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Abstract. There is much research on the dynamical complexity on irregular sets and
level sets of ergodic average from the perspective of density in base space, the
Hausdorff dimension, Lebesgue positive measure, positive or full topological entropy (and
topological pressure), etc. However, this is not the case from the viewpoint of chaos.
There are many results on the relationship of positive topological entropy and various
chaos. However, positive topological entropy does not imply a strong version of chaos,
called DC1. Therefore, it is non-trivial to study DC1 on irregular sets and level sets. In
this paper, we will show that, for dynamical systems with specification properties, there
exist uncountable DC1-scrambled subsets in irregular sets and level sets. Meanwhile, we
prove that several recurrent level sets of points with different recurrent frequency have
uncountable DC1-scrambled subsets. The major argument in proving the above results is
that there exists uncountable DC1-scrambled subsets in saturated sets.
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1. Introduction
Throughout this paper, let (X, d) be a non-degenerate (i.e. with at least two points)
compact metric space, and f : X→ X be a continuous map. Such (X, f ) is called a
dynamical system.

1.1. Multifractal analysis. The theory of multifractal analysis is a subfield of the
dimension theory of dynamical systems. Briefly, multifractal analysis studies the
dynamical complexity of the level sets of the invariant local quantities obtained from
a dynamical system. There is much research on dynamical complexity on irregular
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sets and level sets of ergodic average from the perspective of density in base space,
positive or full Hausdorff dimension, topological entropy (and topological pressure)
[4, 7, 13, 19, 24, 46, 47, 59–62], Lebesgue positive measure [32, 58] and references therein.
However, this is not the case from the viewpoint of chaos. In the field of chaos theory,
Li–Yorke chaos and distributional chaos are commonly used to describe the dynamical
complexity. In this paper, we firstly study the dynamical complexity of irregular sets and
level sets from the viewpoint of a strong chaotic property called DC1. Notice that Pikula
showed in [50] that positive topological entropy does not imply DC1 so that it is not
expected to show DC1 of irregular sets and level sets by using the results in [6, 7, 47, 59]
that irregular set and level sets carry positive (and full) topological entropy.

The notion of chaos was first introduced in mathematical language by Li and Yorke in
[37] in 1975. For a dynamical system (X, f ), they defined that (X, f ) is Li–Yorke chaotic
if there is an uncountable scrambled set S ⊆ X , where S is called a scrambled set if, for
any pair of distinct two points x, y of S,

lim inf
n→+∞

d( f n x, f n y)= 0, lim sup
n→+∞

d( f n x, f n y) > 0.

Since then, several refinements of chaos have been introduced and extensively studied.
One of the most important extensions of the concept of chaos in sense of Li and
Yorke is distributional chaos [53]. The stronger form of chaos has three variants: DC1
(distributional chaos of type 1), DC2 and DC3 (ordered from strongest to weakest). In this
paper, we focus on DC1. Readers can refer to [22, 55, 57] for the definition of DC2 and
DC3 and see [1, 8, 9, 11, 18, 31, 42, 43] and references therein for related topics on chaos
theory, if necessary. A pair x, y ∈ X is DC1-scrambled if the following two conditions
hold:

for all t > 0, lim sup
n→∞

1
n
|{i ∈ [0, n − 1] : d( f i (x), f i (y)) < t}| = 1,

and there exists t0 > 0, lim inf
n→∞

1
n
|{i ∈ [0, n − 1] : d( f i (x), f i (y)) < t0}| = 0.

In other words, the orbits of x and y are arbitrarily close with upper density one, but for
some distances, with lower density zero.

Definition 1.1. A set S is called a DC1-scrambled set if any pair of distinct points in S is
DC1-scrambled.

1.1.1. DC1 in an irregular set. For a continuous function ϕ on X , define the ϕ-irregular
set as

Iϕ( f ) :=
{

x ∈ X : lim
n→∞

1
n

n−1∑
i=0

ϕ( f i x) diverges
}
.

The ϕ-irregular set and the irregular set, the union of Iϕ( f ) over all continuous functions of
ϕ (denoted by IR( f )), arise in the context of multifractal analysis and have been studied a
lot, for example, see [7, 13, 19, 46, 47, 60]. The irregular points are also called points with
historic behavior, see [52, 58]. From Birkhoff’s ergodic theorem, the irregular set is not
detectable from the point of view of any invariant measure. However, the irregular set may
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have strong dynamical complexity in the sense of the Hausdorff dimension, the Lebesgue
positive measure, topological entropy and topological pressure etc. Pesin and Pitskel [47]
were the first to notice the phenomenon of the irregular set carrying full topological entropy
in the case of the full shift on two symbols. There are lots of advanced results to show
that the irregular points can carry full entropy in symbolic systems, hyperbolic systems,
non-uniformly expanding or hyperbolic systems and systems with specification-like or
shadowing-like properties, for example, see [7, 13, 19, 38, 46, 60, 64]. For the topological
pressure case see [60] and for the Lebesgue positive measure see [32, 58]. Now let us
state our first main theorem to study the dynamical complexity of an irregular set from the
perspective of DC1.

THEOREM A. Suppose that (X, f ) is a dynamical system with the specification property,
ϕ is a continuous function on X and Iϕ( f ) 6= ∅. Then, there is an uncountable DC1-
scrambled subset in Iϕ( f ).

1.1.2. DC1 in a level set. A level set is a natural concept to slice points with
a convergent Birkhoff’s average operated by a continuous function, regarded as the
multifractal decomposition [14, 25]. For a dynamical system (X, f ), let M(X), M f (X),
Me

f (X) denote the space of probability measures, f -invariant, f -ergodic probability
measures, respectively. (X, f ) is called uniquely ergodic if M f (X) is a singleton. Let
ϕ : X→ R be a continuous function. Denote

Lϕ =
[

inf
µ∈M f (X)

∫
ϕ dµ, sup

µ∈M f (X)

∫
ϕ dµ

]
and

Int(Lϕ)=
(

inf
µ∈M f (X)

∫
ϕ dµ, sup

µ∈M f (X)

∫
ϕ dµ

)
.

For any a ∈ Lϕ , define the level set

Rϕ(a) :=
{

x ∈ X : lim
n→∞

1
n

n−1∑
i=0

ϕ( f i x)= a
}
.

Denote Rϕ =
⋃

a∈Lϕ Rϕ(a), called the regular points for ϕ. Many authors have considered
the entropy of the Rϕ(a). For example, Barreira and Saussol proved in [6] that the
following properties for a dynamical system (X, f ) whose function of metric entropy is
upper semi-continuous. Consider a Hölder continuous function ϕ (see [4, 5] for almost
additive functions with tempered variation) which has a unique equilibrium measure; then,
for any constant a ∈ Int(Lϕ),

htop(Rϕ(a))= ta, (1.1)

where

ta = sup
µ∈M f (X)

{
hµ :

∫
ϕ dµ= a

}
,

htop(Rϕ(a)) denotes the entropy of Rϕ(a) and hµ denotes the measure entropy of µ.
For ϕ being an arbitrary continuous function (hence there may exist more than one
equilibrium measure), (1.1) was established by Takens and Verbitski [59] under the
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assumption that f has the specification property. This result was further generalized by
Pfister and Sullivan [49] to dynamical systems with g-product property (see [61, 63] for
more related discussions). The method used in [5, 6] mainly depends on thermodynamic
formalism such as differentiability of the pressure function, while the method in [49, 59]
is a direct approach by constructing fractal sets. Here, we consider the distributional
chaotic of Rϕ(a) and Rϕ . Note that if Iϕ( f ) 6= ∅, then Int(Lϕ) 6= ∅. The inverse is also
true if the system has the specification property, see [60] (see [62] for the case of the
almost specification property), and it is easy to check that the continuous functions with
Int(Lϕ) 6= ∅ form an open and dense subset in the space of continuous functions and that
so do the functions with Iϕ( f ) 6= ∅ if the system has the specification property or almost
specification property.

THEOREM B. Suppose that (X, f ) is a dynamical system with the specification property,
ϕ is a continuous function on X and Int(Lϕ) 6= ∅. Then, for any a ∈ Int(Lϕ), there is an
uncountable DC1-scrambled subset in Rϕ(a).

As a corollary, there are uncountable numbers of disjoint uncountable DC1-scrambled
subsets.

COROLLARY A. Suppose that (X, f ) is a dynamical system with the specification
property. Then, there exists a collection of subsets of X, {Sα}α∈(0,1), such that:
(1) for any 0< α1 < α2 < 1, Sα1 ∩ Sα2 = ∅; and
(2) for any α ∈ (0, 1), Sα is an uncountable DC1-scrambled set.

Let us explain why this result holds. By Proposition 2.4 there are two different invariant
measures µ, ν or, equivalently, there exists a continuous function φ such that

∫
φ dµ 6=∫

φ dν. Thus, Int(Lφ) 6= ∅. Let ϕ := (1/L)(φ − infµ∈M f (X)
∫
φ dµ) where L denotes the

length of interval Lφ . Then Int(Lϕ)= (0, 1) and Theorem B implies this corollary since
Rϕ(a) ∩ Rϕ(b)= ∅ if a 6= b.

THEOREM 1.2. Suppose that (X, f ) is a dynamical system with the specification property
and ϕ is a continuous function on X. Then, there is an uncountable DC1-scrambled subset
in Rϕ .

Let us explain why Theorem 1.2 holds. If Int(Lϕ) 6= ∅, then this follows from
Theorem B by taking one a ∈ Int(Lϕ) since Rϕ(a)⊆ Rϕ . On the other hand, Int(Lϕ)= ∅,
so then Rϕ = X and this result follows from [43] (or see [41]).

1.2. DC1 in recurrence. In classical study of dynamical systems, an important concept
is recurrence. Recurrent points such as periodic points and minimal points are typical
objects to be studied. It is known that the whole recurrent points set has full measure
for any invariant measure under f and that the minimal points set is not empty [26]. A
fundamental question in dynamical systems is to search for the existence of periodic points.
For systems with the Bowen specification property (such as topological mixing subshifts of
finite type and topological mixing uniformly hyperbolic systems), the set of periodic points
is dense in the whole space [17]. Further, many people pay attention to more refinements
of recurrent points according to the ‘recurrent frequency’ such as almost periodic points
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(which naturally exist in any dynamical system since it is equivalent that they belong to
a minimal set), weakly almost periodic points and quasi-weakly almost periodic points
and measure them [27, 68]. In [28, 63] the authors considered various recurrences and
showed that many different recurrent levels carry strong dynamical complexity from the
perspective of topological entropy. In this paper, one of our aims is to consider these
different recurrent levels from the perspective of chaos.

For any x ∈ X , the orbit of x is { f n x}∞n=0, denoted by orb(x, f ). The ω-limit set of x is
the set of all accumulation points of orb(x, f ), denoted by ω( f, x).

Definition 1.3. A point x ∈ X is recurrent if x ∈ ω( f, x). If ω( f, x)= X , we say x is a
transitive point of f . A point x ∈ X is almost periodic if, for any open neighborhood U
of x , there exists N ∈ N such that f k(x) ∈U for some k ∈ [n, n + N ], for every n ∈ N. It
is well known that x is almost periodic⇔ x belongs to a minimal set. A point x is periodic
if there exists a natural number n such that f n(x)= x .

We denote the sets of all recurrent points, transitive points, almost periodic points and
periodic points by Rec, Trans, AP and Per, respectively. Now we recall some notions of
recurrence by using density. We write N= {0, 1, 2, . . .} and N+ = {1, 2, . . .}. Let S ⊆ N,
and we denote

d(S) := lim sup
n→∞

|S ∩ {0, 1, . . . , n − 1}|
n

, d(S) := lim inf
n→∞

|S ∩ {0, 1, . . . , n − 1}|
n

,

B∗(S) := lim sup
|I |→∞

|S ∩ I |
|I |

, B∗(S) := lim inf
|I |→∞

|S ∩ I |
|I |

,

where |A| denotes the cardinality of the set A. They are called the upper density and the
lower density of S, and the Banach upper density and the Banach lower density of S,
respectively. Let U, V ⊆ X be two non-empty open sets and x ∈ X . Define sets of visiting
time

N (U, V ) := {n ≥ 1|U ∩ f −n(V ) 6= ∅} and N (x,U ) := {n ≥ 1| f n(x) ∈U }.

Definition 1.4. A point x ∈ X is called Banach upper recurrent if N (x, B(x, ε)) has
positive Banach upper density where B(x, ε) denotes the ball centered at x with radius ε.
Similarly, one can define the Banach lower recurrent, upper recurrent and lower recurrent.

Let BR denote the set of all Banach upper recurrent points and let QW, W denote the
set of upper recurrent points and lower recurrent points, respectively (called quasi-weakly
almost periodic and weakly almost periodic [27, 63, 68]). Note that AP coincides with the
set of all Banach lower recurrent points and

AP⊆W ⊆ QW⊆ BR⊆ Rec.

So the recurrent set can be decomposed into several disjoint ‘periodic-like’ recurrent level
sets which reflect different recurrent frequency:

Rec= AP t (W \ AP) t (QW \W ) t (BR \ QW) t (Rec \ BR).

To figure out exactly which level of recurrent point carries dynamical complexity and
which level does not, a natural idea expressed in [63] is to study their ‘gap’ set (i.e. the
disjoint part). In [63], the author uses topological entropy as index. It was shown that,
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except for Rec \ BR, these recurrent level sets all have full topological entropy ([63]
for QW \W and W \ AP, [28] for BR \ QW, [21] for AP). From [41] Oprocha proved
that there exists an uncountable DC1-scrambled subset in Rec \ AP. Recall that Pikula
showed in [50] that positive topological entropy does not imply DC1. Thus, motivated by
these results we can also ask the similar question from the perspective of chaos. That
is, whether there is an uncountable DC1-scrambled set in every recurrent level set of
Rec \ BR, BR \ QW, QW \W , W \ AP and AP. We will mainly show that there are
uncountable DC1-scrambled subsets in BR \ QW and QW \W if the system has the
specification property (and we also discuss an uncountable DC1-scrambled subset in
W \ AP under more assumptions and an uncountable DC2-scrambled subset in AP in the
last section).

THEOREM C. Suppose that (X, f ) is a dynamical system with the specification property.
Then there exist uncountable DC1-scrambled subsets in QW \W and BR \ QW.
Moreover, the points in these subsets can be chosen to be transitive.

1.3. Combination of multifractal analysis and recurrence. We give a DC1 result in
combined sets of multifractal analysis and recurrence.

THEOREM D. Suppose that (X, f ) is a dynamical system with the specification property,
ϕ is a continuous function on X and Int(Lϕ) 6= ∅. Then:
(1) there exist uncountable DC1-scrambled subsets in Iϕ ∩ (QW \W ) and Iϕ ∩

(BR \ QW), respectively;
(2) for any a ∈ Int(Lϕ), there exist uncountable DC1-scrambled subsets in Rϕ(a) ∩

(QW \W ) and Rϕ(a) ∩ (BR \ QW), respectively.
Moreover, the points in these subsets can be chosen to be transitive.

Obviously, Theorem D implies Theorems A and B. By Proposition 2.4, there are two
different invariant measures µ, ν, or equivalently there exists a continuous function φ such
that

∫
φ dµ 6=

∫
φ dν. Thus Int(Lφ) 6= ∅. Therefore Theorems D(1) and (2) both imply

Theorem C. So we only need to prove Theorem D in §4. As a corollary of Theorem D, we
state the following result.

COROLLARY B. Suppose that (X, f ) is a dynamical system with specification property, ϕ
is a continuous function on X and Int(Lϕ) 6= ∅. Then there exists an uncountable DC1-
scrambled subset in Trans ∩ Iϕ . And for any a ∈ Int(Lϕ), there exists an uncountable
DC1-scrambled subset in Rϕ(a) ∩ Trans.

1.4. DC1 in recurrent level sets characterized by statistical ω-limit sets. One problem
in the study of dynamical systems is to consider the probability of finding one orbit
entering in a set E : (1/n)

∑n−1
i=0 χE ( f i x) (for example, see [2, 3, 40]). Recently, several

concepts of statistical ω-limit sets were introduced and studied in [20] (also see [2, 3]) from
the perspective of natural density and Banach density. They can describe different levels
of recurrence and some cases coincide with above classifications of Banach recurrence.
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Definition 1.5. For x ∈ X and ξ = d, d , B∗, B∗, a point y ∈ X is called x − ξ -accessible
if, for any ε > 0, N (x, B(y, ε)) has positive density with respect to ξ . Let

ωξ (x) := {y ∈ X | y is x − ξ -accessible}.

For convenience, it is called the ξ − ω-limit set of x . ωB∗(x) is also called the syndetic
center of x .

With these definitions, one can immediately note that

ωB∗(x)⊆ ωd(x)⊆ ωd(x)⊆ ωB∗(x)⊆ ω( f, x). (1.2)

For any x ∈ X , if ωB∗(x)= ∅, then we know that x satisfies one and only one of following
12 cases:
Case (1): ωB∗(x)( ωd(x)= ωd(x)= ωB∗(x)= ω( f, x);
Case (1′): ωB∗(x)( ωd(x)= ωd(x)= ωB∗(x)( ω( f, x);
Case (2): ωB∗(x)( ωd(x)= ωd(x)( ωB∗(x)= ω( f, x);
Case (2′): ωB∗(x)( ωd(x)= ωd(x)( ωB∗(x)( ω( f, x);
Case (3): ωB∗(x)= ωd(x)( ωd(x)= ωB∗(x)= ω( f, x);
Case (3′): ωB∗(x)= ωd(x)( ωd(x)= ωB∗(x)( ω( f, x);
Case (4): ωB∗(x)( ωd(x)( ωd(x)= ωB∗(x)= ω( f, x);
Case (4′): ωB∗(x)( ωd(x)( ωd(x)= ωB∗(x)( ω( f, x);
Case (5): ωB∗(x)= ωd(x)( ωd(x)( ωB∗(x)= ω( f, x);
Case (5′): ωB∗(x)= ωd(x)( ωd(x)( ωB∗(x)( ω( f, x);
Case (6): ωB∗(x)( ωd(x)( ωd(x)( ωB∗(x)= ω( f, x);
Case (6′): ωB∗(x)( ωd(x)( ωd(x)( ωB∗(x)( ω( f, x).

Remark 1.6. There are 12 cases rather than 16 because ωd(x) must be a non-empty set
(see Proposition 2.8).

THEOREM E. Suppose that (X, f ) is a dynamical system with the specification property.
Then {x ∈ Rec| x satisfies Case (i)}, i = 2, 3, 4, 5, 6 contains an uncountable DC1-
scrambled subset in Trans. Further, if ϕ is a continuous function on X and Iϕ( f ) 6= ∅,
then for any a ∈ Int(Lϕ), the recurrent level set of {x ∈ Rec| x satisfies Case (i)} contains
an uncountable DC1-scrambled subset in Trans ∩ Iϕ( f ), Trans ∩ Rϕ(a) and Trans ∩ Rϕ ,
respectively, i = 2, 3, 4, 5, 6.

We will prove this theorem in §4. Case (1) is also known if the system has more
assumptions, see the last section, but Cases (1′)–(6′) restricted on recurrent points all are
still unknown, whether or not they have DC1 or weaker ones such as Li–Yorke chaos.
Chaotic behavior in non-recurrent points and various non-recurrent levels by using the
above statistical ω-limit sets will be discussed in another forthcoming paper.

1.5. DC1 in saturated sets. To show the above results on irregular sets, level sets and
different recurrence, one main proof idea follows from by Oprocha and S̆tefánková’s
results in [43] (or see [42]) that there is an uncountable DC1-scrambled subset in X
when the dynamical system (X, f ) has the specification property. One can construct
corresponding uncountable DC1-scrambled subsets one by one but each one needs a long
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construction proof so it is not a good choice to do these constructions directly. Recall that
in the case of an entropy estimate on recurrent levels, one main technique chosen in [63]
is using the (transitively) saturated property, which can avoid a long construction proof for
every object being considered. So, here we follow the way of [63] to give a DC1 result in
saturated sets.

Given x ∈ X , denote V f (x)⊆M f (X) as the set of all accumulation points of the
empirical measures

En(x) :=
1
n

n−1∑
i=0

δ f i (x),

where δx is the Dirac measure concentrating on x . We say a dynamical system (X, f ) has
saturated property if, for any compact connected non-empty set K ⊆M f (X),

G K 6= ∅ and htop(G K )= inf{hµ(T ) | µ ∈ K }, (1.3)

where G K = {x ∈ X | V f (x)= K } (called a saturated set). The existence of saturated sets
is proved by Sigmund [54] for systems with uniform hyperbolicity or the specification
property and generalized to non-uniformly hyperbolic systems in [39]. The property on
entropy estimate was first established by Pfister and Sullivan in [49], provided that the
system has g-product property (which is weaker than the specification property) and
uniform separation property (which is weaker than expansiveness). In this subsection, we
aim to establish DC1 in saturated sets. A point x ∈ X which is generic for some invariant
measure µ means that V f (x)= µ (or equivalently, Birkhoff averages of all continuous
maps converge to the integral of µ). Thus Gµ denotes the set of all generic points for µ.

For a dynamical system (X, f ), we say a pair p, q ∈ X is distal if lim infi→∞ d
( f i p, f i q) > 0. Otherwise, the pair p, q is proximal. Obviously, inf{d( f i p, f i q)| i ∈ N}
> 0 if the pair p, q is distal. We say a subset M ⊆ X has a distal pair if there are distinct
p, q ∈ M such that the pair p, q is distal.

THEOREM F. Suppose that (X, f ) is a dynamical system with the specification property
and let K be a connected non-empty compact subset of M f (X). If there is a µ ∈ K such
that µ= θµ1 + (1− θ)µ2 (µ1 = µ2 could happen) where θ ∈ [0, 1], and Gµ1 , Gµ2 both
have distal a pair, then for any non-empty open set U ⊆ X, there exists an uncountable
DC1-scrambled set SK ⊆ G K ∩U ∩ Trans.

We will prove this theorem in §3. Since an ergodic measure with non-degenerate
minimal support has two generic points as a distal pair, see Proposition 4.2 below, one
has the following result as a corollary of Theorem F.

COROLLARY C. Suppose that (X, f ) is a dynamical system with the specification
property. For any ergodic measure µ, if its support is non-degenerate and minimal, then
there exists an uncountable DC1-scrambled set S ⊆ Trans such that any point in S is
generic for µ.

Here µ admits to have zero metric entropy. If the system is not minimal, then the above
set S has zero measure for µ, since S ⊆ Trans, Sµ 6= X and by Birkhoff ergodic theorem
µ(Sµ ∩ Gµ)= 1.
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2. Preliminaries
2.1. Specification Properties. The specification property was first introduced by Bowen
in [10]. However, we will use the definition used in [60] and [65] because, with this
definition, the proofs of our main theorems will be much briefer. The differences between
two kinds of definition have been elaborated in [60]. Before giving the definition, we
suggest the notion that, for a dynamical system (X, f ) and x, y ∈ X , a, b ∈ N, we say x
ε-traces y on [a, b] if d( f i x, f i−a y) < ε for all i ∈ [a, b].

Definition 2.1. We say a dynamical system (X, f ) has a strong specification property
if, for any ε > 0, there is a positive integer Kε such that, for any integer s ≥ 2, any set
{y1, y2, . . . , ys} of s points of X , and any sequence

0= a1 ≤ b1 < a2 ≤ b2 < · · ·< as ≤ bs

of 2s integers with
am+1 − bm ≥ Kε

for m = 1, 2, . . . , s − 1, there is a point x in X such that the following two conditions
hold:
(a) x ε-traces ym on [am, bm] for all positive integers m ≤ s;
(b) f n(x)= x , where n = bs + Kε.
If the periodicity condition (b) is omitted, we say that f has the specification property.

PROPOSITION 2.2. [23] Suppose that (X, f ) is a dynamical system with the specification
property. Then Me

f (X) is dense in M f (X).

For a measure µ, define the support of µ by Sµ := supp(µ)= {x ∈ X | µ(U ) > 0 for
any neighborhood U of x}. Given x ∈ X , define the measure center of x by Cx :=⋃

m∈V f (x) Sm . We say that a Borel set U ⊆ X is universally null for f if µ(U )= 0 for
every µ ∈M f (X). The measure center of a dynamical system (X, f ) is the complement
of the union of all universally null open sets.

PROPOSITION 2.3. A dynamical system (X, f ) with the specification property has
measure with full support (i.e. Sµ = X). Moreover, the set of such measures is dense in
M f (X).

Proof. From [16], we know that, for any dynamical system with the specification property
(not necessarily Bowen’s strong version), the almost periodic points (AP) are dense
in X . Take a sequence of points {xi } ∈ AP dense in X . For any i , take µi to be an
invariant measure on ω( f, xi ). Then xi ∈ ω( f, xi )= Sµi and so

⋃
i≥1 Sµi = X . Let

µ=
∑

i≥1
1
2i µi . Then µ ∈M f (X) and Sµ = X . By [17, Proposition 21.11], the proof

is complete. �

PROPOSITION 2.4. A dynamical system (X, f ) with the specification property must not
be uniquely ergodic.

Proof. By [36], minimal points are dense in the measure center of map with the
almost specification property (weaker than the specification property). So if we assume
(X, f ) is uniquely ergodic, then the measure center of (X, f ) must be a minimal set.
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By Proposition 2.3, the measure center of (X, f ) is X , and thus X is a minimal set.
Note that X is non-degenerate (stated at the beginning of the introduction). So by [36,
Theorem 5.3], X contains a horseshoe (definition referring to [36]), which contradicts the
minimality. �

2.2. Levels of recurrence and statistical ω-limit sets. Let us recall some equivalent
statements of recurrence referring to [20, 27, 66, 68] whose proofs are fundamental and
standard. These statements reveal the close connection between points with different
recurrent frequency and the support of measures ‘generated’ by the points.

PROPOSITION 2.5. [27] For a dynamical system (X, f ), let x ∈ Rec. Then the following
conditions are equivalent:
(a) x ∈W ;
(b) x ∈ Cx = Sµ for any µ ∈ V f (x);
(c) Sµ = ω( f, x) for any µ ∈ V f (x).

PROPOSITION 2.6. [27] For a dynamical system (X, f ), let x ∈ Rec. Then the following
conditions are equivalent:
(a) x ∈ QW;
(b) x ∈ Cx ;
(c) Cx = ω( f, x).

A point x is called quasi-generic for some measure µ if there are two sequences of
positive integers {ak}, {bk} with bk > ak and bk − ak→∞ such that

lim
k→∞

1
bk − ak

bk−1∑
j=ak

δ f j (x) = µ

in weak∗ topology. Let V ∗f (x)= {µ ∈M f (X) : x is quasi-generic for µ}. This concept is
from [26, p. 65] and from there it is known that V ∗f (x) is always non-empty, compact and

connected. Obviously, V f (x)⊆ V ∗f (x). Let C∗x :=
⋃

m∈V ∗f (x)
Sm .

PROPOSITION 2.7. [29] For a dynamical system (X, f ), let x ∈ Rec. Then the following
conditions are equivalent:
(a) x ∈ BR;
(b) x ∈ C∗x ;
(c) x ∈ ω( f, x)= C∗x .

PROPOSITION 2.8. Suppose (X, f ) is a dynamical system.
(a) For any x ∈ X, ωd(x)=

⋂
µ∈V f (x) Sµ.

(b) For any x ∈ X, ωd(x)= Cx 6= ∅.
(c) For any x ∈ X, ωB∗(x)=

⋂
µ∈V ∗f (x)

Sµ. If ωB∗(x) 6= ∅, then ωB∗(x) is minimal.
(d) For any x ∈ X, ωB∗(x)= C∗x 6= ∅.

Proof. The proofs of the four items in Proposition 2.8 are similar and ordinary. So, we
only prove item (a). On the one hand, consider an arbitrary y ∈ ωd(x). For any µ ∈ V f (x),
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there is a positive integer sequence mk→∞ such that limk→∞ Emk (x)= µ. Then, for any
ε > 0, one has

µ(B(y, 2ε))≥ µ(B(y, ε))≥ lim sup
k→∞

Emk (B(y, ε))

= lim sup
k→∞

1
mk

mk−1∑
i=0

δ f i x (B(y, ε))

≥ lim inf
n→∞

1
n

n−1∑
j=0

δ f j x (B(y, ε)) > 0,

which implies that y ∈ Sµ. Thus, ωd(x)⊆
⋂
µ∈V f (x) Sµ.

On the other hand, consider an arbitrary y ∈
⋂
µ∈V f (x) Sµ. For any ε > 0, let nk→∞

be a sequence such that

lim
k→∞

1
nk

nk−1∑
i=0

δ f i x (B(y, ε))= lim inf
n→∞

1
n

n−1∑
j=0

δ f j x (B(y, ε)).

Choose a subsequence nkl of nk such that liml→∞ Enkl
(x)= τ for some τ ∈ V f (x). Note

that y ∈ Sτ . Then

lim inf
n→∞

1
n

n−1∑
j=0

δ f j x (B(y, ε))= lim
k→∞

1
nk

nk−1∑
i=0

δ f i x (B(y, ε))

= lim
l→∞

1
nkl

nkl−1∑
i=0

δ f i x (B(y, ε))≥ τ(B(y, ε)) > 0,

which implies y ∈ ωd(x). Thus, ωd(x)⊇
⋂
µ∈V f (x) Sµ. �

3. Proof of Theorem F
One of our major ideas is motivated by Oprocha and S̆tefánková’s results in [43] that there
is an uncountable DC1-scrambled subset in X when the dynamical system (X, f ) has the
specification property. Before the proof, we introduce some basic facts and lemmas.

3.1. Ergodic average. If r, s ∈ N, r ≤ s, we set [r, s] := { j ∈ N| r ≤ j ≤ s}, and the
cardinality of a finite set 3 is denoted by |3|. We set

〈 f, µ〉 :=
∫

X
f dµ.

There exists a countable and separating set of continuous functions { f1, f2, . . .} with 0≤
fk(x)≤ 1, and such that

d(µ, ν) :=
∑
k≥1

2−k
|〈 fk, µ〉 − 〈 fk, ν〉|

defines a metric for the weak*-topology on M f (X). We refer to [49] and use the metric
on X as follows defined by Pfister and Sullivan:

d(x, y) := d(δx , δy),
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which is equivalent to the original metric on X . Readers will find the benefits of using this
metric in our proof later.

LEMMA 3.1. For any ε > 0, δ > 0, and any two sequences {xi }
n−1
i=0 , {yi }

n−1
i=0 of X,

if d(xi , yi ) < ε holds for any i ∈ [0, n − 1], then for any J ⊆ {0, 1, . . . , n − 1} with
(n − |J |)/n < δ:
(a) d((1/n)

∑n−1
i=0 δxi , (1/n)

∑n−1
i=0 δyi ) < ε.;

(b) d((1/n)
∑n−1

i=0 δxi , (1/|J |)
∑

i∈J δyi ) < ε + 2δ.

Lemma 3.1 is easily verified and shows us that if any two orbits of x and y in finite
steps are mostly close, then the two empirical measures induced by x, y are also close.

LEMMA 3.2. Suppose that (X, f ) is a dynamical system with the specification property.
Let K be a connected non-empty compact subset of M f (X) and µ ∈ K . Then for any
ε > 0 there exists a Nµ

ε ∈ N such that, for any α ∈ K , any N > Nµ
ε and any M > N, there

is an x ∈ X and N∗ > M such that:
(a) En(x) ∈ B(µ, ε), for all n ∈ [Nµ

ε , N ];
(b) En(x) ∈ B(K , ε), for all n ∈ [N , N∗];
(c) EN∗(x) ∈ B(α, ε).

Proof. For any fixed ε > 0, by Proposition 2.2, there exists pµ ∈ X and nµ ∈ N such that
En(pµ) ∈ B(µ, ε/6) holds for any n ≥ nµ. Set Nµ

ε := nµ. We will prove that such Nµ
ε

makes this lemma true. Note that K is connected, so for any α ∈ K we can find a sequence
{β1, β2, . . . , βmε } ⊆ K such that d(βi+1, βi ) < ε, for all i ∈ {1, 2, . . . , mε − 1} and
β1 = µ, βmε = α. By Proposition 2.2, for any i ∈ {2, . . . , mε}, there exists pβi ∈ X
and nβi ∈ N such that En(pβi ) ∈ B(βi , ε/6) holds for any n ≥ nβi . For any N > Nµ

ε and
M > N , we choose {Ti }

2mε

i=1 with Ti ∈ N such that, for i ∈ {1, . . . , mε − 1},

T1 = 0, T2 = N . (3.1)

T2i+1 = T2i + Kε/6 where Kε/6 defined in Definiton 2.1. (3.2)
ε

12
(T2i − T2i−1) > nβi+1 . (3.3)

Kε/6 + T2i−1

T2i − T2i−1
<
ε

12
. (3.4)

So far, we have fixed {Ti }
2mε−1
i=1 . We choose T2mε large enough such that

T2mε ≥max{M, T2mε−1 + nβmε }. (3.5)
T2mε−1

T2mε

<
ε

12
. (3.6)

By (3.2), we can use the specification property. So there is an x ∈ X where x ε/6-traces
x∗ on [T1, T2] and ε/6-traces pβi on [T2i−1, T2i ], for all i ∈ {2, . . . , mε}. Now, we claim
that such x and N∗ = T2mε satisfy items (a)–(c). (a) and (c) are easy to check by (3.1),
(3.5), (3.6) and Lemma 3.1. Here we check (b). If n ∈ (T2i , T2i+1) for some i ∈ {1, . . . ,
mε − 1}, we have

n − T2i + T2i−1

T2i − T2i−1
<
ε

12
,
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by (3.2), (3.4). So, by Lemma 3.1, we have

d(En(x), βi ) < d(En(x), ET2i−T2i−1(p
βi ))+ d(ET2i−T2i−1(p

βi ), βi )

<
ε

6
+ 2 ·

ε

12
+
ε

6

=
ε

2
. (3.7)

If n ∈ [T2i−1, T2i ] for some i ∈ {2, 3, . . . , mε}, we split this situation into the following
two cases.

Case 1. (n − T2i−1)/(T2i−2 − T2i−3) < ε/12. Then

d(En(x), βi−1) <
ε

6
+ 2 ·

(
ε

12
+
ε

12

)
+
ε

6
=

2ε
3
, (3.8)

by Lemma 3.1 and (3.4).

Case 2. (n − T2i−1)/(T2i−2 − T2i−3)≥ ε/12. If so, we have n − T2i−1 > nβi by (3.3),
which implies En−T2i−1(p

βi ) ∈ B(βi , ε/6). We consider d(En(x), βi ) and d(En(x), βi−1):

d(En(x), βi )= d
(

T2i−1

n
ET2i−1(x)+

n − T2i−1

n
En−T2i−1( f T2i−1 x), βi

)
≤

T2i−1

n
d(ET2i−1(x), βi )+

n − T2i−1

n
d(En−T2i−1( f T2i−1 x), βi )

≤
T2i−1

n
d(ET2i−1(x), βi−1)+

T2i−1

n
d(βi−1, βi )

+
n − T2i−1

n
d(En−T2i−1( f T2i−1 x), βi )

<
T2i−1

n

(
ε

6
+ 2 ·

ε

12
+
ε

6

)
+

T2i−1

n
ε +

n − T2i−1

n

(
ε

6
+
ε

6

)
<
ε

2
+

T2i−1

n
ε,

d(En(x), βi−1)= d
(

T2i−1

n
ET2i−1(x)+

n − T2i−1

n
En−T2i−1( f T2i−1 x), βi−1

)
≤

T2i−1

n
d(ET2i−1(x), βi−1)+

n − T2i−1

n
d(En−T2i−1( f T2i−1 x), βi−1)

≤
T2i−1

n
d(ET2i−1(x), βi−1)+

n − T2i−1

n
d(En−T2i−1( f T2i−1 x), βi )

+
n − T2i−1

n
d(βi , βi−1)

<
T2i−1

n

(
ε

6
+ 2 ·

ε

12
+
ε

6

)
+

n − T2i−1

n

(
ε

6
+
ε

6

)
+

n − T2i−1

n
ε

<
ε

2
+

n − T2i−1

n
ε.

So,
min{d(En(x), βi ), d(En(x), βi−1)}< ε. (3.9)

With the combination of (3.7), (3.8) and (3.9), one has (b). �

https://doi.org/10.1017/etds.2019.57 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2019.57


362 A. Chen and X. Tian

LEMMA 3.3. Suppose that (X, f ) is a dynamical system with the specification property.
Let K be a connected non-empty compact subset of M f (X) and µ ∈ K . Then for any
ε > 0 there exists an Mµ

ε ∈ N such that, for any α ∈ K and any M > Mµ
ε , there exist

t2 > t1 > M and x ∈ X such that:
(a) En(x) ∈ B(µ, ε), for all n ∈ [Mµ

ε , M];
(b) En(x) ∈ B(K , ε), for all n ∈ [M, t1];
(c) Et1(x) ∈ B(α, ε);
(d) En(x) ∈ B(K , ε), for all n ∈ [t1, t2];
(e) Et2(x) ∈ B(µ, ε).

Proof. By Lemma 3.2, for ε/3, we obtain Nµ
ε/3 and Nα

ε/3 such that, for any N1 > Nµ
ε/3,

there is an x1 and N∗ such that

N∗ >max
{

N1,
Kε/3 + Nα

ε/3

ε/6

}
, (3.10)

En(x1) ∈ B(µ, ε/3) for all n ∈ [Nµ
ε/3, N1];

En(x1) ∈ B(K , ε/3) for all n ∈ [N1, N∗];

EN∗(x1) ∈ B(α, ε/3),

and for

N2 >max
{

Nα
ε/3,

N∗ + Kε/3
ε/6

}
, (3.11)

there exists N∗∗ > N2 and x2 such that

En(x2) ∈ B(α, ε/3) for all n ∈ [Nα
ε/3, N2]; (3.12)

En(x2) ∈ B(K , ε/3) for all n ∈ [N2, N∗∗];

EN∗∗(x2) ∈ B(µ, ε/3).

By the specification property, we can obtain an x ∈ X such that x ε/3-traces x1 on
[0, N∗] and ε/3-traces x2 on [N∗ + Kε/3, N∗ + Kε/3 + N∗∗]. Now we consider En(x),
n ∈ [Nµ

ε/3, N∗ + Kε/3 + N∗∗] and split it into the following cases.

Case 1. When n ∈ [Nµ
ε/3, N∗], we have d(En(x), En(x1)) < ε/3. So

En(x) ∈ B(µ, ε) for all n ∈ [Nµ
ε/3, N1];

En(x) ∈ B(K , ε) for all n ∈ [N1, N∗];

EN∗(x) ∈ B(α, ε).

Case 2. When n ∈ [N∗, N∗ + Kε/3 + Nα
ε/3], we have d(En(x), EN∗(x1)) < 2ε/3 by (3.10)

and Lemma 3.1. So d(En(x), α) < ε.

Case 3. When n ∈ [N∗ + Kε/3 + Nα
ε/3, N2],

d(En(x), α)

= d
(

N∗ + Kε/3
n

EN∗+Kε/3(x)+
n − N∗ − Kε/3

n
En−N∗−Kε/3( f N∗+Kε/3 x), α

)
≤

N∗ + Kε/3
n

d(EN∗+Kε/3(x), α)+
n − N∗ − Kε/3

n
d(En−N∗−Kε/3( f N∗+Kε/3 x), α).
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Note that n − N∗ − Kε/3 ≥ Nα
ε/3 and n ≤ N2, and then we have d(En−N∗−Kε/3

( f N∗+Kε/3 x), α) < ε by (3.12). So

d(En(x), α) <
N∗ + Kε/3

n
ε +

n − N∗ − Kε/3
n

ε = ε.

Case 4. When n ∈ [N2, N∗∗], note that N∗∗ > N2 > (N∗ + Kε/3)/ε/6, so by Lemma 3.1
we have

d(En(x), En−N∗−Kε/3(x2)) < 2ε/3.

Thus

En(x) ∈ B(K , ε) for all n ∈ [N2, N∗∗];

EN∗∗(x2) ∈ B(µ, ε).

Set Mµ
ε = Nµ

ε/3, M = N1 t1 = N∗ t2 = N∗∗, and we finish the proof. �

LEMMA 3.4. Suppose that (X, f ) is a dynamical system with the specification property.
Suppose there are µ1, µ2 ∈M f (X) such that Gµ1 , Gµ2 have distal pair (p1, q1),
(p2, q2), respectively. Let

ζ =min{inf{d( f i p1, f i q1)| i ∈ N}, inf{d( f i p2, f i q2)| i ∈ N}}.

Then, for any δ > 0, any 0< ε < ζ and any θ ∈ [0, 1], there exist x1, x2 ∈ X and N ∈ N
such that, for any n > N,
(a) En(x1) ∈ B(θµ1 + (1− θ)µ2, ε + δ) and En(x2) ∈ B(θµ1 + (1− θ)µ2, ε + δ);
(b) (|{0≤ i ≤ n − 1|d( f i x1, f i x2) < ζ − ε}|)/n < δ.

Proof. We will prove this lemma for the case when θ is rational. Then, the lemma
naturally holds for any θ ∈ [0, 1] by the denseness of rational numbers. For any fixed δ > 0,
0< ε < ζ and θ/(1− θ)= s/t , where s, t ∈ N+, we can obtain an M1 such that En(pi ) ∈

B(µi , ε/2) and En(qi ) ∈ B(µi , ε/2), i = {1, 2}, hold for any n ≥ M1. We choose M ,
r ∈ N+ such that

M >max
{

M1,
4Kε/2
δ

}
, (3.13)

r >
4
δ
. (3.14)

For any k ≥ 1, by the specification property, we can obtain an xk
1 such that, for any

j ∈ [0, k − 1], i ∈ [0, s − 1], xk
1 ε/2-traces p1 on

[ j (s + t)(M + Kε/2)+ i(M + Kε/2), j (s + t)(M + Kε/2)+ (i + 1)M + i Kε/2]

and, for any j ∈ [0, k − 1], i ∈ [s, s + t − 1], xk
1 ε/2-traces p2 on

[ j (s + t)(M + Kε/2)+ i(M + Kε/2), j (s + t)(M + Kε/2)+ (i + 1)M + i Kε/2].

Also, we can obtain an xk
2 such that, for any j ∈ [0, k − 1], i ∈ [0, s − 1], xk

2 ε/2-traces
q1 on

[ j (s + t)(M + Kε/2)+ i(M + Kε/2), j (s + t)(M + Kε/2)+ (i + 1)M + i Kε/2]
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and for any j ∈ [0, k − 1], i ∈ [s, s + t − 1], xk
2 ε/2-traces q2 on

[ j (s + t)(M + Kε/2)+ i(M + Kε/2), j (s + t)(M + Kε/2)+ (i + 1)M + i Kε/2].

We can assume that (take a subsequence if necessary) x1 = limk→∞ xk
1 , x2 = limk→∞ xk

2 .
By the continuity of f , we have, for any j ∈ N, i ∈ [0, s − 1], x1 ε/2-traces p1 on

[ j (s + t)(M + Kε/2)+ i(M + Kε/2), j (s + t)(M + Kε/2)+ (i + 1)M + i Kε/2]

and, for any j ∈ N, i ∈ [s, s + t − 1], x1 ε/2-traces p2 on

[ j (s + t)(M + Kε/2)+ i(M + Kε/2), j (s + t)(M + Kε/2)+ (i + 1)M + i Kε/2].

Similarly, for any j ∈ N, i ∈ [0, s − 1], x2 ε/2-traces q1 on

[ j (s + t)(M + Kε/2)+ i(M + Kε/2), j (s + t)(M + Kε/2)+ (i + 1)M + i Kε/2]

and, for any j ∈ N, i ∈ [s, s + t − 1], x2 ε/2-traces q2 on

[ j (s + t)(M + Kε/2)+ i(M + Kε/2), j (s + t)(M + Kε/2)+ (i + 1)M + i Kε/2].

Set N := r(s + t)(M + Kε/2). We will show that such N and x1, x2 satisfy (a) and (b). For
any n > N , n lies in [k(s + t)(M + Kε/2), (k + 1)(s + t)(M + Kε/2)] for some k ≥ r . By
(3.14) and Lemma 3.1, we have

d(En(x1), Ek(s+t)(M+Kε/2)(x1)) <
δ

2
; d(En(x2), Ek(s+t)(M+Kε/2)(x2)) <

δ

2
. (3.15)

Note that, for any j ∈ N, i ∈ [0, s − 1], x1 ε/2-traces p1 on

[ j (s + t)(M + Kε/2)+ i(M + Kε/2), j (s + t)(M + Kε/2)+ (i + 1)M + i Kε/2]

and, for any j ∈ N, i ∈ [s, s + t − 1], x1 ε/2-traces p2 on

[ j (s + t)(M + Kε/2)+ i(M + Kε/2), j (s + t)(M + Kε/2)+ (i + 1)M + i Kε/2].

We have

d(Ek(s+t)(M+Kε/2)(x1), θEM (p1)+ (1− θ)EM (p2))

≤ d
( k∑

i=1

1
k
E(s+t)(M+Kε/2)( f (i−1)(s+t)(M+Kε/2)x1), θEM (p1)+ (1− θ)EM (p2)

)

≤
1
k

k∑
i=1

d(E(s+t)(M+Kε/2)( f (i−1)(s+t)(M+Kε/2)x1), θEM (p1)+ (1− θ)EM (p2))

≤
1
k

k∑
i=1

[
d
(

s
s + t

Es(M+Kε/2)( f (i−1)(s+t)(M+Kε/2)x1), θEM (p1)

)
+ d

(
t

s + t
Et (M+Kε/2)( f [(i−1)(s+t)+s](M+Kε/2)x1), (1− θ)EM (p2)

)]
<

1
k

k∑
i=1

[θ(ε/2+ δ/2)+ (1− θ)(ε/2+ δ/2)]

= ε/2+ δ/2.
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Combining with (3.15) and EM (pi ) ∈ B(µi , ε/2), we have d(En(x1), θµ1 + (1− θµ2)) <

ε + δ. Similarly, we can prove d(En(x2), θµ1 + (1− θµ2)) < ε + δ. Hence (a) holds.
Note that ζ =min{inf{d( f i p1, f i q1)| i ∈ N}, inf{d( f i p2, f i q2)| i ∈ N}}, so then we
have

|{i |d( f i x1, f i x2) < ζ − ε}|

n
<

1
k
+

Kε/2
M

< δ.

Hence (b) holds. �

3.2. Proof of Theorem F. We assume that (p1, q1), (p2, q2) are the distal pairs of
Gµ1 , Gµ2 , respectively, and min{inf{d( f i p1, f i q1)| i ∈ N}, inf{d( f i p2, f i q2)| i ∈ N}} =
ζ > 0. For any non-empty open set U , we can fix an ε > 0 and a transitive point z ∈U
such that B(z, ε)⊆U , since transitive points are dense for systems with the specification
property. Let εi = ε/2i , Ki = Kεi (cf. the definition of the specification property). Let
δ1 < 1, δi = δi−1/2. By [49, p. 944], there exists a sequence {α1, α2, . . .} ⊆ K such that

{α j : j ∈ N+, j > n} = K for all n ∈ N.

By Lemma 3.4, for any s ∈ N+, we can obtain xεs ,δs
1 , xεs ,δs

2 and N εs ,δs such that, for any
n ≥ N εs ,δs ,

En(x
εs ,δs
1 ) ∈ B(µ, εs + δs), En(x

εs ,δs
2 ) ∈ B(µ, εs + δs), (3.16)

|{i ∈ [0, n − 1]|d( f i xεs ,δs
1 , f i xεs ,δs

2 ) < ζ − ε}|

n
< δs . (3.17)

Also, for any s ∈ N+, we can obtain an Mµ
εs such that the result of Lemma 3.3 holds. Now,

given an ξ = (ξ1, ξ2, . . .) ∈ {1, 2}∞, we construct the xξ inductively.

Step 1. Construct xξ1 . We fix T1 = 2K1. By Lemma 3.3, for a large enough M1 > Mµ
ε1

satisfying
δ1 M1 >max{T1 + 2K1, N ε1,δ1} (3.18)

we can obtain an xα1
ε1 and tε1,α1

2 > tε1,α1
1 > M1 such that

En(x
α1
ε1 ) ∈ B(µ, ε1) for all n ∈ [Mµ

ε1 , M1];

En(x
α1
ε1 ) ∈ B(K , ε1) for all n ∈ [M1, tε1,α1

1 ];

Et
ε1,α1
1

(xα1
ε1 ) ∈ B(α1, ε1);

En(x
α1
ε1 ) ∈ B(K , ε1) for all n ∈ [tε1,α1

1 , tε1,α1
2 ];

Et
ε1,α1
2

(xα1
ε1 ) ∈ B(µ, ε1).

(3.19)

Set T1→2 = T1 + tε1,α1
1 , T2 = T1 + tε1,α1

2 , T3 = T2 + 2K1, T4 large enough such that

δ1T4 >max{T3 + 2K2, Mµ
ε2
}, T4 − T3 > N ε1,δ1 . (3.20)

By the specification property, we can obtain an xξ1 ε1-traces z, xα1
ε1 , xε1,δ1

ξ1
on [0, 0],

[T1, T2], [T3, T4], respectively.
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Step k. Construct xξ1···ξk . If xξ1···ξk−1 , {Ti }
2k(k−1)
i=1 and {T4i−3→4i−2}

k(k−1)/2
i=1 have been

defined, we construct xξ1···ξk in the following way. For any i ∈ {1, 2, . . . , k}, let
T2k(k−1)+4i−2 and T2k(k−1)+4i be indefinite; T2k(k−1)+4i−3 = T2k(k−1)+4i−4 + 2Kk and
T2k(k−1)+4i−1 = T2k(k−1)+4i−2 + 2Kk . By Lemma 3.3, for a large enough M(k(k−1)/2)+i >

Mµ
εk satisfying

δk M(k(k−1)/2)+i >max{T2k(k−1)+4i−3 + 2Kk, N εk ,δk } (3.21)

we can obtain an xαi
εk and tεk ,αi

2 > tεk ,αi
1 > M(k(k−1)/2)+i such that

En(x
αi
εk ) ∈ B(µ, εk) for all n ∈ [Mµ

εk , M(k(k−1)/2)+i ];

En(x
αi
εk ) ∈ B(K , εk) for all n ∈ [M(k(k−1)/2)+i , tεk ,αi

1 ];

Et
εk ,αi
1

(xαi
εk ) ∈ B(αi , εk);

En(x
αi
εk ) ∈ B(K , εk) for all n ∈ [tεk ,αi

1 , tεk ,αi
2 ];

Et
εk ,αi
2

(xαi
εk ) ∈ B(µ, εk).

(3.22)

Set T2k(k−1)+4i−3→2k(k−1)+4i−2 = T2k(k−1)+4i−3 + tεk ,αi
1 , T2k(k−1)+4i−2 = T2k(k−1)+4i−3

+ tεk ,αi
2 . If i < k, we select T2k(k−1)+4i large enough such that

δk T2k(k−1)+4i >max{T2k(k−1)+4i−1 + 2Kk, Mµ
εk }, (3.23)

T2k(k−1)+4i − T2k(k−1)+4i−1 > N εk ,δk . (3.24)

If i = k, T2k(k−1)+4i is large enough such that

δk T2k(k−1)+4i >max{T2k(k−1)+4i−1 + 2Kk+1, Mµ
εk+1}, (3.25)

T2k(k−1)+4i − T2k(k−1)+4i−1 > N εk ,δk . (3.26)

Hence, we have defined the T2(k−1)k+1, . . . , T2k(k+1) and T2k(k−1)+4i−3→2k(k−1)+4i−2 for
all i ∈ [1, k]. By the specification property, we can obtain an xξ1···ξk εk-traces xξ1···ξk−1 ,
f k−1z, xα1

εk , xεk ,δk
ξ1

, xα2
εk , xεk ,δk

ξ2
, . . . , xαk

εk , xεk ,δk
ξk

on

[0, T2k(k−1)],

[T2k(k−1) + Kk, T2k(k−1) + Kk],

[T2k(k−1)+1, T2k(k−1)+2],

· · · ,

[T2k(k−1)+4k−1, T2k(k−1)+4k],

respectively. Obviously, d(xξ1···ξk−1 , xξ1···ξk ) < εk , so {xξ1···ξk }
∞

k=1 is a Cauchy sequence in
B(z, ε) since

∑
+∞

i=k εi ≤ 2εk . Denote the accumulation point of {xξ1···ξk }
∞

k=1 by xξ , and it
is easy to verify that xξ 2εk-traces f k−1z, xα1

εk , xεk ,δk
ξ1

, xα2
εk , xεk ,δk

ξ2
, . . . , xαk

εk , xεk ,δk
ξk

on

[T2k(k−1) + Kk, T2k(k−1) + Kk],

[T2k(k−1)+1, T2k(k−1)+2],

· · · ,

[T2k(k−1)+4k−1, T2k(k−1)+4k],

respectively, since
∑
+∞

i=k εi ≤ 2εk . Note that orb(xξ , f ) has a subsequence which shadows
the orbit of the transitive point z more and more closely so we can conclude that xξ
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is also a transitive point. Fix ξ, η ∈ {1, 2}∞; we claim that xξ 6= xη and xξ , xη is a
DC1-scrambled pair if ξ 6= η. Suppose ξs 6= ηs (implied by ξ 6= η), so then, for any
k ≥ s xξ 2εk-traces xεk ,δk

ξs
on [T2(k−1)k+4s−1, T2(k−1)k+4s] and xη 2εk-traces xεk ,δk

ηs on
[T2(k−1)k+4s−1, T2(k−1)k+4s]. For any fixed κ < ζ , we can get an Iκ > s such that ζ − κ >
5εIκ . Note that, from (3.17),

|{i ∈ [T2k(k−1)+4s−1, T2k(k−1)+4s]| d( f i xεk ,δk
ξs

, f i xεk ,δk
ηs ) < ζ − εk}|

T2k(k−1)+4s − T2k(k−1)+4s−1 + 1
< δk < 1

holds for any k ≥ Iκ . So

|{i ∈ [T2k(k−1)+4s−1, T2k(k−1)+4s]|d( f i xξ , f i xη) < ζ − 5εk}|

T2k(k−1)+4s − T2k(k−1)+4s−1 + 1
< δk < 1

holds for any k ≥ Iκ , which implies, for any k ≥ Iκ , that there exists t ∈ [T2(k−1)k+4s−1,

T2(k−1)k+4s] such that d( f t xξ , f t xη)≥ ζ − 5εk > κ . Therefore, xξ 6= xη and {xξ }ξ∈{1,2}∞
(denote by S) is an uncountable set. Meanwhile,

lim inf
n→∞

1
n
|{ j ∈ [0, n − 1] : d( f j xξ , f j xη) < κ}|

≤ lim inf
k≥Iκ ,k→∞

1
T2(k−1)k+4s

|{ j ∈ [0, T2(k−1)k+4s − 1] : d( f j xξ , f j xη) < κ}|

≤ lim inf
k≥Iκ ,k→∞

T2(k−1)k+4s−1

T2(k−1)k+4s
+ δk

≤ lim inf
k≥Iκ ,k→∞

2δk = 0.

On the other hand, for any fixed t > 0, we can choose kt ∈ N large enough such
that 4εk < t holds for any k ≥ kt . Note that xξ and xη are both 2εk-traces xα1

εk on
[T2(k−1)k+1, T2(k−1)k+2]. So

lim sup
n→∞

1
n
|{ j ∈ [0, n − 1] : d( f i xξ , f i xη) < t}|

≥ lim sup
n→∞

1
n
|{ j ∈ [0, n − 1] : d( f j xξ , f j xη) < 4εkt }|

≥ lim sup
k≥kt ,k→∞

1
T2(k−1)k+2

|{ j ∈ [0, T2(k−1)k+2 − 1] : d( f j xξ , f j xη) < 4εk}|

≥ lim sup
k≥kt ,k→∞

(
1−

T2(k−1)k+1

T2(k−1)k+2

)
≥ lim sup

k≥kt ,k→∞
(1− δk)

= 1.

So far we have proved that S = {xξ }ξ∈{1,2}∞ ⊆ B(z, ε) ⊆ U is an uncountable
DC1-scrambled set. To complete this proof, we need to check that V f (xξ )= K for
any ξ ∈ {1, 2}∞. On the one hand, for any fixed s ∈ N+, when k ≥ s, note (3.21),
T2(k−1)k+4s−3→2(k−1)k+4s−2 − T2(k−1)k+4s−3 > M(k(k−1)/2)+s , and xξ 2εk-traces xαs

εk
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on [T2(k−1)k+4s−3, T2(k−1)k+4s−3→2(k−1)k+4s−2], so we have

d(ET2(k−1)k+4s−3→2(k−1)k+4s−2(xξ ), αs)

≤ d(ET2(k−1)k+4s−3→2(k−1)k+4s−2−T2(k−1)k+4s−3( f T2(k−1)k+4s−3 xξ ), αs)+ 2δk

≤ d(ET2(k−1)k+4s−2−T2(k−1)k+4s−3(x
αs
εk
), αs)+ 2εk + 2δk

≤ εk + 2εk + 2δk

= 3εk + 2δk

by Lemma 3.1. Let k→∞; we have αs ∈ V f (xξ ) for any s ∈ N+, which implies K ⊆
V f (xξ ).

On the other hand, for any fixed n ∈ N∗, we consider En(xξ ). Obviously, there is a k ∈ N
such that n ∈ [T2(k−1)k+1, T2k(k+1) + 2Kk+1]. If n lies in [T2(k−1)k+4s−3, T2(k−1)k+4s−2 +

2Kk] for certain s ∈ {2, 3, . . . , k},

En(xξ )=
T2(k−1)k+4s−3

n
ET2(k−1)k+4s−3(xξ )

+
n − T2(k−1)k+4s−3

n
En−T2(k−1)k+4s−3( f T2(k−1)k+4s−3 xξ ).

Notice that T2(k−1)k+4s−3 = T2(k−1)k+4(s−1) + 2Kk , xξ 2εk-traces xεk ,δk
ξs

on [T2(k−1)k+4(s−1)−1,
T2(k−1)k+4(s−1)] and (3.16), (3.23), so by Lemma 3.1, we have

d(ET2(k−1)k+4s−3(xξ ), µ) < d(ET2(k−1)k+4(s−1)−T2(k−1)k+4(s−1)−1( f T2(k−1)k+4(s−1)−1 xξ ), µ)+ 2δk

< d(ET2(k−1)k+4(s−1)−T2(k−1)k+4(s−1)−1(x
εk ,δk
ξs

), µ)+ 2εk + 2δk

< εk + δk + 2εk + 2δk,

i.e.,
d(ET2(k−1)k+4s−3(xξ ), µ) < 3εk + 3δk . (3.27)

If n ∈ [T2(k−1)k+4s−3, T2(k−1)k+4s−3 + Mµ
εk ], note that (3.21) and M(2k(k−1)/2)+s > Mµ

εk ,
then we have d(En(xξ ), ET2(k−1)k+4s−3(xξ )) < 2δk by Lemma 3.1. So,

d(En(xξ ), µ) < 2δk + 3εk + 3δk = 3εk + 5δk . (3.28)

If n ∈ [T2(k−1)k+4s−3 + Mµ
εk , T2(k−1)k+4s−3 + M(2k(k−1)/2)+s], by (3.22), one has

d(En−T2(k−1)k+4s−3( f T2(k−1)k+4s−3 xξ ), µ) < d(En−T2(k−1)k+4s−3(x
αs
εk
), µ)+ 2εk

< εk + 2εk

= 3εk .

Combining with (3.27), gives

d(En(xξ ), µ) < 3εk + 3δk . (3.29)

If n ∈ [T2(k−1)k+4s−3 + M(2k(k−1)/2)+s, T2(k−1)k+4s−2 + 2Kk], by (3.21) and Lemma 3.1,
we have

d(En(xξ ), En−T2(k−1)k+4s−3( f T2(k−1)k+4s−3 xξ )) < 2δk . (3.30)

Then En(xξ ) ∈ B(K , εk + 2δk) by (3.22). So, when n ∈ [T2(k−1)k+4s−3, T2(k−1)k+4s−2 +

2Kk], En(xξ )⊆ B(K , 3εk + 5δk). In other situations of the interval where n lies, we can
also prove En(xξ )⊆ B(K , 3εk + 5δk)with a little modification of the above method. When
n→∞, forcing k→∞, B(K , 3εk + 5δk)→ K , and hence we have En(xξ )= K . �
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Remark 3.5. Theorem F only states the situation where K contains a measure µ which is
the convex combination of two measures. Actually, with little modification, Theorem F
also holds for any K ⊆M f (X) if K contains a measure µ which is the convex
combination of finite measures. Here we omit it.

4. Proof of Theorems D and E
4.1. Distal pair in minimal sets.

LEMMA 4.1. Given a dynamical system (X, f ), suppose that µ ∈Me
f (X), Sµ is non-

degenerate and minimal. Then, Gµ has a distal pair.

Proof. Sµ ∩ Gµ 6= ∅ since µ ∈Me
f (X). Let p ∈ Sµ ∩ Gµ, so f (p) ∈ Sµ ∩ Gµ. Assume

that p, f (p) are proximal; then ω f (p) contains a fixed point, which implies ω f (p) is
either degenerate or non-minimal. Then Sµ is either degenerate or non-minimal since
ω f (p)⊆ Sµ. �

PROPOSITION 4.2. Suppose that X has at least 2 elements and (X, f ) is a dynamical
system with the specification property. Then

{µ ∈M f (X)|µ is ergodic, Sµ is non-degenerate and minimal}

is dense in M f (X) and, for any µ in such a set, Gµ has a distal pair.

Proof. By [16, Theorem 3], Gν 6= ∅ for any ν ∈M f (X). Take y ∈ Gν . For any ε > 0,
let m, x1 and ε1 in [36, Theorem 5,2] equal 1, y, ε/3, respectively. One can construct a
closed and non-empty set Z which contains a minimal point q by [36, Theorem 5,2]. So
ω( f, q)⊆ Z and ω( f, q) is a minimal set. By Lemma 3.1,

V f (z)⊆ B(ν, ε) for any z ∈ Z . (4.1)

Fix a µ ∈Me
f (ω( f, q)), so then Sµ = ω( f, q) and Sµ ∩ Gµ 6= ∅. So, by (4.1), µ ∈

B(ν, ε). Thus,
{µ ∈M f (X)|µ is ergodic, Sµ is minimal}

is dense in M f (X). Here we claim that

{µ ∈M f (X)|µ is ergodic, Sµ is non-degenerate and minimal}

is also dense in M f (X). If not, there will be an open set U ⊆M f (X) such that

{µ ∈M f (X)|µ is ergodic, Sµ is degenerate and minimal}

is dense in U , which implies that any measure in U can be approximated by the Dirac
measure concentrating on a fixed point, i.e. for any µ ∈U , there is a sequence {xi }

∞

i=1
such that limi→∞ δxi = µ. Without loss of generality, we can assume that limi→∞ xi = x .
Then for any continuous function f on X ,∫

f dµ= lim
i→∞

∫
f dδxi = lim

i→∞
f (xi )= f (x)=

∫
f dδx .

So, µ= δx , which means measures in U are all Dirac measures, which contradicts
Proposition 2.3. Thus, the contradiction and Lemma 4.1 complete this proof. �

LEMMA 4.3. Suppose that a subset B ′ ⊆M f (X) is dense in M f (X). If there is an
invariant measure µ with full support, then

⋃
ω∈B′ Sω = X.
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Proof. By assumption, there is a sequence of invariant measures µi ∈ B ′ converging
to µ. Then 1= lim supi→∞ µi (

⋃
ω∈B′ Sω)≤ µ(

⋃
ω∈B′ Sω). It follows that X = Sµ ⊆⋃

ω∈B′ Sω. �

PROPOSITION 4.4. Suppose that (X, f ) is a dynamical system with the specification
property. Then x ∈ Trans implies x ∈ BR.

Proof. From [26, Proposition 3.9] we know that for a point x0 and an ergodic measure
µ0 ∈M f (ω( f, x0)), x0 is quasi-generic for µ0. So if x ∈ Trans, M f (ω( f, x))=
M f (X). By Propositions 2.2, 2.3 and Lemma 4.3,

C∗x = X. (4.2)

By Proposition 2.7, the proof is completed. �

4.2. Proof of Theorem D. For any µ1, µ2 ∈M f (X), we define

conv{µ1, µ2} = {θµ1 + (1− θ)µ2| θ ∈ [0, 1]}.

Proof of Item (1). If Int(Lϕ) 6= ∅, then there exist λ1, λ2 ∈M f (X) such that
∫
ϕ dλ1 6=∫

ϕ dλ2. Note that the measures satisfying Proposition 4.2 and measures with full support
are both dense in M f (X). Then we can choose µ1, µ2 satisfying Proposition 4.2 and µ
with full support such that

∫
ϕ dµ1 6=

∫
ϕ dµ2 6=

∫
ϕ dµ. Obviously, Sµ1 ∪ Sµ2 6= X since

Sµ1 , Sµ2 are minimal. Let

K1 := conv{µ1, µ2};

K2 := conv{µ1, µ}.

One can observe that G Ki ⊆ Iϕ( f ), i ∈ {1, 2}. Applying Theorem F to Ki , i ∈ {1, 2},
for any open set U , there is an uncountable scrambled set Si ⊆ G Ki ∩U ∩ Trans. By
Propositions 4.4 and 2.6(c), we have G K1 ∩ Trans⊆ Iϕ( f ) ∩ (BR \ QW). By Propositions
2.5(c) and 2.6(c), we have G K2 ∩ Trans⊆ Iϕ( f ) ∩ (QW \W ). �

Proof of Item (2). If Int(Lϕ) 6= ∅, then, for any a ∈ Int(Lϕ), there exist λ1, λ2 ∈M f (X)
such that

∫
ϕ dλ1 < a <

∫
ϕ dλ2. Then we can take µ1, µ2, µ3 satisfying Proposition 4.2

with
∫
ϕ dµ1 <

∫
ϕ dµ2 < a <

∫
ϕ dµ3. By Proposition 2.3, we can take ν1, ν2 with full

support and
∫
ϕ dν1 < a <

∫
ϕ dν2. Now, we can choose proper θ1, θ2, θ3 ∈ (0, 1) such

that

θ1

∫
ϕ dµ1 + (1− θ1)

∫
ϕ dµ3 = θ2

∫
ϕ dµ2 + (1− θ2)

∫
ϕ dµ3

= θ3

∫
ϕ dν1 + (1− θ3)

∫
ϕ dν2 = a.

Set ρ1 = θ1µ1 + (1− θ1)µ3, ρ2 = θ2µ2 + (1− θ2)µ3, ρ3 = θ3ν1 + (1− θ3)ν2. Let

K1 := conv{ρ1, ρ2};

K2 := conv{ρ1, ρ3}.

One can observe that G Ki ⊆ Rϕ(a), i ∈ {1, 2}. Based on the discussion in the proof of
item (1), the proof is complete. �

Remark 4.5. If a ∈ Lϕ \ Int(Lϕ), Theorem D may not be true even for Li–Yorke
chaos. For example, if the dynamical system (X, f ) is a full shift of two symbols
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(which satisfies the specification property), taking orb(p, f ), orb(q, f ) to be two different
periodic orbits with period ≥2 and letting ϕ be a continuous function such that ϕ|orb(p, f )

= 0, ϕ|orb(q, f ) = 1 and for any x ∈ X \ (orb(p, f ) ∪ orb(q, f )), 0< ϕ(x) < 1. In this
case, Lφ = [0, 1]. Let µp, µq denote the periodic measures supported on the orbit of
p, q , respectively. It is not difficult to check that Gµp ∩ Trans⊆ Rφ(0) ∩ Trans⊆ BR \
QW and Gµq ∩ Trans⊆ Rφ(1) ∩ Trans⊆ BR \ QW. So Rϕ(0) ∩ Trans ∩ (QW \W )= ∅

and Rϕ(1) ∩ Trans ∩ (QW \W )= ∅. So most cases cannot have any kind of chaotic
behavior with respect to Rφ(0) ∩ Trans and Rφ(1) ∩ Trans. By Theorem F, Gµp , Gµq all
contain uncountable DC1-scrambled subsets and so do Rφ(0) ∩ Trans and Rφ(1) ∩ Trans.
However, Rφ(0) and Rφ(1) has zero topological entropy by (1.1). In particular, this implies
that there exists an uncountable DC1-scrambled set with zero topological entropy.

4.3. Proof of Theorem E. Take µ1, µ2, satisfying Proposition 4.2. Let µ be a measure
with full support and take ν = 1

2µ1 +
1
2µ2. Let

K2 := {µ1};

K3 := conv{µ1, µ} ∪ conv{µ1, µ2};

K4 := conv{µ1, µ};

K5 := conv{µ1, µ2};

K6 := conv{µ1, ν}.

Applying Theorem F to Ki , i ∈ {2, 3, 4, 5, 6}, for any open set U , there is an uncountable
scrambled set Si ⊆ G Ki ∩U ∩ Trans. By Propositions 4.4, 2.8(d) and (4.2), ωB∗(x)= X .
Since the dynamical systems with the specification property are not minimal but
minimal points are dense, for any x ∈ Trans, ωB∗(x)= ∅. Then, one can verify that
{x ∈ Rec| x satisfies Case (i)}, i = 2, 3, 4, 5, 6, contains an uncountable DC1-scrambled
subset Si in Trans. Here, we omit the proof of the left part of Theorem E since it is similar
to the proof of Theorem D. The major argument is that the density of measures satisfy
Proposition 4.2 and the measures with full support. �

5. Applications
5.1. Examples with specification. It is known from [12] that any topologically mixing
interval map satisfies the specification property. For example, [30] showed that there exists
a set of parameter values3⊆ [0, 4] of positive Lebesgue measure such that if λ ∈3, then
the logistic map fλ(x)= λx(1− x) is topological mixing.

Moreover, maps satisfying the specification property include the mixing subshift of
finite type, mixing sofic subshift, topological mixing uniformly hyperbolic systems and
the time-1 map of the geodesic flow of compact connected negative curvature manifolds;
for example, see [54, 60]. So, all the results of Theorems A–F are all suitable for such
systems.

5.2. Examples without specification. Now, we use our theorem on a type of subshift
which may not have the specification property. Before proceeding, we need some
preparation.
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For any finite alphabet A, the full symbolic space is the set AZ
= {· · · x−1x0x1 · · · :

xi ∈ A}, which is viewed as a compact topological space with the discrete product
topology. The set AN+ = {x1x2 · · · : xi ∈ A} is called the one-side full symbolic space.
The shift action on the one-side full symbolic space is defined by

σ : AN+→ AN+ , x1x2 · · · 7→ x2x3 · · · .

(AN+ , σ ) forms a dynamical system under the discrete product topology which we called a
shift. A closed subset X ⊆ AN+ is called a subshift if it is invariant under the shift action σ .
w ∈ An , {x1x2 · · · xn : xi ∈ A} is a word of subshift X if there is an x ∈ X and k ∈ N
such that w= xk xk+1 · · · xk+n−1. Here we call n the length of w, denoted by |w|. The
language of a subshift X , denoted by L(X), is the set of all words of X . Denote Ln(X),
L(X)

⋂
An , i.e., the set of all the words of X with length n.

Here we present one type of subshift, β-shift, basically referring to [48, 51, 56]. It is
worth mentioning that from [12] the set of parameters of β for which the specification
property holds is dense in (1,+∞) but has Lebesgue zero measure.

Let β > 1 be a real number. We denote by [x] and {x} the integer and fractional parts of
the real number x . Consider the β-transformation fβ : [0, 1)→ [0, 1) given by

fβ(x)= βx (mod 1).

For β /∈ N, let b = [β] and for β ∈ N, let b = β − 1. Then, we split the interval [0, 1) into
a b + 1 partition as below:

J0 =

[
0,

1
β

)
, J1 =

[
1
β
,

2
β

)
, . . . , J1 =

[
b
β
, 1
)
.

For x ∈ [0, 1), let i(x, β)= (in(x, β))∞1 be the sequence given by in(x, β)= j when
f n−1x ∈ J j . We call i(x, β) the greedy β-expansion of x and we have

x =
∞∑

n=1

in(x, β)β−n .

We call (6β , σ ) the β-shift, where σ is the shift map and 6β is the closure of
{i(x, β)}x∈[0,1) in

∏
∞

i=1{0, 1, . . . , b}.
From the discussion above, we can define the greedy β-expansion of 1, denoted by

i(1, β). Parry showed that the set of sequences which belong to 6β can be characterized
as

ω ∈6β ⇔ f k(ω)≤ i(1, β) for all k ≥ 1,

where ≤ is taken in the lexicographic ordering [45]. By the definition of 6β above, 6β1 (
6β2 for β1 < β2 [45].

LEMMA 5.1. For the β-shift, there exists an increasing sequence {6n
β} of compact

σ -invariant subsets of 6β with the following properties:
(a) each {6n

β} is a sofic shift and has the specification property;
(b) for any µ ∈M f (6β), and any neighborhood U of µ in M f (6β), there exists an

n ≥ 1 and µ′ ∈Me
f (6

n
β) ∩U.

Lemma 5.1 is a particular case of [15, Proposition 3.6]. The reader can refer to [15]
for the details of the proof. The lemma above shows us that to figure out the irregular set

https://doi.org/10.1017/etds.2019.57 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2019.57


Distributional chaos in multifractal analysis, recurrence and transitivity 373

for the whole space(6β ), it is sufficient to study the irregular set for certain asymptotic
‘horseshoe-like’ (6n

β ) of the whole space.

THEOREM 5.2. For any β > 1 and (6β , σ ), suppose ϕ is a continuous function on 6β .
Then:
(a) there exist uncountable DC1-scrambled subsets in QW \W and BR \ QW;
(b) if Iϕ(σ ) 6= ∅, then there exist uncountable DC1-scrambled subsets in Iϕ(σ ) ∩

(QW \W ) and Iϕ(σ ) ∩ (BR \ QW);
(c) if Int(Lϕ) 6= ∅, then for any a ∈ Int(Lϕ), there exist uncountable DC1-scrambled

subsets in Rϕ(a) ∩ (QW \W ) and Rϕ(a) ∩ (BR \ QW);
(d) there exist uncountable DC1-scrambled subsets in Rϕ ∩ (QW \W ) and Rϕ ∩

(BR \ QW).

Proof. (a) Referring to [56], we have that {β ∈ (1,+∞) | (6β , σ ) has the specification
property} is dense in (1,+∞). Then, for any β > 1, we can find an α < β such that
(6α, σ ) has the specification property. By Theorem C, for (6α, σ ), QW′ \W ′ and
BR′ \ QW′ of 6α both have an uncountable DC1-scrambled subset. It is easy to see
that QW′ \W ′ and BR′ \ QW′ of 6α are the subsets of QW \W and BR \ QW of 6β ,
respectively, since 6α is σ -invariant as a subset of 6β . Then item (a) has been proved.

(b) If Iϕ(σ ) 6= ∅, there exist λ1, λ2 ∈Mσ (6β) such that
∫
ϕ dλ1 6=

∫
ϕ dλ2. By

Lemma 5.1, we have (6n
β , σ ) which has the specification property and µ1, µ2 ∈Mσ (6

n
β)

such that
∫
ϕ dµ1 6=

∫
ϕ dµ2. By Theorem D, for (6n

β , σ ), Iϕ(σ ) ∩ (QW′ \W ′) and
Iϕ(σ ) ∩ (BR′ \ QW′) of 6n

β both have an uncountable DC1-scrambled subset. Like the
analysis in the proof of item (a), we complete the proof.

(c) If Int(Lϕ) 6= ∅, then for any a ∈ Int(Lϕ), there exist λ1, λ2 such that
∫
ϕ dλ1 <

a <
∫
ϕ dµ2. By Lemma 5.1, we have (6n

β , σ ) which has the specification property
and µ1, µ2 ∈M f (6

n
β) such that

∫
ϕ dµ1 < a <

∫
ϕ dµ2. By Theorem D, for (6n

β , σ ),
Rϕ(a) ∩ (QW′ \W ′) and Rϕ(a) ∩ (BR′ \ QW′) of 6n

β both have an uncountable DC1-
scrambled subset. Like the analysis in the proof of item (a), we complete the proof.

(d) If Int(Lϕ) 6= ∅, item (d) is from item (c). Otherwise, Rϕ = X so that item (d) is from
item (a). �

6. Comments and questions
6.1. Weakly almost periodic points. The reason why we cannot analyse whether there is
an uncountable DC1-scrambled set in W by our method is that we did not find a measure µ
with full support and Gµ has a distal pair. For a point x ∈W ∩ Trans, we can observe that
x must be an element of the generic point of a measure with full support. But Theorem F
does not cover this situation.

THEOREM 6.1. Suppose that (X, f ) is a dynamical system with the specification property.
If, for any invariant measure µ with full support, Gµ has a distal pair, then:
(1) there is an uncountable DC1-scrambled set S ⊆W ∩ Trans;
(2) if ϕ is a continuous function on X and Iϕ( f ) 6= ∅, there is an uncountable DC1-

scrambled set S ⊆W ∩ Trans ∩ Iϕ( f );
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(3) if ϕ is a continuous function on X and Int(Lϕ) 6= ∅, then, for any a ∈ Lϕ , there is an
uncountable DC1-scrambled set S ⊆W ∩ Trans ∩ Rϕ(a);

(4) for any continuous function ϕ on X, there is an uncountable DC1-scrambled set
S ⊆W ∩ Trans ∩ Rϕ .

Remark 6.2. The set of points with Case (1) restricted on a recurrent set coincides with the
set of W \ AP. For systems with the specification property, note that W ∩ Trans⊆W \ AP
so that the above result can be stated for the set of points with Case (1) restricted on the
recurrent set or W \ AP.

Remark 6.3. For a transitive dynamical system (X, f ) without periodic points with
period m, it is easy to check that, for any x ∈ Trans, (x, f m x) must be a distal pair. This
implies that, for any invariant measure µ (not necessarily with full support), Gµ ∩ Trans
has a distal pair. So Theorem 6.1 is suitable for systems with the specification property
but without periodic points with period m for some m. In particular, it applies to mixing
subshifts of finite type without periodic points with period m for some m. For example, it
can be a subshift of finite type defined by a graph with two distinct cycles of length m + 1
and m + 2, starting from the same vertex. For such dynamical systems, Theorem F holds
for any non-empty compact connected set K , since Gµ has a distal pair for any µ in K .

Proof. Let µ be an invariant measure with full support.
(1) Take K = {µ}. Then one can use Proposition 2.5 and Theorem F to give the proof.
(2) By Proposition 2.3, one can choose an invariant measure µ′ with full support such

that
∫
ϕ dµ 6=

∫
ϕ dµ′. Take K = conv{µ, µ′}. Then one can use Proposition 2.5 and

Theorem F to give the proof.
(3) If

∫
ϕ dµ= a, take ω = µ. Otherwise, by Proposition 2.3, one can choose an

invariant measure µ′ with full support such that
∫
ϕ dµ′ < a <

∫
ϕ dµ or

∫
ϕ dµ <

a <
∫
ϕ dµ′. Take suitable θ ∈ (0, 1) such that ω = θµ+ (1− θ)µ′ and

∫
ϕ dω = a.

In this case take K = {ω}. One can use Proposition 2.5 and Theorem F to give the
proof.

(4) If Int(Lϕ) 6= ∅, item (4) is from item (3). Otherwise, Rϕ = X so that item (4) is from
item (1). �

6.2. Minimal points. For minimal points, it is still unknown whether DC1 appears but
here we point out that DC2 appears. In fact, by [36, Theorem 5.3], a dynamical system
(X, f ) with the specification property contains a horseshoe, and therefore also contains a
minimal subsystem with positive entropy. So DC2 appears by [22].

From [12], the set of parameters of β for which the specification property holds is
dense in (1,+∞) but has Lebesgue zero measure. However, every β shift has almost the
specification property by [49]. Thus DC2 appears in the minimal set for all β shifts.

Let C(M) be the set of continuous maps on a compact manifold M and H(M) be the
set of homeomorphisms on M . Recall that C0, generic f ∈ H(M) (or f ∈ C(M)) has the
shadowing property and infinite topological entropy (see [35] and [33, 34], respectively).
Thus, DC2 appears in the minimal set for C0 generic dynamical systems.
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6.3. Zhou and Feng’s question. There is an open problem in [67] by Zhou and Feng
concerning the set V :

V := {x ∈ QW \W |∃ µ ∈ V f (x) s.t. Sµ = Cx } 6= ∅?

It has been solved positively by constructing examples, see [27, 43], etc. From [63], for a
certain class of dynamical systems (including topological mixing subshifts of finite type,
all β-shifts, systems restricted on mixing locally maximal hyperbolic sets), V is not only
non-empty but also is a dense Gδ subset and has full topological entropy. Here, we give an
answer from the perspective of distributional chaos.

THEOREM 6.4. Suppose that (X, f ) is a dynamical system with the specification property.
Then, there is an uncountable DC1-scrambled subset in the set {x ∈ QW \W |∃ µ ∈
V f (x) s.t. Sµ = Cx }.

Proof. Let µ satisfy Proposition 4.2 and ν be a measure with full support. Let K =
conv{µ, ν}. Applying Theorem F to K , there is an uncountable DC1-scrambled subset
S ⊆ G K ∩ Trans. By Propositions 2.5(c) and 2.6(c), S ⊆ {x ∈ QW \W |∃ µ ∈ V f (x) s.t.
Sµ = Cx }. �

6.4. Regular points. Recall that QR=
⋃
µ∈M f (X) Gµ and the points in QR are called

quasiregular points of f in [17]. Now, we start to recall the concept of regular point
(see [44]). A point x ∈ QR is called a point of density if µx (U ) > 0 for every open set
U ⊆ X containing x where µx is the single measure in V f (x). Let QRd( f ) (QRd briefly)
denote the set of all points of density in QR and, for convenience in the present paper, QRd
is called the density set. It is easy to check that, for any x ∈ QR,

x ∈ QRd ⇔ x ∈ Sµx . (6.1)

Thus

QRd =
⋃

µ∈M f (X)

(Gµ ∩ Sµ). (6.2)

Let QRerg := ∪ν∈Me
f (X)

Gν . In [44], the point in QRerg is called transitive, but, in the
present paper, ’transitive point’ means that its orbit is dense in the whole space X . To
avoid confusion, in this paper, points in QRerg are called ergodic-transitive and the set
QRerg is called the ergodic-transitive set. A point x ∈ X is called regular if it belongs to
the set R( f )= QRd ∩ QRerg (called the regular set). We note that

R( f )=
⋃

µ∈Me
f (X)

(Gµ ∩ Sµ)⊆ QRd ∪ QRerg ⊆ QR. (6.3)

By the Birkhoff ergodic theorem and the ergodic decomposition theorem, R( f ) has totally
full measure (see [44] for a proof) and so does QRerg, QRd and QR.

THEOREM 6.5. Suppose that (X, f ) is a dynamical system with the specification property.
Then QR \ (QRd ∪ QRerg) and QRerg \ R( f ) both have an uncountable DC1-scrambled
subset.

https://doi.org/10.1017/etds.2019.57 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2019.57


376 A. Chen and X. Tian

Proof. Let µ1, µ2 ∈M f (X) satisfy Proposition 4.2. Let ν = 1
2µ1 +

1
2µ2. Then ν ∈

M f (X) \Me
f (X). Let

K1 := {ν};

K2 := {µ1}.

Let U1 ⊆ X \ (Sµ1 ∪ Sµ2) be an open set. Applying Theorem F to U1, K1, QR \ (QRd ∪

QRerg) has an uncountable DC1-scrambled subset. Let U2 ⊆ X \ Sµ1 be an open set.
Applying Theorem F to U2, K2, QRerg \ R( f ) has an uncountable DC1-scrambled subset.

�

Remark 6.6. Like the analysis in Remark 6.3, if we assume that the dynamical system
(X, f ) does not contain periodic points with period m, then there are ν1 ∈M f (X) \
Me

f (X) and ν2 ∈Me
f (X) such that Gν1 , Gν2 both have a distal pair and Sν1 = Sν2 = X .

Let K1 = {ν1}; K2 = {ν2}. Then by Theorem F, QRd \ R( f ) and R( f ) both have an
uncountable DC1-scrambled subset.
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