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We derive an optimal eigenvalue ratio estimate for finite weighted graphs satisfying the curvature-
dimension inequality CD(0,∞). This estimate is independent of the size of the graph and provides
a general method to obtain higher-order spectral estimates. The operation of taking Cartesian
products is shown to be an efficient way for constructing new weighted graphs satisfying CD(0,∞).
We also discuss a higher-order Cheeger constant-ratio estimate and related topics about expanders.
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1. Introduction

1.1. Some historical background
Exploring the influence of eigenvalues on graph structures is one of the central topics in spectral
graph theory; see e.g. [1, 9, 10, 11, 31]. In this area, the first non-zero Laplacian eigenvalue and
the Cheeger constant play a fundamentally important role, and their close relations have found
tremendous applications in both theoretical and applied fields, such as the study of expander
graphs.

Let G = (V,E) be a non-oriented and connected graph with vertex set V and edge set E.
For simplicity, we consider in this subsection the special case of the normalized Laplacian Δ =
D−1A− Id (where D is a diagonal matrix containing the vertex degrees and A is the adjacency
matrix). Cheeger’s isoperimetric constant is defined by

h(G) = inf
/0�=S⊂V

|E(S,V\S)|
min{μ(S),μ(V\S)} , (1.1)

where E(S1,S2) is the set of all edges connecting a vertex in S1 with a vertex in S2 and μ(S) =
∑x∈S dx, dx equals the vertex degree of x∈V . The classical Cheeger inequality states the following
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relation between h(G) and the first non-zero eigenvalue λ2(G) > 0 of −Δ:

h2(G)
4

� λ2(G) � 2h(G).

Recently there have been two major developments in this area:

• higher-order Cheeger constants hk(G) and higher-order Cheeger inequalities

Ch2
k(G)
k4

� λk(G) � 2hk(G) (1.2)

with a universal constant C > 0, by Miclo [29] and Lee, Oveis Gharan and Trevisan [23],
where h2(G) agrees with the classical Cheeger constant h(G),

• an improved Cheeger inequality

h2(G) � Ck
λ2(G)√

λk(G)
(1.3)

with a universal constant C > 0, by Kwok, Lau, Lee, Oveis Gharan and Trevisan [21].

Remark 1.1. When the gap between λ2 and λk is large, (1.3) gives a lower bound of λ2(G)
linear in h2(G). Another such kind of result is due to Miclo [28], which asserts that

h2(G)
diam(G)

� λ2(G), (1.4)

where diam(G) denotes the diameter of the graph G.

In the manifold context, another classical spectral result is Buser’s inequality [6], providing,
under the additional assumption of non-negative Ricci curvature, an estimate for λ1 from above
by h2, which depends on the dimension of the manifold. Later, a dimension-independent Buser-
type estimate was proved by Ledoux [22] in the manifold setting.

To formulate such a result in the graph-theoretical context, a suitable curvature notion for
graphs is required. Klartag, Kozma, Ralli and Tetali [20] proved such a Buser-type inequality for
finite graphs satisfying the curvature-dimension condition CD(0,∞):

λ2(G) � CdGh2
2(G), (1.5)

with a universal constant C > 0, where dG denotes the maximal vertex degree of G.
In this article, we combine (1.3) and (1.5) (in the more general setting of weighted graphs) to

derive an eigenvalue ratio result and discuss its optimality. This result has various applications
such as higher-order Buser estimates, a higher-order eigenvalue-diameter estimate, and higher-
order Cheeger constant-ratio estimates. We also provide a discussion of the underlying curvature
notion.

1.2. The curvature-dimension condition CD(K,n)
This notion goes back to Bakry and Émery and was studied by Elworthy [14], Schmuckenschläger
[32] and Lin and Yau [24] on graphs. Since all results in this paper require such a curvature-
dimension condition, we now provide a motivation and brief introduction for this notion.
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In the setting of an n-dimensional Riemannian manifold (M,g), Bochner’s formula implies the
following inequality relating Ricci curvature and the Laplacian:

1
2

Δ‖∇ f‖2 −〈∇ f ,∇Δ f 〉 � 1
n
(Δ f )2 +Ric(∇ f ).

Assuming Ric � K, this inequality can be transformed with the Bakry–Émery Γ-calculus, defined
by

2Γ( f ,g) = Δ( f g)− f (Δg)− (Δ f )g = 2〈∇ f ,∇g〉 (1.6)

and

2Γ2( f ,g) = ΔΓ( f ,g)−Γ( f ,Δg)−Γ(Δ f ,g), (1.7)

into

Γ2( f ) � 1
n
(Δ f )2 +KΓ( f ), (1.8)

where Γ( f ) = Γ( f , f ) and Γ2( f ) = Γ2( f , f ). Note that (1.8) involves a curvature parameter K and
a dimension parameter n. This inequality also makes sense in the graph-theoretical setting, and if
it is satisfied for all functions f , we say that the graph satisfies the curvature-dimension inequality
CD(K,n). In this paper we are in particular concerned with graphs satisfying the condition
CD(0,∞). This condition holds for all abelian Cayley graphs (see [24, Proposition 1.6 (1)], [20,
Theorem 2.3]) but not for trees of degree � 3 (see e.g. [19, Remark 16]). As a general guideline,
CD(0,∞) requires that every vertex is contained in sufficiently many short cycles, which can be
understood as a kind of local connectivity.

1.3. General setting
Our results are given in the more general setting of weighted graphs (G,μ), where G = (V,E,w)
is an undirected weighted finite connected graph and V and E are the sets of vertices and edges,
respectively. Edge weights on G are assigned via the symmetric function w : V ×V → R�0 with
wxy = wyx > 0 if and only if x ∼ y. We say the graph G is unweighted if wxy = 1 for any x ∼ y;
for short, w = 1E . Moreover, we assign a positive measure on the vertex set V via the function
μ : V → R>0. Let dx := ∑y,y∼x wxy be the degree of a vertex x and let dG := maxx∈V dx be the
maximal degree of the graph G. For any function f : V → R and any vertex x ∈V , the associated
Laplacian Δ is defined as

Δ f (x) :=
1

μ(x) ∑
y,y∼x

wxy( f (y)− f (x)).

This operator is called μ-Laplacian in [5].
The normalized and non-normalized Laplacians are contained in this general setting as the

following special cases.

• Non-normalized Laplacian: if μ(x) = 1 for all x ∈V (μ = 1V for short).
• Normalized Laplacian: if μ(x) = dx for all x ∈V (μ = dV for short).

Note that the curvature condition CD(0,∞) of a graph (G,w,μ) depends on the choice of Lapla-
cian via the formulas (1.6), (1.7) and (1.8).
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The following two quantities, Dnon
G and Dnor

G , appear naturally in our arguments:

Dnon
G := max

x∈V

∑y,y∼x wxy

μ(x)
and Dnor

G := max
x∈V

max
y,y∼x

μ(x)
wxy

.

Observe that on an unweighted graph, in either of the cases μ = 1V or μ = dV we always have
Dnon

G Dnor
G = dG.

We order the eigenvalues of Δ with multiplicities by

0 = λ1(G,μ) < λ2(G,μ) � · · · � λ|V |(G,μ) � 2Dnon
G ,

where λ � 0 is an eigenvalue if there exists a non-zero solution of Δ f +λ f = 0.

1.4. Results
Combining the improved Cheeger inequality and Buser’s inequality leads to the following eigen-
value ratio.

Theorem 1.2. For any finite graph (G,μ) satisfying CD(0,∞) and any natural number k � 2,
we have

λk(G,μ) �
(

20
√

2e
e−1

)2

Dnon
G Dnor

G k2λ2(G,μ). (1.9)

It is natural to ask about the optimality of this result: Are the curvature condition and the
dependence on the Dnon

G Dnor
G necessary and can the quadratic term k2 in (1.9) be improved?

• The unweighted dumbbell graph in Example 3.6 provides a counterexample to (1.9) if we
drop the curvature condition CD(0,∞).

• Weighted triangles and tetrahedra in Examples 3.4 and 3.5 show that the factor Dnon
G Dnor

G

cannot be dropped.
• Unweighted cycles in Example 3.3 show that the quadratic exponent in (1.9) is optimal.

Another natural question is: How restrictive is the CD(0,∞) condition? It is possible to produce
many new examples from given graphs satisfying CD(0,∞) by taking Cartesian products due to
the following fundamental result.

Theorem 1.3. If (G1,1V1
) and (G2,1V2

) satisfy CD(K1,n1) and CD(K2,n2) respectively, then
(G1 ×G2,1V1×V2

) satisfies CD(K1 ∧K2,n1 +n2).

Here we used the notion K1∧K2 := min{K1,K2}. The above estimate is optimal at least for the
Cartesian product of a graph G with itself (Remark 2.8). Theorem 1.3 can be extended to include
the case of regular graphs with normalized Laplacian operators (Remark 2.7). In particular, the
property of satisfying CD(0,∞) is preserved when taking Cartesian products in many cases.

Theorem 1.2 can be used as a general source to derive various interesting higher-order estim-
ates between geometric invariants and spectra. Of particular interest are the higher-order Cheeger
constants hk(G,μ) defined as follows. For a given (G,μ), the expansion φw,μ(S) of a non-empty
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subset S of V is given by

φw,μ(S) :=
|E(S,V \S)|w

μ(S)
,

where |E(S,V \S)|w := ∑x∼y,x∈S,y�∈S wxy and μ(S) := ∑x∈S μ(x).

Definition 1.4 (higher-order Cheeger constants [23, 29]). For a natural number k, the kth
Cheeger constant of (G,μ) is defined as

hk(G,μ) := min
S1,...,Sk

max
1�i�k

φw,μ(Si),

where the minimum is taken over all collections of k non-empty, mutually disjoint subsets
S1, . . . ,Sk, that is, all k-subpartitions of V .

Note that h2(G,μ) coincides with the classical Cheeger constant, and hk(G,μ) � hk+1(G,μ).
We use Theorem 1.2 to derive the following higher-order Buser inequality.

Corollary 1.5. For any graph (G,μ) satisfying CD(0,∞) and any natural number k, we have

hk(G,μ) � h2(G,μ) � (e−1)2

40
√

2e2

1
Dnor

G

√
Dnon

G

√
λk(G,μ)

k
.

Combining the inequalities of Alon and Milman [1] and Theorem 1.2 leads to the following
higher-order eigenvalue-diameter estimate.

Corollary 1.6. Let (G,1V ) be an unweighted finite graph satisfying CD(0,∞). Then, for any
k � 2 we have

diam(G) � 80e
e−1

dG log2 |V | k√
λk(G,μ)

.

This result compares nicely with the celebrated Cheng estimate ([8, Corollary 2.2])

diam(M) �
√

2n(n+4)
k√

λk(M,g)
(1.10)

for compact Riemannian manifolds (M,g) with non-negative Ricci curvature.
In combination with the higher-order Cheeger inequalities in [23], Theorem 1.2 implies the

following higher-order Cheeger constant-ratio estimate.

Corollary 1.7. There exists a universal constant C such that for any graph (G,μ) satisfying
CD(0,∞) and any natural number k � 2, we have

hk(G,μ) � CDnon
G Dnor

G k
√

logk h2(G,μ). (1.11)

Higher-order Cheeger constants lead naturally to the notion of k-way expanders introduced
by Tanaka [33] and Mimura [30] (where 2-way expander families coincide with the classical
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families of expanders). The condition of being a k-way expander family is strictly weaker than the
property of being a classical expander family (see [30, p. 2525]). A consequence of Corollary 1.7
is the fact that the concepts of k-way expanders for all k � 2 are equivalent in the class of
all graphs satisfying CD(0,∞). This can be viewed as an analogue (for the CD(0,∞)-class) to
Mimura’s result [30, Corollary 1.5] for the class of all vertex-transitive graphs.

1.5. Organization of the paper
In Section 2, we discuss in detail the curvature-dimension inequality in the graph setting, in-
troduce two interesting examples for later use concerning the optimality of Theorem 1.2, and
provide a proof of Theorem 1.3. In Section 3, we derive the eigenvalue ratio estimate, discuss its
optimality with the help of examples, and present applications. In Section 4, we discuss a higher-
order Cheeger constant-ratio estimate and related topics about multi-way expanders. Finally,
in the Appendix, we give more details about the curvature-dimension inequality calculations
in some examples and also a self-contained proof of Buser’s inequality for graphs satisfying
CD(0,∞).

2. Information for a better understanding of curvature

The curvature-dimension inequality (CD-inequality for short) was introduced by Bakry and
Émery [4] as a substitute for the lower Ricci curvature bound of the underlying space. It was
studied for graphs by Elworthy [14], Schmuckenschläger [32] and Lin and Yau [24]; see also
[12, 19]. The operators Γ and Γ2 are defined iteratively as follows.

Definition 2.1. For any two functions f ,g : V → R, we define

Γ( f ,g) :=
1
2
{Δ( f g)− f Δg−gΔ f}, (2.1)

and

Γ2( f ,g) :=
1
2
{ΔΓ( f ,g)−Γ( f ,Δg)−Γ(g,Δ f )}. (2.2)

We also write Γ( f ) := Γ( f , f ) and Γ2( f ) := Γ2( f , f ) for short. In particular, by the definition
above we have for any x ∈V and any f ,g

Γ( f ,g)(x) =
1

2μ(x) ∑
y,y∼x

wxy( f (y)− f (x))(g(y)−g(x)). (2.3)

A useful fact is the summation by parts formula

∑
x∈V

μ(x)Γ( f ,g)(x) = − ∑
x∈V

μ(x) f (x)Δg(x), (2.4)

and also

Γ( f ,g) �
√

Γ( f )
√

Γ(g). (2.5)

Rewriting (2.1) provides the chain rule

Δ( f 2) = 2Γ( f )+2 f Δ( f ). (2.6)
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Definition 2.2. Let K ∈R and n ∈R+. We say that (G,μ) satisfies the CD-inequality CD(K,n)
if, for any functions f and any vertex x, the following inequality holds:

Γ2( f )(x) � 1
n
(Δ f (x))2 +KΓ( f )(x). (2.7)

In particular, we say that (G,μ) satisfies CD(0,∞) if for any functions f we have Γ2( f ) � 0.
In the following subsection we present some illustrative examples of weighted graphs and their

curvature. Section 2.2 describes a method to construct many more examples satisfying CD(0,∞)
from given ones via Cartesian products and provides a proof of Theorem 1.3.

2.1. Examples of graphs satisfying CD(0,∞)
We will be mainly concerned with the class of graphs satisfying CD(0,∞). For the purpose of
illustration and for later use concerning the optimality of Theorem 1.2, we present some simple
examples. Whereas explicit curvature calculations are given in Appendix A, we first mention
some basic principles used in our curvature calculations.

From (2.2), we see that Γ2 is a symmetric bilinear form. At every vertex x ∈ V , we can write
Γ2( f ,g)(x) = fΓ2(x)g, where f ,g ∈ R

V on the right-hand side denotes the (column) vector
representation of the functions f and g. Let B2(x) := {y ∈ V : dist(y,x) � 2}, where dist stands
for the usual shortest-path metric on V . Then Γ2(x) is a symmetric matrix, which is non-trivial
only on a submatrix of size |B2(x)|× |B2(x)|, which we again denote by Γ2(x), for simplicity. A
graph (G,μ) satisfies CD(0,∞) if and only if Γ2(x) is positive semidefinite at every vertex x ∈V .
Observe that the entries of each row of Γ2(x) sum up to zero since Γ2(x)c = 0 for any constant
vector c. In particular, if all the off-diagonal entries are non-positive, then the matrix Γ2(x) is
diagonally dominant and hence positive semidefinite.

Example 2.3. Consider the triangle graph �xyz with positive edge weights a,b,c, as shown in
Figure 1(a). Assign a measure μ to the vertices such that μ(x) := C,μ(y) := B,μ(z) := A.

• Normalized case: A = b+ c,B = a+ c,C = a+b. Then (�xyz,μ) satisfies CD(0,∞).
• Non-normalized case: A = B = C = 1. Then (�xyz,μ) does not always satisfy CD(0,∞). If in

particular a = c, it satisfies CD(0,∞). But when a = 1,c = 1/b, it does not satisfy CD(0,∞) if
b is large/small enough. In fact, when b � 5.01 or b � 0.12, the symmetric curvature matrix
Γ2(x) has a negative eigenvalue.

This example illustrates the general observation that positivity of the non-normalized Bakry–
Émery curvature at a vertex is more sensitive to large differences in the weights of the adjacent
edges than normalized Bakry–Émery curvature.

Example 2.4. Consider the tetrahedron graph T4 with positive edge weights a,b,c, as shown in
Figure 1(b). Observe that this graph is regular, that is, dxi

= a + b + c is a constant for every i.
Assign a measure μ on the vertices such that μ(xi) = A for all i, where A is a positive constant.
(Note that this includes both the cases of normalized and non-normalized Laplacians.) Then
(T4,μ) always satisfies CD(0,∞).

Details about the curvature matrix Γ2 of the triangle graph and the tetrahedron graph are
given in Appendix A. For the normalized case, the curvature of unweighted triangle graphs was
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c

c

Figure 1. (a) Triangle. (b) Tetrahedron.

calculated in [24, Proposition 1.6], and the curvature of general unweighted complete graphs was
calculated in [19, Proposition 3].

In fact, the tetrahedron graph in Figure 1(b) belongs to a large class of graphs called Ricci
flat graphs with consistent edge weights. The concept of a Ricci flat graph was introduced by
Chung and Yau [13] and that of consistent edge weights was further introduced in Bauer, Horn,
Lin, Lippner, Mangoubi and Yau [5]. We refer the reader to [5, 13] for the precise definitions.
Every graph in this class is a regular graph (in fact both its unweighted and weighted degree are
constant) and satisfies CD(0,∞) if we assign a measure μ such that μ(x) = A for all vertices x
(see [13, 24] for the unweighted case; the weighted case follows from the same calculations). In
particular, every abelian Cayley graph is Ricci flat and hence satisfies CD(0,∞).

2.2. CD-inequalities of Cartesian product graphs
In this subsection we discuss a method for constructing new graphs satisfying certain CD-
inequalities from known examples, that is, taking the Cartesian product.

Given two (possibly infinite) graphs G1 = (V1,E1,w) and G2 = (V2,E2,w), their Cartesian
product G1 ×G2 = (V1 ×V2,E12,w

12) is a weighted graph with vertex set V1 ×V2 and edge set
E12 given by the following rule. Two vertices (x1,y1),(x2,y2) ∈V1 ×V2 are connected by an edge
in E12 if

x1 = x2,y1 ∼ y2 in E2 or x1 ∼ x2 in E1,y1 = y2.

In the first case above we chose the edge weight to be wy1y2
and in the second case wx1x2

.
Recall the following result from the Introduction, which we will prove in this subsection.

Theorem 1.3. If (G1,1V1
) and (G2,1V2

) satisfy CD(K1,n1) and CD(K2,n2) respectively, then
(G1 ×G2,1V1×V2

) satisfies CD(K1 ∧K2,n1 +n2).

Let f : V1×V2 → R be a function on the product graph. For fixed y ∈V2, we will write fy(·) :=
f (·,y) as a function on V1. Similarly, f x(·) := f (x, ·). The following lemma is crucial for the
proof.
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Lemma 2.5. For any function f : V1 ×V2 → R and any (x,y) ∈V1 ×V2, we have

Γ2( f )(x,y) � Γ2( fy)(x)+Γ2( f x)(y), (2.8)

where the operators Γ2 are understood to be on different graphs according to the functions they
are acting on.

Proof. For simplicity, we will let xi denote a neighbour of x ∈V1, and write wi := wxxi
for short.

Similar notions are used for y ∈V2 and w.
Recall that 2Γ2( f )(x,y) = ΔΓ( f )(x,y)−2Γ( f ,Δ f )(x,y). By definition, we have

ΔΓ( f )(x,y) = ∑
xi∼x

wi(Γ( f )(xi,y)−Γ( f )(x,y))+ ∑
yk∼y

wk(Γ( f )(x,yk)−Γ( f )(x,y)) := L1 +L2.

For the first term L1, we calculate

L1 = ∑
xi∼x

wi[Γ( fy)(xi)+Γ( f xi)(y)−Γ( fy)(x)−Γ( f x)(y)]

= ΔΓ( fy)(x)+
1
2 ∑

xi∼x
∑

yk∼y

wiwk[( f (xi,yk)− f (xi,y))
2 − ( f (x,yk)− f (x,y))2].

Similarly, we obtain

L2 = ΔΓ( f x)(y)+
1
2 ∑

yk∼y
∑
xi∼x

wkwi[( f (xi,yk)− f (x,yk))
2 − ( f (xi,y)− f (x,y))2].

Furthermore, we have

2Γ( f ,Δ f )(x,y) = ∑
xi∼x

wi( f (xi,y)− f (x,y))(Δ f (xi,y)−Δ f (x,y))

+ ∑
yk∼y

wk( f (x,yk)− f (x,y))(Δ f (x,yk)−Δ f (x,y))

:= T1 +T2.

Then, for the term T1 we have

T1 = ∑
xi∼x

wi( f (xi,y)− f (x,y))(Δ fy(xi)+Δ f xi(y)−Δ fy(x)−Δ f x(y))

= 2Γ( fy,Δ fy)(x)+ ∑
xi∼x

∑
yk∼y

wiwk( f (xi,y)− f (x,y))

× ( f (xi,yk)− f (xi,y)− f (x,yk)+ f (x,y)).

Similarly, we also have

T2 = 2Γ( f x,Δ f x)(y)+ ∑
yk∼y

∑
xi∼x

wkwi( f (x,yk)− f (x,y))

× ( f (xi,yk)− f (x,yk)− f (xi,y)+ f (x,y)).
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Observing the fact that

( f (xi,yk)− f (x,yk))
2 − ( f (xi,y)− f (x,y))2

= ( f (xi,yk)− f (x,yk)− f (xi,y)+ f (x,y))2

+2( f (xi,yk)− f (x,yk)− f (xi,y)+ f (x,y))( f (xi,y)− f (x,y)),

we arrive at

L2 −ΔΓ( f x)(y)− (T1 −2Γ( fy,Δ fy)(x)) � 0 (2.9)

and

L1 −ΔΓ( fy)(x)− (T2 −2Γ( f x,Δ f x)(y)) � 0. (2.10)

This completes the proof.

Remark 2.6. The intuition of the above calculation is that the mixed terms are ‘flat’. In fact,
Lemma 2.5 still holds if we replace Γ2( f ) with

Γ̃2( f ) :=
1
2

ΔΓ( f )−Γ
(

f ,
Δ( f 2)

2 f

)
.

Explicitly, for any positive function f : V1 ×V2 → R and any (x,y) ∈V1 ×V2, we have

Γ̃2( f )(x,y) � Γ̃2( fy)(x)+ Γ̃2( f x)(y). (2.11)

The proof is done in a similar way. The operator Γ̃2 was introduced in [5] to define a modification
of the CD-inequality, called the exponential curvature-dimension inequality CDE(K,n) (see
Definition 3.9 in [5]). Under the assumption of their new notion of curvature lower bound, they
prove Li–Yau-type gradient estimates (dimension-dependent) for the heat kernels on graphs.

Proof of Theorem 1.3. By Lemma 2.5, we have for any function f : V1 ×V2 → R and any
(x,y) ∈V1 ×V2,

Γ2( f )(x,y) � Γ2( fy)(x)+Γ2( f x)(y)

� 1
n1

(Δ fy(x))2 +
1
n2

(Δ f x(y))2 +K1Γ( fy)(x)+K2Γ( f x)(y)

� 1
n1 +n2

(Δ fy(x)+Δ f x(y))2 +K1 ∧K2(Γ( fy)(x)+Γ( f x)(y)). (2.12)

In the last inequality above we used Young’s inequality. Recalling the facts Δ fy(x)+ Δ f x(y) =
Δ f (x,y) and Γ( fy)(x)+Γ( f x)(y) = Γ( f )(x,y), we complete the proof.

Remark 2.7. We can have more flexibility concerning the measures assigned to vertices. Sup-
pose the vertex measures assigned to G1,G2 and G1 ×G2 take the constant values μ1,μ2 and μ12

on each vertex, respectively, then the modified conclusion of Theorem 1.3 is that (G1 ×G2,μ12)
satisfies

CD

(
1

μ12
(μ1K1 ∧μ2K2),n1 +n2

)
. (2.13)
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This modification covers the case of normalized Laplacians on regular graphs. In particular, if
both (G1,μ1) and (G2,μ2) satisfy CD(0,∞), then (G1 ×G2,μ12) also satisfies CD(0,∞).

Remark 2.8. The estimates of the CD-inequality in Theorem 1.3 (in fact also (2.13)) are tight
at least for the Cartesian product of a graph G with itself. That is, if G satisfies CD(K,n) precisely
(i.e. for given dimension n, K is chosen largest possible), then the CD-inequality in Theorem 1.3
(or in (2.13)) is optimal for G×G. This can be seen as follows. First note that this tightness
depends on that of (2.9), (2.10) and (2.12). By assumption, there exists a function f on the graph
G and a vertex x of the graph such that

Γ2( f )(x) =
1
n
(Δ f (x))2 +KΓ( f )(x),

with Γ( f )(x) �= 0. We can then choose a particular function F on G×G such that:

(i) F(x,x) = f (x),
(ii) F(xi,x) = f (xi) for all neighbours xi of x in G,

(iii) F(x,xk) = f (xk) for all neighbours xk of x in G,
(iv) F(xi,xk) = F(x,xk)+F(xi,x)−F(x,x).

For such an F the equalities in (2.9) and (2.10) are attained at (x,x) and ΔFx(x) = ΔFx(x) and
(by consequence) Γ(Fx)(x) = Γ(Fx)(x), hence the equality in (2.12) is also attained. Therefore
we obtain

Γ2(F)(x,x) =
1

2n
(ΔF(x,x))2 +KΓ(F)(x,x),

which confirms the postulated tightness.
In the specific example (G,1V ), where G is the unweighted graph consisting of just one edge

with end-points x,y, and writing Γ( f ,g)(x) = fΓ(x)g and Δ f (x) = Δ(x) f , an easy calculation
leads to

Γ2(x) = 2Γ(x) = Δ(x)Δ(x) =
(

1 −1
−1 1

)
,

and the curvature-dimension condition CD(K,n) translates into K � 2−2/n. This means that G
satisfies CD(2−2/n,n) precisely and G×G satisfies CD(2−2/n,2n) precisely, as well.

3. Eigenvalue ratios and higher-order spectral bounds

The first subsection is concerned with the eigenvalue ratio estimate under the CD(0,∞) condition
and its optimality properties. Sections 3.2 and 3.3 discuss applications: lower estimates for
higher-order Cheeger constants and upper diameter estimates in term of eigenvalues.

3.1. Eigenvalue ratio
As in [25] for the Riemannian manifold case, we need to combine the improved Cheeger inequal-
ity with the following Buser-type inequality.
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Theorem 3.1. Let (G,μ) satisfy CD(0,∞). Then we have

h2(G,μ) � e−1
2e

1√
Dnor

G

√
λ2(G,μ). (3.1)

This is an adaptation of the Buser inequality in [20] to our setting of weighted graphs with a
slightly better constant in (3.1). We refer to the arXiv version of this paper [27, Appendix I.2] for
a detailed proof for (3.1). The dependence on Dnor

G comes from [27, Lemma 1.5]; see also [5].
We also need the following improved Cheeger inequality in [21] to obtain the eigenvalue ratio

estimate. Their context was the weighted normalized setting.

Theorem 3.2 (Kwok, Lau, Lee, Oveis Gharan and Trevisan). On (G,μ) we have, for any
natural number k � 2,

h2(G,μ) � 10
√

2Dnon
G k

λ2(G,μ)√
λk(G,μ)

. (3.2)

Here the setting is slightly more general than that in [21]. To obtain (3.2), one needs to be
careful about the final calculations in the proof of Proposition 3.2 in [21] (pp. 16 in the full
version of [21]) and the fact that λk � 2Dnon

G .
Combining (3.1) and (3.2), we get the following eigenvalue ratio estimate stated in the Intro-

duction.

Theorem 1.2. For any finite graph (G,μ) satisfying CD(0,∞) and any natural number k � 2,
we have

λk(G,μ) �
(

20
√

2e
e−1

)2

Dnon
G Dnor

G k2λ2(G,μ). (3.3)

We remark that this estimate does not depend on the size of the graph. The following examples
are concerned with the optimality of this result.

The first example shows that the order of k in the above estimate is optimal.

Example 3.3. Consider an unweighted cycle CN with N � 3 vertices. Note that CN can be
considered as an abelian Cayley graph and hence satisfies CD(0,∞). Assign to it a measure
μ which takes the constant value 2 on every vertex. Then the eigenvalues of the associated
Laplacian are given by (see e.g. Example 1.5 in [10] or Section 7 in [26]),

λk(CN) = 1− cos

(
2π
N

⌊
k
2

⌋)
, k = 1,2, . . . ,N.

Observe that we have

lim
N→∞

λk(CN)
λ2(CN)

=
⌊

k
2

⌋2

.
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xx ′

y0 y′0

Figure 2. The dumbbell graph G5.

The dependence on the term Dnon
G Dnor

G is also necessary in the estimate (3.3). This can be
concluded from the following examples.

Example 3.4. Let us revisit the triangle graph (�xyz,μ) in Example 2.3. Consider the special
case that A = B = C = 1 and a = c. Suppose b � a. Then this graph satisfies CD(0,∞). The
eigenvalues of the non-normalized Laplacian are

λ1 = 0 < λ2 = 3a � λ3 = a+2b.

Note further that Dnon
G Dnor

G = (a+b)/a. Therefore, we have

1
3

Dnon
G Dnor

G � λ3(�xyz)
λ2(�xyz)

� 2
3

Dnon
G Dnor

G . (3.4)

We give another example which works for the eigenvalue ratios of both non-normalized and
normalized Laplacians.

Example 3.5. Consider the tetrahedron graph (T4,μ) in Example 2.4 with the assumption that
b � a = c. Recall that μ = A is a constant measure. Then the eigenvalues of the μ-Laplacian are

λ1 = 0 < λ2 =
4a
A

� λ3 = λ4 =
2a+2b

A
.

Moreover, we have Dnon
G Dnor

G = (2a+b)/a. Hence we obtain

1
4

Dnon
G Dnor

G � λ3(T4)
λ2(T4)

� 1
2

Dnon
G Dnor

G . (3.5)

The following example shows that we cannot expect that the eigenvalue ratio estimate (3.3)
remains valid if a graph (G,μ) possesses a small portion of vertices not satisfying CD(0,∞).

Example 3.6. Consider a sequence of dumbbell graphs {GN}∞
N=3. Given two copies of com-

plete graphs over N vertices, KN and K′
N , GN is the graph obtained via connecting them by a new

edge e = (y0,y
′
0), as shown in Figure 2. It was shown in [19] that the complete graph KN with

normalized Laplacian satisfies

CD

(
N +2

2(N −1)
,∞

)
.
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Modifying the calculation in the proof of this fact in [19], we obtain the following results.

• With the normalized Laplacian, GN satisfies CD(1/2,∞) at every vertex which is not y0,y
′
0.

At y0,y
′
0, CD(0,∞) does not hold when N � 3.

• With the non-normalized Laplacian, GN satisfies CD(N/2,∞) at every vertex which is not
y0,y

′
0. At y0,y

′
0, CD(0,∞) does not hold when N � 3.

We present the calculations in Appendix B. With only 2 of 2N vertices violating the curvature
condition, the eigenvalue ratio estimate (3.3) no longer holds. Indeed, for the normalized Lapla-
cian, we observe by Cheeger’s inequality that

λ2(GN) � 2h(G) � 2
|E(S,V\S)|

μ(S)
=

2
N(N −1)+1

,

choosing S = KN to estimate h(G), given in (1.1).
Recall that the spectrum of a complete graph KN is the simple eigenvalue 0 and the eigenvalue

N/(N −1) with multiplicity N − 1. Deleting the edge {y0,y
′
0} from GN , we obtain two disjoint

copies of KN with combined spectrum λ1 = λ2 = 0 < λ3 = λ4 = · · · = N/(N −1). By an inter-
lacing theorem for edge-deleting in [7], we conclude that λ4(GN) � N/(N −1). (Note that the
Laplacian L there is slightly different but unitarily equivalent to our normalized Laplacian, since
L = D1/2ΔD−1/2.) Therefore we have

λ4(GN)
λ2(GN)

� 1
2

N2.

Since in this case Dnon
G Dnor

G = N, (3.3) does not hold when N is large. Similar arguments show
also for the non-normalized Laplacian that (3.3) is no longer true for all N. (The interlacing
theorem for non-normalized Laplacian is well-known; see e.g. [17]).

Remark 3.7. Replacing the sequence of complete graphs KN above with a sequence of ex-
panders, we obtain graphs of bounded degree violating the curvature condition and for which
(3.3) does not hold.

3.2. Higher-order Buser inequalities
Higher-order Buser inequalities were first established by Funano [16] in the Riemannian setting
and then improved in [25]. The following result from the Introduction seems to be the first higher-
order Buser-type inequality in the graph setting.

Corollary 1.5. For any graph (G,μ) satisfying CD(0,∞) and any natural number k, we have

hk(G,μ) � h2(G,μ) � (e−1)2

40
√

2e2

1
Dnor

G

√
Dnon

G

√
λk(G,μ)

k
. (3.6)

Proof. The first inequality is given by the monotonicity of the higher-order Cheeger constants
hk(G,μ) (as functions in k). The second inequality follows from Buser’s inequality (3.1) and
Theorem 1.2.

Remark 3.8. Inequalities in the other direction complementing (3.6) (without any curvature
condition) are given by the higher-order Cheeger inequalities (1.2) by Lee, Oveis Gharan and
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Trevisan [23] from the Introduction. In our setting of weighted graphs, they read as

hk(G,μ) � C
√

Dnon
G k2

√
λk(G,μ), (3.7)

where C is a universal constant. (For the generalization to our setting, one needs to slightly

modify the calculation for E(∑m
i=1 w(E(Ŝi, Ŝi))) in Lemma 4.7 of [23].) Hence, for a graph (G,μ)

satisfying CD(0,∞) and with bounded degree, hk(G,μ) and
√

λk(G,μ) are equivalent up to
polynomials of k of degree smaller than or equal to 2.

Remark 3.9. In [5], Bauer, Horn, Lin, Lippner, Mangoubi and Yau proved for a graph (G,μ)
satisfying another, related curvature condition, namely, the exponential curvature-dimension
inequality CDE(0,n) (see [5, Definition 3.9]) and for a fixed 0 < α < 1 that there exists a constant
C(α), depending only on α , such that

λ2(G,μ) � C(α)Dnor
G nh2(G,μ)2. (3.8)

That is, they obtain a dimension-dependent Buser inequality. Our approach also applies to their
setting. In particular, we obtain the following eigenvalue ratio estimate and higher-order Buser
inequalities under the condition CDE(0,n),

λk(G,μ) � C1(α)Dnor
G Dnon

G nk2λ2(G,μ), (3.9)

hk(G,μ) � h2(G,μ) � C2(α)
1

Dnor
G

√
Dnon

G

1
nk

√
λk(G,μ), (3.10)

where C1(α), C2(α) are constants depending only on α .

3.3. A discrete analogue of Cheng’s theorem
In the manifold setting, Cheng’s theorem [8] provides a relation between the diameter and the
k-eigenvalue of the Laplacian under the non-negative Ricci curvature assumption, presented
in (1.10) in the Introduction. In this subsection, we derive a graph-theoretical analogue. To
do so, we restrict our considerations to Alon and Milman’s setting [1] of unweighted non-
normalized graphs (G,μ) with μ = 1V . We recall the following eigenvalue-diameter estimate
from [1, Theorem 2.7].

Theorem 3.10 (Alon and Milman). Let G = (V,E) be a finite connected graph with maximal
degree dG and let Δ be the non-normalized Laplacian. Then we have

diam(G) � 2

√
2dG

λ2(G)
log2 |V |. (3.11)

Combining Theorem 3.10 with Theorem 1.2, we obtain the following result from the Intro-
duction.

Corollary 1.6. Let (G,1V ) be an unweighted finite graph satisfying CD(0,∞). Then, for any
k � 2 we have

diam(G) � 80e
e−1

dG log2 |V | k√
λk(G,μ)

. (3.12)
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Remark 3.11. Note that there are various further developments in connection with Alon and
Milman’s estimate (3.11); see for example the work of Chung [9], Mohar [31], Chung, Grigor’yan
and Yau [11] and Houdré and Tetali [18]. In principle, the estimate (3.12) can be improved
accordingly.

4. Ratios of higher-order Cheeger constants and multi-way expanders

In this section we derive the following result from the Introduction and discuss applications in
the topic of multi-way expanders.

Corollary 1.7. There exists a universal constant C such that for any graph (G,μ) satisfying
CD(0,∞) and any natural number k � 2, we have

hk(G,μ) � CDnon
G Dnor

G k
√

logk h2(G,μ). (4.1)

First, we recall the following results of Lee, Oveis Gharan and Trevisan [23, Theorems 1.2,
3.9 and Corollary 4.2] in our general setting.

Theorem 4.1 (Lee, Oveis Gharan and Trevisan). Let (G,μ) be a weighted graph with vertex
measure μ . Then we have

hk(G,μ) � C
√

Dnon
G logkλ2k, (4.2)

with a universal constant C > 0. Moreover, if the graph G has genus at most g � 1 (i.e. G can be
embedded into an orientable surface of genus at most g without edge crossings), we have

hk(G,μ) � C′ log(g+1)
√

Dnon
G λ2k, (4.3)

with another universal constant C′ > 0.

Proof of Corollary 1.7. Using (4.2) and Theorems 1.2 and 3.1, we obtain

hk(G,μ) � C
√

Dnon
G logkλ2k

� C′√Dnon
G logk

√
Dnon

G Dnor
G (2k)

√
λ2(G,μ)

� C′′√Dnon
G logk

√
Dnon

G Dnor
G (2k)

√
Dnor

G h2(G,μ)

= 2C′′Dnon
G Dnor

G k
√

logk h2(G,μ),

with various universal constants C,C′,C′′.

Moreover, if we replace (4.2) with (4.3) in the above proof, we obtain the following result.

Corollary 4.2. There exists a universal constant C such that if (G,μ) satisfies CD(0,∞), then
for any k � 2,

hk(G,μ) � CDnon
G Dnor

G log(gG +1)kh2(G,μ), (4.4)

where gG � 1 is an upper bound of the genus of G.
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Remark 4.3. The order of k in (4.4) is optimal. This follows from the example of unweighted
cycles CN (which are planar) with the same measure μ as in Example 3.3, since we have (see e.g.
[26, Proposition 7.3])

hk(CN) =
1

�N/k� , for 2 � k � N.

The dependence on Dnon
G Dnor

G of the ratio estimate is also necessary. This follows from the
following example analysed in Mimura [30].

Example 4.4. Consider the Cartesian product graph GN,2 of the unweighted complete graphs
KN and K2. Assign the measure μ = 1 to it. Since complete graphs satisfy CD(0,∞) (in fact the
complete graph KN is the Cayley graph of Z/NZ when all its elements are taken as generators),
we know by Theorem 1.3 that GN,2 satisfies CD(0,∞). It is straightforward to see that h2(GN,2) �
1. Observe that we can partition GN,2 into two induced subgraphs KN and K′

N . By Lemma 1 of
Tanaka [33] (see also [30]), we have

h3(GN,2) � h2(KN) =
N
2

.

(Note that Tanaka’s lemma was stated for the constants {hk(G)} defined below. One can check
that it also works for {hk(G)} here.) Therefore, we obtain

h3(GN,2)
h2(GN,2)

� N
2

=
1
2

dG. (4.5)

This shows the necessity of the dependence on the term Dnon
G Dnor

G = dG. Note that (4.5) also
holds for the normalized measure μ . We comment that one can also analyse the eigenvalues of
this example to show the necessity of the dependence on the degree in (3.3) (see also [30]) using
an interlacing theorem or Lemma 6 of [33].

Now we restrict our considerations to the setting w = 1E and μ = 1V , that is, G = (V,E) is
now an unweighted graph with non-normalized Laplacian. Recently, the concept of multi-way
expanders was defined and studied in Tanaka [33] and Mimura [30]. We denote hk(G) to be the
following larger k-way isoperimetric constant (compare with Definition 1.4)

hk(G) := min
S1,...,Sk

max
1�i�k

φ1,1(Si), (4.6)

where the minimum is taken over all partitions of V , that is, V =
⊔k

i=1 Si, Si �= /0 for all i.

Definition 4.5 (multi-way expanders [30, 33]). Let k � 2 be a natural number. A sequence of
finite graphs {Gm = (Vm,Em)}m∈N

is called a sequence of k-way expanders if (i) supm dGm
< ∞,

(ii) limm→∞ |Vm| = ∞, and (iii) infm hk(Gm) > 0.

Observe that 2-way expander families coincide with classical families of expanders. In general,
the property of being (k + 1)-way expanders is strictly weaker than being k-way expanders (see
[30]). However, Mimura [30] proved that the concepts of k-way expanders for all k � 2 are
equivalent within the class of finite, connected, vertex-transitive graphs.
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As a consequence of Corollary 1.7, we have the following result.

Corollary 4.6. For the class of finite connected graphs satisfying CD(0,∞), the concepts of
k-way expanders for all k � 2 are equivalent.

Proof. Using the relation (see [23, Theorem 3.8], and [30])

hk(G) � hk(G) � khk(G) (4.7)

and employing Corollary 1.7 yields

hk(G) � CdGk2
√

logkh2(G). (4.8)

Hence, when dG < ∞, infm hk(Gm) > 0 implies infm h2(Gm) > 0. This completes the proof.

Abelian Cayley graphs lie in the intersection of the class of vertex-transitive graphs and the
class of graphs satisfying CD(0,∞). It is well known that there are no expanders in the class of
abelian Cayley graphs (see Alon and Roichman [2]). Moreover, Friedman, Murty and Tillich [15]
proved an explicit upper estimate for λ2 which implies this fact. Therefore, we also obtain the
following explicit upper estimate for λk implying the non-existence of sequences of multi-way
expanders in this class of abelian Cayley graphs.

Corollary 4.7. For any abelian Cayley graph G = (V,E) of degree d of size N = |V |, there
exists a universal constant C such that, for any k � 2,

λk(G) � Ck2d2N−4/d . (4.9)

This is a direct consequence of Theorem 1.2 and the estimate λ2 �CdN−4/d in [15]. Therefore,
it is natural to ask the following question.

Question 4.8. Does there exist a sequence of expanders satisfying CD(0,∞)?

We are inclined to a negative answer. For example, the non-existence of expander families
satisfying CD(0,∞) would follow if one could prove that every graph of vertex degree at most d
and satisfying CD(0,∞) possesses polynomial volume growth with degree depending only on d.
In fact, a sequence of expanders, in contrast, have exponential volume growth as their Cheeger
constant has uniformly positive lower bound.
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Appendix A: Curvature matrix of the triangle and tetrahedron graphs

The curvature matrix Γ2(x) for the graph (�xyz,μ) in Figure 1(a) is

1
4C

⎛⎜⎜⎜⎜⎜⎜⎝

3a2

B
+

3b2

A
+

(a+b)2

C
bc
A

− a(3a+ c)
B

− a(a+b)
C

ac
B

− b(3b+ c)
A

− b(a+b)
C

bc
A

− a(3a+ c)
B

− a(a+b)
C

bc
A

+
3a(a+ c)

B
+

a(a−b)
C

2ab
C

− 2ac
B

− 2bc
A

ac
B

− b(3b+ c)
A

− b(a+b)
C

2ab
C

− 2ac
B

− 2bc
A

3b(b+ c)
A

+
b(b−a)

C
+

ac
B

⎞⎟⎟⎟⎟⎟⎟⎠.

Let us have a closer look at the special case that A = B = C = 1 and a = c. Then the matrix
4Γ2(x) = 4Γ2(z) reduces to⎛⎝4a2 +2ab+4b2 −5a2 a2 −2ab−4b2

−5a2 7a2 −2a2

a2 −2ab−4b2 −2a2 a2 +2ab+4b2

⎞⎠,

and the matrix 4Γ2(y) is ⎛⎝10a2 −5a2 −5a2

−5a2 3a2 +4ab 2a2 −4ab
−5a2 2a2 −4ab 3a2 +4ab

⎞⎠.

Observe that when b � a/2, the above two matrices are both diagonally dominant and hence
positive semidefinite. In fact, they are always positive semidefinite for any a,b � 0. (We checked
this via Maple.)

The matrix 4A2Γ2(x) for the tetrahedron graph (T4,μ) in Figure 1(b) is given by⎛⎜⎝2ab+2ac+2bc+4a2 +4b2 +4c2 −2ab+2ac−2bc−4b2 2ab−2ac−2bc−4c2 −2ab−2ac+2bc−4a2

−2ab+2ac−2bc−4b2 2ac+2ab+2bc+4b2 −2ab−2ac+2bc −2bc−2ac+2ab
2ab−2ac−2bc−4c2 −2ab−2ac+2bc 2ab+2ac+2bc+4c2 −2ab+2ac−2bc
−2ab−2ac+2bc−4a2 −2bc−2ac+2ab −2ab+2ac−2bc 2ab+2ac+2bc+4a2

⎞⎟⎠.

This is a positive semidefinite matrix.

Appendix B: CD-inequalities of dumbbell graphs

In this section we present the calculations for the CD-inequalities of dumbbell graphs GN claimed
in Example 3.6. They are modified from that of [19, Proposition 3].

A general formula representing Γ2( f ) is given by

Γ2( f )(x) = H f (x)+
1
2
(Δ f (x))2 − 1

2
∑y,y∼x wxy

μ(x)
Γ( f )(x)

− 1
4

1
μ(x) ∑

y,y∼x

wxy( f (y)− f (x))2 ∑z,z∼y wyz

μ(y)
, (B.1)

where

H f (x) :=
1
4

1
μ(x) ∑

y,y∼x

wxy

μ(y) ∑
z,z∼y

wyz( f (x)−2 f (y)+ f (z))2.

This is an extension of [19, (2.9)] to our general setting (G,μ).
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Let us first consider the case of the unweighted normalized Laplacian. Let x be a vertex of GN

which is different from y0 or y′0 (see Figure 2). First observe that

H f (x) � 1
4N(N −1) ∑

y,y∼x
∑

z,z∼y
z�=y′0

( f (x)−2 f (y)+ f (z))2.

Now our calculations reduce to the complete graph KN itself. Note that when y,z �= x,

( f (x)−2 f (y)+ f (z))2 +( f (x)−2 f (z)+ f (y))2

= ( f (x)− f (y))2 +( f (x)− f (z))2 +4( f (y)− f (z))2.

Then we have

H f (x) � N +2
2N

Γ( f )(x)+
1

N(N −1) ∑
{y,z}

( f (y)− f (z))2,

where the second summation is over all unordered pair of neighbours of x. By (B.1), we arrive at

Γ2( f )(x) � 2−N
2N

Γ( f )(x)+
1
2
(Δ f (x))2 +

1
N(N −1) ∑

{y,z}
( f (y)− f (z))2.

The last two terms above can be further manipulated as follows:

1
2(N −1)2

(
∑

y,y∼x

( f (y)− f (x))
)2

+
1

N(N −1) ∑
{y,z}

( f (y)− f (z))2

� 1
N(N −1)

[
1
2 ∑

y,y∼x

( f (y)− f (x))2 − ∑
{y,z}

( f (y)− f (x))( f (z)− f (x))

+ ∑
{y,z}

(( f (y)− f (x))2 +( f (z)− f (x))2)
]

=
1

N(N −1)

[(
1
2

+
N −2

2

)
∑

y,y∼x

( f (y)− f (x))2 +
1
2 ∑

{y,z}
( f (y)− f (z))2

]
� N −1

N
Γ( f )(x).

In the equality above, we use the facts that

1
2 ∑

{y,z}
(( f (y)− f (x))2 +( f (z)− f (x))2)− ∑

{y,z}
( f (y)− f (x))( f (z)− f (x))

=
1
2 ∑

{y,z}
( f (y)− f (z))2

and
1
2 ∑

{y,z}
(( f (y)− f (x))2 +( f (z)− f (x))2)

=
1
4 ∑

y,y∼x
∑

z,z∼x,z�=y

( f (y)− f (x))2 +
1
4 ∑

z,z∼x
∑

y,y∼x,y�=z

( f (z)− f (x))2

=
N −2

2 ∑
y,y∼x

( f (y)− f (x))2.
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Therefore we have

Γ2( f )(x) � 1
2

Γ( f )(x).

That is, GN satisfies CD(1/2,∞) at any vertex x �= y0,y
′
0.

Remark. We note that this CD-inequality at vertex x still holds even if we attach different
graphs to every vertex in KN other than x via single edges.

At y0, CD(0,∞) does not hold. Let f0 be the function taking the value 1 at y′0, 2 at all other
vertices in K′

N , and 0 at all vertices in KN . Then one can check by (B.1) that

Γ2( f0)(y0) =
3−N
2N2

< 0, if N � 4.

In the case N = 3, we can use another function g0 taking the value 1 at y0, −1 at all other vertices
in K3, 4 at y′0, and 7 at other vertices in K′

3. One can then check directly that Γ2(g0)(y0) =
−1/9 < 0.

For the case of the unweighted non-normalized Laplacian, the calculations are similar. Note
in this case at x �= y0,y

′
0, we have

Γ2( f )(x) = H f (x)+
1
2
(Δ f (x))2 − dx

2
Γ( f )(x)− 1

4 ∑
y,y∼x

( f (y)− f (x))2dy

� H f (x)+
1
2
(Δ f (x))2 −NΓ( f )(x).

Carrying out the calculation in the same way as in the normalized case, we finally conclude that

Γ2( f )(x) � N
2

Γ( f )(x).

The arguments for CD-inequalities at y0,y
′
0 can be done with the same special functions as in the

normalized case.
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[18] Houdré, C. and Tetali, P. (2001) Concentration of measure for products of Markov kernels and graph
products via functional inequalities. Combin. Probab. Comput. 10 1–28.

[19] Jost, J. and Liu, S. (2014) Ollivier’s Ricci curvature, local clustering and curvature-dimension
inequalities on graphs. Discrete Comput. Geom. 51 300–322.

[20] Klartag, B., Kozma, G., Ralli, P. and Tetali, P. (2016) Discrete curvature and abelian groups. Canad. J.
Math. 68 655–674.

[21] Kwok, T.-C., Lau, L.-C., Lee, Y.-T., Oveis Gharan, S. and Trevisan, L. (2013) Improved Cheeger’s
inequality: Analysis of spectral partitioning algorithms through higher order spectral gap. In STOC ’13:
Proceedings of the 2013 ACM Symposium on Theory of Computing, ACM, pp. 11–20.

[22] Ledoux, M. (2004) Spectral gap, logarithmic Sobolev constant, and geometric bounds. In Surveys in
Differential Geometry, Vol. IX, International Press, pp. 219–240.

[23] Lee, J. R., Oveis Gharan, S. and Trevisan, L. (2012) Multi-way spectral partitioning and higher-order
Cheeger inequalities, In STOC ’12: Proceedings of the 2012 ACM Symposium on Theory of Computing,
ACM, pp. 1117–1130.

[24] Lin, Y. and Yau, S.-T. (2010) Ricci curvature and eigenvalue estimate on locally finite graphs. Math.
Res. Lett. 17 343–356.

[25] Liu, S. (2014) An optimal dimension-free upper bound for eigenvalue ratios. arXiv:1405.2213

[26] Liu, S. (2015) Multi-way dual Cheeger constants and spectral bounds of graphs. Adv. Math. 268 306–
338.

[27] Liu, S. and Peyerimhoff, N. (2014) Eigenvaue ratios of nonnegatively curved graphs. arXiv:1406.6617
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