continuous

language-specific statistics at sublexical and lexical levels to infer language membership. Implications are discussed with

respect to models of bilingual visual word recognition.

Keywords: bilingualism, language membership decision, naming, sublexical units, lexical neighborhood, statistical learning,

orthographic marker

Introduction

The ultimate aim of language comprehension is the
extraction of a coherent and meaningful percept from
a stream of noisy and often ambiguous input. In the
bilingual case, the input can potentially stem from two
different languages. This adds a level of complexity
to language comprehension, since the two languages
rely on different, and often contradicting, linguistic
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structures. Thus, early recognition of the language
of a word is potentially advantageous for language
comprehension in several ways. First, it allows narrowing
down possible interpretations of preceding and following
inputs to those that fit the language of the current
input at the single word as well as at the sentential
level (Libben & Titone, 2009). Second, knowing the
language of an input facilitates its recognition itself
by narrowing lexical search to one language only
(Casaponsa, Carreiras & Duiabeitia, 2014; Schulpen,
Dijkstra, Schriefers & Hasper, 2003). The extent to which
this is possible is of high importance for models of
bilingual word recognition, which assume that lexical
access is fundamentally language-unselective, meaning
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that any visual input activates orthographic, lexical, and
phonological representations in both languages (Conrad,
Alvarez, Afonso & Jacobs, 2014; De Groot, Delmaar
& Lupker, 2000; Dijkstra, Hilberink-Schulpen & van
Heuven, 2010, but see also Costa, La Heij & Navarrete,
20006).

In natural settings, language membership information
can be inferred from a variety of cues external to
the word itself, such as sentential context or prior
information about the speaker. Even in the absence
of such external cues, however, bilinguals are able
to reliably identify the language of a single word
(Casaponsa et al., 2014; Grainger & Dijkstra, 1992; Vaid
& Frenck-Mestre, 2002; van Kesteren, Dijkstra & de
Smedt, 2012). For example, a trivial source for language
membership information is the lexical word form itself,
which — unless a cognate — is unambiguously associated
with a certain language (Grainger & Dijkstra, 1992).
Differences between orthographic scripts (i.e., English—
Chinese), or unique graphemes (i.e., the letter @ in
Norwegian vs. English, van Kesteren et al., 2012) can
also cue language membership. Even in the case of
a shared orthographic system, two-letter combinations
(bigrams) that are orthographically legal in only one
of two languages (i.e., 7X in Basque vs. Spanish,
Casaponsa et al., 2014, OF in French vs. English, Vaid
& Frenck-Mestre, 2002), termed orthographic markers,
can speed language categorization and lexical access.
A recent extension of the most prominent cognitive
model of visual word recognition, the bilingual interactive
activation model plus (BIA+, van Kesteren et al., 2012),
incorporates the effects of orthographic markers on
language membership decisions through inclusion of
separate sublexical and lexical language nodes, which
represent the language membership of language-unique
units, i.e., orthographic markers and lexical word-forms,
respectively. Importantly, in this model, the language
membership of a letter string can be identified based
on sublexical information alone. This is in line with the
suggestion that orthographic markers allow for language
identification without processing of the complete letter
string or access to lexical representations (Vaid & Frenck-
Mestre, 2002). However, the amount of lexical activation
during language decisions has not been explicitly tested.

The evidence reviewed so far focuses exclusively on
dichotomic language membership cues, such as language
membership of lexical word forms and orthographic
markers, which exist in one language only. However,
ample evidence suggests that the visual word processing
system is sensitive to continuous statistical patterns in
the native language. For instance, lexical orthographic
neighborhood size, a measure of lexical co-activation
during lexical search (Andrews, 1997), is negatively
correlated with RT on a range of tasks, such as lexical
decision and naming (Carreiras, Perea & Grainger, 1997,
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for a review see Andrews, 1997). Similarly, a large
body of findings shows that the frequency of sublexical
units modulates word processing in different languages
(syllables: Carreiras, Alvarez & de Vega, 1993; Conrad,
Carreiras, Tamm & Jacobs, 2009; Conrad, Grainger
& Jacobs, 2007; Conrad & Jacobs, 2004; morphemes:
Deutsch, Frost, Pollatsek & Rainer, 2000; Frost, Kugler,
Deutsch & Forster, 2005; bigrams: Westbury & Buchanan,
2002). Furthermore, Bailey and Hahn (2001) concurrently
manipulated word-likeness at sublexical and lexical
levels and demonstrated a unique contribution of each
of the two levels to word-likeness ratings of visually
and auditory presented pseudo-words. They found a
correlation between word-likeness ratings and lexical
neighborhood sizes as well as with sublexical bigram
frequencies.

In bilinguals, differential effects of within- and
between-language orthographic neighborhood sizes on
word processing were found (De Groot, Borgwaldt,
Bos & van den Eijnden, 2002; Lemhoéfer, Dijkstra,
Schriefers, Baayen, Grainger & Zwitserlood, 2008). For
example, Lemhofer and colleagues (2008) showed that in
a progressive demasking task within-language neighbors
have stronger effects on word recognition than between-
language neighbors. Moreover, Conrad et al. (2014)
recently found that bilingual visual word recognition is
sensitive to the frequencies of syllabic units in both
languages. In particular, processing of sublexical units in
first and second language (L1 and L2, respectively) seems
to benefit from sublexical frequencies in the respective
non-presented language.

Given monolinguals’ ability to use statistical linguistic
information and bilinguals’ sensitivity to linguistic
structure of both of their languages, the question arises
whether bilinguals can use statistical information for
language membership identification. Namely, differences
in frequencies of occurrence between languages could
be used as cues to determine language membership.
This is only possible if bilinguals are able to assess
sublexical (i.e., bigram frequencies) as well as lexical (i.e.,
orthographic neighborhood sizes) statistics separately for
L1 and L2. The alternative would be that they represent
statistical information in a way that summarizes across
languages, in which case statistical information could not
be used in language membership decisions. For example,
in the former case a German—English bilingual would
correctly realize that forn is more English-like than
German-like although it is orthotactically legal in both
languages. By contrast, the latter case would implicate
that the same bilingual would only be able to estimate
how word-like forn is without differentiating between
languages. The effect of fine-grained sublexical and
lexical statistical information in language membership
decisions has so far not been investigated systematically
(though note that both alternatives are possible within


https://doi.org/10.1017/S1366728915000292

580 Yulia Oganian, Markus Conrad, Arash Aryani, Hauke R. Heekeren, Katharina Spalek

models of non-selective lexical access). Bridging this gap
is important for any comprehensive model of bilingual
word recognition that describes language membership
representations and accounts for their involvement in
visual word recognition, such as the BIA+ model (Dijkstra
& van Heuven, 2002; van Kesteren et al., 2012).

The present study

We designed the present study to shed light on
the contribution of continuous sublexical statistics,
measured through bigram frequencies, and lexical
statistics, measured through orthographic neighborhood
sizes, to language membership attribution. Moreover, we
investigated whether continuous language membership
information is ignored if a decision can be made based on
an orthographic marker, as suggested by Vaid and Frenck-
Mestre (2002). Finally, we asked whether the contribution
of sublexical and lexical variables to language decisions
depends on the output modality — comparing performance
across decision and naming tasks.

First, we performed a corpus analysis to investigate the
extent to which English and German words differ in their
bigram frequencies and orthographic neighborhood sizes
in English and German. We reasoned that only variables
that are differently distributed in the two languages are
potentially relevant for language membership decisions.
For example, for bigram frequency to be informative about
language membership, bigrams must exist that are more
frequent in German than in English, and vice versa. At
the level of orthographic neighborhoods, only if German
words have more orthographic neighbors in German
than in English, and vice versa, can the orthographic
neighborhood of a word be diagnostic of its language
membership.

In the second step (Experiment 1), we designed
an experiment that probed the effect of differences in
orthographic neighborhood sizes and bigram frequency
measures between languages on language decision
behavior of German—English bilinguals. To isolate the
effects of differences in language-similarity statistics
we employed pseudo-words (PWs). This allowed us to
eliminate the influence of additional factors such as
word frequency and semantics and rendered the exact
manipulation of frequency variables more feasible. We
built on results from the corpus analysis to identify
the relevant range for each variable. Additionally, we
contrasted the effects of continuously varying variables
with the effect of orthographic markers (such as pf, as
in Pfanne (pan), for German or gh, as in laugh, for
English). We expected to find no effects of continuous
differences in sublexical and lexical similarity to the
two languages if bilinguals are sensitive to orthographic
markers only. However, if bilinguals are sensitive to
fine-grained statistical differences between languages,
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continuous variation of sublexical and lexical statistics
should affect bilinguals’ language membership decisions.
In the third step (Experiment 2), we investigated
the extent to which the effects of probabilistic cues
depend on the output modality by contrasting the
2-alternative language decision task of Experiment
1 with a naming task. The language decision
task requires an explicit decision between the two
languages, based on sublexical and lexical cues.
Contrary to this, naming requires a mapping from
orthographic, sublexical, representations to language-
specific phonology, which for pseudo-words does not
necessarily require involvement of lexical representations
(Coltheart, Rastle, Perry, Langdon & Ziegler, 2001).
Thus we expected sublexical representations to play a
larger role in the naming task than in the language
decision task, and orthographic neighborhoods to play
a larger role in the language decision task than in the
naming task. A comparison of naming and language
decision tasks will thus show whether language attribution
in naming would preferentially be resolved based on
sublexical orthographic and phonological information
with decreasing involvement of lexical representations.

Corpus analysis

Methods

The corpus analysis was based on all spelling-corrected
words of the German and the full English Subtlex
databases (Brysbaert, Buchmeier, Conrad, Jacobs, Boelte
& Boehl, 2011). We analyzed Levenshtein distance
(OLD20; Yarkoni, Balota & Yap, 2008) as a measure of
orthographic neighborhood size, and mean and maximal
bigram frequencies as measures of sublexical frequency.
These variables were calculated for each word of both
corpuses, separately for each language. This made it
possible to examine the extent to which the statistical
properties of a given variable differ between languages
and whether words of one language are probable in the
other language with respect to each variable. Since the
focus of this research was on characterizing properties
of letter strings that are unique for a certain language,
identical interlingual homographs were excluded from this
analysis.

Orthographic neighborhood size

The Levenshtein orthographic neighborhood distance of
a letter string (Yarkoni et al., 2008) is its average distance
to its 20 closest Levenshtein orthographic neighbors
in a lexicon. The Levenshtein distance between two
letter strings is computed as the minimal number of
letter deletions, insertions, and changes that is needed
to transform their orthographic word forms into each
other. We computed OLD20 using the “vwr” library in
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the statistical package R (Keuleers, 2013). OLD20 is
a variable with a strong dependency on word length,
such that if a specific word length is more common in
a language, the orthographic neighborhoods of words
of that length are denser than for other word lengths.
To control for the difference in average word length
between German and English and make OLD20 values
in German and English comparable, OLD20 was mean-
normalized for each word length within each language.
All language comparisons were based on normalized
scores. For each word in both corpora we computed the
difference between its average Levenshtein distances to
the 20 closest neighbors in the German Subtlex (OLDg)
and in the English Subtlex (OLDg), and the difference
between these variables (diffOLD). DiffOLD was coded
such that positive values reflect a larger orthographic
neighborhood in German than in English.

Bigram frequencies

Positional log10 token bigram frequencies were computed
based on word form frequencies from the Subtlex
databases and normalized to frequency per million
bigrams. This allows better comparability across
languages than normalization per million words, as
German words are longer on average. Bigram frequencies
were also mean-normalized within each language. For
each word in the two corpora we computed the difference
between the mean German bigram frequency (mBGg) and
the mean English bigram frequency (mBGg), diffBF, of
its constituent bigrams.

Furthermore, we hypothesized that language decisions
might be guided not only by the average difference in
bigram frequency between languages, but also by single
sublexical units with a strong difference in language
similarity. For each word we thus also identified its
constituent bigram with the largest difference between
its frequency in German and English. We denote this
maximal bigram frequency difference as maxdiffBF, with
positive values for high German-typicality and negative
values for higher English-typicality.

Results and discussion

The descriptive statistics for the three difference variables
are presented in Table 1 and their distributions are plotted
in Figure 1.

Of the three difference variables, diffOLD shows the
largest difference between its distributions in English and
German (Figure 1, upper panel), with more than 90%
of words of each language having more orthographic
neighbors in their language than in the respectively other
language (d” = 2.7). While the distributions of maxdiffBF
are also similarly different between languages (d’ = 1.4),
there is a large overlap between the distributions of diffBF
in German and English (d’ = 0.24).

https://doi.org/10.1017/51366728915000292 Published online by Cambridge University Press

5_
g
g Jmmmwmmmmm
=
. il
5 0 5
OLD, - OLD,
5_
0
= A
: ™
" oo AR AR |||ﬂ]u|m. ,
5 0 5
1'|1BGG—mBGE
15+
B 10-
s s |
= 0 Ll oo I|I| || ||| |- :
-5 0 5
maxdifBG

‘ I English lexicon German lexicon ]

Figure 1. Distribution of differences in orthographic
neighborhood size (diffOLD, upper panel), mean bigram
frequency differences (diffBE, middle panel), and maximal
bigram frequency differences (maxdiffBF, bottom panel) in
German and English SUBTLEX lexica.

The corpus analysis, thus, reveals that lexical
neighborhoods can be very informative for the language
membership of a word, in line with previous findings
showing larger same-language than cross-language
neighborhoods (Marian, Bartolotti, Chabal & Shook,
2012). It also provides maxdiffBF as a potential source of
language membership information, whereas mean bigram
frequency differences were more similar across languages.
In the following two experiments we investigate the effects
of all three variables on language attribution.

Experiment 1: Language Decision Task

Methods & materials

Participants

This study was conducted with highly proficient German—
English bilinguals (n = 25, 5 male, ages 21-35, mean
age 27 years). All were students at the Freie Universitaet
in Berlin and had studied English as their first foreign
language in high school. All had spent at least 9
consecutive months living in an English-speaking foreign
country (GB, USA, English-speaking Canada, Australia,
or New Zealand). Participants were right-handed, had
normal or corrected-to-normal vision, and did not suffer
from a reading disability or other learning disorders.
All participants completed an online language history
questionnaire (adapted from Li, Sepanski & Zhao, 2006)
prior to participation and were only admitted to the
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Table 1. Descriptive statistics of the difference variables, their pair-wise correlation in the English and
German SUBTLEX lexica, and Cohen's d for the comparison between English and German distributions of
each variable. Orthographic neighborhood size: diffOLD = OLDg — OLDg, mean bigram frequency
difference: diff BF = BF g — BF'g; maximal bigram frequency difference: maxdiffBF is the maximal bigram

frequency difference across all bigrams of a word.

SUBTLEX Lexicon
English German

Cohen’s d mean min max SD mean min max SD
diffOLD 2.7 —1.7 —54 33 1.0 2.1 -32 7.5 1.3
diffBF 0.2 —-0.9 -5.9 3.4 0.9 0.2 -5.5 4.4 1.1
maxdiffBF 1.4 —1.0 -3.1 2.8 1.0 1.0 -3.1 2.8 1.0
Correlations

diffBF maxdiffBF diffBF maxdiffBF

diffOLD 0.22 0.27 0.34 0.38
diffBF 0.3 0.28

Table 2. Profiles of participants in Experiment 1 and 2. There were no significant differences between participants of

Experiment 1 and 2.

Experiment 1

Experiment 2

L1 (German) L2(English) L1 (German) L2(English)
mean SD mean SD mean SD mean SD

Lextale 90.8 6.9 80.5x% 8.7 90.4 5.0 77.0% 13.0
reading rate w/min real words 131.4 10.2 124 9.0 130.0 14.0 123.2 9.5

pseudo-words 83.5 17.5 81.3 13.5 83.5 20.0 78.6 10.6
Self report Age of acquisition (years) - - 9.7 1.64 - - 9.3 2.0

Proficiency’ - - 6.0 0.5 - - 5.9 0.4

Accent’ - - 2.4 1.0 - - 2.7 0.8
Notes.

1. On a scale of 1 (basic) — 7 (native).
2. On a scale of 1(no accent) — 7 (very strong accent).
* p < .05 for comparison between L1 and L2.

study if they fulfilled the above criteria. Self-reports
of L2 proficiency were made on a 1-7 Likert scale,
separately for reading, writing, speaking and listening
abilities. The averaged self-estimated English proficiency
was 5.9 (range 4.5-7). Additionally, participants’ general
proficiency and reading abilities were assessed after the
experiment using the LEXTALE tests of German and
English proficiency (Lemhofer & Broersma, 2011). The
tests consist of short lexical decision tasks which include
words of varying frequency and pseudo-words. The final
score is the average percentage of correct responses to
words and pseudo-words. Reading abilities were assessed
using the reading and phonological decoding subtests of
the TOWRE (Torgesen & Rashotte, 1999) for English and
the word and pseudo-word reading subtests of the SLRT-II
test (Moll & Landerl, 2010) for German. Both tests assess
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reading rate (words/min) in single-item reading of words
and pseudo-words (PW). Participants’ language profile
is summarized in Table 2. Participants were recruited
through advertisements on campus and in mailing lists for
experiment participation. All participants completed an
informed consent form prior to beginning the experiment.
They were reimbursed either monetary or with course
credit.

Stimuli & Design

The stimulus set contained 192 marked pseudo-words,
half of which were orthographically legal in German
only, while the other half was orthographically legal
in English only, and 192 neutral pseudo-words which
were orthographically legal in both languages. Within the
set of marked pseudo-words diffOLD and diffBF were
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Table 3. Properties of neutral pseudo-words stimuli of
Experiments 1 and 2. Neutral pseudo-words contained
only bigrams that were legal in both languages.
Orthographic neighborhood size: diffOLD = OLDg —
OLDg, mean bigram frequency difference: diffBF =
BF s — BFg; maximal bigram frequency difference:
maxdiffBF is the maximal bigram frequency difference
across all bigrams of a word.

distribution correlations
mean min max diffBF  maxdiffBF
diffOLD —-0.16 —-2.60 240 0.24 0.38
diffBF 0.10 —-2.70 2.30 0.60
maxdiffBF 0.05 —1.00 1.10

varied parametrically. Within the set of neutral pseudo-
words, diffOLD, diffBF, and maxdiffBF were varied
parametrically. Pseudo-words were selected from the
English lexicon project (Balota, Yap, Cortese, Hutchison,
Kessler, Loftis, Neely, Nelson, Simpson & Treiman,
2007), a German pseudo-word database provided by
authors MC and AA, as well as a pseudo-word set
created specifically for this study. Note that all marked
pseudo-words were composed of letters that exist in both
languages (i.e., excluding the German letters “4, o, i,
13), such that decisions based on low-level visual pop-out
effects would not be possible.

Neutral pseudo-words

Neutral PWs were orthographically legal and pronounce-
able, with the same number of phonemes and syllables
when pronounced in either language. Selection of neutral
pseudo-words was guided by three considerations. First,
we ensured that for all three variables — diffBF, maxdiffBF,
and diffOLD — the range of overlap between their English
and German distributions was covered (Figure 1 for the
distributions in the corpus and Table 3 for properties of the
stimulus set). Second, for each of the variables half of the
stimuli had positive values and half had negative values,
such that an approximately equal number of neutral PW
was German-like or English-like respectively in each of
the three variables. Third, the pseudo-words were chosen
such as to reduce the pair-wise correlations between the
three variables as well as their correlations with pseudo-
word length (see Table 3). Note that the correlation
between diffBF and maxdiffBF in neutral pseudo-words
is high, as the two variables rely on the same information
source.

Marked pseudo-words
Marked PWs contained a letter combination (1-3 letters)
that violated orthographic rules of one of the languages
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Table 4. Properties of marked pseudo-words. Marked
PWs contained at least one bigram that was legal in one
language (i.e. the marker language) and had a frequency
of 0 in monomorphemic words of the other language.
Orthographic neighborhood size: diffOLD = OLDy, —
OLDg,; mean bigram frequency difference: diffBF =
BFs — BFg; maximal bigram frequency difference:
maxdiffBF is the maximal bigram frequency difference
across all bigrams of a word.

English-marked PW German-marked PW

mean  min max mean min max
diffOLD —0.90 —4.00 1.00 0.70 —=2.00 2.70
diffBF —-0.70 —-3.60 1.60 0.50 —2.40 3.10
maxdiffBF —1.80 —-2.70 —1.20 1.60 1.10 2.70

(such as th, ght, or word-final y for English, or pf, hl
or word-middle sch for German markers). The bigram
frequency of marker bigrams is not necessarily 0 in the
respective other language if computed across the whole
SUBTLEX, because these letter combinations could occur
in rare cases at the boundaries between (otherwise free)
morphemes, or in loan words and proper names. For
example, the German marker pf occurs in English words
such as cuPFul or camPFire but never as a grapheme,
within a morpheme, or syllable. Similarly, the English
marker th occurs in German names (e.g., FuerTH),
Greek loan words (e.g., THeologie (theology)), and as
a bigram unifying two normally free morphemes (e.g.,
achTHundert, (eight hundred)), but not as a grapheme in
other etymologically German words. Since all our PWs
were mono-morphemic, we recomputed the frequencies
for all orthographic markers based on mono-morphemic
words (that is consisting of only one root morpheme
plus a simple ending) of the relevant word lengths.
In the resulting set of words marker frequencies were
0 in the respectively other language. As orthographic
markers coincide with bigrams that define maxdiffBF
values, marked pseudo-words were chosen to differ
parametrically in their diffBF and diffOLD values only,
whereas English-marked and German-marked pseudo-
words were balanced with respect to maxdiffBF values
(correlation between diffOLD and diffBF: rg— —.19,
rg = .42, see Table 4 for descriptive statistics). Length
and syllable number were matched across marker type
conditions and did not correlate with experimental
variables.

To further ensure that marked pseudo-words were
indeed pronounceable and orthographically legal in one
language only and neutral pseudo-words in both, all
pseudo-words were rated for their pronounceability and
orthographic legality in German and English by 3 native
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speakers of German and English respectively. Only
pseudo-words that were rated as pronounceable and
orthographically legal in both languages by all referees
were included in the study as neutral pseudo-words.
Similarly, marked pseudo-words were only included if
all referees rated them as pronounceable in the marking
language and illegal in the other language.

Procedure

Participants performed a speeded language decision task,
in which they were required to categorize whether a
pseudo-word was more likely to be a German or an
English word. Stimuli were presented on a 18” computer
screen (Arial, font size 40) using the Psychtoolbox
(Brainard, 1997; Kleiner, Brainard, Pelli, Ingling, Murray
& Broussard, 2007) for MATLAB (version 7.10.0,
Mathworks Inc., Natick, Massachusetts). A trial consisted
of a fixation cross presented for 800 ms, followed
by presentation of the stimulus until the participant
responded, for at most 2 sec. Responses were given by
button press on a custom-made response box with the two
index fingers. Buttons were assigned to a language by
German and British flags in the respective corners of the
screen below the stimulus. Button assignment remained
constant within but switched between blocks. On each
trial response latency (RT) and language decision were
recorded.

The task began with instructions and an example trial,
followed by the 384 experimental trials, presented in 8
blocks of equal length!. Pseudo-randomization ensured
that not more than three equally marked items would
appear consecutively. Participants could have self-paced
breaks after each block. If a participant failed to respond
before the time-out for more than three times he or she
was reminded to respond faster. Subsequent to completion
of the language decision task, participants completed the
proficiency tests described above.

Statistical analysis

All statistical analyses were performed in the open
source statistical programming environment R (R core
team, 2013). RTs were analysed with linear mixed-
effects models and language decisions were analysed
using logistic mixed-effects models (Baayen, Davidson
& Bates, 2008; Jaeger, 2008), as implemented in the
Ime4 package for R (Bates, Maechler, Bolker & Walker,
2014), and included subjects and items as random factors.
Due to the complex random factor structure of our data,
the implementation of maximal random factor structure
was not practicable. Instead, we modelled the random
factor structure with the intercept and the maximal order

! The first 2 blocks contained neutral pseudo-words only. Block type
did not affect the variables of interest, and hence, results are reported
collapsed across block types.
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interaction of fixed factors, as recently suggested (Barr,
2013). Significance of fixed effects was assessed through
type-11I Wald-tests of single parameter estimates. We
follow the convention of the Ime4 package by reporting
the z-test statistic for logistic mixed-effects models and
the y2-test statistic for linear models (note though that
both test statistics are equivalent).

Note that it is not possible to define correct
and wrong responses for neutral pseudo-words, since
most of them contain conflicting language membership
information and no exclusive language cues. Thus,
language decision analyses for neutral pseudo-words
modelled the probability of English responses. However,
for marked pseudo-words the marking creates a strong
preference for the marker language. Thus, for marked
pseudo-words we conducted analyses on the % marker-
incongruent responses, to which we refer as error
responses.

First, to examine whether orthographic markers biased
language decisions, we analysed the effects of marker type
(German (G) vs. English (E) vs. neutral (N))?. Then the
effects of continuous variables on language decision and
response latencies were analysed separately for neutral
and marked pseudo-words.

Outlier exclusion was performed for each participant
and separately for marked and neutral PWs based on
separate multiple regression models for each participant,
containing the same factors that were used for RT
analyses. The expected RT for each trial was determined
and trials with a difference of more than 2.5 residuals’ SD
between expected and actual RT were labelled as outliers
and discarded from further analyses.

Results

Data of all participants were included in the analyses.
Outlier analysis led to a removal of 2.5% of the trials.
For illustration purposes only, continuous variables were
subdivided in three equally large subsets, of which the
two extreme ones are depicted in figures, with the label
“German” for the subset with most positive, i.e., most
German-like values, and the label “English” for the most
negative, i.e., most English-like values.

Effect of marker presence on language decisions

We analyzed the effect of marker language (G vs. E vs. N)
on the probability of English responses with a logistic
mixed-effects model, which included marker language
as a fixed factor, intercepts for subject and items as
random factors, and random slopes for marker language

2 Due to the high number of marker-congruent responses for marked
PWs, there were not enough error trials (< 15 for most participants)
to analyze RTs across marked and neutral PWs including response as
factor. Thus we analyze RTs separately for marked and neutral PWs.
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Table 5. Mean and standard deviations (SD) for RTs to marked and neutral PW in Experiment I and 2.

RT

Response: German

Response: English % Response English

Exp. 1 mean SD mean SD mean SD
Markedness English 853 315 746 204 90 29
German 776 220 859 316 16 36
Neutral 871 279 905 292 45 50
Exp. 2
mean SD mean SD mean SD
Markedness English 758 244 778 311 79 41
German 730 215 792 307 17 38
Neutral 712 211 768 318 42 49

within subject. Marker language was contrast-coded in
the model, with the two orthogonal contrasts English-
marked and neutral versus German-marked, and English-
marked vs. neutral PWs. Marker language influenced the
attribution of pseudo-words towards that language (E:
90%, G: 17%, N: 45% response English, see Table 5),
x2 (1) = 462.9, p < .001. Planned comparisons, which
were directly encoded in the model, showed that English-
marked and neutral PWs were more often classified as
English than German-marked PWs, b =2.08, SD =0.11,
z = 18.7, p < .001, and that the same held for English-
marked as compared to neutral pseudo-words, b = 1.4,
SD =0.08,z = 18.0, p < .001.

Effects of continuous variables in the absence of
markers: Language decision

The analysis of language decisions on neutral PWs
involved the continuous variables diffBF, maxdiffBF, and
diffOLD, as well as all possible interactions between them
as fixed effects. Random factor structure of the model
included intercepts for subjects and items, as well as
random slopes for the interaction of diffBF, maxdiffBE,
and diffOLD. As expected, neutral pseudo-words were
more often categorized as similar to the language in which
their orthographic neighborhood was larger, b = —0.28,
SD = 0.07, z = 3.9, p < .001 (Figure 2). No significant
effects were obtained for maxdiffBF and diffBF or for any
interactions.

Effects of continuous variables in the absence of
markers: Response times

The analysis of response times to neutral PWs (Table 6)
contained the fixed factors response language (G vs.
E, dummy coded) and the continuous variables diffBE
maxdiffBF, and diffOLD. Random factor structure of the
model included intercepts for subjects and items, random
slopes for the interaction of response, diffBF, maxdiffBF,
and diffOLD within subjects and random slopes for
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response within items. Responses “German” were overall
faster than responses “English” (see Table 5 for mean
RTs). While there was no main effect for diffOLD, its
interaction with response was significant (Figure 3b):
increases in diffOLD (i.e., increasingly larger German
compared to English neighborhood) resulted in faster
reaction times (b = —3.54) for “German” responses, while
slowing “English” responses (b = —3.54+22.51 = 19).
A similar, marginally significant, pattern was found
for maxdiffBF (Figure 3¢; b response German ~—12,
b response English =~ 14). “German” responses were faster if
maxdiffBF was positive (i.e., German-typical), whereas
“English” responses were faster for negative maxdiffBF
values (i.e., English-typical). The significant interaction
of diffOLD and maxdiffBF (Figure 3a) resulted from
faster responses for items with consistent diffOLD
and maxdiffBF values, and slower responses when
either positive diffOLD was accompanied by negative
maxdiffBF values, or vice versa. In other words, responses
were fast if both variables supported the choice of the same
language and slowed if they pointed to different languages
(e.g., when a PW had more orthographic neighbors in
English than in German, but a more German-typical
maxdiffBF value), supporting the importance of both
variables for the decision process. All other main effects
and interactions were not significant.

Interactions of markers and continuous variables’ :
Language decision

Analysis of % errors for marked PWs contained the
fixed factors marker language (G. vs. E), and the
continuous variables diffBF and diffOLD, as well as
all of their interactions. Random factor structure of

3 In both analyses marker language was dummy-coded with English
as baseline, such that main effects of continuous variables reflected
their effect for English-marked PWs, and their interaction with marker
language the addition in beta for German-marked PWs as compared
to English-marked PWs.
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Table 6. Summary of linear mixed-effect regression for reaction times to neutral PW in Experiment 1. Orthographic
neighborhood size: diffOLD = OLDg — OLDg; mean bigram frequency difference: diffBF = BF ¢ — BFg; maximal
bigram frequency difference: maxdiffBF is the maximal bigram frequency difference across all bigrams of a word.

Predictor beta-estimate SD t-value x? p-value Significance
Intercept 877.74 32.48 27.02 730.3 <.001 Kok
diffOLD —3.54 6.00 —0.59 0.35 .56

diffBF —16.73 8.99 —1.86 3.46 .06 +
maxdiffBF —11.58 9.57 —1.21 1.47 23
Response! 47.49 8.93 532 28.27 < .001 *ok
diffOLD : diffBF 12.59 9.31 1.35 1.83 18

diffOLD : maxdiffBF —18.25 8.90 —2.05 421 .04 *
diffBF : maxdiffBF —4.85 10.28 —0.47 0.22 .64

diffOLD : Response 22.51 8.82 2.55 6.52 .01 *
diffBF : Response 1.65 12.13 0.14 0.02 .89
maxdiffBF : Response 25.54 13.91 1.84 3.37 .07 +
diffOLD : diffBF : maxdiffBF 11.89 10.41 1.14 1.31 25

diffOLD : diffBF : Response —15.24 13.09 —1.16 1.35 24

diffOLD : maxdiffBF : Response 9.62 13.00 0.74 0.55 46

diffBF : maxdiffBF : Response —22.60 14.09 —1.6 2.57 11

diffOLD : diffBF : maxdiffBF : Response —14.78 14.50 —1.02 1.04 31

Note. Significance of p-values: +p < .1; % p <.05; xx p < .001

1. Responses are dummy-coded as 0 — German, and 1 — English, such that Response German is the reference label.

Experiment 1

70 =

(o))
=]
I

% Response English
N 0l
o o
1 1

30 =

I I
German English

Experiment 2

maxdiffBF

—o— German

English

I I
German English
diffOLD

Figure 2. Visualization of the effects of differences in orthographic neighborhood size (diffOLD) and maximal bigram
frequency difference (maxdiffBF) on language decisions for neutral pseudo-words in Experiments 1 and 2.

the model included intercepts for subjects and items,
and random slopes for the interaction of response
and diffOLD within subjects. Overall, above 80% of
responses to marked pseudo-words were in line with their
marker, although more marker-incongruent responses
were made for German-marked than for English-marked
PWs, b=0.6, SD = 0.22, z = 2.8, p = .006 (G: 17%,
E: 10% incongruent responses; see Table 5). Crucially,
the effect of marker language interacted with diffOLD,
b = —0.6, SD = 0.2, z = -3.3, p <.001 (Figure 4a).
Planned comparisons showed an increase in marker-
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incongruent responses for German-marked PWs with a
decrease in diffOLD (i.e., more English neighbors than
German neighbors), b = —0.4, SD = 0.1,z = —3.7, p
< .001, whereas diffOLD had no effect on responses for
English-marked PWs (p > .1).

Interactions of markers and continuous variables:
Response times

Analysis of RTs to marked PWs involved the fixed
factors marker language (G vs. E), diffBF, and diffOLD
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Table 7. Summary of linear mixed-effects regression for reaction times to marked PW in
Experiment 1. Orthographic neighborhood size: diffOLD = OLDg — OLDg,; mean bigram
frequency difference: diffBF = BF g — BF'g; maximal bigram frequency difference: maxdiffBF is the
maximal bigram frequency difference across all bigrams of a word.

Predictor beta-estimate ~ SD t-value X2 p-value Significance
(Intercept) 745.56 24.69  30.20 91195 < .001 =%
diffOLD 7.36 6.94 1.06 1.13 .29
diffBF —12.26 842 —1.46 2.12 15
Marker Language! 47.67 13.93 342 11.70 < .001  x*x
diffOLD : diffBF —3.23 6.41 —0.50 0.25 .61
diffOLD : Marker Language —25.39 9.65 —2.63 6.93 .008 *
diffBF : Marker Language 3.79 10.93 0.35 0.12 73
diffOLD : diffBF : Marker Language 15.80 8.50 1.86 3.46 .06 +
Note. Significance of p-values: + p < .1, % p <.05; %x p < .001
1. Marker language was dummy-coded with English as baseline.
a) diffOLD x maxdiffBF, p = .04 b) diffOLD x Response, p = .01
950 = 950 =
— 900 = — 900 =
3 8
2] (%]
£ £
= =
T 850 - T 850 -
800 — 800 —
1 1 1 1
German English German English
maxdiffBF Response
c) maxdiffBF x Response, p = .07
950 —
= 900 — /E' maxdiffBF ——— German English
@
£
& nz/
850 = diffoLD German =-=-- English
800 —
| |
German English
Response

Figure 3. Visualization of the effects of differences in orthographic neighborhood size (diffOLD), maximal bigram
frequency difference (maxdiffBF), and language decisions (response) on RTs to neutral pseudo-words in Experiment 1. a)
Interaction effect of diffOLD and maxdiffBF; b) Interaction effect of diffOLD and response; ¢) marginally significant

interaction effect of maxdiffBF and response.

(Table 7). Random factor structure of the model included
intercepts for subjects and items, and random slopes
for the interaction of marker language, diffBF, and
diffOLD. Participants made 12 errors on average (English-
marked: 2-24 error trials, German-marked: 6-33 error
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trials), which was not sufficient for an RT analysis
on error trials. Thus RTs were analyzed for correct
responses only. The results largely mirrored the pattern
of language decisions on marked PWs. Responses to
German PWs were slower than responses to English PWs
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Figure 4. Visualization of interaction effects of differences in orthographic neighborhood size (diffOLD) and marker
language on the% errors and RTs to marked pseudo-words in Experiments 1 and 2.

(b =47.7, see Table 7). Moreover, there was a significant
2-way interaction of marker language and diffOLD (b
= —25.4, Figure 4b) and a marginally significant 3-way
interaction between diffOLD, diffBF, and marker language
(b = 15.8). A separate model for English-marked PWs
showed no effects of the continuous variables for English-
marked PWs (p > .1). However, the separate model for
German-marked PWs showed that responses for German-
marked PWs were slowed for larger English than German
neighborhoods (i.e., decrease in diffOLD), b= —18.9, SD
=6.5,t = —2.80, x*> (1) = 7.8, p = .005. Additionally,
this effect was attenuated for more positive diffBF values,
b=120,SD =53,t=227, x> (1) =51,p = .02
In other words, differences in orthographic neighborhood
size mattered less if the mean bigram frequency difference
was in line with marker language for German-marked
PWs.

Discussion

Our data replicate previous studies (Casaponsa et al.,
2014; Thomas & Allport, 2000; Vaid & Frenck-Mestre,
2002; van Kesteren et al., 2012) that showed that
sublexical orthographic markers provide strong language
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decision cues, as orthographically marked pseudo-words
were mostly categorized in line with their marker.

Our data further extends previous findings in several
ways. First, we show that continuous differences in
lexical neighborhood size and maximal bigram frequency
differences influence language decisions in unmarked
pseudo-words. This was apparent in language attribution
as well as in response latencies to neutral pseudo-
words. In particular, response latencies increased when
sublexical vs. lexical levels provided conflicting language
membership information, suggesting that language
membership information from both levels is integrated
towards a language decision. Second, we also find that
orthographic neighborhoods bias language decisions even
for marked letter strings — as reflected by more marker-
incongruent responses, and slowed marker-congruent
responses for L1-marked PWs with larger orthographic
neighborhoods in L2 than in L1. This effect was absent
for L2-marked PWs, probably because our German-
dominant participants could discard these pseudo-words
as non-German based on their orthographic markers —
representing violations of L1 orthographic patterns —
alone. This also explains why correct categorizations
of English marked PWs were faster than respective
correct German categorizations (for a similar argument
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see Casaponsa et al., 2014, as well as Vaid & Frenck-
Mestre, 2002).

Next we asked whether the effects of continuous
differences in language similarity would be preserved in a
more natural task, where language decisions are necessary
but are not made explicitly. To achieve this, we applied the
design of Experiment 1 to a naming task, during which
language categorization happens by choice of language-
specific articulation (which differed between languages in
our stimuli, see Table S1 in supplementary online material,
Supplementary Material).

Experiment 2: Naming Task

Methods & materials

Participants

Twenty-four (6 male, aged 18 — 29, mean age 24) late
German—English bilinguals from the same population
as the participants of Experiment 1 participated in
Experiment 2 (Table 2). None of the participants of
Experiment 2 participated in Experiment 1.

Procedure

In the naming task participants were required to name
(read out) pseudo-words. They were told that although the
PWs were unknown to them, they could be read according
to the pronunciation rules of either German or English.
Participants were instructed to name the pseudo-words
as fast as possible. Importantly, they were instructed not
to choose a pronunciation language prior to naming but
rather to read them out spontaneously and intuitively. An
algorithm based on zero-crossings and power estimation
was employed to register response onsets online. Based
on the results of this algorithm the end of a trial was
determined and participants were provided with visual
feedback indicating that their response was registered.
Responses were recorded with a headset microphone
(Sennheiser PC 131 headset).

Results

The recordings were analyzed offline to determine naming
latencies and response language by an independent
highly-proficient German—English bilingual referee with
the CheckVocal software (v. 2.2.2, Protopapas, 2007).
Another referee reanalyzed a randomly chosen subset
consisting of 50 neutral and 50 marked pseudo-words
for each participant. Across referee reliability was
above 95% for naming latencies and above 85% for
response language. Stimuli, design, and presentation
details were identical to Experiment 1. Naming latencies
(RT) and response language were analyzed with the same
procedures as in Experiment 1. In particular, we used
the same mixed-effects modeling approach (including

https://doi.org/10.1017/51366728915000292 Published online by Cambridge University Press

random and fixed effect structures) as in Experiment 1.
Outlier analyses lead to the exclusion of 3.5% of all trials.

Effect of marker presence on response language

Asin Experiment 1, marker type (G vs. E vs. N) influenced
the attribution of PWs towards a language (E: 79%,
G: 17%, N: 42% English pronunciations, Table 5), x>
(2) = 245.78, p < .001. Planned comparisons showed
that English-marked and neutral PWs were more often
pronounced as English than German pseudo-words, b =
1.8, SD = 0.14, z = 12.1, p < .001, and that English-
marked pseudo-words were more often pronounced as
English than neutral pseudo-words, b = 1.1, SD = 0.08,
z=12.7,p < .001.

Effect of continuous variables in the absence of
markers

Data of three participants who named less than 10 neutral
PWs in English were excluded from this analysis, thus
naming of neutral PWs was analyzed based on data from
21 participants.

Effect of continuous variables in the absence of
markers: Response language

Similar to the results of Experiment 1, the probability
for the choice of English pronunciations increased with
the difference between English and German orthographic
neighbourhood sizes, b = —0.25, SD = 0.08, z = -3.1,
p = .002. Additionally and different from Experiment 1,
the probability for the choice of German pronunciations
increased with the German-typicality of maxdiffBE
b = —-023, SD = 0.1, z = -1.9, p = .06, see
Figure 2. All other main effects and interactions were not
significant.

Effect of continuous variables in the absence of
markers: Naming latencies

The linear mixed-effects model for naming latencies to
neutral pseudo-words is summarized in Table 8. Naming
was faster for PWs with more positive diffBE, i.e.,
high German-typicality at the sublexical level (Figure 5b)
independently of response language (betagerman ~ —24,
betagygiisn ~ —33). Naming latencies in both languages
were marginally slower when diffOLD and maxdiffBF
provided conflicting language information (Figure Sa).
To elucidate the 3-way interaction of diffBF, maxdiffBE,
and response (Figure 5¢) we conducted LME models
for each response language separately. There was no
interaction of diffBF and maxdiffBF for “German”
responses, suggesting that the 3-way interaction in the
omnibus LME model was driven by trials with “English”
responses. Indeed, for “English” responses, the interaction
of diffBF and maxdiffBF, b = 344, SD = 153, t =
2.27, x* (1) = 5.2, p = .02, reflected that the general
speed-up of responses with increases in diffBF (i.e.,
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Table 8. Summary of linear mixed-effects regression for reaction times to neutral PW in Experiment 2.
Orthographic neighborhood size: diffOLD = OLDg — OLDg, mean bigram frequency difference:
diffBF = BF G — BFg; maximal bigram frequency difference: maxdiffBF is the maximal bigram

frequency difference across all bigrams of a word.

Predictor beta-estimate  SD t-value 2 p-value  Significance
Intercept 746.39 33.27 2244 5033 <.001 %=
diffOLD —1.60 885 —0.18 0.03 .86

diffBF —24.07 1099 -2.19 4.80 .03 *
maxdiffBF 19.02 14.01 1.36 1.84 17
Response 6.00 5.79 1.04 1.07 .30
diffOLD : diffBF —9.46 11.51  —0.82 0.68 41
diffOLD : maxdiffBF 23.68 12.98 1.82 3.33 .07 +
diffBF : maxdiffBF 19.08 11.12 1.72 2.94 .09 +
diffOLD : Response -2.17 559 -0.39 0.15 .70

diffBF : Response —8.61 690 —1.25 1.56 21
maxdiffBF : Response 10.11 8.90 1.14 1.29 .26
diffOLD : diffBF : maxdiffBF 12.49 12.99 0.96 0.93 34
diffOLD : diffBF : Response —12.52 727 —1.72 2.96 .09 +
diffOLD : maxdiffBF : Response 13.61 8.25 1.65 2.72 .10

diffBF : maxdiffBF : Response 17.26 7.05 2.45 6.00 .01 *
diffOLD : diffBF : maxdiffBF : Response 15.98 9.92 1.61 2.59 A1

Note. Significance of p-values: + p < .1; % p <.05; %% p < .001

Responses are dummy-coded as 0 — German, and 1 — English, such that Response German is the reference label.

more German-typical values) was reduced for positive
maxdiffBF (i.e., German-typical) values — presumably
because particularly strong “German” evidence at one
bigram position reduced the effect of the remaining
bigrams.

Interactions of markers and continuous variables:
Naming language

Overall, marking provided a very strong cue to the
naming language, resulting in on average 80% of marker-
congruent pronunciations (Table 5). The interaction of
diffOLD and marker language, b = .84, SD = 0.2,
z=13.9,p <.001, was due to differential effects of diffOLD
on% errors for German-marked and English-marked PWs
(Figure 4c). For German marked PWs, increasingly more
English than German neighbors lead to an increase in
the number of marker-incongruent responses, b = — 0.6,
SD = 0.15, z = —4.0, p < .001, whereas there was no
such effect for English-marked PWs (p > .1). There were
no other main effects or interactions.

Interactions of markers and continuous variables:
Naming latencies

Results of the analysis of RTs to marked PWs are
summarized in Table 9. The main effect of diffBF was
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marginally significant (b = —26.87), suggesting that
naming was faster if mean bigrams frequencies were
more positive (i.e., more German-typical), similar to the
effect for neutral PWs. While there were no main effects
of diffOLD and marker language, their interaction was
significant (b = —29.9) — as expected from Experiment
1 — involving opposite effects of diffOLD for German-
vs. English-marked pseudo-words. Namely, naming of
German-marked PWs got faster with more German than
English neighbors, whereas naming of English-marked
PWs tended to be slowed, accordingly. When tested
separately within each marker type, the effect of diffOLD
was marginally significant for German-marked PWs, b =
—13.3,SD=7.6,t=1.74, x* (1) = 3.04, p = .08, but not
significant for English-marked PWs, the latter probably
due to larger variance in participants’ naming latencies to
English-marked PWs. In summary, the pattern of effects
on naming latencies for correctly named marked PWs
was similar to the pattern for naming language choices,
as well as the RT pattern in Experiment 1, as can be seen
in Figure 4d.

Discussion

In Experiment 2, German—English bilinguals named the
same PWs that were presented for language decision in
Experiment 1. In general, naming in L1 was not faster
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Table 9. Summary of linear mixed-effects regression for reaction times to marked PW in
Experiment 2. Orthographic neighborhood size: diffOLD = OLDg — OLDg, mean bigram
frequency difference: diffBF = BF g — BF'g; maximal bigram frequency difference: maxdiffBF is the
maximal bigram frequency difference across all bigrams of a word.

Predictor beta-estimate ~ SD t-value X2 p-value Significance
Intercept 774.75 38.66  20.04 401.60 <.001 s

diffOLD 15.83 12.30 1.29 1.66 .20

diffBF —26.87 15.11  —1.78 3.16 .08 +

Marker Language' —25.21 2437 —1.03 1.07 .30

diffOLD : diffBF —14.37 12.81 —-1.12 1.26 26

diffOLD : Marker Language —29.90 16.84 —1.78 3.15 .035 !

diffBF : Marker Language 19.72 19.11 1.03 1.07 .30

diffOLD : diffBF : Marker Language 20.56

16.33 1.26 1.59 21

Note. Significance of p-values: +p < .I; % p <.05; #x p < .001; 'one-tailed p <.05.

1. Marker language was dummy-coded with English as baseline.
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Figure 5. Visualization of the effects of differences in orthographic neighborhood size (diffOLD), maximal bigram
frequency difference (maxdiffBF), mean bigram frequency difference (diffBF), and response language on RT to neutral
pseudo-words in Experiment 2. a) Interaction effect of diffOLD and diffBF; b) Effect of diffBF, which was independent of
the response language; c) Three-way interaction effect of diffBF, maxdiffBF, and response language.

than naming in L2, reflecting the relatively high L2
proficiency of our participants, even though descriptive
statistics showed a tendency towards faster response times
when naming in German than in English. As expected,
continuous differences in orthographic neighbourhood
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sizes as well as the language-typicality of single bigrams
guided language attribution of neutral pseudo-words. We
also found that — in both languages — naming latencies for
neutral pseudo-words were reduced when mean bigram
frequency was more L1-typical.
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Large orthographic neighbourhoods in the non-marker
language lead to more errors for L1-marked PWs only. As
already discussed in Experiment 1, this is probably due to
especially high sensitivity to violation of L1 orthographic
patterns; such that respective items are immediately
assigned to L2 before orthographic neighbourhoods can
affect this decision.

Overall, the results of Experiment 2 further support
the results of Experiment 1, suggesting that language
membership information from all processing levels is
integrated during naming, even in cases where categorical
sublexical evidence in form of orthographic markers
is available. Additionally they demonstrate that in a
production task processing of letter strings with L 1-typical
sublexical structure is facilitated.

General discussion

The present study investigated the contribution of fine-
grained sublexical and lexical statistical differences
between languages to explicit language decisions in
a language decision task (Experiment 1) and implicit
language decisions in a naming task (Experiment 2), and
contrasted them with the effects of orthographic markers.
To create a task context most sensitive to small variations
in language similarity we used pseudo-words, which
have ambiguous language membership and no semantic
meaning.

Our results show that subtle differences in language
similarity at sublexical and lexical levels affect language
attribution and naming of language-ambiguous letter
strings, corroborating bilinguals’ sensitivity to language-
specific frequency statistics, despite generally language
non-selective processing at all stages (Costa et al., 20006;
Jared & Kroll, 2001; Kaushanskaya & Marian, 2007;
Lemhofer & Dijkstra, 2004).

Moreover, we extend previous studies on orthographic
markers (Casaponsa et al., 2014; Vaid & Frenck-Mestre,
2002; van Kesteren et al., 2012) by directly showing that
in the presence of orthographic markers of L1, but not L2,
lexical information is assessed, as continuous differences
in orthographic neighborhood sizes influenced processing
of L1-marked pseudo-words. Our results provide a direct
comparison of the effects of cross-language lexical
neighborhood information for L1- and L2-marked PWs.

Effects of differences in sublexical frequencies

We manipulated two different types of continuous
sublexical information, namely maximal (maxdiffBF) and
mean (diffBF) bigram frequency difference.

The main effect of maxdiffBF for neutral PWs persisted
beyond the effects of differences in lexical neighborhood
sizes, suggesting that maxdiffBF captures a distinct,
sublexical, source of language membership information.
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In fact, for marked letter strings, maxdiffBF captures the
frequency difference of the marker bigram, opening up the
question whether in fact orthographic markers constitute
the extremes of a continuous statistic, rather than being a
different dichotomous variable.

Distributions of mean bigram frequencies in German
and English differed only minimally in the corpus
analysis. This is not surprising, as it is expected that two
languages with similar morphological structure, such as
German and English, will be similar in sublexical structure
(cf. Marian et al., 2012 for similar findings on English
and Spanish). As expected, given this high similarity
between mean bigram frequency distributions in German
and English, this variable did not cue language decisions.
However, our data show that continuous differences in
mean bigram frequencies affect response latencies. This
effect was most prominent for neutral PWs in the naming
task, but also marginally present for marked PWs in the
naming task and for neutral PWs in the language decision
task. We interpret this in terms of greater reliance on the
sublexical reading route in the naming task than in the
language decision task, as overt pronunciation of non-
lexical items is required in the former but not in the
latter task (Coltheart et al., 2001). The efficiency of the
sublexical reading route depends on the typicality, and
thus frequency, of involved sublexical representations.
The fact that higher L1-similarity at the sublexical level
led to shorter naming latencies, suggests that mapping
of Ll-typical bigrams onto phonology is especially
efficient (Gollan & Goldrick, 2012). Alternatively, and
without assuming a phonological source of this effect
— that likely requires activation of language-specific
phonological units — the present effect may also arise
when participants activate (language-unspecific) those
orthographic units more quickly that are more familiar
to them, because they encounter them more often in their
(constantly used) first than in their second language. We
cannot distinguish between these options based on our
data, as in both cases greater effects in the naming task
for neutral PWs could be due to increased reliance on
sublexical representations. The presence of a marginal
effect for marked PWs in the naming task only is likely
due to the fact that a single bigram (the marker) can
suffice for language decision, whereas naming requires
the complete mapping of all graphemes to phonemes
(allowing for fine grained differences concerning other
than the marker bigrams to influence naming latencies).

Note that differences between mean and maximal
bigram frequencies were apparent in both tasks. While
maxdiffBF affected language decisions and reaction
times in the naming task, diffBF only had an effect on
reaction times in both tasks. The effect maxdiffBF on
reaction times was modulated by participants’ response.
Specifically conflict between language membership
information stemming from maxdiffBF and diffOLD
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slowed processing and agreement lead to faster responses.
This pattern is most in line with its role as a source for
language membership information. In contrast to this,
the effects of diffBF are best interpreted in terms of an
advantage for L1-similar letter strings, as high diffBF
values speeded responses independently of the response
language.

The different roles of diffBF and maxdiffBF in our
study might be due to the specific languages at hand.
Future research should investigate whether a comparison
of languages with more distinct orthotactic structures will
yield more pronounced effects of diffBF on language
attribution.

Effects of differences in lexical neighborhood sizes

Language membership categorization in both experiments
was guided by differences in orthographic neighborhood
sizes. More specifically, neutral pseudo-words were
preferentially categorized to the language that was
predominant in their orthographic neighborhood. This
converges with our corpus analysis, where strong
differences between the number of within and cross-
language neighbors for English and German words were
apparent (c.f. Shook & Marian (2013) for similar findings
on English and Spanish). It is also in line with other studies
reporting effects of within-language and cross-language
neighbors (Dijkstra et al., 2010; Midgley, Holcomb, van
Heuven & Grainger, 2008; see also Jared, 2001).

We also find that lexical neighborhood statistics play
a central role in language attribution of L1-marked but
not L2-marked PWs. More specifically, for L1-marked
PWs with more cross-language than within-language
neighbors, erroneous categorizations were more frequent
and correct categorizations were slowed. Interestingly, this
was not the case for L2-marked PWs, the processing of
which appeared unaffected by the number of orthographic
neighbors from the two languages. Vaid & Frenck-Mestre
(2002) already suggested that L2-specific orthography
(violating L1 orthographic rules) allows for a rather
perceptual (i.e., non-lexical) language attribution strategy.
Our manipulation of diffOLD in marked PWs now
allows directly estimating the extent of lexical search
in the two languages during processing of marked PW.
Results show that, indeed, perception of L2 markers was
sufficient to trigger language decisions, while for L1-
marked PWs mandatory activation of lexical neighbors
seems to influence the decision process. In other words,
violation of overlearned L1 orthographic patterns offers
sufficient cues for language attribution, whereas the same
does not hold for less well-represented orthographic
patterns from L2.

Overall, our findings provide novel evidence for
the activation of cross-language lexical neighbors for
language-ambiguous as well as Ll-marked pseudo-
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words, demarcating a difference from the (lack of)
effects of cross-language lexical neighbors reported
for sentential monolingual contexts (Schwartz & Kroll,
2006). Furthermore, they offer an interesting insight into
how sublexical orthographic cues might modulate the —
otherwise consistently reported — activation of L1 lexical
representations when reading L2. Namely, such cross-
language activation of words from L1 might be restricted
to cases of sublexical ambiguity whereas activation of
lexical representations might focus more exclusively on
the presented L2 language when orthographic patterns
would be illegal in L1.

Comparison of Experiments 1 and 2

Overall, patterns driving language attribution were
comparable across both tasks. But data from the two
tasks also comprise interesting differences: First, while
RTs to neutral PWs in Experiment 1 were shorter
for “German” than “English” responses, this difference
was not significant in Experiment 2. Presumably, for
neutral PWs our German—English bilinguals tended to
respond “German” by default, but respective effects
seem to have decayed until phonological motor output
could be produced. For marked PWs, however, RTs to
English-marked PWs were significantly faster than to
German-marked PWs in Experiment 1, while the opposite
tendency was found in Experiment 2. This important
difference aligns perfectly with specific task demands: In
Experiment 1, lexical neighbourhoods could be blended
out for English-marked but not for German-marked PWs
— as participants seem to have been using a sublexical
strategy responding especially quickly to violations of
L1 orthographic patterns in the case of L2-marked PWs,
which was faster than the integration of lexical and
sublexical information for L1-marked PWs. In the naming
task, on the other hand, already the need to produce
less familiar L2 overt pronunciation may have cancelled
out the processing advantage for L2 marked PWs of
Experiment 1.

Second, in Experiment 2, there were more and greater
effects of bigram frequency differences for neutral
PWs than in Experiment 1, suggesting that language
decisions in naming rely more heavily on language
membership information from sublexical orthographic
and phonological representation levels. Third, responses
to sublexically German-typical PWs in the naming task
were faster independently of the response language,
suggesting that mapping to phonology is more easily
accomplished for more L1-typical items, to which our
participants have been more extensively exposed (Gollan
& Goldrick, 2012). Fourth, effects of diffOLD on RTs for
neutral and marked PWs were stronger in the language
decision task than in the naming task.
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This distinctive pattern of effects across the two tasks
is well in line with the use of a sublexical grapheme-to-
phoneme mapping route (Coltheart et al., 2001), which
is independent of lexical activation, and becomes more
relevant when phonological output has to be produced for
previously not encountered letter strings.

In general, the comparison between the language
decision and the naming task shows that language
membership information is present at all levels of visual
word processing, including the phonological level. The
specific contribution of different sources of language
membership information to language attribution appears
to depend on task strategies and output modalities. In
particular, lexical language similarity has a large impact
in a language decision task, but its effects appeared
reduced for a naming task, where responses may be
produced with less activation of lexical representations
(see e.g., Carreiras & Perea, 2004; Conrad, Stenneken
& Jacobs, 2006). Accordingly, we suggest that, during
naming, conflict in language membership information is
propagated to the phonological level, where sublexical and
lexical similarity statistics are integrated in an implicit
language decision, made through the choice of the most
active phonological units.

Integration in current models of bilingual visual word
recognition

Our data provide ample evidence in favor of language
membership representations at the sublexical level, not
only for orthographic markers but also for shared
bigrams with different frequencies in the two languages.
Moreover, we find that language membership information
is not only available for language-specific word-forms,
as shown in previous studies (Casaponsa et al., 2014;
Vaid & Frenck-Mestre, 2002; van Kesteren et al.,
2012), but that continuous language similarity can be
inferred for non-lexical items from the activation of
orthographic neighborhoods. These findings challenge
models of bilingual visual word recognition to allow
for 1) continuous language membership information in
addition to dichotomic language membership cues and
2) language membership information originating from
sublexical representations. In particular, our data support
the recent extension of the bilingual interaction activation
model (BIA+, van Kesteren et al., 2012) that includes
sublexical language nodes. Two features of this model
appear especially relevant with regard to the present data.

First, dichotomic language membership cues, which
previous studies mainly focused on, are usually
implemented in terms of all-or-none activations of
language nodes by language-unique units at lexical
and sublexical levels. Such dichotomic cues could
also be implemented as language tags ‘attached’
to single language-unique representations (for early
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evidence againt this concept see Grainger & Dijkstra,
1992). However, language tags are not compatible with
continuous language membership information: at the
sublexical level language-shared bigrams cannot be
tagged unambiguously, whereas at the lexical level,
language tags could only have an effect after identification
of a word-form, which would contradict the orthographic
neighborhood effects for pseudo-words in our study.
Thus overall, our data provide further support for the
concept of language nodes, as introduced by Grainger
& Dijkstra (1992) and implemented in the BIA model
and its recent extension to the BIA+ model (van Kesteren
et al., 2012). Although language nodes in the BIA+ were
conceptualized for dichotomic language membership
information, they can be extended to include the effects of
probabilistic language membership information. Namely,
the strength of connections between sublexical and
lexical units and language nodes could reflect the
frequency of these units in the respective language —
meeting computational principles of connection weights
or frequency dependent resting levels, as suggested by
e.g., Grainger & Jacobs (1996).

Second, van Kesteren and colleagues (2012) proposed
to extend the BIA+ model with an additional set
of language nodes accumulating language membership
information from sublexical representations only
(“sublexical language nodes”). Alternatively, one unique
set of language nodes might accumulate lexical and
sublexical language membership information in parallel.
In principle, our data, as well as the data of van Kesteren
et al.,, can be accommodated with either version of
language membership nodes. However, a set of language
membership nodes activated by language information
from both levels of processing — lexical and sublexical
— appears a more parsimonious solution, which would
incorporate the general principles of interactive activation
spreading over different representation levels. Future
studies — including simulation studies and neuroimaging
— are required to further test respective hypotheses.

Conclusions

Language membership information appears to be
available at all levels of the visual word processing
system. It may be delivered via definitive cues, such
as orthographic markers, but as well via probabilistic
cues, such as sublexical and lexical statistics. The present
study provides ample evidence for the processing and
interaction of language-specific sublexical and lexical
statistics in the bilingual brain. It shows that despite
bilinguals’ generally assumed language-independent way
of processing, if required, probabilistic information can
be retrieved for each language separately and can be used
to guide the processing of linguistic input. Future studies
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may specify the dependence of such findings on language
proficiency and extend them to real word material.

Supplementary material

For supplementary material accompanying this paper,
visit http://dx.doi.org/10.1017/S1366728915000292
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