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Abstract

We construct a stable homotopy refinement of quantum annular homology, a link homol-
ogy theory introduced by Beliakova, Putyra and Wehrli. For each r ≥ 2 we associate to
an annular link L a naive Z/rZ-equivariant spectrum whose cohomology is isomorphic
to the quantum annular homology of L as modules over Z[Z/rZ]. The construction
relies on an equivariant version of the Burnside category approach of Lawson, Lipshitz
and Sarkar. The quotient under the cyclic group action is shown to recover the stable
homotopy refinement of annular Khovanov homology. We study spectrum level lifts of
structural properties of quantum annular homology.
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1. Introduction

The construction of Khovanov homology in [Kho00] was the first in a family of link homology
theories categorifying quantum invariants of links in R3. To a planar diagram D of an oriented
link L in R3 it associates a chain complex CKh(D) of graded modules. The homotopy class
of CKh(D) is an invariant of the link, and the graded Euler characteristic of CKh(D) is the
Jones polynomial of L. Applications of Khovanov homology have been widely studied, and its
functoriality properties with respect to surface cobordisms in 4-space are a particularly important
aspect of the theory.

Using the framework of the Cohen–Jones–Segal construction [CJS95], Lipshitz and Sarkar
constructed in [LS14a] a stable homotopy refinement of Khovanov homology. (An alternative
construction was proposed by Hu, Kriz and Kriz in [HKK16].) This theory assigns to a link L in
R3 a suspension spectrum XKh(L) whose cohomology is the Khovanov homology of L. The stable
homotopy type carries additional information about the link, not seen at the level of Khovanov
homology; specifically, it induces an action of the Steenrod algebra. Another construction of
XKh(L), using the Burnside category, was given by Lawson, Lipshitz and Sarkar in [LLS20]. Its
analogue for the odd Khovanov homology was introduced in [SSS20] and extensions to tangles
were developed in [LLS17b, LLS19]. Some proposals for defining a stable homotopy refinement
of Khovanov–Rozansky slN homology for N ≥ 3 have been outlined in [HKS19, JLS19, Kit19].

1.1 Annular homology theories
This paper concerns annular links, that is, links in the thickened annulus A× I, where A =
S1 × [0, 1]. Given a link L in A× I, consider its projection D onto the first factor A. Follow-
ing constructions by Asaeda, Przytycki and Sikora [APS04], Bar-Natan [Bar05], and Roberts
[Rob13], the triply graded annular Khovanov homology KhA(L) (sometimes called sutured annu-
lar Khovanov homology) may be obtained from the usual Khovanov chain complex [Kho00] of
D, viewed as a diagram in R2 by including A ⊂ R2, and then taking the annular degree zero
part of the differential. Alternatively, KhA(L) may be obtained by applying a certain topological
quantum field theory (TQFT) to the Bar-Natan category BN (A) of the annulus. It was shown
by Grigsby, Licata and Wehrli [GLW18] that this homology carries an action of sl2.

The quantum annular homology KhAq (L), introduced by Beliakova, Putyra and Wehrli in
[BPW19], is a far-reaching extension. Consider a ring k and a fixed unit q ∈ k. Following the
notation of [BPW19], we note that there are two units q in the theory. One corresponds to the
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usual q-grading and the second one is the unit q ∈ k; we distinguish them by using different
fonts. In a sense q may be thought of as a deformation parameter, explaining the term ‘quantum
homology’.

A rough outline of the construction of KhAq (L) is as follows (see § 2.2 for a more detailed
description). Given an annular link diagram D ⊂ A = S1 × I, we cut it along a seam {∗} × I to
obtain an (n, n)-tangle Dcut. A construction of Chen and Khovanov [CK14] then yields graded
platform algebras An and a functor FCK : BN (n,m)→ gBimod(An, Am), where BN (n,m) is the
Bar-Natan category of the rectangle with marked points, and gBimod(An, Am) is the category of
graded (An, Am)-bimodules. In [BPW19], the authors introduced quantum Hochschild homology,
denoted qHH, a deformation of the usual Hochschild homology of bimodules. The link homology
theory is then defined using the quantum annular TQFT FAq :

FAq (D) := qHH(An,FCK(Dcut)). (1.1)

The functorial extension to surfaces in A× I × I relies on the theory of (twisted) horizontal traces
of bicategories. Quantum annular homology has a number of interesting properties [BPW19].

(i) The homology KhAq (L) in general depends on the choice of q; for example, different roots
of unity q ∈ C may give non-isomorphic theories.

(ii) KhAq (L) carries an action of Uq(sl2).
(iii) Let Σ be a closed surface in S1 × R3. Denoting by L the link Σ ∩ (∗ × R3), Σcut gives a

cobordism from L to itself in I × R3. The evaluation ofKhAq (Σ) equals the graded Lefschetz
trace of Σ∗ : Kh(L) −→ Kh(L), the endomorphism of the Khovanov homology of L induced
by Σcut. In particular, KhAq (S

1 × L) coincides with the Jones polynomial of L.

1.2 Spectra for annular links
A stable homotopy refinement XA(L) of the annular Khovanov homology may be defined along
the lines of [LS14a, LLS20]. A different approach was used by Lawson, Lipshitz and Sarkar in
[LLS19]: they constructed a stable homotopy refinement of Chen–Khovanov algebras, giving rise
to an alternative construction of XA(L) as the topological Hochschild homology of the resulting
ring spectrum.

The main result of this paper is a construction of a stable homotopy refinement of quantum
annular homology. We work over the Laurent polynomial ring k := Z[q, q−1] and tensor the
resulting theory with kr := Z[q, q−1]/(qr − 1), where r ≥ 2.

Theorem 1.1. Let L be an oriented link in the thickened annulus A× I. Then, for each r ≥ 2,

there exists a naive Z/rZ-equivariant spectrum X r
Aq

(L) which is well defined up to equivariant

homotopy equivalence and whose cohomology is isomorphic to the quantum annular homology

KhAq (L), as modules over Z[Z/rZ].

A key point in the construction X r
Aq

(L) is the interpretation of q as a generator of the
cyclic group Z/rZ. The proof then proceeds by building in § 4 the quantum annular Burnside
functor : a strictly unitary lax 2-functor to a suitably defined equivariant Burnside category, and
then constructing in § 5 an equivariant version of spatial refinement, building on the approaches
of [LLS20, SSS20]. The definition of X r

Aq
(D) is given for link diagrams D in Definition 5.2 in

§ 5.5; the proof of invariance with respect to all choices involved (including choice of diagram) is
presented there via Theorems 5.10 and 5.11.
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Part of our construction involves a concrete description of generators and of the differential,
starting from the quantum Hochschild homology definition [BPW19] of the quantum annular
TQFT FAq (D) in (1.1); this may be of independent interest to the reader interested in com-
putational aspects of the theory. In fact, there is an important distinction between (annular)
Khovanov homology and the quantum annular homology KhAq (L). In the setting of Khovanov
homology, each resolution of the link diagram has a preferred collection of generators, and this
is a crucial feature used in constructions of stable homotopy refinements in [LS14a, LLS20]. On
the other hand, in the context of quantum annular homology, generators are well defined only
up to a multiple of a power of q. The proof of Theorem 1.1 involves a careful analysis of this
indeterminacy and its relation to the group action on the spectrum. Moreover, the differential
depends in a non-trivial way on the combinatorics of a given curve configuration in the annulus.
A detailed analysis of the saddle maps defining the differential, using the definition in terms of
the quantum annular TQFT FAq , is given in § 2.4. For r > 2, the powers of q appearing in the
differential affect the construction of the Burnside functor, similar to how the signs appearing in
odd Khovanov homology affect the analysis in [SSS20].

The proof of the following result is presented in § 7.

Theorem 1.2. The quotient of X r
Aq

(L) under the action of Z/rZ recovers XA(L), the stable

homotopy refinement of the classical annular Khovanov homology of L.

It is important to note that no group action is assumed to be present on the link L ⊂ A× I,
so the context for our work is different from that in [BPS18, Mus19, SZ18]. Therefore, X r

Aq
(L)

may be thought of as an ‘equivariant refinement’ of XA(L), a structure that is not apparent in
other constructions of the annular spectrum XA(L).

1.3 Properties and questions
It is an interesting question to what extent properties of the quantum annular homology theory
KhAq (L) can be lifted to the level of spectra. In Theorem 6.1, we prove that a generically
embedded cobordism W ⊂ A× I × [0, 1] between two annular links L0 and L1 gives rise to a
map

ϕrW : X rAq
(L1)→ X rAq

(L0),

which induces the map on quantum annular Khovanov homology over the ring kr, defined in
[BPW19]. As usual, the construction proceeds by decomposing W into elementary cobordisms,
whose annular projections correspond to Reidemeister moves and Morse surgeries. However, in
the case of quantum annular homology, additional complexity arises from isotopies of the link
diagram across the seam of the annulus. The map on quantum homology induced by cobordisms
in four dimensions in [BPW19] relies on the theory of horizontal traces and quantum Hochschild
homology. To define maps on spectra, we need to introduce chain maps by specifying their values
on chosen generators. A detailed discussion of these chain maps, as well as verification that they
match the maps defined by the TQFT FAq , are given in the proof of Theorem 6.1 and in the
appendix.

We are now in a position to formulate a spectrum-level analogue of property (iii) in § 1.1.

Theorem 1.3. Let L be a link in the 3-ball B3 and consider the surface Ŵ = S1 × L in A×
D2 ∼= S1 ×B3. Let W denote a copy of Ŵ perturbed to be generic, viewed as a cobordism from

713

https://doi.org/10.1112/S0010437X20007721 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X20007721


R. Akhmechet, V. Krushkal and M. Willis

∅ to itself. Then the map

ϕrW : XAq (∅) −→ XAq (∅)

induces the map on quantum annular homology (ϕrW )∗ : kr −→ kr which is given by multiplica-

tion by the Jones polynomial of L, considered as an element of kr, up to a sign and an overall

power of q.

Here the spectrum XAq (∅) associated to the empty set is the wedge sum of r copies of
the sphere spectrum, with cohomology isomorphic to kr. For brevity the theorem is stated for
product surfaces S1 × L; the graded Lefschetz trace statement for more general closed surfaces
holds as well. See Corollary 6.4 and remarks following it for further details.

An important feature of stable homotopy refinement, not available on the level of link homol-
ogy, is the action of Steenrod algebra. We do not address this aspect of the theory in the present
paper; we plan to analyze the equivariant aspect of Steenrod operations on the spectra X r

Aq
(L)

in a future work.
Recall property (ii) in § 1.1, stating that KhAq carries an action of Uq(sl2); see [BPW19,

Theorem B] and § 8 below for a more detailed discussion.

Conjecture 1.4. The action of Uq(sl2) on quantum annular homology KhAq (L) can be lifted
to an action on X r

Aq
(L).

In § 8, we show that the invertible generator K of Uq(sl2) admits a lift to an equivariant
automorphism of X r

Aq
(L), but lifting the other generators and the relations between them is

outside the scope of this paper. See the discussion at the end of § 8 for more comments on this
matter.

We conclude the introduction with another question. As discussed above, recently Lawson,
Lipshitz and Sarkar gave a reformulation [LLS19] of the annular Khovanov spectrum XA(L) as
the topological Hochschild homology of their stable homotopy refinement of Chen–Khovanov
algebras. Our construction of the spectra X r

Aq
(L) is based on the definition of the quantum

annular homology KhAq (L) in [BPW19] using quantum Hochschild homology of bimodules.
It is an interesting question whether there is a formulation of X r

Aq
(L) using some twisted or

equivariant version of topological Hochschild homology of the ring spectra associated in [LLS19]
to Chen–Khovanov algebras.

2. The quantum annular TQFT

2.1 Classical annular Khovanov homology
This section reviews the construction of sutured annular Khovanov homology [APS04, Bar05,
Rob13]. We will refer to it as classical annular homology, to distinguish it from the quantum
version discussed in § 2.2. Let I := [0, 1] denote the unit interval; we fix the notation A for the
annulus S1 × I. An annular link is a link in the thickened annulus A× I, and its diagram is
a projection onto the first factor of A× I. Link diagrams are disjoint from the boundary of A.
Identifying S1 × (0, 1) with R2 minus a point, we represent the annulus by simply indicating the
deleted point using the symbol ×. Figure 1 illustrates an example of a link diagram.

Let BN (A) denote the Bar-Natan category of the annulus [Bar05]. Its objects are formal
Z-linear combinations of formally graded collections of simple closed curves in A. Morphisms
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Figure 1. An annular link diagram.

Figure 2. Bar-Natan relations.

are matrices whose entries are formal Z-linear combinations of dotted cobordisms embedded in
A× I, modulo isotopy relative to the boundary, subject to the Bar-Natan relations, Figure 2.

Let D be a diagram for an oriented annular link L. We briefly review the construction of
the chain complex [[D]]; a complete treatment can be found in [Bar05]. To begin, one first forms
the cube of resolutions as follows. Label the crossings of the diagram by 1, . . . , n. Every crossing
may be resolved in two ways, called the 0-smoothing and the 1-smoothing, as in (2.1). For each
u = (u1, . . . , un) ∈ {0, 1}n, perform the ui-smoothing at the ith crossing. The resulting diagram
is a collection of disjoint simple closed curves in A, which we denote Du. Thinking of elements
of {0, 1}n as vertices of an n-dimensional cube, decorate the vertex u by the smoothing Du.

(2.1)

Let v = (v1, . . . , vn) and u = (u1, . . . , un) be vertices which differ only in the ith entry, where
vi = 0 and ui = 1. Then the diagrams Dv and Du are the same outside of a small disk around
the ith crossing. There is a cobordism from Dv to Du, which is the obvious saddle near the ith
crossing and the identity (product cobordism) elsewhere. We will call this the saddle cobordism
from Dv to Du and denote it by dv,u. Decorate each edge of the n-dimensional cube by these
saddle cobordisms. We now have a commutative cube in the category BN (A). There is a way to
assign su,v ∈ {0, 1} to each edge so that multiplying the edge map dv,u by (−1)sv,u results in an
anti-commutative cube (see [Bar05, § 2.7]; see also [LS14a, Definition 4.5]).

For u = (u1, . . . , un) ∈ {0, 1}n, let |u| = ∑
i ui. Now form the chain complex [[D]] by setting

[[D]]i =
⊕

|u|=i+n−

Du{i+ n+ − n−},

where n− and n+ are the numbers of negative and positive crossings in D, and the brackets {−}
denote the formal grading shift in BN (A). The differential is given on each summand by the
edge map (−1)sv,udv,u. Anti-commutativity of the cube ensures that [[D]] is a complex.

Theorem 2.1 [Bar05, Theorem 1]. If diagrams D and D′ are related by a Reidemeister move,

then [[D]] and [[D′]] are chain homotopy equivalent.
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Figure 3. Diagrammatic representation of generators.

To obtain classical annular Khovanov homology, one applies the annular TQFT

FA : BN (A)→ Mod(Z)

defined as follows. Let VZ and WZ be free rank two Z-modules with bases v−, v+ and w−, w+,
respectively. Equip each with two gradings, the quantum grading qdeg and the annular grading
adeg, defined on generators by

qdeg(v±) = 0, qdeg(w±) = ±1, (2.2)

adeg(v±) = ±1, adeg(w±) = 0. (2.3)

We follow the grading convention of [BPW19]; note that the quantum grading on V is different
than the quantum grading appearing elsewhere in the literature; see Remark 2.3.

There are two types of simple closed curves in A; essential curves and trivial curves which
bound disks in A. The functor FA assigns VZ to each essential circle and WZ to each trivial
circle. Then for C ⊂ A a collection of disjoint simple closed curves with e essential and t trivial
circles, the free abelian group FA(C) = ⊗eVZ ⊗tWZ (where the tensor product is taken over Z)
has a standard basis consisting of a label of v− or v+ on each essential circle, and w− or w+ on
each trivial one. Following the conventions in [BPW19], a generator of C will be represented as a
choice of counterclockwise or clockwise orientations on each essential circle, corresponding to v+
and v−, respectively, and either a dot or no dot on each trivial circle, corresponding to w− and
w+. We will often switch between the diagrammatic and algebraic representations of generators,
Figure 3.

To define FA on a cobordism, it is enough to consider cups, caps, and saddles. To a cup, FA

assigns the unit ε : Z→WZ defined by ε(1) = w+. To a cap, FA assigns the counit η : WZ → Z

defined by

η(w−) = 1, η(w+) = 0.

A saddle is assigned one of the six maps shown in Figure 4, depending on whether it is a merge
or a split and the types of curves involved.

Definition 2.1. If D is a diagram for an annular link L, define the annular Khovanov complex
of D to be

CKhA(D) := FA([[D]]);

it is an invariant of L up to chain homotopy equivalence.

Remark 2.2. Some of these formulas have an interpretation in terms of relations on cobordisms,
as follows. Let BBN (A) [BPW19] denote the quotient of BN (A) by Boerner’s relation, introduced
in [Boe08], which says that any cobordism carrying a dot and an essential curve is set to 0 (see
Figure 5).
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Figure 4. Surgery formulas in classical annular Khovanov homology. The table lists topological
types of surgeries and corresponding maps on generators.

Figure 5. Boerner’s relation.

Algebraically, a dot on a cobordism corresponds to multiplication with w−. Then, for a trivial
circle C, the standard generator w+ (respectively w−) of FA(C) = WZ is the image of 1 ∈ Z

under the undotted (respectively dotted) cup cobordism from ∅ to C. The surgery formulas of
Figure 4 then imply that FA factors through BBN (A). Algebraically, Boerner’s relation can be
seen as enforcing the equations w− · v− = w− · v+ = 0.

Remark 2.3. To relate this to other constructions and grading conventions present in the liter-
ature (cf. [Rob13, § 3] and [GLW18, § 3.1]), the annular chain complex may also be formed as
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Figure 6. A planar (3, 1)-tangle.

follows. We may disregard the annular structure and view the resolutions Du in the cube [[D]] as
lying in the plane. Then we may apply the usual Khovanov TQFT FKh to the cube, obtaining
the Khovanov chain complex CKh(D). Every circle C is assigned a free Z-module U generated
by u+ and u−. The module U carries an internal grading degU , with degU (u±) = ±1. Curves in
the annulus carry an additional grading, adeg, with adeg(u±) equal to ±1 if C is essential and
0 if C is trivial. The Khovanov differential dKh splits as dKh = dA + d′, where dA preserves the
annular grading and is precisely the map in Figure 4, while d′ lowers the annular grading. Thus,
the annular grading induces a filtration on the Khovanov complex CKh(D). Taking the annual
degree zero part of the differential and defining qdeg to be the difference between the degree
degU and adeg yields precisely the classical annular chain complex CKhA(D). The gradings
degU , qdeg, and adeg are denoted j, j′, and k in [GLW18], respectively.

2.2 Overview of quantum annular homology
This section outlines the construction of the Beliakova–Putyra–Wehrli quantum annular link
homology [BPW19]. The theory is built over a commutative ring k and a unit q ∈ k. We set
k := Z[q, q−1]; the distinguished unit q ∈ k is the same q appearing in Z[q, q−1]. The main object
is the quantum annular TQFT

FAq : BN q(A)→ Mod(k),

where Mod(k) is the category of graded k-modules and BN q(A) is a certain deformation of the
Bar-Natan category of the annulus. We will give a brief overview of the functor FAq and state a
main theorem [BPW19, Theorem 6.3].

Remark 2.4. As mentioned above, we work over the Laurent polynomial ring k throughout this
section. We will tensor the resulting theory with kr := k/(qr − 1) to construct the quantum
annular Burnside functor in § 4.

Let BN (n,m) denote the Bar-Natan category of the rectangle with n points on the bottom
and m on the top. Its objects are formal direct sums of formally graded planar tangles in I2 with
n endpoints on I × {0} and m endpoints on I × {1}, cf. Figure 6. Such a tangle will be called
a planar (n,m)-tangle. Morphisms in BN (n,m) are matrices whose entries are formal k-linear
combinations of embedded dotted cobordisms in I3 between planar (n,m)-tangles, subject to
the Bar-Natan relations (see Figure 2).

A seam of A = S1 × I, denoted μ, is an interval {∗} × I. In our representation of the interior
of the annulus as R2 �×, we will fix the seam as the positive x-axis, ending on the left in ×.
See Figure 8 for an example.

The quantum Bar-Natan category of the annulus, denoted BN q(A), is a deformation of
BN (A). The objects of BN q(A) are nearly the same as those of BN (A), with the slight mod-
ification that curves in A must be transverse to μ. Morphisms in BN q(A) are also similar to
those in BN (A). In BN q(A), isotopic cobordisms are identified if the isotopy fixes the membrane
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= q−1

= q

= q

= q2

Figure 7. Relations in BN q(A).

Figure 8. Cutting open a configuration C along μ to obtain a (3, 3)-tangle Ccut.

μ× I ⊂ A× I. Otherwise, the cobordisms are scaled according to the degree of the part of the
cobordism that passes through the membrane during the isotopy, accounting also for the co-
orientation of the membrane induced by the standard orientation of the core circle of A. These
will be referred to as trace moves. The relations are depicted in Figure 7; for details, see [BPW19,
§ 6.2].

The Bar-Natan relations (Figure 2) are imposed, where the local pictures are understood to
be disjoint from the membrane.

By general position, if two annular cobordisms are isotopic, then they are related by a
sequence of trace moves and isotopies fixing the membrane. Therefore, if two cobordisms S, S′ ⊂
A× I are isotopic, then S = qkS′ as morphisms in BN q(A) for some k ∈ Z. (See also [BPW19,
Proposition 6.2].)

A configuration C is a collection of disjoint simple closed curves in A which are transverse
to μ. Note that an object of BN q(A) is a formal direct sum of formally graded configurations.
Given a configuration C which intersects μ in n points, we can cut along μ to obtain a planar
(n, n)-tangle Ccut. See Figure 8 for an example. A construction of Chen and Khovanov [CK14]
yields graded k-algebras Ak for each k ≥ 0 and a functor

FCK : BN (n,m)→ gBimod(An, Am),

where gBimod(An, Am) is the category of graded (An, Am)-bimodules. Let In denote the planar
tangle consisting of n vertical strands. Then, by definition of FCK , we have FCK(In) = An.

The quantum Hochschild homology, denoted qHH and defined in [BPW19, § 3.8.5], is a defor-
mation of the usual Hochschild homology of bimodules. It takes as input a graded k-algebra B
and a graded (B,B)-bimodule M . The output qHH(B,M) =

⊕
i≥0qHHi(B,M) is a k-module.

Due to [BPW19, Proposition 6.6] (stating that qHHi(FCK(Ccut)) = 0 for i > 0), we will mostly
be interested in qHH0. It follows immediately from the definition of qHH that

qHH0(B,M) = M/spank{bm− q|b|mb | b ∈ B,m ∈M}, (2.4)

where |b| denotes the degree of b.
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We are now ready to define FAq on objects. Let C be a configuration which intersects μ
in n points. Using the Chen–Khovanov functor, form the (An, An)-bimodule FCK(Ccut). The
quantum annular TQFT FAq is then defined on objects by

FAq (C) := qHH(An,FCK(Ccut)).

By [BPW19, Proposition 6.6], we have qHHi(FCK(Ccut)) = 0 for i > 0. Suppose that C consists
of n essential curves each intersecting the seam once. Then Ccut = In, so

FAq (C) = qHH0(An, An).

Let An0 ⊂ An denote the subalgebra consisting of elements of degree 0. By [BPW19, Proposition
6.6], the inclusion An0 ↪→ An induces an isomorphism qHH0(An0 , A

n
0 ) ∼= qHH0(An, An). Moreover,

An0 is freely generated over k by 2n elements x1, . . . , x2n , which are the primitive idempotents of
[BPW19, § 5.5]. They are in bijection with the cup diagrams and satisfy xixj = δijxi. It follows
from (2.4) that

qHH0(An0 , A
n
0 ) ∼= k2n

.

Every configuration C is isomorphic in BN q(A) to a configuration C◦ in which every curve
intersects the seam at most once. If C has e essential and t trivial circles, then, by delooping,
one obtains

FAq (C) ∼= FAq (C◦) ∼= k2e+t
.

We have so far only explained what FAq does on objects. The full construction of FAq in [BPW19]
follows from a more general theory of (twisted) horizontal traces of bicategories, which we
will not describe. The definition of FAq on morphisms follows from this general theory. The
rest of this subsection describes the set-up for [BPW19, Theorem 6.3], which is stated as our
Theorem 2.5, and which is the main computational tool.

Let BBN q(A) denote the quotient of BN q(A) by Boerner’s relation; see Figure 5. The functor
FAq factors through BBN q(A). Given a diagramD for an annular link L such thatD is transverse
to μ and the crossings are disjoint from μ, we form the cube of resolutions [[D]] in the usual
manner and view the result as a chain complex over the quantized category BBN q(A).

Definition 2.2. If D is a diagram for an annular link L which is transverse to the seam, define
the quantum annular Khovanov complex of D to be

CKhAq (D) := FAq ([[D]]).

The chain complex CKhAq (D) is an invariant of L up to chain homotopy equivalence by
[BPW19, Proposition 6.8].

Let TL denote the additive closure of the formally graded Temperley–Lieb category [BPW19,
Appendix A.1]. Its objects are formal direct sums of formally graded finite collections of points on
a line, and morphisms are k-linear combinations of planar tangles between the points, modulo
planar isotopy and the local relation that a circle is set to q + q−1. Composition is given by
stacking planar tangles; see Figure 9 for an example. There is a functor S1 × (−) : TL→ BN q(A),
which sends a collection of n points to n essential circles in A, each intersecting μ once, and sends
a planar tangle T to the cobordism S1 × T . The relations in BN q(A) (see Figure 7) imply that
a torus wrapping once around the annulus evaluates to q + q−1, so that S1 × (−) is well defined.
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Figure 9. Composition and relations in TL.

Let gRep(Uq(sl2)) denote the category of graded representations of Uq(sl2). We follow the
conventions established in [BPW19, Appendix A.1] concerning Uq(sl2); also see § 8 of this paper.
There is another functor FTL : TL→ gRep(Uq(sl2)), defined as follows. Let V1 = 〈v−1, v1〉 be
the fundamental representation of Uq(sl2) and V ∗

1 = 〈v∗−1, v
∗
1〉 its dual. Let V be free over k with

basis {v+, v−}. Consider two k-linear isomorphisms α : V1 → V and β : V ∗
1 → V defined by

α : v1 �→ v+, β : v∗1 �→ v−,

α : v−1 �→ v−, β : v∗−1 �→ q−1v+.

These equip V with two actions of Uq(sl2), which are detailed in [BPW19, Appendix A.1].
Note that β−1 ◦ α : V1 → V ∗

1 is not Uq(sl2)-linear, even though V1 and V ∗
1 are isomorphic as

Uq(sl2)-modules.
The functor FTL assigns V ⊗n to a collection of n points. Since β−1α is not Uq(sl2)-linear,

there is an ambiguity in specifying the Uq(sl2)-module structure on V ⊗n. The convention is that
the mth point is assigned V1 if m is odd and V ∗

1 if m is even, so that the module assigned to n
points is given the Uq(sl2)-action according to the identification

V ⊗n ∼= V1 ⊗ V ∗
1 ⊗ V1 ⊗ · · · .

To define the value of FTL on any planar tangle, it suffices to specify its value on caps and cups.
For a cap ∩, FTL assigns the evaluation map ev : V ⊗ V → k, defined by

v+ ⊗ v+ �→ 0, v+ ⊗ v− �→ q,

v− ⊗ v− �→ 0, v− ⊗ v+ �→ 1.

On a cup ∪, FTL assigns the coevaluation coev : k→ V ⊗ V , defined by

1 �→ v+ ⊗ v− + q−1v− ⊗ v+.
The evaluation map is always identified with either V1 ⊗ V ∗

1 → k or V ∗
1 ⊗ V1 → k, and the coeval-

uation is identified with either k→ V1 ⊗ V ∗
1 or k→ V ∗

1 ⊗ V1. With these identifications, the cap
and cup are assigned Uq(sl2)-linear maps by FTL.

We have now explained the functors FTL : TL→ gRep(Uq(sl2)) and S1 × (−) : TL→
BN q(A). To compare FTL with the composition FAq ◦ S1 × (−) in the statement of
Theorem 2.5, the value of FAq on n essential circles intersecting the seam once needs to be
given a Uq(sl2)-module structure. Recall that the Chen–Khovanov functor assigns the k-algebra
An to the planar tangle In consisting of n vertical strands. There is a distinguished k-linear
isomorphism

qHH0(An, An) ∼= V ⊗n, (2.5)

which we now describe. Recall that the inclusion An0 ↪→ An induces an isomorphism on qHH0,
and that qHH0(An, An0 ) has a distinguished k-basis {x1, . . . , x2n} corresponding to cup dia-
grams. Chen and Khovanov in [CK14, § 6] assigned to each xi an element pi ∈ V ⊗n such that
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A configuration C Its standard form C◦

C

(a) (b)

(c) (d) C

Figure 10. (a) A configuration C, (b) its standard form C◦, (c) CE, and (d) CT.

the collection {pi} forms a basis of V ⊗n. The isomorphism (2.5) is obtained by composing
qHH0(An, An) ∼= qHH0(An, An0 ) with the assignment xi �→ pi.

Theorem 2.5 [BPW19, Theorem 6.3]. There is a commuting diagram

with the horizontal functor an equivalence of categories.

This theorem will play an important role in determining the values of the differential on
generators in the next section.

2.3 Fixing generators
In the construction of Khovanov homotopy types in [LS14a] and [SSS20] it is important to have a
fixed set of generators for each configuration. Due to the definition of FAq , the situation is more
complicated in quantum annular homology. In this subsection, we explain how to fix generators
for a general configuration.

We will say that a configuration C is standard if every component intersects the seam in at
most one point. Every configuration C is isotopic in A to a standard configuration, denoted C◦,
which is unique up to planar isotopy of the cut-open planar tangle. Next we explain in detail
how Theorem 2.5 gives a canonical choice of generators for FAq (C) when C is standard.

For a configuration C, we will write CE to denote the essential circles in C and CT to denote
the trivial circles. Figure 10 illustrates these conventions.

For a cobordism S ⊂ A× I, let S̄ denote its reflection in the I coordinate. For a configuration
C, we will often suppress the notation FAq (C) when it is clear from context; that is, x ∈ C means
x ∈ FAq (C). Likewise, for a cobordism S : C → C′, we will often write S(x) to mean FAq (S)(x),

where FAq (S) : FAq (C)→ FAq (C′) is the induced map. For cobordisms C S1−→ C′ and C′ S2−→ C′′,
we will write S2S1 to denote their composition.

Suppose that C ⊂ A is a trivial circle and set n = |C ∩ μ|. The circle C bounds an embedded
disk D ⊂ A, and we may push the interior of D down in the I coordinate to obtain a cobordism
Σ ⊂ A× I from the empty set to C which intersects the membrane in exactly n/2 arcs. We refer
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Figure 11. The moves P, P−1, N,N−1.

to Σ as the cup cobordism on C. Similarly, we may pull D up in the I coordinate to obtain the
cap cobordism on C, which is simply Σ̄.

Let W denote the k-module assigned by FAq to a trivial circle C which is disjoint from the
seam. The module W = 〈w−, w+〉 is free of rank 2. The standard generator w+ (respectively w−)
is the image of 1 ∈ k under the undotted (respectively dotted) cup cobordism on C. Therefore,
we will often identify w± with these cup cobordisms. Diagrammatically, we will signify that a
trivial circle C in C is labelled by w− by drawing a dot on C, as in Figure 3.

Suppose that C is a standard configuration with e essential circles and t trivial circles. Order
the trivial circles in some way, and order the essential circles from the innermost to the outermost.
The exact ordering of the trivial circles is irrelevant, but it is important to order the essential
circles in this way in light of Theorem 2.5 and the asymmetry of the evaluation and coevaluation
maps. We have that

FAq (C) = V ⊗e ⊗W⊗t, (2.6)

where the tensor products above are understood to be over k, and the identification of the value
of FAq on e standard essential circles with V ⊗e is the isomorphism from (2.5). The modules V
and W are each bigraded, carrying a quantum grading qdeg and an annular grading adeg. The
degrees of generators are as in (2.2) and (2.3). Algebraically, we will write a standard generator
as

va1 ⊗ · · · ⊗ vae ⊗ wb1 ⊗ · · · ⊗ wbt ,
where each ai, bj ∈ {−,+}, the vai label the essential circles, and the wbj label the trivial circles.
We will often shorten the notation to vI ⊗ wJ , where I is a sequence of ± labelling the essential
circles and J is a sequence of ± labelling the trivial ones. Note also that each standard generator
x = vI ⊗ wJ ∈ C of a standard configuration C is the image of vI under the cobordism

ΣJ : CE → C,
which is the identity on CE and a cup cobordism on each trivial circle, with some cups possibly
carrying dots as specified by the labels J . Diagrammatically, we will use the same convention
as in Figure 3.

The following lemma concerns general (not necessarily standard) configurations; the argu-
ment is similar to the proof of [BPW19, Lemma 6.4].

Lemma 2.6. Let C, C′ ⊂ A be two isotopic configurations. Let φ be an isotopy from C to C′, and

denote by S : C → C′ the cylindrical cobordism in A× I formed by φ. Then S is an isomorphism

in BN q(A), with S−1 = qkS̄ for some k ∈ Z.

Proof. Isotopic cobordisms are equal in BN q(A) if the isotopy between them fixes the membrane.
We may therefore assume that the isotopy φ is a sequence of the local moves in Figure 11, denoted
P, P−1, N, and N−1.
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Let p denote the number of moves of type P or P−1, let n denote the number of moves of
type N or N−1, and set k = n− p. It follows from the relations in Figure 7 that

qkS̄S = idC , qkSS̄ = idC′ . �

Lemma 2.7. Let C be a standard configuration. Let φ be a component-preserving isotopy from C
to itself, with corresponding cobordism S : C → C. For any standard generator x ∈ C, qkS(x) = x

for some k ∈ Z.

Proof. As discussed earlier, a standard generator x = vI ⊗ wJ ∈ C is the image of vI under a
cobordism

ΣJ : CE → C,
which is the identity on CE and a cup cobordism on all circles in CT, with some cups possibly
carrying dots as specified by J . Every component of the cobordism SΣJ is either an undotted
annulus between essential circles or a possibly dotted disk with trivial boundary. Each disk can
be isotoped to a cup cobordism on its trivial boundary circle at the cost of multiplying by a power
of q. Then, at the cost of introducing further powers of q, the remaining annuli may be isotoped
to the identity cobordism on CE while fixing each cup cobordism. This yields qkSΣJ = ΣJ for
some k ∈ Z, so qkS(x) = qkSΣJ (vI) = ΣJ (vI) = x. �

Lemma 2.8. Let C be a configuration and let φ1, φ2 be two isotopies from C◦ to C that induce

the same correspondence between components. Denote the corresponding cobordisms by S1, S2 :
C◦ → C. If x ∈ C◦ is a standard generator, then S1(x) = qkS2(x) for some k ∈ Z.

Proof. Consider the component-preserving cobordism S1S2 : C◦ → C◦, which is formed by the
isotopy φ−1

1 φ. By Lemma 2.7, we have qmS1S2(x) = x for some m ∈ Z. By Lemma 2.6, we know
that q�S1S1 = idC for some 
 ∈ Z. Then

q�S1S1(x) = x = qmS1S2(x)

and we obtain

S1(x) = qm−�S2(x). �

Remark 2.9. Given S1, S2 as in Lemma 2.8, in general the power k of q depends on the generator
x ∈ C◦.

So far the discussion concerned only generators of standard configurations. Next we consider
generators for arbitrary configurations.

Definition 2.3. Fix a configuration C and an isotopy from C◦ to C. Let S denote the result-
ing cobordism C◦ → C. The generators of FAq (C) corresponding to the cobordism S are the
images of the standard generators of C◦ under S. We will also write generators of C as vI ⊗ wJ ,
which is to be understood as the image of the corresponding standard generator of C◦. Note
that this image vI ⊗ wJ depends on the choice of isotopy C◦ → C, which we suppress from the
notation.

By Lemma 2.8, these generators of C are well defined up to multiplication by a (non-uniform,
according to Remark 2.9) power of q, and also a possible re-ordering of the trivial circles in C◦
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which corresponds to a permutation of the indexing set J . We assume throughout that there is
a fixed isotopy C◦ → C, which will often not be named. Likewise, an unnamed cobordism C → C◦
denotes the inverse of C◦ → C.

As discussed earlier, a standard generator x ∈ C◦ is the image of the corresponding stan-
dard generator of C◦E under a cobordism ΣJ : C◦E → C◦, where ΣJ is the identity on C◦E and
a cup cobordism on each circle in C◦T, with some cups possibly carrying dots. Up to a power
of q, the cobordism SΣJ represents a cobordism which traces out an isotopy C◦E → CE and is
a cup cobordism on each circle in CT. Then each standard generator of C can also be real-
ized as the image of a cup cobordism on each trivial circle and an isotopy on the essential
circles.

Note also that we do not make any assumptions about how these isotopies are picked for
different configurations within a single cube of resolutions.

2.4 Computation of the saddle maps
In this subsection, we compute saddle maps in quantum annular homology using the relations
in BBN q(A) and Theorem 2.5. These results will be used in the formulation of the quantum
annular Burnside functor in § 4.

We start with several examples; the general case is treated in Proposition 2.16. Saddle maps
for various types of configurations (where intersections with the seam are minimal) are sum-
marized in Figure 12. In the first two examples the calculation relies on the Boerner relation
and relations satisfied by cobordisms in the Bar-Natan category. Specifically, one uses the neck-
cutting relation and delooping; cf. [BPW19, Proposition 5.3]. (Note that delooping makes sense
only for trivial, and not for essential, circles in the annulus.)

To analyze our saddle maps, we will use the language of surgery arcs, as in [LS14a, § 2]. For a
configuration C, a surgery arc is an interval embedded in A whose endpoints lie on C and whose
interior is disjoint from C. In the construction of quantum annular homology, link diagrams are
assumed transverse to μ and all crossings are away from μ. In light of this, we will assume
that surgery arcs are disjoint from the seam. For a configuration C with a surgery arc, let s(C)
denote the configuration obtained by surgery on the arc. There is a saddle cobordism C → s(C),
which is well defined in BN q(A). In terms of the cube of resolutions of a link diagram, a surgery
arc may be placed at a 0-smoothing to indicate that there will be a saddle cobordism at that
smoothing.

Example 2.10. For the saddle

between standard configurations, we have the following formulas:
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Figure 12. Surgery formulas in quantum annular Khovanov homology for curves with minimal
intersections with the seam.

Algebraically, this is written as

v+ ⊗ w+ �→ v+, v+ ⊗ w− �→ 0,

v− ⊗ w+ �→ v−, v− ⊗ w− �→ 0.

These can be deduced from Boerner’s relation (Figure 5) and the fact that the two standard
generators of a trivial circle are picked out by an undotted cup and a once-dotted cup.

Example 2.11. For the saddle

we have the formulas

which, algebraically, can be written as

V+ �→ v+ ⊗ w−, v− �→ v− ⊗ w−.
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This can be deduced by cutting the neck along the trivial circle, which splits off as a result of
the saddle, and then applying Boerner’s relation.

The next two examples are also discussed in [BPW19, § 6.4].

Example 2.12. Let S denote the following saddle:

Let C denote the trivial circle on the right-hand side above. Since C is not standard, we need
to pick an isotopy to specify its generators. For the sake of calculation, we pick the following
isotopy:

which specifies generators, represented diagrammatically, as

These generators are the images of 1 ∈ k under the undotted and dotted cup cobordisms on C,
respectively. Since the cup cobordism on C intersects the membrane, the placement of the dot
is relevant, and the diagram shows where the dot is placed.

Now let Σ denote the undotted cap cobordism on C, and let Σ′ denote the dotted cap
cobordism on C, with the dot placed as in the generator w−. Using the relations in BN q(A), we
obtain

Σ(w+) = 0, Σ(w−) = q−1,

Σ′(w+) = q−1, Σ′(w−) = 0.

Composing with the saddle S, observe that ΣS = S1 × ∩ in BBN q(A), and that Σ′S = 0 by
Boerner’s relation. We are now in a position to write down formulas for S. For example, we may
write

S(v+ ⊗ v−) = αw+ + βw− (2.7)

for some α, β ∈ k. Applying Σ to the above equality, we obtain

ΣS(v+ ⊗ v−) = q−1β.
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Theorem 2.5 tells us that ΣS(v+ ⊗ v−) = ev(v+ ⊗ v−) = q, so that β = q2. By applying Σ′ to
both sides of 2.7, we obtain α = 0. A similar argument for the remaining generators yields the
full table of formulas for S:

Equivalently,

S(v+ ⊗ v−) = q2w−, S(v+ ⊗ v+) = 0,

S(v− ⊗ v+) = qw−, S(v− ⊗ v−) = 0.

Example 2.13. Let S denote the following saddle:

Pick generators w+ and w− for the left-hand trivial circle C as in Example 2.12. Let Σ and Σ′ be
the undotted and dotted cups on C, so that w+ = Σ(1) and w− = Σ′(1). Observe that SΣ′ = 0
by Boerner’s relation, so

S(w−) = 0.

Finally, note that SΣ = S1 × ∪. By Theorem 2.5, we obtain

S(w+) = v+ ⊗ v− + q−1v− ⊗ v+.
Diagrammatically, the formulas for S are

Saddle maps for various topological types of configurations, including the result of cal-
culations in Examples 2.10–2.13, are summarized in Figure 12. The next example illustrates
a calculation of the saddle map in a case of higher multiplicity of intersections between the
configuration and the seam.

Example 2.14. Here is a slightly more involved version of Example 2.12. Consider the configura-
tions C1 and C2, and the saddle S : C1 → C2 as shown in Figure 13.
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Figure 13. The saddle S : C1 → C2 in Example 2.14.

Figure 14. An isotopy S1 : C◦1 → C1.

Figure 15. An isotopy S2 : C◦2 → C2.

Fix generators for C1 and C2 using the isotopies S1 and S2 depicted in Figures 14 and 15.
Since generators of C2 are the images of the standard generators of C◦2 under the isomorphism
S2 : C◦2 → C2, it suffices to write down formulas for the composition

C◦1 S1−→ C1 S−→ C2 S−1
2−−→ C◦2 . (2.8)

Note that S−1
2 = q3S2 (see Lemma 2.6). Let Φ denote the composition (2.8).

Let Σ and Σ′ be the undotted and dotted cap cobordisms, respectively, on the trivial circle
C◦2 . Note that Σ′Φ = 0 by Boerner’s relation. Applying a trace move from Figure 7 to the part
of the cobordism depicted in (2.9), we see that

ΣS2SS1

is equal to q−1(S1 × ∩), so that

ΣΦ = q2(S1 × ∩).

Arguing as in Example 2.12, we obtain

S(v+ ⊗ v−) = q3w−, S(v+ ⊗ v+) = 0,

S(v− ⊗ v+) = q2w−, S(v− ⊗ v−) = 0.
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(2.9)

Remark 2.15. Here is a slightly different way to finish the computation in Example 2.14, which
will be used in Proposition 2.16. In the morphism Φ : C◦1 → C◦2 , we may cut the neck along a
small push-off of the trivial circle C◦2 to write Φ as a sum of two dotted cobordisms. One of the
summands is 0 by Boerner’s relation, and the other is isotopic to a disjoint union of

S1 × ∩
and a dotted cup cobordism on C◦2 , which is denoted Σ′ using the notation of Example 2.14.
Then, using the trace relations in BN q(A), we see that

Φ = q2(S1 × ∩) � Σ′

and the formulas in Example 2.14 follow.

Example 2.14 shows that there is considerable complexity in computing the saddle map
when curves have multiple intersections with the seam. The next proposition extends Examples
2.12–2.14 to the case of arbitrary configurations. It will be important for the analysis in § 2.5.
Recall the numbering of circles discussed in the paragraph preceding (2.6).

Proposition 2.16. Let C be a configuration with a surgery arc A. Let S : C → s(C) denote the

saddle.

(1) Suppose that both endpoints of A are on a trivial circle C, and that surgery along A

splits C into two essential circles. Assume that C is first in the ordering on trivial circles of C,
and it splits into the ith and (i+ 1)th essential circles in s(C). Let x = vI′ ⊗ vI′′ ⊗ w+ ⊗ wJ be

a generator of C in which C is undotted, where I ′ labels the first i− 1 essential circles. Then

S(x) = qavI′ ⊗ v+ ⊗ v− ⊗ vI′′ ⊗ wJ + qa−1vI′ ⊗ v− ⊗ v+ ⊗ vI′′ ⊗ wJ

for some a ∈ Z.

(2) Suppose that the endpoints of A are on the ith and (i+ 1)th essential circles of C.
Consider the generators

y1 = vI′ ⊗ v+ ⊗ v− ⊗ vI′′ ⊗ wJ ,

y2 = vI′ ⊗ v− ⊗ v+ ⊗ vI′′ ⊗ wJ

of C, where I ′ labels the first i− 1 essential circles. Then

S(y1) = qb+1vI′ ⊗ vI′′ ⊗ w− ⊗ wJ ,

S(y2) = qbvI′ ⊗ vI′′ ⊗ w− ⊗ wJ

for some b ∈ Z.
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Proof. For both (1) and (2), it is enough to show that the result holds after applying s(C)→
s(C)◦.

(1). The generator x is the image of vI′ ⊗ vI′′ under the composition C◦E
ΣJ−−→ C◦ → C, where

ΣJ is a cup cobordism on trivial circles in C◦, with the cups dotted according to J . Note that
the cup on C is undotted. Let Ψ denote the composition

C◦E
ΣJ−−→ C◦ → C S−→ s(C)→ s(C)◦.

The cobordism Ψ is isotopic to a disjoint union of

(∗) S1 × · · · · · ·

and cup cobordisms on each trivial circle in s(C)◦, with dots placed according to J . By
Theorem 2.5, the cobordism (∗) induces the map

vI′ ⊗ vI′′ �→ vI′ ⊗ v+ ⊗ v− ⊗ vI′′ + q−1vI′ ⊗ v− ⊗ v+ ⊗ vI′′

and the result follows.
(2). The generators y1 and y2 are the images of vI′ ⊗ v+ ⊗ v− ⊗ vI′′ and vI′ ⊗ v− ⊗ v+ ⊗ vI′′ ,

respectively, under

C◦E
ΣJ−−→ C◦ → C,

where ΣJ is a cup cobordism on trivial circles with dots placed according to J . Let Φ denote
the composition

C◦E
ΣJ−−→ C◦ → C S−→ s(C)→ s(C)◦.

Let C ∈ s(C) denote the trivial circle obtained by surgery along A and let C ′ ∈ s(C)◦ denote the
corresponding circle. In the cobordism Φ, we may cut the neck along C ′ to write Φ as a sum of
two cobordisms. One of the summands is 0 by Boerner’s relation, and the other is isotopic to
the disjoint union of

(∗∗) S1 × · · · · · ·
and cup cobordisms on each trivial circle. Observe also that the cup cobordism on C ′ is dotted.
Finally, Theorem 2.5 says that the cobordism (∗∗) induces the map

vI′ ⊗ v+ ⊗ v− ⊗ vI′′ �→ qvI′ ⊗ vI′′ ,

vI′ ⊗ v− ⊗ v+ ⊗ vI′′ �→ vI′ ⊗ vI′′

and the result follows. �

We end this subsection with a discussion about recovering classical annular homology. Con-
sider the map k→ Z which is the identity on Z ⊂ k and sends q to 1. It induces a functor
(−)⊗k Z : Mod(k)→ Mod(Z). Thus, one can consider the composition

BBN q(A)
FAq−−→ Mod(k)→ Mod(Z),

which we denote FAq ⊗k Z. Tensoring with Z forgets the action of q, in the sense that isotopic
cobordisms induce equal maps under FAq ⊗k Z even when the isotopy is not required to fix the
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(a) (b) (c)

Figure 16. Three ladybug configurations in the annulus.

seam. Let C be a configuration with e essential and t trivial circles. By Lemma 2.8, there is a
canonical isomorphism

FAq (C)⊗k Z ∼= V ⊗e
Z
⊗Z W

⊗t
Z

obtained by picking an isotopy C◦ → C. It is implicit in [BPW19] that FAq ⊗k Z is the classical
annular functor FA; indeed, this is straightforward to check using the relations in BBN q(A) and
Theorem 2.5 as in the proof of Proposition 2.16.

Lemma 2.17. Let C be a configuration with a single surgery arc and let S : C → s(C) denote the

saddle. Let x ∈ C be a generator. Then

S(x) =
∑

εyy,

where the sum is over generators of s(C) and each εy is either 0 or a power of q. Moreover, εy �= 0
if and only if y appears in FA(S)(x), where FA is the classical (unquantized) annular TQFT.

Proof. There are six types of saddles to check, corresponding to merges and splits between
various combinations of essential and trivial circles as in Figure 4. The first part of the lemma
was verified for two of these types of saddles in Proposition 2.16. It is straightforward to verify the
lemma for the other four using similar arguments. The second part follows from the discussion
preceding the lemma. �

2.5 Ladybug configurations
In this subsection, we analyze the ladybug configuration (see [LS14a, Definition 5.6]; see also
[LS14a, Figure 5.1]). Examining ladybug configurations is crucial in the construction of Khovanov
homotopy types in various contexts. We start with a discussion of ladybug configurations in
classical annular homology. We will then examine a particular type of ladybug configuration in
quantum annular homology, and we will indicate how the analysis differs from that in classical
annular homology.

We recall the notion of a ladybug configuration. A circle C ⊂ A with two surgery arcs forms
a ladybug configuration if the endpoints of the two arcs alternate around C. We will say that a
configuration C with surgery arcs has a ladybug configuration if a circle C in C and two of the
surgery arcs form a ladybug configuration.

First, consider ladybug configurations in classical annular homology. Let C ⊂ A be a circle
carrying two surgery arcs A1 and A2 which form a ladybug configuration. Figure 16 illustrates
the three possibilities in the annulus.

For i = 1, 2, let Ci denote the configuration obtained by performing surgery along Ai, and
let di : FA(C)→ FA(Ci) denote the maps assigned to the saddles in classical annular Khovanov
homology. Let C′ denote the final configuration, obtained by performing surgery on C along both
A1 and A2. When C is essential, as in Figure 16(a), composing two saddle maps yields 0 (see the
formulas in Figure 4). Now consider the cases where C is trivial, as in Figure 16(b) and 16(c).
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Figure 17. The analysis in the case of Figure 16(c).

The dotted generator w− is sent to 0 by the composition of two saddle maps. On the other hand,
the two summands appearing in each of d1(w+) and d2(w+) are mapped to the same element in
the final configuration C′. The case of Figure 16(c) is illustrated in Figure 17.

When constructing stable homotopy refinements in this framework, it is important to have a
bijection between these intermediate generators which appear in d1(w+) and d2(w+), such that
these bijections are coherent, in an appropriate sense, within higher dimensional cubes (cf. § 3.2
below). The bijections are the ladybug matchings defined in [LS14a, § 5.4].

In the case of Figure 16(b), the annulus and seam play no role, and the ladybug matching
from [LS14a] can be used without significant alteration for both classical and quantum annular
homology. The remainder of this subsection examines the ladybug configuration of the type in
Figure 16(c) in quantum annular homology.

Let C be a configuration with two surgery arcs AT and AE, both having endpoints on a
trivial circle C in C. Suppose also that surgery along AT splits C into two trivial circles and
surgery along AE splits C into two essential circles; cf. Figure 18. Let sT(C) and sE(C) denote
the configurations obtained by surgery along AT and AE, respectively. Let C′ denote the final
configuration, obtained by surgery along both arcs. Let C ′ ∈ C′ denote the circle obtained by
both surgeries. We have the following commutative square.

(2.10)

Figure 18 exhibits the specific instance of this set-up corresponding directly to Figure 16(c),
but there are many such cases depending on how C intersects the seam. As usual, we will not
distinguish between cobordisms and their induced maps. We assume that C occurs first in the
ordering on trivial circles in C. Surgery along AT splits C into two trivial circles in sT(C), which
we assume are the first two trivial circles in sT(C). Finally, we order these first two circles as
follows. Orient the arc AT such that it points from the outer essential circle in sE(C) to the inner
one. Declare that the first circle C1 is to the left of AT and the second C2 is to the right of AT.
Our ordering convention is illustrated in Figure 19.

Let x = vI ⊗ w+ ⊗ wJ ∈ C be a generator in which C is undotted. By Lemma 2.17, we obtain

ΔT(x) = qkvI ⊗ w− ⊗ w+ ⊗ wJ + q�vI ⊗ w+ ⊗ w− ⊗ wJ

for some k, 
 ∈ Z.
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mE

mTT

E

E

T

Figure 18. Further analysis in the case of Figure 16(c).

Figure 19. Ordering convention on C1 and C2.

The following corollary implies that, in fact, in the quantum annular setting, there is no
need for a ladybug matching for this ladybug configuration because intermediate generators are
mapped to different elements in the final configuration.

Corollary 2.18. With the above notation,

mE(ΔE(x)) = qmvI ⊗ w− ⊗ wJ + qm+2vI ⊗ w− ⊗ wJ

for some m ∈ Z. Moreover, one of mT(qkvI ⊗ w− ⊗ w+ ⊗ wJ ) or mT(q�vI ⊗ w+ ⊗ w− ⊗ wJ ) is

equal to qmvI ⊗ w− ⊗ wJ and the other is equal to qm+2vI ⊗ w− ⊗ wJ .

Proof. In the case when the whole configuration C consists of just the curve C intersecting the
seam in two points as in Figure 18, the first statement can be easily checked using the formulas
in Figure 12. (Also see Figure 22 below.) In full generality it follows from Proposition 2.16. The
second statement follows from the commutativity of the square (2.10). �

Remark 2.19. Note that generators for each configuration depend, up to a power of q, on a choice
of a cobordism: see Definition 2.3 and discussion following it. The powers k, 
, and m above are
determined by the cobordisms chosen for the different configurations.

It will be important for § 7 to know which of mT(qkvI ⊗ w− ⊗ w+ ⊗ wJ ) or mT(q�vI ⊗ w+ ⊗
w− ⊗ wJ ) is equal to qmvI ⊗ w− ⊗ wJ . This is addressed in the following proposition.

Proposition 2.20. With the above notation,

mT(qkvI ⊗ w− ⊗ w+ ⊗ wJ ) = qmvI ⊗ w− ⊗ wJ ,

mT(q�vI ⊗ w+ ⊗ w− ⊗ wJ ) = qm+2vI ⊗ w− ⊗ wJ .

Proof. The generator x = vI ⊗ w+ ⊗ wJ is the image of vI under C◦E
ΣJ−−→ C◦ S−→ C. Here ΣJ is

the usual identity cobordism on the essential part together with an undotted cup corresponding
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T

Figure 20. Neck cutting in the proof of Proposition 2.20.

to w+ on C and various other cups dotted according to J , while S is some chosen cobordism
from the standard C◦ to C. Isotope the resulting disk in SΣJ bounding C to a cup cobordism
on C to obtain a new cobordism Σ′ : C◦E → C, so that SΣJ = qcΣ′ for some c ∈ Z.

Since C is trivial, it bounds a disk D in the annulus. Note that AT lies inside D, so we may
push it into the cup cobordism on C in Σ′ to obtain an arc A. We may also pull AT onto the
saddle ΔT to obtain another arc A′. Performing neck cutting on the circle A ∪A′ on SΣ′ yields

ΔTΣ′ = S1 + S2,

where S1 and S2 are labelled such that S1 is dotted on C1 and S2 is dotted on C2. Figure 20
illustrates the local picture near AT; the surgery arc AT is decorated by an arrowhead. From
this we obtain

ΔT(x) = ΔTSΣJ (vI) = qcΔTΣ′(vI) = qcS1(vI) + qcS2(vI)

and it follows that

qcS1(vI) = qkvI ⊗ w− ⊗ w+ ⊗ wJ ,

qcS2(vI) = q�vI ⊗ w+ ⊗ w− ⊗ wJ .

The relation

implies that qdmTS1 = mTS2 for some d ∈ Z. To compute qd, we need to move the dot on S2

along C ′ until it is in the same position as the dot on S1, and count (with sign) the number
of times the dot intersects the membrane during this process. This is the same as the signed
intersection between the seam and one of the essential circles in sE(C) obtained by surgery on C.
The situation is depicted below in (2.11); we need to move the dot on the right-hand diagram
along the circle, without intersecting the surgery arc, to the other side of the arc.

(2.11)

Our convention of ordering C1 and C2 (see Figure 19) guarantees that the dot is moved coun-
terclockwise along an essential circle in sE(C), so that mTS2 = q2mTS1. Finally, this implies
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(a) (b)

Figure 21. The left choice in the ladybug matching.

that

q2mT(qkvI ⊗ w− ⊗ w+ ⊗ wJ ) = mT(q�vI ⊗ w+ ⊗ w− ⊗ wJ )

and the result follows. �

There is always either a ‘right’ or a ‘left’ choice which is made at the very beginning of
defining the ladybug matching (see [LS14a, § 5.4]). Consider the classical annular differential for
the ladybug configuration of Figure 17. The ladybug matching made with the left choice identifies
the circles in the middle smoothings as shown in Figure 21(a). Then the ladybug matching pairs
up the intermediate generators appearing in ΔT(w+) and ΔE(w+) as shown in Figure 21(b).

Now consider the quantum annular surgery formulas for the same configuration (Figure 18),
which are detailed in Figure 22. We see that the intermediate generators get paired
up as in (2.12):

(2.12)

Algebraically, the matching is

w+ ⊗ w− ←→ v+ ⊗ v−,
w− ⊗ w+ ←→ q−1v− ⊗ v+,

where the ordering on trivial circles follows the convention illustrated in Figure 19. After for-
getting powers of q, the matching in (2.12) is consistent with the matching in Figure 21. Our
remaining goal in this section is to show that the matching forced by powers of q agrees with
the ladybug matching made with the left pair, as stated in Proposition 2.21.

We will use the notation and conventions established in this section. By Proposition 2.16(1),
we can write

ΔE(x) = qavI′ ⊗ v+ ⊗ v− ⊗ vI′′ ⊗ wJ + qa−1vI′ ⊗ v− ⊗ v+ ⊗ vI′′ ⊗ wJ
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Figure 22. Note that the term with coefficient q2 on bottom right matches the term directly
above it, because dragging the dot across the seam amounts to multiplication by q2.

for some a ∈ Z. Proposition 2.16(2), Corollary 2.18, and Proposition 2.20 imply that in the
quantum setting, the pairing on intermediate generators is forced to be

q�vI ⊗ w+ ⊗ w− ⊗ wJ ←→ qavI′ ⊗ v+ ⊗ v− ⊗ vI′′ ⊗ wJ ,

qkvI ⊗ w− ⊗ w+ ⊗ wJ ←→ qa−1vI′ ⊗ v− ⊗ v+ ⊗ vI′′ ⊗ wJ .
(2.13)

Proposition 2.21. Given a ladybug configuration (C,AT, AE) of the type described in the

paragraph preceding (2.10), the matching in (2.13) is the same as the ladybug matching made

with the left pair.

Proof. Looking at the surgery arc AT, the left choice makes the following identification on circles
in sE(C) and sT(C):

(2.14)

Therefore, the ladybug matching makes the following identification on generators:

(2.15)

Comparing with our ordering convention on the circles in sT(C) in Figure 19 demonstrates that
this is consistent with (2.13). �

3. Burnside categories and functors

Following the general strategy of [LLS20], the first step towards lifting a Khovanov homology
theory to a spectrum is to build a Burnside functor from the cube category 2n [LLS20, § 2.1] to the
Burnside category B [LLS20, § 4.1] which encodes the information underlying the chain complex
in a higher categorical manner, beyond the data of chain groups and differentials. In this section,
we review the general framework of such categories and functors along with their equivariant
versions, before turning to the specific case of quantum annular Khovanov homology in § 4. In
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particular, a strategy for constructing natural isomorphisms of Burnside functors, outlined in
§ 3.6, will be used in follow-up sections.

3.1 The cube category
We first recall the cube category 2n from [LLS20, § 2.1]. The objects of 2n are the elements of
{0, 1}n, thought of as vertices of the n-dimensional cube In. There is a natural partial order on
{0, 1}n: for vertices u = (u1, . . . , un) and v = (v1, . . . , vn) in {0, 1}n, write u ≥ v if each ui ≥ vi.
The set of morphisms Hom2n(u, v) is defined to be empty unless u ≥ v, in which case Hom2n(u, v)
consists of a single element, denoted ϕu,v. Therefore, for u ≥ w, we have ϕu,w = ϕv,w ◦ ϕu,v for
any v such that u ≥ v ≥ w. We note that the edges in 2n point in the opposite direction of those
in the cube of resolutions of a link diagram.

For a vertex u = (u1, . . . , un), define |u| := ∑
i ui. Write u ≥k v if u ≥ v and |u| − |v| = k. In

particular, u ≥1 v means there is an edge from u to v in the cube In. Vertices u, v with u ≥k v
specify a k-dimensional subcube, which is the full subcategory of 2n with objects consisting of
all vertices w satisfying u ≥ w ≥ v.

3.2 Burnside categories and functors
This section discusses the Burnside category, B, and Burnside functors, following [LLS20, § 4.1].

For sets X and Y , a correspondence from X to Y is a triple (A, s, t), where A is a set and s :
A→ X, t : A→ Y are functions, called the source map and target map, respectively. We will often
denote a correspondence by X s←− A t−→ Y or simply X ← A→ Y . Given correspondences X sA←−
A

tA−→ Y and Y
sB←− B tB−→ Z, their composition (B, sB, tB) ◦ (A, sA, tA) is the correspondence

(C, s, t) from X to Z obtained as the fiber product

C = B ×Y A = {(b, a) ∈ B ×A | sB(b) = tA(a)},
with the source and target maps

s(b, a) = sA(a), t(b, a) = tB(b).

The composition can be summarized by the fiber product diagram

A morphism from a correspondence X
sA←− A tA−→ Y to a correspondence X

sB←− B tB−→ Y is a
bijection f : A→ B which commutes with the source and target maps. That is, f is a bijection
fitting into the following commutative diagram.
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The collection of sets, correspondences between them, and morphisms of correspondences forms
a bicategory in the language of [BPW19] or, equivalently, a weak 2-category in the language of
[LLS20]. The objects are sets, 1-morphisms are correspondences, and 2-morphisms are morphisms
of correspondences. We will use the terms bicategory and weak 2-category interchangeably.
A quick reference for the notion of bicategories is [BPW19, Appendix A.4].

The identity 1-morphism of a set X is the identity correspondence

X
idX←−− X idX−−→ X.

Given correspondences X
sA←− A tA−→ Y and Z

sB←− B tB−→ X, the compositions (A, sA, tA) ◦
(X, idX , idX) and (X, idX , idX) ◦ (B, sB, tB) are not equal to (A, sA, tA) and (B, sB, tB), but
there are natural 2-morphisms

(A, sA, tA) ◦ (X, idX , idX) ∼= (A, sA, tA),

(X, idX , idX) ◦ (B, sB, tB) ∼= (B, sB, tB).

Similarly, composition of correspondences is not strictly associative, but is associative up to
natural isomorphism. This is the sense in which we have only a weak 2-category, as opposed to
a strict 2-category.

The Burnside category, denoted B, is the sub-bicategory of the above consisting of finite
sets and finite correspondences. Even though B is a bicategory, it will always be referred to as
a category.

The construction of Khovanov homotopy types in [LLS20] and [SSS20] utilizes functors F :
2n → B, which we explain here. First, make 2n into a (strict) 2-category by introducing only
identity 2-morphisms. There is a notion of a lax 2-functor between 2-categories, and also of a
strictly unitary lax 2-functor. The complete definitions, consisting of a slew of data and various
natural morphisms, can be found in [LLS20, Definitions 4.2 and 4.3]. We will only be interested in
the notion of a Burnside functor, which is a strictly unitary lax 2-functor F : 2n → B. Lemma 3.1
specifies the data needed to define a Burnside functor uniquely up to natural isomorphism (see
§ 3.5 for the definition of natural isomorphisms).

Lemma 3.1 ([LLS20, Lemma 4.5], [LLS17a, Proposition 4.3]). Consider the following data.

• A finite set F (u) for each vertex u ∈ 2n.
• A finite correspondence F (ϕu,v) from F (u) to F (v) for each pair of vertices u, v ∈ 2n with

u ≥1 v.

• A 2-morphism

Fu,v,v′,w : F (ϕv,w) ◦ F (ϕu,v)→ F (ϕv′,w) ◦ F (ϕu,v′)

for each two-dimensional face of 2n with vertices u, v, v′, w satisfying u ≥1 v, v
′ ≥1 w.

Suppose also that the above data satisfies the following conditions.

(1) F−1
u,v,v′,w = Fu,v′,v,w.

(2) For every three-dimensional subcube of 2n as in Figure 23(a), the hexagon of Figure 23(b)
commutes.

Then the data can be extended to a strictly unitary lax 2-functor F : 2n → B, which is unique

up to natural isomorphism.
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v′ w

u v

w′ z

v′′ w′′

Three-dimensional cube

◦ ◦

◦ ◦

◦ ◦

Fv′,w,w′,z×id

id×Fu,v′,v′′,w′id×Fu,v,v′,w

Fv,w,w′′,z×id

id×Fu,v,v′′,w′′

Fv′′,w′′,w′,z×id

(a) (b) The hexagon relation

Figure 23. (a) Three-dimensional cube and (b) the hexagon relation.
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v′′ w′′

3 2

1
(a) v′ w

u v

w′ z

v′′ w′′

1
2

3

(b)

Figure 24. Illustration of the hexagon relation in Remark 3.2.

The hexagon of Figure 23(b) comes from two ways of traversing the faces of the three-
dimensional cube, starting from the correspondence F (ϕw,z) ◦ F (ϕv,w) ◦ F (ϕu,v) and ending at
F (ϕw′,z) ◦ F (ϕv′′,w′) ◦ F (ϕu,v′′). The top half of the hexagon comes from traversing the faces as in
Figure 24(a) and the bottom half comes from traversing the faces as in Figure 24(b). Lemma 3.1
states that the hexagon relation is enough to guarantee that the functor is coherent on all higher
dimensional cubes as well.

Remark 3.2. We end this subsection with some comments about verifying the hexagon relation
which will be useful in proving Theorem 4.2. Suppose that we have 2-morphisms Fu,v,v′,w for
each square face u ≥1 v, v

′ ≥1 w of 2n, which satisfy F−1
u,v,v′,w = Fu,v′,v,w as in condition (1) of

Lemma 3.1. Then verifying the hexagon relation is equivalent to the following. Start at the
correspondence F (ϕw,z) ◦ F (ϕv,w) ◦ F (ϕu,v) and traverse the six faces of the cube using the
2-morphisms; i.e. first move across the three faces as shown in Figure 24(a) and then move
across the remaining three faces as in Figure 24(b), except in the reverse order. Composing these
six 2-morphisms yields a 2-morphism

Φu,v,w,z : F (ϕw,z) ◦ F (ϕv,w) ◦ F (ϕu,v)→ F (ϕw,z) ◦ F (ϕv,w) ◦ F (ϕu,v).

Verifying commutativity of the hexagon of Lemma 3.1 is equivalent to verifying that Φu,v,w,z

is the identity. Moreover, for each three-dimensional subcube of 2n, it suffices to verify that
Φu,v,w,z = id for just one tuple of vertices u ≥1 v ≥1 w ≥1 z within the subcube.

Furthermore, such verifications are immediate under certain circumstances, which we now
describe. Let A denote the correspondence F (ϕw,z) ◦ F (ϕv,w) ◦ F (ϕu,v), and let s : A→ F (u), t :
A→ F (z) denote the source and target maps, respectively. Suppose that for every x ∈ F (u) and
y ∈ F (z), s−1(x) ∩ t−1(y) is either empty or has one element. Let a ∈ A and let a′ = Φu,v,w,z(a).
Since Φu,v,w,z(a) is a 2-morphism, we have s(a′) = s(a) and t(a′) = t(a). Then a′ = a, so the
hexagon relation is satisfied for this three-dimensional subcube. In this situation, we will say
that this three-dimensional cube is simple.
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3.3 The equivariant Burnside category
Let G be a finite group. The G-equivariant Burnside category, denoted BG, is an equivariant
analogue of B. Objects of BG are finite freeG-sets. A 1-morphism fromX to Y is a triple (A, s, t),
where A is another finite free G-set, and s : A→ X, t : A→ Y are G-equivariant maps. We
will call such a triple (A, s, t) an equivariant correspondence. Given equivariant correspondences
X

sA←− A tA−→ Y and Y
sB←− B tB−→ Z, the composition (B, sB, tB) ◦ (A, sA, tA) is the same as in

B. The G-action on B ×Y A is inherited from the diagonal G-action on B ×A; that is, g(b, a) =
(gb, ga). The additional requirement on 2-morphisms between correspondences is that they be
G-equivariant.

The equivariant Burnside category is discussed in [SSS20, § 3.3] in the case G = Z2.
Lemma 3.2 in [SSS20] (our Lemma 3.1) gives sufficient conditions for defining a functor
F : 2n → BZ2 , and the same conditions clearly work for general G. The modification to the
data of Lemma 3.1 is that all sets should be finite free G-sets and all set maps should be equiv-
ariant. Note that if G = {1}, then B{1} = B, so everything stated about BG in the following
sections holds just as well for B.

We will later be interested in the quotient functor (−)/G : BG → B, which simply takes the
quotient of all sets and set maps. Explicitly, the quotient functor sends a G-set X to the set
of orbits X/G = X/(x ∼ gx). For G-sets X and Y and an equivariant map f : X → Y , there is
an induced map f/G : X/G→ Y/G, given by (f/G)([x]) = [f(x)]. The quotient functor sends

an equivariant correspondence X
s←− A t−→ Y to the correspondence X/G

s/G←−− A/G t/G−−→ Y/G.
Likewise, a 2-morphism f : A→ B is assigned: f/G : A/G→ B/G.

3.4 Totalizations of Burnside functors
Associated to any Burnside functor 2n → BG is a chain complex, called the totalization (see
[LLS17a, Definition 5.1] and [SSS20, § 3.6]). For a set X, let A(X) denote the free abelian
group generated by X. Let X s←− A t−→ Y be an equivariant correspondence. Define a map A(A) :
A(X)→ A(Y ) by

A(A)(x) =
∑

a∈s−1(x)

t(a). (3.1)

Let F : 2n → BG be a Burnside functor. For u ≥ v, let Au,v denote the correspondence assigned
by F to the morphism ϕu,v : u→ v. The complex Tot(F ) is defined by

Tot(F ) :=
⊕
u∈2n

A(F (u)),

with the term A(F (u)) in homological degree |u|. The differential

∂ :
⊕
|u|=i
A(F (u))→

⊕
|v|=i+1

A(F (v))

is given on summands by maps ∂u,v : A(F (u))→ A(F (v)), for |u| = i, |v| = i+ 1, defined as

∂u,v(x) = (−1)su,vA(Au,v).

The sign assignment su,v ensures that ∂2 = 0 (see [Bar05, § 2.7]; see also [LS14a, Definition 4.5]
for a discussion of su,v).
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If X is a G-set, then A(X) is naturally a Z[G]-module. Moreover, if X s←− A t−→ Y is an
equivariant correspondence, then the map A(A) is Z[G]-linear. Thus, if F is an equivariant
Burnside functor taking values in BG, then Tot(F ) is a complex of Z[G]-modules.

3.5 Natural transformations of Burnside functors
There is a canonical identification 2n+1 = 2× 2n. A natural transformation η : F1 → F0 of Burn-
side functors F1, F0 : 2n → BG is a functor η : 2n+1 → BG such that the restriction of η to
{i} × 2n is equal to Fi.

In the context of natural transformations, we will think of 2n+1 = 2× 2n as two ‘horizontal’
copies of 2n with vertical edges connecting them, pointing downwards. The top copy of 2n

corresponds to {1} × 2n ⊂ 2× 2n and likewise the bottom copy corresponds to {0} × 2n ⊂ 2×
2n. Recall that for u ≥ v, ϕu,v denotes the unique element in Hom2n(u, v). We distinguish two
types of morphisms in 2× 2n. First, for each u ∈ 2n, there is a morphism

(ϕ1,0, idu) : (1, u)→ (0, u).

We denote this edge by eu and think of it as a vertical arrow

The second type consists of morphisms in 2× 2n of the form

(idi, ϕu,v) : (i, u)→ (i, v),

where i ∈ {0, 1} and u, v ∈ 2n with u ≥ v. We will denote these morphisms by ϕiu,v, and think
of them as living in the ‘horizontal’ cube {i} × 2n.

With these conventions, the diagram

(3.2)

lives in the horizontal cube {i} × 2n and the diagram

(3.3)

is between the horizontal cubes. In the context of natural transformations, we will often not label
some or all of the edges, with the understanding that the above conventions (3.2) and (3.3) are
followed. To define a natural transformation η : F1 → F0, one needs to specify a correspondence
η(eu) for each vertical edge eu, a 2-morphism ηu,v : η(ev) ◦ η(ϕ1

u,v)→ η(ϕ0
u,v) ◦ η(eu) for each

vertical face as in (3.3), and verify that the hexagon of Lemma 3.1 commutes.
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Given a natural transformation η : F1 → F0, there is an induced map Tot(η) : Tot(F1)→
Tot(F0). The map Tot(η) is defined on each summand by A(η(eu)) : A(F1(u))→ A(F0(u)).

3.6 A strategy for constructing natural isomorphisms
Given Burnside functors F1, F0 : 2n → BG, a natural isomorphism from F1 to F0 is a natural
transformation η : F1 → F0 such that η(eu) : F1(u)→ F0(u) is an isomorphism in BG for each
vertex u. We will have several occasions to show that two Burnside functors are isomorphic
(Propositions 4.3, 4.4, and 7.1). The general strategy is the same in all these cases, so we outline
it here.

Note that a correspondenceX s←− A t−→ Y , thought of as a morphism in BG, is an isomorphism
if and only if s and t are bijective. In particular, given an equivariant bijection t : X → Y , the
correspondence X id←− X t−→ Y is an isomorphism in BG, with inverse Y t←− X id−→ X (up to a
canonical identification of a set with the diagonal in its cartesian square).

Suppose that we are given two functors F1, F0 : 2n → BG and equivariant bijections ψu :
F1(u)→ F0(u) for each vertex u ∈ 2n. For u ≥1 v, let

Fi(u)
si
u,v←−− Aiu,v

tiu,v−−→ Fi(v)

be the correspondence assigned to the edge ϕu,v : u→ v by Fi for i = 0, 1. Suppose also that for
each u ≥1 v, the following conditions hold.

(NI 1) Aiu,v ⊂ Fi(u)× Fi(v), and the G-action on Aiu,v is inherited from the diagonal G-action
on Fi(u)× Fi(v) (i.e. g(x, y) = (gx, gy) for g ∈ G, (x, y) ∈ Fi(u)× Fi(v)).

(NI 2) The map F1(u)× F1(v)
ψu×ψv−−−−→ F0(u)× F0(v) restricts to a bijection A1

u,v → A0
u,v,

denoted ψu,v.
(NI 3) The source and target maps, siu,v and tiu,v, are restrictions of the projections Fi(u) �

Fi(u)× Fi(v) � Fi(v).

In this situation, we have a systematic method for building a natural isomorphism η : F1 → F0

using Lemma 3.1 as follows. Define η on objects by

η(i, u) := Fi(u)

for i ∈ {0, 1} and u ∈ {0, 1}n. We then define η on each vertical edge eu : (1, u)→ (0, u) by

η(eu) =
(
F1(u)

id←− F1(u)
ψu−−→ F0(u)

)
.

That is, the underlying set of the correspondence η(eu) is simply F1(u), the source map is the
identity, and the target map is the given equivariant bijection ψu.

We have now specified η on objects and edges. It remains to define the 2-morphisms for each
square face of 2n+1. Since η must restrict to Fi on {i} × 2n, we need only to specify a 2-morphism

ηu,v : F1(v)×F1(v) A
1
u,v → A0

u,v ×F0(u) F1(u)

corresponding to the vertical square faces (3.3) of 2× 2n.
The situation is illustrated in Figure 25. Note that every element of F1(v)×F1(v) A

1
u,v is of

the form (y, x, y), where (x, y) ∈ A1
u,v ⊂ F1(u)× F1(v). Likewise, an element of A0

u,v ×F0(u) F1(u)
is of the form (a, b, ψ−1

u (a)), where (a, b) ∈ A0
u,v ⊂ F0(u)× F0(v). Condition (NI 1) ensures that
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F1(u)

F0(u)

F1(v)

F0(v)

A1
u,v

π π

F1(u)

id

ψu

A0
u,v

π π

F1(v)

id

ψv

(x, y)∈

y

�

y�

ψv(y)
�

(ψu(x), ψv(y))

∈ψu(x)
∈

x ∈

x ∈

ηu,v

Figure 25. We draw the square diagram required for building our natural isomorphism η :
F1 → F0. The correspondences are indicated along each edge together with their source and
target maps, drawn as curved arrows. Specific elements are also indicated, showing how the
2-morphism ηu,v (indicated by the double arrow) should be defined such that the entire diagram
is consistent.

the bijections

F1(v)×F1(v) A
1
u,v → A1

u,v, A0
u,v → A0

u,v ×F0(u) F1(u),

(y, x, y) �→ (x, y), (a, b) �→ (a, b, ψ−1
u (a))

are equivariant. Then the composition

F1(v)×F1(v) A
1
u,v → A1

u,v

ψu,v−−−→ A0
u,v → A0

u,v ×F0(u) F1(u) (3.4)

is given by (y, x, y) �→ (ψu(x), ψv(y), x), and condition (NI 2) guarantees that it is also an equiv-
ariant bijection. Moreover, condition (NI 3) ensures that this composition commutes with the
source and target maps. Therefore, we may define the 2-morphism ηu,v to be the composition
(3.4).

To extend η to a natural transformation, one still needs to check the hexagon rela-
tion of Lemma 3.1. We need only to verify commutativity of the hexagon coming from a
three-dimensional cube of the form

Let

φiu,v,v′,w : Aiv,w ×Fi(v) A
i
u,v → Aiv′,w ×Fi(v′) A

i
u,v′
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be the 2-morphism assigned by the functor Fi corresponding to the horizontal square face

of 2× 2n. In this situation, checking that the hexagon of Lemma 3.1 commutes comes down to
verifying commutativity of the diagram in (3.5) below.

(3.5)

If the diagram (3.5) commutes, then η extends to a natural transformation η : F1 → F0. Moreover,
since each η(eu) : F1(u)→ F0(u) is an isomorphism in BG, the natural transformation η is a
natural isomorphism of Burnside functors.

4. The quantum annular Burnside functor

In this section, we construct the quantum annular Burnside functor corresponding to an annular
link diagram D. Before giving the outline of the section, we emphasize one small but important
caveat. In the quantum annular theory over the base ring k = Z[q, q−1], every configuration is
assigned a module which has infinite rank over Z, with generators of the form qkx for k ∈ Z. In our
set-up, this would correspond to assigning an infinite set to each vertex in the cube of resolutions.
This would require considering spaces of infinitely many boxes in § 5, and also of CW-complexes
with a Z-action. Although we believe that such a version of the theory could be worked out, in
the present paper we stay in the context of finite cyclic group actions. This is motivated in part
by the fact that a substantial part of equivariant homotopy theory is formulated for compact
group actions. To this end, we make the following modification to the quantum annular complex.

For r > 0, set kr := k/(qr − 1). Let Fr
Aq

denote the composition

BBN q(A)
FAq−−→ Mod(k)

(−)⊗kkr−−−−−→ Mod(kr). (4.1)

We can define a modified quantum annular homology by applying Fr
Aq

to each vertex in the cube
of resolutions of an annular link diagram D. The result is the same as applying (−)⊗k kr to the
quantum annular chain complex CKhAq (D). Every vertex is assigned a free kr-module, and the
formulas in § 2 remain true, modulo the relation qr = 1.

With this modification in place, we proceed as follows. Given an annular link diagram D

with n crossings, we will define the quantum annular Burnside functor Fq : 2n → BG, where

G = 〈q | qr = 1〉
is the finite cyclic group of order r with distinguished generator q. Note that there is a natural
ring isomorphism Z[G] ∼= kr, so that it is possible to compare the cellular cohomology of the

745

https://doi.org/10.1112/S0010437X20007721 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X20007721


R. Akhmechet, V. Krushkal and M. Willis

stable homotopy type, which is a Z[G]-module, with the modified quantum annular homology,
which is a kr-module. The dependence on r will be omitted from the group G and the Burnside
functor Fq in order to simplify the notation.

Because we want the totalization Tot(Fq) to recover the quantum annular complex

CKhAq (D)⊗k kr,

we already know what Fq should assign to vertices and edges of 2n. The subtlety here is that
generators are defined only up to a power of q, and the formulas for the differential non-trivially
depend on the configuration, so the full extent of the analysis in §§ 2.3, 2.4 is used here. Once
Fq is determined on vertices and edges, it remains to assign specific bijections to the (identity)
2-morphisms in 2n and check the hexagon relation of Lemma 3.1. This will be done in § 4.1 for
the case r > 2; this restriction is to guarantee that q2 �= 1, allowing the use of Corollary 2.18 to
simplify the analysis. We will show in Proposition 4.3 that the Burnside functor Fq is independent
of the choice of generators for each vertex, and in § 4.2 we will show that planar isotopies of the
link diagram induce natural isomorphisms of the corresponding Burnside functors. Finally, in
§ 4.3, we will address the cases r = 1, 2.

4.1 The quantum annular Burnside functor for a link diagram
Let D be a diagram for an annular link with n crossings, which are assumed to be disjoint from
the seam. For each u ∈ {0, 1}n, let Du denote the smoothing of D corresponding to u. Fix r > 2
and set G = 〈q | qr = 1〉. We will specify the data of the quantum annular Burnside functor
Fq : 2n → BG.

For each vertex u ∈ {0, 1}n, pick a set of generators Γ(u) of Du, following § 2.3. Define Fq on
vertices by

Fq(u) = G× Γ(u). (4.2)

The G-action on Fq(u) is on the first factor: qk · (q�, x) = (qk+�, x).
We will write an element of Fq(u) as qkx instead of (qk, x).
For u ≥1 v, let dv,u denote the map assigned to the edge v → u by the modified quantum

annular functor Fr
Aq

. Recall from Lemma 2.17 that for each x ∈ Γ(v),

dv,u(x) =
∑

y∈Γ(u)

εyy,

where each εy is either 0 or qk for some k ∈ Z. We will say that qky appears in dv,u(q�x) if in
the equation

dv,u(q�x) =
∑

y∈Γ(u)

εyy

the coefficient εy is equal to qk. For u ≥1 v, define the correspondence Au,v ⊂ Fq(u)× Fq(v) from
Fq(u) to Fq(v) by

Au,v = {(qky, q�x) ∈ Fq(u)× Fq(v) | qky appears in dv,u(q�x)}. (4.3)

The source and target maps of Au,v are the projections to Fq(u) and Fq(v), respectively. Note
that Au,v is a sub G-set of Fq(u)× Fq(v) since dv,u(qx) = qdv,u(x).

We will show that the above data extends to a Burnside functor Fq : 2n → BG. The following
lemma will be useful in our analysis of the hexagon relation.
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(a) One endpoint of A3 is on C (b) Both endpoints of A3 are on C

Figure 26. The two cases where C ∪A1 ∪A2 is trivial. Note that these are only schematic
depictions, since the interaction of the curves with the seam could be complicated.

Lemma 4.1. Let C be a configuration with three surgery arcs A1, A2, and A3. Let C′ denote the

circles in C containing the endpoints of the surgery arcs. Assume that there is a circle C in C′
such that C ∪A1 ∪A2 forms a ladybug configuration. Then one of the following holds.

(1) The diagram C′ ∪A1 ∪A2 ∪A3 is trivial in the annulus; i.e. C′ and the three surgery arcs

lie in a disk in A.

(2) The composition of three edge maps is 0.

(3) The three-dimensional cube is simple (see the discussion in Remark 3.2).

(4) C ∪A1 ∪A2 is trivial in the annulus and disjoint from A3.

Proof. If C is essential in the annulus, then (2) follows from the neck-cutting and Boerner’s
relations (see Figures 2 and 5). We may therefore assume that C is trivial. Let C ′ denote the
(necessarily trivial) circle obtained by performing surgery along both A1 and A2. Note that the
result of composing the two saddle maps corresponding to A1 and A2 will send any generator of
C in which C is undotted to a sum of elements in which C ′ is dotted, and will send any generator
which is dotted on C to 0. It therefore suffices to consider the effect of surgery along A3 on a
dotted C ′.

First, assume that C ∪A1 ∪A2 is trivial but C′ ∪A1 ∪A2 ∪A3 is not. There are several cases
to consider. If neither endpoint of A3 is on C, then (4) holds. If precisely one endpoint of A3 is
on C, then the other endpoint must be on another circle C̄, as in Figure 26(a). In this situation,
Boerner’s relation implies that (2) holds. Finally, suppose that both endpoints of A3 are on C, as
in Figure 26(b). Then surgery along A3 must split C ′ into two essential circles. In this situation,
(2) holds again, since a dotted trivial circle splitting into two essential circles is sent to 0.

Now suppose that the diagram C ∪A1 ∪A2 is non-trivial. Then we are in the situation of
§ 2.5 (see Figure 18, for example), where Corollary 2.18 shows that we have a sum of terms
y + q2y in which C ′ is dotted. If surgery along A3 either splits off a trivial circle from C ′ or
merges C ′ with another trivial circle, then (3) holds since the two terms retain distinct powers
of q (see Figure 12). If surgery along A3 splits C ′ into two essential circles or merges C ′ with an
essential circle, then (2) holds as above. �

Theorem 4.2. There is a functor Fq : 2n → BG which extends the data (4.2) and (4.3).

Proof. Following Lemma 3.1, it remains to define the 2-morphisms

φu,v,v′,w : Av,w ×Fq(v) Au,v → Av′,w ×Fq(v′) Au,v′

for each square face of 2n with vertices u ≥1 v, v
′ ≥1 w, and to verify the hexagon relation.

For all cases except the ladybug configuration, the 2-morphism φu,v,v′,w is uniquely deter-
mined by the property that it commutes with the source and target maps. Therefore, we need
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to consider only the ladybug configurations. Assume that a circle C in Dw carries two surgery
arcs as in the ladybug configuration. We distinguish three cases, as in Figure 16.

(a) C is essential.
(b) C is trivial and surgery along both arcs results in trivial circles.
(c) C is trivial, surgery along one arc produces two trivial circles, and surgery along the other

arc produces two essential circles.

For (a), the composition of two edge maps is 0. Therefore,

Av,w ×Fq(v) Au,v = ∅ = Av′,w ×Fq(v′) Au,v′

and there is no 2-morphism to specify. For (b), we rely on the ladybug matching made with the
left pair (see [LS14a, § 5.4]). Finally, for (c), note that generators dotted on C are sent to 0 by
the composition of two edges. For generators undotted on C, Corollary 2.18 implies that φu,v,v′,w
is uniquely determined by the property that it commutes with the source and target maps.

It remains to verify the hexagon relation. Let C denote a configuration with three surgery
arcs. We may assume that two of the three surgery arcs form a ladybug configuration, since
otherwise the three-dimensional cube is simple. Then the analysis consists of the four cases in
Lemma 4.1. In case (1), the verification reduces to classical Khovanov homology (see, for example,
[LLS17a, Proposition 6.1]). For case (2), the composition of three correspondences coming from
any three edge maps is empty, so there is nothing to check. Similarly, in case (3), the hexagon
relation follows from the discussion in Remark 3.2. Finally, case (4) is straightforward to check
by hand since the disjoint arc A3 cannot interfere with the classical Khovanov ladybug matching
used on C ∪A1 ∪A2. �

Proposition 4.3. Up to natural isomorphism, Fq is independent of the choices of generators

Γ(u).

Proof. For each u ∈ {0, 1}n, let Γ(u), Γ′(u) be two sets of generators of Du, obtained by picking
different isotopies S, S′ from standard configurations D◦

u, D
◦
u
′ to Du. The natural isomorphism

is straightforward to construct when S′ = SS′′, where S′′ : D◦
u
′ → D◦

u is a planar isotopy of
standard configurations, similar to the usual re-indexing of circles in Khovanov homology under
planar isotopy of a link diagram. Thus, it is enough to consider the case when D◦

u
′ = D◦

u and
S, S′ : D◦

u → Du induce the same correspondence on components.
Let Fq, F

′
q : 2n → BG denote the corresponding functors, and let Au,v, A′

u,v denote the cor-
respondences assigned to edges by Fq and F ′

q, respectively. We will use the strategy of § 3.6 to
build a natural isomorphism Fq→ F ′

q.
There is a clear bijection Γ(u)→ Γ′(u), denoted x �→ x′. Lemma 2.8 says that for any x ∈

Γ(u), there exists mx ∈ Z such that x = qmxx′. Consider the equivariant bijection ψu : Fq(u)→
F ′

q(u) defined by ψu(qkx) = qk+mxx′. Observe that conditions (NI 1) and (NI 3) in § 3.6 hold by
definition of Fq and F ′

q. Condition (NI 2) holds since x = qmxx′. To complete the proof, observe
that the diagram (3.5) commutes, since the vertical maps act on generators by multiplication by
powers of q and thus do not interfere with the ladybug matchings. �

4.2 Isotoping the link diagram
In this section, we show that a planar isotopy of link diagrams induces a natural isomorphism
between the corresponding quantum annular Burnside functors. Elementary isotopies away from
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the seam are trivial, but isotopies which involve intersections with the seam need to be handled
more carefully. These results will also be used to show Reidemeister invariance for the stable
homotopy type in § 5.5.

Proposition 4.4. Let D be a link diagram with n crossings and let D′ be a link diagram

obtained from D by one of the following moves.

(1) Moving an arc (as in the P±1 and N±1 moves of Figure 11) across the seam.

(2) Moving a crossing across the seam (see diagram (4.4)).

Let Fq and F ′
q be Burnside functors for D and D′, respectively. Then Fq is naturally isomorphic

to F ′
q.

Proof. We will again follow the strategy of § 3.6. By Proposition 4.3, we are free to choose
generators for each configuration Du using any isotopy D◦

u → Du, and likewise for D′
u. For each

u ∈ 2n, let Su : D◦
u → Du be the cobordism formed by a fixed choice of isotopy from D◦

u to Du.
There is also an obvious isotopy Ru : Du → D′

u, corresponding to the moves in the statement of
the proposition. Since D◦

u = D′◦
u , we can choose generators for D′

u using the cobordism RuSu.
For u, v ∈ 2n with u ≥1 v, let dv,u and d′v,u denote the maps assigned to the edge v → u in [[D]]
and [[D′]], respectively.

Suppose that we are in the situation (1). We have equivariant bijections ψu : Fq(u)→ F ′
q(u)

for each u, given by ψv(qkx) = qkRu(x) (as usual, we do not distinguish between a cobordism
and its induced map). Conditions (NI 1) and (NI 3) are satisfied by definition. For each u, v ∈ 2n

with u ≥1 v, we have

Rudv,u = d′v,uRv.

It follows that, for qky ∈ Fq(u) and q�x ∈ Fq(v), qky appears in dv,u(q�x) if and only if qkRu(y)
appears in d′v,u(qkRv(x)). Therefore, condition (NI 2) is satisfied as well. Observe that the diagram
(3.5) commutes since we do not interfere with any potential ladybug matchings.

For case (2), the maps ψu need to be modified slightly in order to satisfy (NI 2). We illustrate
one case in detail. Suppose that D and D′ are as shown in (4.4). Assume also that the crossing
shown is first in the ordering of crossings.

(4.4)

Let u ∈ 2n. If u1 = 0, define ψu : Fq(u)→ F ′
q(u) as in case (1). If u1 = 1, then define ψu by

ψu(qkx) = qk+1Ru(x).

We will now verify that condition (NI 2) holds for this choice of equivariant bijections {ψu}u∈2n .
Let u, v ∈ 2n with u ≥1 v. If u1 = v1, then the edge maps dv,u and d′v,u are induced by changing
the smoothing at a crossing away from the one shown in (4.4). As in case (1) above, we have

Rudv,u = d′v,uRv,
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so condition (NI 2) holds. Suppose now that u1 = 1 and v1 = 0. Then

d′v,uRv = qRudv,u, (4.5)

where the factor of q comes from moving a saddle across the membrane (see Figure 7). The
situation is depicted in the (non-commutative) diagram (4.6).

(4.6)

Let qky ∈ Fq(u) and q�x ∈ Fq(v). It follows from (4.5) that qky appears in dv,u(q�x) if and only
if qk+1Ru(y) appears in d′v,u(q�Rv(x)). Therefore, condition (NI 2) is satisfied. Again, the hexagon
relation is satisfied because the 2-morphisms do not interfere with the ladybug matching. �

4.3 The cases r = 1, 2 and the classical annular homotopy type
Our proof of Theorem 4.2 relies on r > 2. In this section, we address the cases r = 1, 2 in that
order.

Let D be a diagram for an annular link with n crossings. When r = 1, the modified quantum
annular chain complex

CKhAq (D)⊗k k/(q− 1)

is just the classical annular chain complex CKhA(D) (see the discussion preceding Lemma 2.17).
We sketch how to define the annular Burnside functor, denoted F1, for the classical annu-
lar Khovanov chain complex below. An alternative construction, using Hochschild homology
of Chen–Khovanov spectra for tangles, was recently introduced in [LLS19].

Let FKh : 2n → B denote the usual Khovanov Burnside functor (see [LLS20, Example 4.21]
and also [LLS17a, § 6]), where the ladybug matching is made with the left pair. For u ≥1 v, let

dA

v,u : FA(Dv)→ FA(Du)

denote the classical annular differential and let dKhv,u denote the usual Khovanov differential. We
have that dKhv,u = dA

v,u + d′v,u (see the discussion in Remark 2.3).
Recall from § 2.1 that annular Khovanov generators may be taken to be the usual Khovanov

generators (where the annular link diagram is considered as a planar diagram under the inclusion
A ⊂ R2), so set F1(u) = FKh(u) for each u ∈ 2n. For u ≥1 v, let AKhu,v denote the correspondence
assigned by FKh to the edge ϕu,v : u→ v. Define the correspondence AA

u,v from F1(u) to F1(v)
by

AA

u,v := {(y, x) ∈ F1(u)× F1(v) | y appears in dA

v,u(x)},
with the obvious source and target maps, and set F1(ϕu,v) = AA

u,v. Note that AA
u,v ⊂ AKhu,v .
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Let φKhu,v,v′,w be the 2-morphism assigned by FKh to the square face with vertices u ≥1 v,

v′ ≥1 w. One can check that φKhu,v,v′,w restricts to

φA

u,v,v′,w : AA

v,w ×F1(v) A
A

u,v → AA

v′,w ×F1(v′) A
A

u,v′ .

Taking φA

u,v,v′,w to be the 2-morphisms assigned to square faces by F1, the conditions of
Lemma 3.1 are satisfied as a consequence of the construction of FKh.

When r = 2, Lemma 4.1 and the ensuing analysis in case (c) of the proof of Theorem 4.2
do not hold, since q2 = 1. Instead, we rely on the ladybug matching made with the left pair to
define the 2-morphism in case (c) of Theorem 4.2. Let us verify the hexagon relation, using the
formulation in Remark 3.2. Start with an element x = (qia, qjb, qkc, q�d) in the correspondence
obtained as the composition of correspondences for three consecutive edge maps. Going around
the six faces of the cube, the 2-morphisms send x to an element x′ = (qia, qj

′
b′, qk′c′, q�d) in the

same correspondence. It follows from the classical annular case, where powers of q are disregarded,
that labels on the circles in the generators b and c match the labels on the circles in the generators
b′ and c′, respectively. Then b = b′ and, since both qjb and qj

′
b′ = qj

′
b appear in the image of qia

under a saddle map, Lemma 2.17 implies that qj = qj
′
. Likewise, qkc = qk

′
c′ and we conclude

that the hexagon relation is satisfied.

5. From Burnside functors to stable homotopy types

This section describes a general framework for obtaining a spectrum from a Burnside functor.
This general construction is then applied to the case of the quantum annular Burnside functor,
establishing the main result of the paper, Theorem 1.1. In more detail in § 5.1 we recall box maps
and their required properties for the non-equivariant case as in [LLS20, § 5]. Then, in § 5.2, we
discuss G-equivariant box maps via a slight generalization of the ideas established in [SSS20],
ensuring that the required properties are still satisfied. Sections 5.3 and 5.4 describe how to
use box maps to pass from an equivariant Burnside functor F to a G-CW complex realizing F ,
following [SSS20, § 4], by taking the homotopy colimit (see [Vog73]) of an appropriate diagram.
Finally, in § 5.5, we apply this theory to the quantum annular Burnside functor of § 4.1 to define
the equivariant spectrum X r

Aq
(L) and check that it is well defined, proving Theorem 1.1.

We emphasize some differences and similarities between this paper and others appearing
in the literature. There is no group action on the links considered in this paper, so our box
maps and homotopy coherent refinements are different from those in [BPS18, Mus19, SZ18].
Functors 2n → BZ/2Z are considered in [SSS20], and there the authors introduced actions of
Z/2Z and Z/2Z× Z/2Z, which involve an internal action on boxes. We are interested in an
external G-action which permutes the boxes, so our work is different in this respect.

5.1 Box maps
We begin by reviewing a key part of the non-equivariant case allowing us to set some notation
following [LLS20, § 5.1].

A k-dimensional box is
∏k
i=1[ai, bi] ⊂ Rk. For two k-dimensional boxes B and B′, there is a

canonical homeomorphism B
∼−→ B′, obtained by scaling and translating the ambient space Rk.

Fix an identification Sk = [0, 1]k/∂([0, 1]k), so that for any k-dimensional box B, B/∂B is
canonically identified with Sk.
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Figure 27. Fix two collections of sub-boxes e ∈ E({Bx}x∈X , sA), e′ ∈ E({By}y∈Y , sB), and an
element (b, a) in the composition correspondence C = B ×Y A. Then by definition e′ gives us a
box Bb ⊂ Sky (in black on the right) where y = sB(b) = tA(a) and e gives us a box Ba ⊂ Skx where
x = sA(a) (in gray on the left). The maps in the figure are those appearing in (5.2), composing
to give Φ(e,A). If we pull back the box Bb under this map (restricted to Skx), we obtain a smaller
sub-box B(b,a) ⊂ Ba ⊂ Skx for any such pair (b, a) ∈ C. Taking the collection of such boxes and
preimages together, we see that Φ(e,A)−1(e′) ∈ E({Bx}x∈X , sC).

Suppose that we have a correspondence X
s←− A t−→ Y . Pick disjoint k-dimensional boxes

{Bx}x∈X . Following [LLS20], let
E({Bx}, s)

denote the space of all collections {Ba}a∈A of disjoint k-dimensional boxes such that Ba ⊂ Bs(a).
A point e = {Ba} ∈ E({Bx}, s) determines a map

Φ(e,A) :
∨
x∈X

Skx →
∨
y∈Y

Sky (5.1)

defined as follows. On each wedge summand, Φ(e,A) is the composition

Skx = Bx/∂Bx → Bx

/(
Bx \

⋃
a∈s−1(x)

Bint
a

)
=

∨
a∈s−1(x)

Ba/∂Ba
t−→

∨
y∈Y

Sky , (5.2)

where the first map is a quotient and the last map sends the sphere Ba/∂Ba to Bt(a)/∂Bt(a) =
Skt(a) via the canonical homeomorphism Ba ∼= Bt(a). A map of this form is said to refine the

correspondence X
s←− A t−→ Y .

Suppose that we have correspondences X
sA←− A tA−→ Y and Y

sB←− B tB−→ Z with boxes
{Bx}x∈X and {By}y∈Y . Given e ∈ E({Bx}x∈X , sA) and e′ ∈ E({By}y∈Y , sB), we can consider
the preimage of the boxes in e′ under the map Φ(e,A). An important point in the proof of
existence and uniqueness of spatial refinements is that Φ(e,A)−1(e′) is a collection of little boxes
in {Bx}x∈X labelled by the composition C := B ×Y A; that is,

Φ(e,A)−1(e′) ∈ E({Bx}x∈X , sC),

where sC : C → X is the source map of the composition. See Figure 27 for an explanation of
this.

5.2 Equivariant box maps
Throughout this section, we will continue to use G to denote a finite cyclic group, but all of the
statements below generalize to more general finite groups acting freely on finite sets.
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Suppose that a correspondenceX s←− A t−→ Y consists of G-sets and equivariant maps. Then in
particular the spaces

∨
x∈XS

k
x and

∨
y∈Y S

k
y inherit a G-action via the canonical homeomorphism

Bx ∼= Bgx. In terms of the wedge summands, this G-action permutes the copies of Sk. However, to
obtain a G-equivariant refinement

∨
x∈XS

k
x →

∨
y∈Y S

k
y , a second condition needs to be imposed

on the sub-boxes {Ba} ∈ E({Bx}, s).
Let

EG({Bx}, s)
denote the subset of E({Bx}, s) consisting of the little boxes {Ba} satisfying the following prop-
erty: for each g ∈ G, x ∈ X, and a ∈ s−1(x), the canonical homeomorphism Bx → Bgx restricts
to a homeomorphism Ba → Bga. With this condition in place, the restricted homeomorphism
Ba → Bga is also the canonical one. In particular, if we identify all boxes Bgx canonically with
[0, 1]k, then the sub-boxes Bga ⊂ Bgx for various g all have the same image in [0, 1]k.

Lemma 5.1. Let X
s←− A t−→ B be an equivariant correspondence. If e ∈ EG({Bx}, s), then the

induced box map Φ(e,A) is G-equivariant.

Proof. Let g ∈ G and x ∈ X. We need to verify commutativity of the diagram

where the horizontal maps are those of (5.2) and the vertical maps are induced by canon-
ical homeomorphisms between boxes. The left-hand square commutes since e ∈ EG({Bx}, s),
and the right-hand square commutes because all the maps there are induced by canonical
homeomorphisms of boxes. �

In the construction of stable homotopy refinements, it is crucial that the space of little boxes
is highly connected and that boxes pull back to boxes. The remainder of this subsection is devoted
to verifying these properties for EG({Bx}, s). For the following statement, recall the notation for
the quotient functor, introduced in the last paragraph of § 3.3.

Lemma 5.2. Let X
s←− A t−→ Y be a correspondence of G-sets and equivariant maps between

them. Then we have the following homeomorphism of spaces of sub-boxes:

EG({Bx}x∈X , s) ∼= E({B[x]}[x]∈X/G, s/G).

Proof. For a fixed x ∈ X, a subcollection of little boxes {Ba}a∈s−1(x) in Bx determines the little
boxes {Bc}c∈s−1(gx) in Bgx for all g ∈ G. Explicitly, for each a ∈ s−1(x) and g ∈ G, Bga ⊂ Bgx is
the image of Ba under the canonical homeomorphism Bx → Bgx and, since s is a G-equivariant
map, c ∈ s−1(gx) if and only if c = ga for some a ∈ s−1(x).

Thus, a collection of equivariant boxes in EG({Bx}, s) is equivalent to a (non-equivariant)
choice of boxes in each G-orbit of X for each G-orbit of A, which is the meaning of
E({B[x]}[x]∈X/G, s/G). �
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Corollary 5.3. EG({Bx}, s) is (k − 2)-connected.

Proof. This follows from Lemma 5.2 together with the connectivity for spaces of (non-
equivariant) sub-boxes shown in [LLS20, Lemma 5.18]. �

Lemma 5.4. Let X
sA←− A tA−→ Y and Y

sB←− B tB−→ Z be equivariant correspondences. Let

{Bx}x∈X and {By}y∈Y be collections of k-dimensional boxes, and let e ∈ EG({Bx}, sA), e′ ∈
EG({By}, sB). Then Φ(e,A)−1(e′) ∈ EG({Bx}x∈X , sC).

Proof. Fix g ∈ G. Let B(b,a) ∈ Φ(e,A)−1(e′) and set y = sB(b) and x = sA(a) as in Figure 27.
We need to show that the canonical homeomorphism Bx → Bgx sends B(b,a) to B(gb,ga). By
construction, Φ(e,A)(B(b,a)) = Bb. Since e ∈ EG({Bx}x∈X , sA), we also know that gBb = Bgb.
Recall from Lemma 5.1 that Φ(e,A) is G-equivariant. These facts yield

Bgb = g
(
Φ(e,A)(B(b,a))

)
= Φ(e,A)

(
gB(b,a)

)
.

Since e′ ∈ EG({By}y∈Y , sB) and B(b,a) ⊂ Ba, we have that gB(b,a) ⊂ gBa = Bga. Then gB(b,a) is
a box contained in Bga, which is sent to Bgb by Φ(e,A). It follows that gB(b,a) = B(gb,ga), which
completes the proof. �

5.3 From Burnside functors to spatial refinements
In this section, we describe how to use box maps to transform a Burnside functor F : C → BG

into a certain homotopy coherent diagram of spaces, called a spatial refinement of F , in an
equivariant manner.

Let TopG∗ denote the category of based G-spaces. We refer the reader to [SSS20, § 4.2] for
the definition and discussion of homotopy coherent diagrams and homotopy colimits in the
equivariant setting, parallel to the non-equivariant treatment in [LLS20, § 4.2]. The following is
an equivariant analogue of [LLS20, Definition 5.21 and Proposition 5.22] (and extends [SSS20,
Definition 4.11 and Proposition 4.12] from Z/2Z to general finite groups G).

Definition 5.1. Fix a small category C and a strictly unitary lax 2-functor F : C → BG.
A k-dimensional spatial refinement of F is a homotopy coherent diagram F̃k : C → TopG∗
satisfying:

(1) for any u ∈ C , F̃k(u) =
∨
x∈F (u)S

k;

(2) for any sequence u0
f1−→ · · · fm−−→ um of morphisms in C and t ∈ Im−1, the map

F̃k(fm, . . . , f1)(t) :
∨

x∈F (u0)

Sk →
∨

y∈F (um)

Sk

is a box map which refines the correspondence F (fm ◦ · · · ◦ f1). Note that, by assumption,
the diagram lands in TopG∗ , so that the map in (2) is also G-equivariant.

Proposition 5.5. Let C be a small category in which every sequence of composable non-

identity morphisms has length at most n, and let F : C → BG be a strictly unitary lax

2-functor.

(1) If k ≥ n, there is a k-dimensional spatial refinement of F .
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(2) If k ≥ n+ 1, then any two k-dimensional spatial refinements of F are equivariantly weakly

equivalent (see [SSS20, § 4.2] for a detailed discussion of weak equivalences between spatial

refinements).

(3) If F̃k is a k-dimensional spatial refinement of F , then the (reduced) suspension of each F̃k(u)
and of each F̃k(fm, . . . , f1)(t) gives a (k + 1)-dimensional spatial refinement of F .

Proof. This is completely parallel to the proofs of [LLS20, Proposition 5.22] and [SSS20,
Proposition 4.12]. The modification is that the maps

efm,...,f1 : Im−1 → E({Bx}, sfm◦···◦f1)

should land in EG({Bx}, sfm◦···◦f1), which is still highly connected by Corollary 5.3. We have
also verified that equivariant boxes pull back to equivariant boxes in Lemma 5.4. Note that
suspension respects the group action, which permutes spheres. �

5.4 From spatial refinements to realizations
In this section, we discuss how to pass from aG-equivariant homotopy coherent spatial refinement
F̃k to a realization ‖Fk‖ ∈ TopG∗ . We also recall some of the cellular properties of such ‖Fk‖ and
the induced maps between them.

Following [LLS20, Definition 5.1], we begin by defining a slight enlargement of the cube
category 2n, denoted 2n+. The objects of 2n+ are ob(2n) ∪ {∗}; that is, 2n+ has an extra object
added. Set Hom2n

+
(u, v) = Hom2n(u, v) if u, v ∈ 2n. Otherwise, for u ∈ 2n \ {0}, set Hom2n

+
(u, ∗)

to consist of a single morphism. Finally, set Hom2n
+
(0, ∗) = Hom2n

+
(∗, 0) = Hom2n

+
(∗, u) = ∅.

Let F : 2n → BG be a Burnside functor and let F̃k : 2n → TopG∗ be a k-dimensional spatial
refinement of F . Extend F̃k to a homotopy coherent diagram F̃+

k : 2n+ → TopG∗ by setting F̃+
k (∗)

to be a single point. Following [SSS20, Definition 4.9], define the space

‖F‖k := hocolim F̃+
k , (5.3)

called a realization of F . Since the homotopy coherent diagram F̃k takes values in TopG∗ , the
space ‖F‖k is again a based G-space.

There is a cell structure on ‖F‖k, called the coarse cell structure in § 4.4 of [SSS20], with the
cells of ‖F‖k in bijection with

∐
u∈2n F (u). This cell structure is described in [LLS20, § 6].

Lemma 5.6. With the above notation:

(1) the G-action on ‖F‖k is cellular, and the bijection

{Cells of ‖F‖k} ←→
∐
u∈2n

F (u)

is G-equivariant;

(2) the G-action on ‖F‖k is free away from the basepoint;

(3) the weak equivalences of Proposition 5.5 induce equivariant homotopy equivalences on

realizations. Thus, ‖Fk‖ is well defined and Σ‖F‖k � ‖F‖k+1.

Proof. Statement (1) follows from inspecting the cell decomposition in [LLS20, Proposition 6.1]
(see also the discussion in [SSS20, § 4.4]). Statement (2) follows from (1) and the fact that G
acts freely on the set

∐
u∈2n F (u).
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For (3), we first note that (1) and (2) imply that our realizations are G-CW complexes (the
action of G is cellular and its fixed set is the basepoint, which is trivially a subcomplex). Then,
as described in [SSS20, § 4.5], equivariant weak equivalences of homotopy coherent diagrams
induce equivariant weak equivalences on their homotopy colimits (which can be taken to be
cellular), which induce equivariant homotopy equivalences for large enough k by the equivariant
Whitehead theorem. �

Now recall from § 3.4 that the totalization Tot(F ) of an equivariant Burnside functor F : 2n →
BG is a complex of Z[G]-modules, and that any natural transformation η : F1 → F0 between two
such functors induces a chain map over Z[G], Tot(η) : Tot(F1)→ Tot(F0). Also recall [SSS20,
Lemma 4.15], which in particular says that if F1, F0 : 2n → B are Burnside functors and η :
F1 → F0 is a natural transformation, then there is an induced map η : ‖F1‖k → ‖F0‖k for any
realization. We state [SSS20, Proposition 4.16] below relating these notions, where the notation
[k] denotes a homological shift by k (that is, Ci[k] := Ci−k).

Proposition 5.7 [SSS20, Proposition 4.16]. If F : 2n → B, then its reduced shifted cellular

chain complex C̃cell∗ (‖F‖k)[−k] is isomorphic to Tot(F ), with the cells mapping to the corre-

sponding generators. If η : F1 → F0 is a natural transformation of Burnside functors, then the

map ‖F1‖k → ‖F0‖k is cellular, and the induced cellular chain map agrees with Tot(η).

When F takes values in BG, the above discussion shows that C̃cell∗ (‖F‖k)[−k] is a Z[G]-
module, and the isomorphism

C̃cell∗ (‖F‖k)[−k] ∼= Tot(F )

of Proposition 5.7 is an isomorphism of complexes of Z[G]-modules (see [SSS20, Proposition
4.23]). Likewise, a natural transformation η between two equivariant Burnside functors induces
an equivariant cellular map on their realizations that recovers Tot(η) on the chain complex level.

Lemma 5.8 [SSS20, Lemma 4.17]. Let F1, F0 : 2n → BG be equivariant Burnside functors and

let ‖F1‖k, ‖F0‖k be k-dimensional spatial refinements. If η : F1 → F0 is a natural transformation

such that the induced map Tot(η) : Tot(F1)→ Tot(F0) is a chain homotopy equivalence, then

the induced map η : ‖F1‖k → ‖F0‖k is an equivariant homotopy equivalence.

Proof. The argument is the same as in [SSS20, Lemma 4.17]. The previous discussion shows that
the induced map on spaces η : ‖F1‖k → ‖F0‖k is G-equivariant and cellular. We may take k big
enough, so that the realizations are simply connected. Note that the G-action on the realiza-
tion is free away from the basepoint. Since Tot(η) is a Z[G]-linear isomorphism on homology,
the equivariant Whitehead theorem implies that η : ‖F1‖k → ‖F0‖k is an equivariant homotopy
equivalence. �

Remark 5.9. Although the discussion in [SSS20, § 4.4] actually makes use of spatial refinements
out of the category (2+)n rather than 2n+, the cellular structures described on the realizations
there induce equivalent cellular structures on our realizations via a simple quotient within each
cell. This is implicit in their reference to [LLS20, § 6] which builds the coarse structure for
realizations using 2n+ as we do here; the alternative use of (2+)n in [LLS20] is denoted by 2n†
there.
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5.5 The quantum annular spectrum X r
Aq

(L)
Finally, we turn to defining our quantum annular spectrum and proving Theorem 1.1. Let D be
a diagram for an annular link with n− negative crossings, and fix G = Z/rZ for some r ≥ 2. Let
Fq : 2n → BG be a quantum annular Burnside functor for D as provided by Theorem 4.2. Let
F̃+

q,k : 2n+ → TopG∗ be a k-dimensional spatial refinement extended to the enlarged cube category
2n+, as described in § 5.3 and the beginning of § 5.4. Let ‖Fq‖k be the realization, as defined in
(5.3).

Definition 5.2. Define the quantum annular Khovanov spectrum X r
Aq

(D) to be the suspension
spectrum of ‖Fq‖k, desuspended k + n− times; that is,

X rAq
(D) := Σ−k−n−

(
Σ∞‖Fq‖k

)
.

By dualizing the isomorphism in Proposition 5.7, we obtain the following isomorphism of
Z[G]-modules:

C∗(X rAq
(D)) ∼= CKh∗Aq

(D)⊗k kr. (5.4)

Theorem 5.10. For a fixed annular link diagram D and r ≥ 2, the naive G-spectrum X r
Aq

(D) is

well defined; that is, different choices during the construction yield equivariantly stably homotopy

equivalent spectra.

Proof. The construction of X r
Aq

(D) requires a choice of generators at each vertex of the cube to
build Fq, together with a choice of spatial refinement of Fq. Any two choices of generators give
naturally isomorphic Burnside functors (see Proposition 4.3), which in turn yield equivariantly
stably homotopy equivalent spectra by Lemma 5.8. Meanwhile, any two spatial refinements
yield homotopy equivalent realizations by Lemma 5.6 (so long as k is large enough) and thus
equivariantly stably homotopy equivalent spectra. �

Finally, we address the independence of choice of diagram with the following theorem.

Theorem 5.11. Let D and D′ be two annular link diagrams for the same annular link L ⊂
A× I. Then X r

Aq
(D) is equivariantly stably homotopy equivalent to X r

Aq
(D′) and as such we

may use the notation X r
Aq

(L) to denote the quantum annular G-equivariant stable homotopy

type of L.

Proof. The diagrams D and D′ are connected by a series of moves corresponding either to
the annular isotopies of § 4.2 or Reidemeister moves. Isotopies were shown to induce natural
isomorphisms of Burnside functors (Proposition 4.4), which therefore induce equivariant stable
equivalences by Lemma 5.8.

With such planar equivalences available, we can assume that any Reidemeister move takes
place in a disk disjoint from the seam μ. Such moves then induce homotopy equivalences in
precisely the same fashion as they do for the classical Khovanov homotopy type [LS14a, § 6].
That is to say, any Reidemeister move corresponds to finding subfaces of the relevant cube cor-
responding to acyclic subcomplexes (or quotient complexes) in the totalization. (These subfaces
are referred to as upwards- and downwards-closed subcategories in the original treatment of
[LS14a].) The complements of these acyclic faces can then be included into the large cube; the
inclusion induces a map on stable homotopy types that gives an isomorphism on homology, and
therefore is a stable equivalence by Whitehead’s theorem. All of this continues to hold in the
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equivariant setting so long as the group G is finite – face inclusions induce equivariant maps by
definition. �

As in [LLS20, § 4.7] and [SSS20, § 3.9], we also have a splitting of the functor Fq into a
coproduct over the two gradings qdeg and adeg (see (2.2) and (2.3)). Thus, the spectrum also
splits as a wedge sum

X rAq
(D) =

∨
j,k

X r;j,k
Aq

(D),

where j corresponds to qdeg and k corresponds to adeg. As in [LS14a, Theorem 1.1] (see also
[LLS17a, Theorem 1]), Theorems 5.10 and 5.11 respect this splitting, as does (5.4) as indicated
below:

C∗(X r;j,k
Aq

(D)) ∼= CKh∗,j,k
Aq

(D)⊗k kr.

We end this section with some remarks about the spectrum X r
Aq

(L). Although the construction
above was aimed at building a naive G-spectrum, one could also construct a genuine G-spectrum
in a similar manner by applying the functor Σ∞

G , rather than Σ∞, to the realization ‖Fq‖k. This
functor produces genuine G-spectra using smash products with all G-representation spheres,
rather than using only spheres with trivial G-action as Σ∞ does.

We also note that, in general, G acts on X r
Aq

(L) in a non-trivial way. Precisely, X r
Aq

(L) does
not decompose into a wedge product which is simply permuted by G. This is already evident on
homology due to the calculation in [BPW19, Proposition 6.9] for the annular closure of (2, n)
torus links. For an appropriate n, homological degree i, and q-degree j, the quantum annular
homology is of the form Khi,j

Aq
(T2,n) = kr/(q2 + 1).

6. Maps on spectra induced by annular link cobordisms

In [LS14b, § 3], the authors showed that an embedded cobordism W ⊂ S3 × [0, 1] between two
links L0 ⊂ S3 × {0} and L1 ⊂ S3 × {1} induces a map on spectra

ϕW : X (L1)→ X (L0)

such that the induced map on cohomology

ϕ∗
W : H∗(X (L0))→ H∗(X (L1))

recovers the corresponding link cobordism maps W∗ in Khovanov homology as studied in [Kho00,
Jac04, Bar05]. The map ϕW is constructed by first decomposing W into elementary cobordisms
whose planar projections correspond to either Reidemeister moves or Morse moves (births/cups,
saddles, or deaths/caps) and assigning maps to each elementary cobordism. A generically embed-
ded W determines such a decomposition. It is conjectured in [LS14b] that isotopic cobordisms
induce stably homotopic maps, but this conjecture has not yet been verified.

Now consider a cobordism W ⊂ (A× I)× [0, 1] between two annular links L0 ⊂ A× I × {0}
and L1 ⊂ A× I × {1} that is transverse to the three-dimensional membrane μ× I × [0, 1]. In
[BPW19], the authors showed that there is an induced map

W∗ : KhAq (L0)→ KhAq (L1)
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on the quantum annular homology, defined using the general theory of twisted horizontal traces
and shadows established in [BPW19, § 3], as well as the functoriality of Chen–Khovanov bimod-
ules under tangle cobordisms [CK14, Proposition 6]. The map induced byW on the chain complex
level can be determined by the sequence of maps given in [BPW19, (7.2)]. In the appendix we
compute W∗ explicitly for certain elementary cobordisms; this computation is used in the proof
of Theorem 6.1 below.

We note that an isotopy of W can alter W∗ by a sign change and a power of q by [BPW19,
Theorem B]; the sign ambiguity is inherited from the similar statement in the usual Khovanov
homology (see [Jac04] and [Bar05]), while the power of q comes from the ability to isotope parts
of W through the membrane. If one instead demands that isotopies fix the membrane, then W∗
is well defined up to a sign.

Theorem 6.1. Fix r ∈ N. A generically embedded cobordism W ⊂ A× I × [0, 1] between two

annular links L0 and L1 induces a map

ϕrW : X rAq
(L1)→ X rAq

(L0)

whose induced map on cohomology

(ϕrW )∗ : H∗(X rAq
(L0))→ H∗(X rAq

(L1))

equals the map W∗ on quantum annular Khovanov homology over the ring kr.

Remark 6.2. We stress that Theorem 6.1 assigns a map to cobordisms W that come with a
particular decomposition into a sequence of elementary cobordisms in the thickened annulus
with membrane. The map ϕrW is not known to be an invariant of W , even up to a factor of ±qk.
But see Remark 6.3 below.

Proof of Theorem 6.1. A generic annular cobordism determines a sequence of elementary cobor-
disms (called elementary string interactions in [Bar05, GLW18]), which are either Reidemeister
moves or Morse moves. When accounting for the presence of the membrane μ× I × [0, 1], there
are certain additional elementary isotopies of a link through the seam which must be considered:
we have the P and N moves of Figure 11, as well as pushing a crossing through the seam, as in
(4.4). Meanwhile, the genericity of W here implies that all Reidemeister moves and Morse moves
occur away from the seam.

For all elementary isotopies of the link, we already have stable homotopy equivalences via
Theorem 5.11. As in the case for S3, we wish to use the inverses of these maps. It is clear that
such inverses induce the maps W• described in the appendix and so, according to Lemma A.1,
any such map will recover its corresponding W∗ up to some power of q. We may thus compose
any such stable homotopy equivalence with some iterate of the group action on X r

Aq
(L0) to define

ϕrW which induces precisely W∗.
Meanwhile, Morse moves induce natural transformations of Burnside functors in the same

manner as they do in S3: births induce correspondences which involve a w+ label on the new
(trivial, disjoint from the seam) circle; deaths induce correspondences which place a w− label on
the dying (trivial, disjoint from the seam) circle; and saddles utilize the higher dimensional cube
which would be built if the diagram had a crossing placed at the point of the saddle. Carrying
out these constructions equivariantly does not present any new issues, leading to constructions
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of maps ϕrW via Proposition 5.7 which again induce the maps W• of the appendix. For these
moves (Type II in Lemma A.1) we have W∗ = W•, concluding the proof of the theorem. �

Remark 6.3. Let W,W ′ be two isotopic annular link cobordisms with corresponding maps on
spectra ϕrW , ϕ

r
W ′ via Theorem 6.1. Let τq denote the map on spectra determined by the action

of the distinguished generator of the group G = Z/rZ. Then it is reasonable to conjecture that
there exists some m ∈ Z such that the maps ϕrW and τmq ◦ ϕrW ′ are stably homotopic.

This is based on the similar conjecture in [LS14b] for cobordisms in S3. Notice that the
composition with the map τmq recovers the ambiguity in the power of q which is known to exist
for the corresponding maps on the quantum annular homology.

Let S denote the sphere spectrum and define

X rAq
(∅) :=

∨
G

S, (6.1)

where G acts by permuting the wedge summands as usual. Then we have the following corollary
for closed surfaces in A×D2 formed by sweeping out a link in the S1 direction.

Corollary 6.4. Let L be a link in the 3-ball B3, and consider the surface Ŵ = S1 × L in

A×D2 ∼= S1 ×B3. Let W denote a copy of Ŵ perturbed to be generic, viewed as a cobordism

from ∅ to itself. Then the map

ϕrW : XAq (∅) −→ XAq (∅)

induces the map on quantum annular homology

(ϕrW )∗ : KhAq (∅) = kr −→ kr = KhAq (∅)

which is given by multiplication by the Jones polynomial of L, considered as an element of kr,

up to a sign and a power of q (where the standard basis of the groups kr ∼=
⊕

GZ is written as

{1, q, . . . , qr−1}).

Remark 6.5. In order to make sense of assigning a wedge of sphere spectra to the empty dia-
gram ∅ in terms of Burnside functors, we assign to ∅ the functor Fq : 20 = {0} → BG defined
by setting Fq(0) := G× {1}, where 1 ∈ FAq (∅)⊗k kr = kr is the chosen generator. The spatial
refinement is then a wedge of r spheres with no box maps, and in the homotopy colimit there is
nothing to identify except the basepoint of

∨
GS

k with the new basepoint in 20
+. Thus, the final

space is just a wedge of r spheres with the natural action, desuspended k times, and its reduced
cohomology is isomorphic to kr as a kr-module.

Proof of Corollary 6.4. Theorem 6.1 implies that (ϕrW )∗ = W∗ and, by [BPW19, Proposition
6.8], we also have W∗ = ±qkŴ∗ for some k ∈ Z. Finally, [BPW19, Theorem D] states that Ŵ∗ is
multiplication by the Jones polynomial of L. In fact, the more general statement about Lefschetz
traces in [BPW19, Theorem D] also applies here. �
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7. Taking the quotient

Our goal in this section is to prove Theorem 1.2, stating that the quotient X r
Aq

(D)/G of the
quantum annular homotopy type is stably homotopy equivalent to the classical annular homotopy
type XA(D). This is accomplished in two stages.

First, we show that the quotient of Fq is naturally isomorphic to the classical annular Burnside
functor F1 defined in § 4.3. This will follow from Proposition 2.21, which establishes that the
matching forced by powers of q in the quantum theory agrees with the ladybug matching made
with the left pair in the classical theory.

Next we show that taking the quotient of a spatial refinement for Fq yields a spatial refinement
for F1. The result will then follow from the property that homotopy colimits commute with taking
quotients.

Let D be a diagram for an annular link with n crossings. Let F1 : 2n → B denote the classical
annular Khovanov Burnside functor, where the ladybug matching is made with the left choice.
Recall the quotient functor (−)/G : BG → B from § 3.3. We can compose Fq : 2n → BG with the
quotient functor to obtain a Burnside functor Fq/G : 2n → B. We will also use (−)/G : TopG∗ →
Top∗ to denote the quotient functor on G-spaces. It will be clear from context which functor is
used.

Proposition 7.1. The functors Fq/G : 2n → B and F1 : 2n → B are naturally isomorphic.

Proof. We will use the strategy of § 3.6 to build a natural isomorphism η : Fq/G→ F1. For
u ∈ 2n, there is a natural identification

Fq(u)/G = (G× Γ(u))/G ∼= Γ(u) = F1(u).

Let ψu : Fq(u)/G→ F1(u) be the above bijection. For u ≥1 v, let Au,v denote the correspondence
assigned by Fq to the edge u→ v, and let A′

u,v denote the correspondence assigned by F1. There
is an injection

Au,v/G ↪→ Fq(u)/G× Fq(v)/G

given by [qky, q�x] �→ ([x], [y]). We will identify Au,v/G with its image in Fq(u)/G× Fq(v)/G. By
Lemma 2.17, the map

ψu × ψv : Fq(u)/G× Fq(v)/G→ F1(u)× F1(v)

restricts to a bijection

ψu × ψv : Au,v/G→ A′
u,v.

Thus, conditions (NI 1), (NI 2), and (NI 3) of § 3.6 are satisfied. It remains to verify that the
diagram (3.5) commutes. Recall that we have used the ladybug matching made with the left pair
for both Fq and F1. Then commutativity of (3.5) follows from Proposition 2.21. �

Note that any homotopy coherent diagram in TopG∗ can be composed with the quotient
functor (−)/G : TopG∗ → Top∗ to give a homotopy coherent diagram in Top∗ as in [SSS20, § 4.2].

Proposition 7.2. Let F̃q : 2n → TopG∗ be a d-dimensional spatial refinement of Fq. Then

the homotopy coherent diagram F̃q/G, obtained by applying (−)/G to each F̃q(v) and each

F̃q(fm, . . . , f1), is a d-dimensional spatial refinement of Fq/G.
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Proof. On a vertex u ∈ 2n, since Fq(u) = G× F1(u), it is again clear that the quotient

(F̃q/G)(u) = F̃q(u)/G =
( ∨

qkx∈Fq(u)

Sd
)/

G

is canonically identified with

F̃q/G(u) =
∨

x∈Fq(u)/G

Sd.

The key point is to recognize that, for any correspondence A = Fq(f) assigned to some morphism
f : u→ v in 2n (with source and target maps s and t, respectively), the quotient of a box map
refining A is itself a box map which refines the quotient of A. That is to say, given a choice of
equivariant little boxes

e = {Ba}a∈A ∈ EG({Bqkx}qkx∈Fq(u), s)

which induces a map ( ∨
qkx∈Fq(u)

Sd
)

Φ(e,A)−−−−→
( ∨

q�y∈Fq(v)

Sd
)
,

the image of the boxes e in the quotient gives a new collection of little boxes

e/G := {Ba/G}a∈A ∼= {B[a]}[a]∈A/G ∈ E({Bx}x∈Fq(u)/G, s/G)

such that the following diagram commutes.

Note that the group is simply permuting equivalent boxes, and recall that all correspondences
coming from edges of the cube are subsets of the products of their source and target. Furthermore,
all boxes remain distinct after taking the quotient. Thus, the quotient boxes e/G fit into the
commuting diagram as required, and the homotopy coherent diagram F̃q/G can be identified
with a spatial refinement of Fq/G. �

Recall the enlarged cube category 2n+ from § 5.4. Any homotopy coherent diagram D : 2n →
Top∗ (respectively D : 2n → TopG∗ ) can be extended to D+ : 2n+ → Top∗ (respectively D+ : 2n+ →
TopG∗ ) by setting D+(∗) to be a single point space. Take k-dimensional spatial refinements of

Fq, F1, and Fq/G, denoted F̃q, F̃1, and F̃q/G, respectively (suppressing the subscript k). Extend

each of them to diagrams F̃q
+
, F̃1

+
, and F̃q/G

+
out of 2n+, and take the corresponding homotopy

colimits ‖Fq‖k, ‖F1‖k, and ‖Fq/G‖k. We also have the homotopy coherent diagram F̃q/G; its

two extensions F̃q
+
/G and (F̃q/G)+ are equal.

Corollary 7.3. ‖F1‖k � (‖Fq‖k)/G.
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Proof. By Proposition 7.1, Proposition 5.5, and Lemma 5.8, there is a homotopy equivalence
‖F1‖k � ‖Fq/G‖k. By Propositions 7.2 and 5.5, there is also a homotopy equivalence ‖Fq/G‖k �
hocolim(F̃q/G)+. Since (F̃q/G)+ = F̃q

+
/G, we obtain

hocolim(F̃q/G)+ = hocolim
(
F̃q

+
/G

)
.

Finally, homotopy colimits commute with the quotient functor (−)/G. This is clear from the
definition of homotopy colimit, but is also stated explicitly as property (ho-4) in [SSS20, § 4.2].
Therefore,

hocolim
(
F̃q

+
/G

) ∼= hocolim(F̃q)/G =
(‖Fq‖k

)
/G. �

Remark 7.4. The techniques in this section can also be used to show that, for any subgroup
Z/sZ of Z/rZ, the quotient X r

Aq
(D)/(Z/sZ) recovers the naive spectrum X r/s

Aq
(D).

8. Towards lifting the Uq(sl2) action

This section concerns Conjecture 1.4 on lifting the Uq(sl2) action on quantum annular homology,
constructed in [BPW19, Theorem D], to the level of spectra. We start by briefly summarizing
the relevant background material; see [BPW19, Appendix A.1] for more details. Let Uq(sl2) be
the k-algebra generated by E,F,K, and K−1 subject to the relations

KE = q2EK,

KF = q−2FK,

KK−1 = 1 = K−1K,

K −K−1 = (q− q−1)(EF − FE).
(8.1)

Let C be a configuration consisting of e essential circles and t trivial circles, with corresponding
standard configuration C◦. Recall from § 2.2 that FAq (C◦) ∼= V ⊗e ⊗W⊗t carries an action of
Uq(sl2) via an identification

V ⊗e ∼= V1 ⊗ V ∗
1 ⊗ V1 ⊗ · · · ,

where V1 is the fundamental representation of Uq(sl2) and W is the trivial two-dimensional
representation. Fix an isotopy from C◦ to C. Then FAq (C) inherits a Uq(sl2)-action via the
isomorphism FAq (C◦) ∼= FAq (C).

The stable homotopy type in this paper is constructed for the modified quantum annular
functor Fr

Aq
; see the discussion in the beginning of § 4. In what follows we will also denote by

Uq(sl2) the result of applying (−)⊗k kr to the algebra defined above. It has the same generators
and relations, with the additional relation that qr = 1.

Let F1, F0 : 2n → BG be Burnside functors. Recall from Proposition 5.7 (and the discussion
following it) that a natural transformation η : F1 → F0 induces a cellular map ‖F1‖k → ‖F0‖k
which agrees with the map Tot(η) : Tot(F1)→ Tot(F0).

Each of E,F,K, and K−1 can be viewed as k-linear endomorphisms of Fr
Aq

(C). It is natural
to ask whether the generators E,F,K±1 lift to natural endomorphisms of the quantum Burnside
functor Fq constructed in § 4. Let J denote one of E,F,K, or K−1. For a generator x ∈ FAq (C),

Jx =
∑
y

εyy,
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where the sum is over generators and each εy is either 0 or of the form ±qk. Note that the
appearance of negatively signed coefficients in odd Khovanov homology was dealt with by using
signed correspondences [SSS20, § 3.2] and signed box maps [SSS20, § 4.1].

Let D be a diagram for an annular link with n crossings, and fix a corresponding Burnside
functor Fq : 2n → BG for D. For u ∈ 2n, one can define the signed correspondence

Ju := {(qky, q�x) ∈ Fq(u)× Fq(v) | ±qky appears in J(q�x)} (8.2)

from Fq(u) to Fq(u), with the obvious source and target maps. The sign map σ : Ju → Z2 =
{−1, 1} returns the sign of qky. Such a correspondence Ju is equivariant since J is k-linear. In
the case when J = K±1, the signs are not needed and we have the following lifts.

Proposition 8.1. Let D be a diagram for an annular link with n crossings, and let Fq : 2n →
BG be a Burnside functor for D. Then there is a natural isomorphism K±1 : Fq→ Fq which

extends the correspondences K±1
u of (8.2).

Proof. We will use the strategy of § 3.6. For each u ∈ 2n, we define the required equivariant
bijection ψ±

u : Fq(u)→ Fq(u) by

ψ±
u (qkx) = qk∓adeg(x)x

for all generators x ∈ Du. Now let u ≥1 v. The conditions (NI 1) and (NI 3) of § 3.6 have already
been checked on correspondences assigned to edges ϕu,v : u→ v by Fq. In order to check condition
(NI 2), we let qky ∈ Fq(u), q�x ∈ Fq(v) be elements such that qky appears in dv,u(q�x). Since dv,u
preserves annular degree, we have adeg(x) = adeg(y), so qk∓adeg(y)y appears in dv,u(q�−∓adeg(x)x).
This implies condition (NI 2).

Thus, we can build a natural transformation η± as in § 3.6; the diagram 3.5 commutes, since
ψu simply multiplies generators by powers of q. Finally, note that K±1x = q±adeg(x)x, so

K±
u = {(qkx, qk∓adeg(x)x) | qkx ∈ Fq(u)}

is naturally identified with η±(eu) via (qkx, qk∓adeg(x)x) �→ qkx. �

We note that when J = E or J = F , this overall strategy does not produce such a lift.
Consider the saddle S from Example 2.13, thought of as the cube of resolutions for a link
diagram with one crossing. Let u = 1 and v = 0 denote the vertices of the cube 2, and let
d : Fr

Aq
(Dv)→ FrAq

(Du) denote the differential. Let A denote the correspondence Fq(ϕu,v) from
Fq(u) to Fq(v) assigned by the Burnside functor Fq.

The surgery formulas are

d(w−) = 0, d(w+) = v+ ⊗ v− + q−1v− ⊗ v+
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and actions of E and F are given by

Ew+ = 0, E(v+ ⊗ v−) = −v+ ⊗ v+, E(v− ⊗ v+) = qv+ ⊗ v+,
Fw+ = 0, F (v+ ⊗ v−) = v− ⊗ v+, F (v− ⊗ v+) = −qv− ⊗ v−.

The correspondence Jv ×Fq(v) A is empty, whereas the correspondence A×Fq(u) Ju is non-empty,
containing two oppositely signed elements.

Remark 8.2. It may be possible to overcome these difficulties using a suitably refined
G-equivariant Burnside category. In the event that one has natural transformations lifting each
of the E,F , and K maps, one might also ask for some notion of a lift of the relations (8.1), per-
haps in terms of the cones on the corresponding maps of spectra. The authors hope to continue
investigating these topics in the future.

Acknowledgments

We would like to thank Nick Kuhn, Krzysztof Putyra, and Sucharit Sarkar for helpful conversa-
tions. We are also grateful to Matt Stoffregen for discussions and for his comments on an earlier
version of the paper.

Appendix. Elementary cobordisms

Here we compare two ways of constructing a map on quantum annular chain complexes for
certain elementary annular link cobordisms W . On the one hand, W induces a chain map W∗ as
defined in [BPW19, (7.2)]. On the other hand, for each type of elementary annular link cobordism
W , we can define a second map W• tailored towards the maps on spectra corresponding to our
constructions in this paper (mainly those in §§ 2.4 and 4.2). Our goal will be to show that these
two maps W∗,W• differ at most by some power of q in all cases.

We begin by describing the general construction of the map W∗. Let W ⊂ A× I × [0, 1] be
a cobordism between annular links L and L′ which intersect the membrane in k and 
 points,
respectively, and let T , T ′ denote the tangles obtained by cutting L and L′ along the membrane.
Then W intersects the three-dimensional membrane μ× I × [0, 1] in a (k, 
)-tangle P . As in
[BPW19, § 7.1], we represent W by a tangle cobordism W̃ : PT → T ′P :

(A.1)

The chain map W∗ : CKhAq (L)→ CKhAq (L
′) is then given in each homological grading and

quantum grading by the formula (7.2) in [BPW19].
To describe the map W•, we distinguish four types of elementary cobordisms.

I. Reidemeister moves away from the seam.
II. Morse moves away from the seam.

III. Moving an arc across the seam as in the P±1 and N±1 moves of Figure 11.
IV. Moving a crossing through the seam as in Figure A.1.
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Figure A.1. Moving a crossing through the seam.

For Type I moves, we define W• as in [Kho00] and [Bar05]; that is, a Reidemeister move is
assigned its chain homotopy equivalence.

For the remaining types of moves, let D and D′ denote the diagrams for L and L′ differing
locally as indicated by the elementary cobordism W , and let n be the number of crossings. For
each u ∈ {0, 1}n, W induces an annular cobordism Ru : Du → D′

u in A× [0, 1]. The quantum
annular TQFT FAq assigns a map to this cobordism; after tensoring with kr, we write this as

FrAq
(Ru) : FrAq

(Du)→ FrAq
(D′

u).

If we pick out generators for Fr
Aq

(Du) and Fr
Aq

(D′
u) via cobordisms from standard configurations

as in § 2.3, then the image of these generators under this map can be computed by composing
cobordisms. We will use shifted copies of this map to define the components W•u : Fr

Aq
(Du)→

Fr
Aq

(D′
u) of W• on each smoothing individually. Note that this is precisely how the natural

isomorphisms of the quantum annular Burnside functors are determined in § 4.2 (although there
we omitted the functor Fr

Aq
from the notation).

If W is of Type II or III, we define W•u on each smoothing to be Fr
Aq

(Ru). Notice that for
Type II moves, this is equivalent to defining W• as in [Kho00] and [Bar05] where Morse moves are
assigned the unit, saddle map, or counit on each smoothing, corresponding to 0-handle, 1-handle,
and 2-handle attachments, respectively.

Finally, if W is of Type IV, then there are four cases to consider depending on the type of
crossing and the direction of movement across the seam.In all of these cases, we will define

W•u := qaFrAq
(Ru) (A.2)

for some power a ∈ Z which is determined by the resolution of the crossing near the seam. If
the smoothing corresponding to u resolves this crossing into two parallel lines each intersecting
μ once, we set a := 0 in the formula (A.2) for W•u, so that W•u = Fr

Aq
(Ru) once again. Note

that Ru is just the identity cobordism in this case, so W•u is the identity map. Otherwise, we
set a := 1 for the moves (a) and (d), and a := −1 for the moves (b) and (c).

Note that in all cases, W• is a chain map; for Type I and II moves this follows from the
definitions, while for Type III and IV moves this follows from the trace relations in Figure 7. Note
also that, for Type III and IV moves, the maps W• defined here are precisely the totalizations
of the natural isomorphisms built in Proposition 4.4.

Lemma A.1. Let L and L′ be annular links and let W : L→ L′ be an elementary cobordism.

(1) If W is of Type I, II, or III, then W∗ = W•.
(2) If W is Type IV, then W∗ = qmW• for some m which depends only on the sign of the

crossing involved in the move.

Proof. Throughout the proof, we will use C(−) to denote the Chen–Khovanov complex of
bimodules, which is denoted by CCK(−) in [BPW19, § 5.5].
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Figure A.2. Proof of Lemma A.1 for elementary cobordisms of Type IV.

The first thing to notice is that, in any case where the intersection tangle P = W ∩ μ×
I × [0, 1] has no crossings, the formula [BPW19, (7.2)] for W∗ simplifies drastically. There is no
summation over indices i′ since C(P ) has only one term. In all such cases (which include Type
I, II, and III here), one shows that W∗ is equal to W• by direct comparison.

Finally, for elementary cobordisms W of Type IV, we focus on the case (a) from
Figure A.1. Observe that the tangle P in this case has a single crossing, that T and T ′ can
be written as T = T ′′P and T ′ = PT ′′, and that W̃ : PT → T ′P is the identity cobordism. All
of this is illustrated in Figure A.2.

Using ⊗ to denote the tensor product over the relevant Chen–Khovanov arc algebra, the map
W̃∗ : Ci(T )⊗ Ci′(P )→ Ci

′
(P )⊗ Ci(T ′) is the identity on the summand Ci

′
(P )⊗ Ci−i′(T ′′)⊗

Ci
′
(P ) which appears in both Ci(T )⊗ Ci′(P ) and Ci

′
(P )⊗ Ci(T ′), and W̃∗ is 0 on the other

summands. In particular, there is no need for summing over various i′ in the formula [BPW19,
(7.2)] for W∗, and the only possible difference between W∗ and W• acting on any given generator
is in the use of the third map θ in [BPW19, (7.2)] which permutes the tensor factors and multiplies
generators x⊗ y ⊗ α by a power of q according to the grading of x as defined in [BPW19, § 5.5].

To analyze this potential difference, let P0, P1 denote the 0- and 1-resolutions of P . When
constructing W• on each resolution, we view x as living in either FCK(P0) or FCK(P1). If
x ∈ FCK(P1), there is an extra factor of q1 in our map (recall that we are considering case (a)
amongst the Type IV moves; see the paragraph following (A.2)). However, in the definition of
W∗, we view x as living in

FCK(P ) =
[FCK(P0){m} → FCK(P1){m+ 1}],

where the grading shift m depends on the sign of the crossing. And so the map θ multiplies
generators by an extra overall factor of qm when defining W∗ as compared to how it would act
when defining W•, as desired.

The proof for case (c) of Figure A.1 is similar. For the cases (b) and (d), note that the map W•
is precisely the inverse of the map defined in (a) and (c), respectively. Moreover, the cobordisms
W of moves (b) and (d) are inverses (in the category Linksq(A); see [BPW19, Proposition 6.8])
to the cobordisms of (a) and (c), respectively. This completes the proof. �
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