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DECOMPOSING GENERALIZED QUANTIFIERS

DAG WESTERSTÅHL

Department of Philosophy, University of Gothenburg

Abstract. This note explains the circumstances under which a type 〈1〉 quantifier can be decom-
posed into a type 〈1, 1〉 quantifier and a set, by fixing the first argument of the former to the latter. The
motivation comes from the semantics of Noun Phrases (also called Determiner Phrases) in natural
languages, but in this article, I focus on the logical facts. However, my examples are taken among
quantifiers appearing in natural languages, and at the end, I sketch two more principled linguistic
applications.

1. Introduction. The motivation for the results in this note comes from linguistics:
Determiners and other phrases with a similar function in natural languages denote type
〈1, 1〉 (generalized) quantifiers, and noun phrases (NPs or DPs) denote type 〈1〉 quantifiers,
often but not always obtained by restricting or freezing the noun argument of a 〈1, 1〉
quantifier. I study the ‘inverse’ of freezing: decomposition of a type 〈1〉 quantifier (when
possible) by means of a set and a type 〈1, 1〉 quantifier.

In this article, I focus on the logical facts: characterizations of classes of decomposable
quantifiers are provided and questions of uniqueness of the decomposition addressed. The
results are not difficult, but they yield a fairly clear picture of the situation and can be
directly applied to certain issues in semantics. Two such applications—to reciprocals and
to possessives—are sketched in the final section; the latter are dealt with extensively in
Peters & Westerståhl (in preparation).

Section 2 gives background on (generalized) quantifiers and their properties, section 3
provides the relevant notions of freezing and decomposition, section 4 presents and proves
the results, and section 5 presents linguistic applications. Some observations on decompo-
sition and freezing were made in Peters & Westerståhl (2006, chap. 4.5.5); here, they are
generalized and put in a coherent picture.

2. Background on quantifiers. To make the presentation more self-contained, central
notions and definitions are provided in this section. Notation is as in Peters & Westerståhl
(2006), where (much) more background information on quantifiers in language and logic
can be found.

2.1. Quantifiers of types 〈1, 1〉 and 〈1〉. Except for one example in section 5, we only
deal with quantifiers of these two types.

DEFINITION 2.1. A (generalized) quantifier of type 〈1, 1〉 Q associates with each universe
M a binary relation QM between subsets of M. In the type 〈1〉 case, QM is a unary relation.
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Logicians are more used to see Q a class of structures. This is essentially just a notational
difference; in the type 〈1, 1〉 case:

(M, A, B) ∈ Q ⇐⇒ QM (A, B).

Type 〈1, 1〉 quantifiers interpreting English determiner phrases are conveniently named
by those phrases, as in the examples below. For all M and all A, B ⊆ M ,

allM (A, B) ⇐⇒ A ⊆ B

(all ei)M (A, B) ⇐⇒ ∅ 
= A ⊆ B

noM (A, B) ⇐⇒ A ∩ B = ∅
at least twoM (A, B) ⇐⇒ |A ∩ B| ≥ 2

exactly fiveM (A, B) ⇐⇒ |A ∩ B| = 5

all but threeM (A, B) ⇐⇒ |A − B| = 3

more than two-thirds of theM (A, B) ⇐⇒ |A ∩ B| > 2/3 · |A|
mostM (A, B) ⇐⇒ |A ∩ B| > |A − B|
the tenM (A, B) ⇐⇒ |A| = 10 and A ⊆ B

John’sM (A, B) ⇐⇒ ∅ 
= A ∩ {a : John ‘possesses’ a} ⊆ B

no except JohnM (A, B) ⇐⇒ A ∩ B = {j}
infinitely manyM (A, B) ⇐⇒ A ∩ B is infinite

an even number ofM (A, B) ⇐⇒ |A ∩ B| is even.

all ei is ‘all with existential import’: It is the quantifier that Aristotle (as well as many
modern linguists, but few modern logicians) took ‘every’ to mean. Of course, lots of type
〈1, 1〉 quantifiers are much more remotely related to natural language:

sqrtM (A, B) ⇐⇒ |A ∩ B| >
√|A|

IM (A, B) ⇐⇒ |A| = |B| (the Härtig quantifier).

As to type 〈1〉 quantifiers, all but the last two of the following are familiar from logic:

∀M (B) ⇐⇒ B = M

∃M (B) ⇐⇒ B 
= ∅
(∃=n)M (B) ⇐⇒ |B| = n

(Ia)M (B) ⇐⇒ a ∈ B (a Montagovian individual)

Q R
M (B) ⇐⇒ |B| > |M − B| (the Rescher quantifier)

(Q0)M (B) ⇐⇒ B is infinite

(C pl,u)M (B) ⇐⇒ ∅ 
= C ⊆ B

(C pl,e)M (B) ⇐⇒ C ∩ B 
= ∅.

For each M , (Ia)M is the principal filter on P(M) generated by a; it is also what
Montague used to interpret proper names, so that the sentences:

(1) John smokes.

(2) Some students smoke.

are interpreted on the same principle, as:

[[NP]]M ([[smoke]]),

where M is the discourse universe, and [[NP]] = some[[student]] (defined in section 3) in (2)
and = I j in (1).
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The quantifiers C pl,u and C pl,e can be used to obtain the universal and existential
interpretation of bare plurals along the same lines, as in, respectively,

(3) Firemen are brave.

(4) Firemen are available.

It should be emphasized that quantifiers are global: With each universe M , they associate
a second-order relation (a local quantifier) over M . This is faithful to the meaning of the
corresponding phrases in natural languages. To know what ‘some’ means is not to know
different things for different universes of discourse; it is to know just one thing, namely,
the quantifier some.1 In the case of Montagovian individuals, this means that if j 
∈ M ,
(I j )M (B) is always false, which seems perfectly reasonable.

2.2. Basic properties of quantifiers. A crucial feature of quantifiers involved in natu-
ral language semantics, and in logic too for that matter, is that they mean the same thing on
every universe. The following property comes very close to capturing this intuitive idea.

DEFINITION 2.2. Q satisfies extension (EXT) iff whenever A, B ⊆ M ⊆ M ′, we have
QM (A, B) ⇔ QM ′(A, B). Similarly for the type 〈1〉 case; EXT makes sense for quantifiers
of any type.

Thus, extending the universe (but not the arguments of the quantifier) has no effect.
It is easy to define quantifiers that mean different things on different universes (e.g., one
meaning some on universes with fewer than 10 elements, and all on larger universes), but
these do not appear in natural language semantics. All type 〈1, 1〉 quantifiers mentioned
above and all type 〈1〉 quantifiers, except ∀ and Q R , are EXT. In general, it seems that all
type 〈1〉 natural language quantifiers are EXT, except some of those that explicitly refer to
the universe, for example, by means of the predicate thing: John, firemen, three cats, all
but five students, some things, at most three things are all EXT, whereas everything, most
things are not.

For EXT quantifiers, mention of the universe M can be omitted; this is done whenever
possible below.

DEFINITION 2.3. Q is closed under isomorphism (ISOM) iff the corresponding class of
structures is closed under isomorphism. In the type 〈1, 1〉 case, this is equivalent to the
requirement that QM (A, B) only depends on the cardinals of A − B, A ∩ B, B − A, and
M − (A ∪ B).

Many but not all natural language quantifiers are ISOM; the exceptions mentioned above
are those explicitly mentioning some individual or property, like Mary, all except John,
every student’s, and so forth. For logicians, it is natural to treat these individuals or prop-
erties as arguments too. For example, one could think of the quantifier at work in every
student’s as having type 〈1, 1, 1〉: every C’s A is B. Similarly, one could think of Mary’s
as taking two sets and one individual as arguments. These quantifiers—we could call them
fully abstracted—would be ISOM, but the problem is that they have the wrong category.
Every student’s and Mary’s are in important ways similar to some or most: They take a
noun argument to form an NP, just like other determiners, so from a linguistic point of

1 In the present context, ‘meaning’ stands for extension; intensions, possible worlds, and so forth,
will not be relevant.
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view, they should have type 〈1, 1〉. Similarly, NPs formed by a determiner and a noun
should have type 〈1〉, not type 〈1, 1〉.

The natural way to deal with this issue is to have a background modelM0 fix the inter-
pretation of the relevant proper names or nouns. Provided the fully abstracted quantifiers
are EXT, there is a unique way to treat expressions like every student’s, Mary’s, John, three
cats, and so forth, as quantifiers of the desired types (〈1, 1〉 or 〈1〉), relative toM0 (Peters &
Westerståhl, 2006, chap. 3.5). Naturally, however, ISOM is lost.

ISOM and EXT apply to arbitrary quantifiers. The next property, on the other hand, con-
cerns only quantifiers having a restriction argument (usually a set argument), in particular,
those of type 〈1, 1〉.
DEFINITION 2.4. A type 〈1, 1〉 quantifier Q is conservative (CONSERV) iff for all M and
all A, B ⊆ M, QM (A, B) ⇔ QM (A, A ∩ B).

All determiner interpretations are CONSERV and EXT. This fact is responsible for much
of the special behavior of natural language quantification, and in particular for all the results
in the present note. For such quantifiers, QM (A, B) depends only on the sets A − B and
A ∩ B. If Q in addition is ISOM, only the cardinality of those two sets matter.

Boolean operations on quantifiers (of the same type) are defined in the obvious way.
In addition to ordinary negation, sometimes called outer negation, there is also an inner
negation for quantifiers of these types; define, in the type 〈1〉 case, the quantifier Q¬ by:

(Q¬)M (B) ⇐⇒ QM (M − B).

In the type 〈1, 1〉 case, we replace the second argument by its complement.
Finally, we shall need suitable notions of triviality.

DEFINITION 2.5. A local quantifier QM is trivial iff it holds either of all subsets of M or
of no such subsets. Q is trivial iff each QM is trivial.

Below, we sometimes restrict attention to finite universes; this is indicated by writing
FIN.

3. Freezing and decomposition.
3.1. Freezing. The first argument of a type 〈1, 1〉 quantifier denoted by a determiner

is called the noun or restriction argument, and the idea of freezing is simply to fix that
argument to some given set C . However, the result should be a global type 〈1〉 quantifier,
defined on every universe M , whether M contains C or not. This is done as follows.

DEFINITION 3.1. If Q is any type 〈1, 1〉 quantifier and C any set, define the type 〈1〉
quantifier QC , the freezing of Q to C, by:

(5) (QC )M (B) ⇐⇒ QM∪C (C, B),

for every M and every B ⊆ M.

Thus, the universe is expanded, if necessary, so that it includes C . Though the idea of
freezing is familiar, the definitions in the literature are often vague as to how to read QC on
an arbitrary universe. One could, instead, keep M and cut down C to C ∩ M , or one could
simply stipulate that (QC )M (B) is false when C 
⊆ M . Note that all three alternatives are
equivalent when C ⊆ M . It is argued in Peters & Westerståhl (2006) that (5) is the correct
definition, mainly because it preserves EXT:

FACT 3.2. If Q is EXT, so is QC .
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Proof. If B ⊆ M ⊆ M ′: (QC )M (B) ⇔ QC∪M (C, B) ⇔ QC∪M ′(C, B) (EXT) ⇔
(QC )M ′(B). �

The other definitions suggested above do not preserve EXT. In addition, it can be seen
that the facts about freezing and decomposition to be established below, as well as a number
of other similar results, depend on defining QC in the correct way, that is, as in (5).

3.2. Decomposition.

DEFINITION 3.3.

(i) A type 〈1〉 quantifier Q is decomposable iff there is a set C and a CONSERV and
EXT type 〈1, 1〉 quantifier Q1 such that Q = QC

1 .

(ii) If Q1 is also ISOM, Q is said to be ISOM decomposable.

Since Q1 is required to be CONSERV and EXT, decomposition is an inverse to freezing in
a precise sense explained in Peters & Westerståhl (2006, chap. 4, fact 4). Note that without
any requirements on Q1, the notion of (ISOM) decomposability would be empty.

FACT 3.4. For every type 〈1〉 quantifier Q, there is a set C and a type 〈1, 1〉 quantifier Q1
such that Q = QC

1 .

Proof. Define:

(Q1)M (A, B) ⇐⇒ A = ∅ & QM (B).

Then, (Q1)
∅
M (B) ⇔ (Q1)M (∅, B) ⇔ QM (B), so Q = (Q1)

∅. Note that Q1 is not
CONSERV, but it is EXT (respectively, ISOM) if Q is EXT (ISOM). �

Here are some familiar examples of ISOM decomposable quantifiers:

(6) Ia = all {a} = (all ei)
{a} = (the sg)

{a} = some {a}.
(7) Ia ∧ Ib = all {a,b} = (all ei)

{a,b} = (the pl)
{a,b} (a 
= b).

(8) Ia ∨ Ib = some {a,b}.
(9) C pl,u = (all ei)

C .

(10) C pl,e = some C .

Examples of decomposable but not ISOM decomposable quantifiers and of EXT but not
decomposable type 〈1〉 quantifiers are given below.

A decomposable quantifier is only ‘active’ on the set to which the underlying type 〈1, 1〉
quantifier is frozen. The following definition and result make this claim precise.

DEFINITION 3.5. Let Q1, Q2 be CONSERV and EXT type 〈1, 1〉 quantifiers.

(i) Q1 and Q2 agree on C iff for all sets B, Q1(C, B) ⇔ Q2(C, B).

(ii) Q1 is ISOM on k (where k is any cardinal), iff for all M and A, B ⊆ M, and all M ′
and A′, B ′ ⊆ M ′, if |A| = |A′| = k, |A ∩ B| = |A′ ∩ B ′|, and |A − B| = |A′ − B ′|,
then (Q1)M (A, B) ⇔ (Q1)M ′(A′, B ′).

FACT 3.6. For CONSERV and EXT Q1 and Q2:

(a) If Q = QC
1 and Q1 and Q2 agree on C, then Q = QC

2 .

(b) If Q1 is ISOM, then Q1 is ISOM on k for every k.

(c) If Q = QC
1 where Q1 is ISOM on |C |, then Q is ISOM decomposable.
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Proof. Parts (a) and (b) are immediate. As to (c), if Q, Q1, and C are as assumed, define
Q3 by:

(Q3)M (A, B) ⇐⇒
⎧⎨
⎩

(Q1)M (A, B) if |A| = |C |
A ∩ B 
= ∅ (say) otherwise.

Clearly, Q3 is CONSERV and EXT. Distinguishing the cases |A| = |C | and |A| 
= |C |, we
see that Q3 is also ISOM (in the former case, since Q1 is ISOM on |C |, and in the latter
case, since Q3 then amounts to some). In addition, Q1 and Q3 agree on C , so it follows
from part (a) that Q = QC

3 . �
Fact 3.6 has the following immediate consequence.

COROLLARY 3.7. Q is ISOM decomposable if and only if Q = QC
1 for some C and some

CONSERV and EXT Q1, which is ISOM on |C |.

4. Results.
4.1. Global quantifiers living on sets. We are looking for some property of type 〈1〉

quantifiers, which gives a necessary and sufficient condition for decomposability. By Fact
3.2, one necessary condition is EXT; ∀ and the Rescher quantifier (everything and most
things) are not decomposable already because they are not EXT. It turns out that the right
place to start is the live-on property introduced in Barwise & Cooper (1981). Conservativity
is crucial to most facts about global quantifiers in natural language, but Barwise and
Cooper, who were among the first to realize its importance, thought of it as a property
of local quantifiers.

DEFINITION 4.1. Let C be any set. A local type 〈1〉 quantifier QM lives on C iff for all
B ⊆ M, QM (B) ⇔ QM (C ∩ B).

The connection with conservativity (which is immediate if the right notion of freezing
has been chosen) is the following.

FACT 4.2. A type 〈1, 1〉 quantifier Q is CONSERV iff for each set C and each universe M,
(QC )M lives on C.

Here are some easily verified facts about the live-on property (cf. Peters & Westerståhl,
2006, chap. 3, lemma 1):

FACT 4.3.

(a) QM always lives on M, but need not live on any proper subset of M.

(b) QM lives on ∅ iff it is trivial.

(c) If QM lives on C and D, it lives on C ∩ D.

(d) If QM lives on C and C ⊆ D, QM lives on D.

We did not require that C ⊆ M in the definition of ‘QM lives on C’, but the aforemen-
tioned fact shows that QM lives on C if and only if QM lives on M ∩ C . Indeed, it shows
that:

{X ⊆ M : QM lives on X}
is a filter on P(M), which is proper iff QM is nontrivial. If M is finite, it follows that
QM lives on:
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WQM =
⋂

{X ⊆ M : QM lives on X},
which then generates the filter.

We now extend the live-on notion to global quantifiers as follows.

DEFINITION 4.4. Let C be a set. A (global) type 〈1〉 quantifier Q lives on C iff for all M,
QM lives on C.

Fact 4.3, parts (b)–(d), carry over directly to the extended notion.

FACT 4.5.

(a) Q lives on ∅ iff it is trivial.

(b) If Q lives on C and D, it lives on C ∩ D.

(c) If Q lives on C and C ⊆ D, Q lives on D.

If Q lives on some set, we let:

WQ =
⋂

{X : Q lives on X}.
FACT 4.6. (FIN) If Q lives on some set, it lives on WQ. That is, WQ is then the smallest
set that Q lives on.

Proof. We are assuming that Q lives on some finite set C . Then, clearly,

WQ =
⋂

{X ∩ C : Q lives on X}.
But on the right-hand side, we have an intersection of finitely many sets. Thus, by Fact 4.5,
part (b), Q lives on WQ .2 �

The next fact relates WQ to WQM .

FACT 4.7. (FIN) If Q lives on some set then, for all M, WQM ⊆ WQ.

Proof. It is enough to show that if Q lives on a set C , then for all M , WQM ⊆ C . But QM

lives on C by definition and hence on M ∩ C . And WQM is the smallest subset of M that
QM lives on, so WQM ⊆ M ∩ C . Thus, WQM ⊆ C . �

4.2. Decomposition and the live-on property. Even though the live-on property for
global quantifiers draws on Barwise and Cooper’s local version, it is a very different
property. The local version essentially codifies conservativity, and so is to be expected in
all natural language contexts. Also, every local quantifier lives on some set (its universe).
Global quantifiers, on the other hand, ‘normally’ do not live on any sets at all. For example,
a nontrivial and ISOM type 〈1〉 quantifier lives on no set (Fact 4.11). In fact, the ones that
do live on some set are essentially the decomposable quantifiers, as we now see.

2 This fails without the restriction to finite sets. Let Q be infinitely many numbers, that is,
Q = infinitely manyN , where N = {0, 1, 2, . . .}. Q lives not only on N but also on N − {0},
N − {0, 1}, . . . . So there is no smallest set on which it lives, and WQ as defined above is empty.
Note that if Q lives on some set C , WQ is well defined: It is a subset of C defined by a first-
order set-theoretic formula. The notation WQ was used in a slightly different sense in Peters &
Westerståhl (2006, chap. 4.6), namely, for certain Q such that WQM is independent of M (when
QM is nontrivial). But when this is the case, that notion coincides with the one defined here.
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The next lemma is immediate (either directly from definitions or from Facts 4.2 and 4.5,
part (c)).

LEMMA 4.8. If Q is CONSERV, QC lives on C and all its supersets.

We obtain the following characterization.

THEOREM 4.9. Q is decomposable if and only if it is EXT and lives on some set.

Proof. Suppose Q is decomposable as QC
1 . Then, Q is EXT, and by Lemma 4.8, Q lives

on C .
In the other direction, suppose Q is EXT and lives on C . Define Q1 by:

(Q1)M (A, B) ⇐⇒ A = C & QM (A ∩ B).

Q1 is CONSERV by definition, and EXT since Q is EXT. We have, for all M and all B ⊆ M ,

(QC
1 )M (B) ⇔ (Q1)M∪C (C, B)

⇔ QM∪C (C ∩ B) (by definition)

⇔ QM (C ∩ B) (by EXT)

⇔ QM (B) (since QM lives on C).

That is, Q = QC
1 . �

COROLLARY 4.10.

(a) If Q is decomposable with C as the underlying set, then for every D ⊇ C, Q is
decomposable with D as the underlying set.

(b) The class of decomposable type 〈1〉 quantifiers is closed under Boolean operations,
including inner negation and dual.

Proof. Part (a) follows from the theorem and Lemma 4.8. As to part (b), the claims about
negations (and hence duals) follow from the easily verified observations that for CONSERV

and EXT Q1,

(11) ¬(QC
1 ) = (¬Q1)

C .

and

(12) (QC
1 )¬ = (Q1¬)C .

Now suppose Q = QC1
1 and Q′ = QC2

2 , for CONSERV and EXT Q1 and Q2. By Lemma 4.8,
both Q and Q′ live on C1 ∪ C2. But then, it readily follows that Q ∧ Q′ and Q ∨ Q′ also
live on C1 ∪ C2. Since they are also EXT, they are decomposable, by the theorem. �

We can use the easy direction of the characterization to show that various type 〈1〉
quantifiers, including many denoted by noun phrases in natural languages, are not de-
composable. To begin, something and nothing (∃ and ¬∃) are EXT but not decomposable.
More generally, the quantifiers at least n things (∃≥n), for n ≥ 1, and all nontrivial Boolean
combinations of these, including inner negations and duals, are not decomposable. These
include cases like everything (∀) and all but three things ((∃≥3 ∧ ∃≤3)¬), which are not
even EXT, and so a fortiori not decomposable, but also EXT noun phrase denotations like
between three and five things (∃≥3 ∧∃≤5), not to mention an even number of things, and so
forth. All this follows from the simple fact that these quantifiers are (nontrivial and) ISOM.
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FACT 4.11. If a type 〈1〉 quantifier is nontrivial and ISOM, it is not decomposable.

Proof. Suppose Q is nontrivial and ISOM. By Fact 3.2, we may also suppose that Q is
EXT.

Case 1: ¬Q(∅). By nontriviality, there is some M and some B ⊆ M such that QM (B).
By EXT, it follows that Q B(B). Now suppose that Q lives on some set C . Take B ′ such
that |B ′| = |B| and C ∩ B ′ = ∅. It follows, since Q is ISOM, that Q B′(B ′) and hence, since
Q B′ lives on C , that Q B′(C ∩ B ′). But this contradicts the assumption of the case. Thus,
Q does not live on any set and is therefore not decomposable.

Case 2: Q(∅). Then, the previous argument shows that Q′ = ¬Q is not decomposable.
But then, by (11), neither is Q. �

What about EXT but not ISOM quantifiers? Among noun phrase denotations, we find the
following. Define, for any set D, the quantifier only D by:

(13) (only D)M (B) ⇐⇒ ∅ 
= B ⊆ D.

These are at work in the interpretation of sentences like:

(14) Only John left the party. (D = {j}).
(15) Only firemen wear helmets.

FACT 4.12. Quantifiers of the form only D are EXT, but not decomposable when D 
= ∅.

Proof. That EXT holds is clear from the definition of only D. Suppose only D were
decomposable and hence lived on some set C . Take any a 
∈ C ∪ D. Since (only D)(D)
holds (D 
= ∅), we obtain (only D)(C∩D) and therefore (only D)(C∩(D∪{a})), so (only D)
(D ∪ {a}), which contradicts (13). �

This underscores the familiar observation in linguistics that, first appearances notwith-
standing, only is in fact not an English determiner (e.g. Peters & Westerståhl, 2006, p. 139,
fn. 15). If it were a determiner, one would expect only firemen to be interpreted as a frozen
type 〈1, 1〉 quantifier, but Fact 4.12 says it cannot be.

4.3. Characterizing ISOM decomposability. We have seen several examples of ISOM

decomposable quantifiers, as well as EXT but nondecomposable quantifiers, but what about
quantifiers that are decomposable but not ISOM decomposable? A host of such quantifiers
can be identified using the characterization of ISOM decomposability in this subsection.

DEFINITION 4.13. A type 〈1〉 quantifier Q does not distinguish subsets of C of the same
size iff whenever B1, B2 ⊆ C ∩ M are such that |B1| = |B2| and |C − B1| = |C − B2|,
QM (B1) ⇔ QM (B2).

THEOREM 4.14. Q is ISOM decomposable if and only if Q is EXT and lives on some set C
such that Q does not distinguish subsets of C of the same size.

Proof. If Q = QC
1 for some CONSERV, EXT, and ISOM Q1, then Q lives on C , and it is

immediate that Q does not distinguish subsets of C of the same size.
In the other direction, suppose Q is EXT and lives on a set C such that Q does not

distinguish subsets of C of the same size. Define Q1 by:

(Q1)M (A,B) ⇔ |A| = |C | & ∃X ⊆ C(QM (X) & |X | = |A ∩ B|
& |C − X | = |A − B|).
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Q1 is CONSERV by definition, and EXT since Q is EXT. Also, Q1 is clearly ISOM on |C |.
Moreover, we have, for any B,

Q1(C, B) ⇔ ∃X ⊆ C(QM (X) & |X | = |C ∩ B| & |C − X | = |C − B|)
(by definition)

⇔ Q(C ∩ B) (by assumption)

⇔ Q(B) (since Q lives on C).

So Q = QC
1 , and Q is ISOM decomposable by Fact 3.6, part (c). �

Consider Q = I j ∨ (Im ∧ Is), which interprets the noun phrase John, or Mary and Sue,
as in:

(16) John, or Mary and Sue, will come to the party.

The atoms are ISOM decomposable, as we have seen, and it follows from Corollary 4.10,
part (b), that Q is decomposable. Suppose Q were ISOM decomposable as Q D

1 . We have
Q1(D, {j}), hence Q1(D, D ∩ {j}) by CONSERV, so j ∈ D since ¬Q1(D, ∅). A similar
argument shows that either m ∈ D or s ∈ D. Thus, since Q({j}) but neither Q({m}) nor
Q({s}) holds, we have contradicted Theorem 4.14.3

Here is a generalization of this observation.

FACT 4.15. The quantifier some men or all women is decomposable but not ISOM decom-
posable. More generally, the quantifier Q = someD ∨ all E is decomposable but not ISOM

decomposable, if D 
= ∅, |E | > 1, and D ∩ E = ∅.

Proof. (Note that I j ∨ (Im ∧ Is) is the special case when D = {j} and E = {m, s}.)
The claim about decomposability follows from Corollary 4.10, part (b). Next, by our
assumptions, we have for all a ∈ D, Q({a}), whereas for all b ∈ E , ¬Q({b}). Thus,
by Theorem 4.14, it suffices to show that if Q = QC

1 , we have C ∩ D 
= ∅ and C ∩ E 
= ∅.
But this follows from the conservativity of Q1: Since Q1(C, D), we have Q1(C, C ∩ D)
and hence C ∩ D 
= ∅ since ¬Q1(C, ∅), and similarly for E . �

4.4. Uniqueness. Suppose Q is (ISOM) decomposable. When is the decomposition
unique, that is, when can we recover the underlying type 〈1, 1〉 quantifier and the under-
lying set? The first part of the question is easy. We already saw that in many cases, the
underlying quantifier is not unique: Ia = all {a} = (all ei)

{a} = (the sg)
{a} = some {a}, and

so forth. In fact, it can never be recovered.

FACT 4.16. For every decomposable quantifier Q, one can find Q1, Q2 and C such that
Q1 
= Q2 and Q = QC

1 = QC
2 .

Proof. This is more or less immediate from Fact 3.6: If Q = QC
1 , just let Q2 differ from

Q1 on some D with |D| 
= |C |, but be the same as Q1 otherwise. �
The second part of the question is more interesting. From Corollary 4.10, part (a), we

know that it is only in the case of ISOM decomposability that we have any chance to recover
the underlying set.

3 But in this case, the conclusion follows directly from the fact that Q1 is ISOM: If m ∈ D,
Q1(D, {j}) implies Q1(D, {m}) by ISOM.
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LEMMA 4.17. (FIN) Suppose Q is nontrivial and decomposable as QC
1 , where Q1 is ISOM

on |C |. Suppose further that Q lives on some set D. Then, C ⊆ D.

Proof. Suppose first that ¬Q(∅) holds. Let B0 be a set of the smallest size such that Q(B0).
(Since Q is EXT by assumption, we can leave out the universe as usual.) Such a set exists
by nontriviality. By assumption, B0 
= ∅. Moreover, by the conservativity of Q1 (or the
fact that QM lives on C), we may assume that B0 ⊆ C .

Suppose a ∈ C − D. Take B ⊆ C such that a ∈ B and |B| = |B0|. Since Q1 is ISOM

on |C |, C is finite, and Q1(C, B0) holds, it follows that Q1(C, B) and thus Q(B). Since
Q lives on D, we get Q(D ∩ B) and thus Q(D ∩ (B − {a})) since a 
∈ D. But then,
Q(B − {a}), again because Q lives on D. Since B is finite, this contradicts the assumption
that it was of the smallest size such that Q(B).

Thus, C ⊆ D. If instead Q(∅) holds, We apply the same reasoning, but this time to ¬Q,
which also satisfies the assumptions in the lemma. �

THEOREM 4.18. (FIN) If Q is nontrivial and ISOM decomposable, its underlying set is
uniquely determined. More exactly, there is a unique set C such that for some Q1 which is
CONSERV, EXT, and ISOM (on |C |), Q = QC

1 .

Proof. Suppose Q = QC
1 = Q D

2 , where Q1, Q2 are CONSERV and EXT, and Q1 is ISOM

on |C |, whereas Q2 is ISOM on |D|. By Lemma 4.8, Q lives on D. Thus, by Lemma 4.17,
C ⊆ D. A symmetric argument shows that D ⊆ C , so C = D. The corresponding claim
of uniqueness when Q1, Q2 are ISOM follows by Fact 3.6, part (b). �

Let

Un(Q, Y ) ⇐⇒ Q = QY
1 for some CONSERV, EXT, and ISOM Q1.

By the theorem, assuming FIN, the relation Un is single-valued for nontrivial Q, so we can
define a function U from type 〈1〉 quantifiers to sets by:

U (Q) =
{

Y if Q is nontrivial and Un(Q, Y )

∅ otherwise.

U , restricted to ISOM decomposable quantifiers, can also be defined in terms of Q alone.
Recall the definition of WQ in section 4.1.

COROLLARY 4.19. (FIN) If Q is ISOM decomposable, then U (Q) = WQ.

Proof. If Q is trivial, U (Q) = WQ = ∅, by Fact 4.5, part (a). Suppose Q = QC
1 for some

CONSERV, EXT, and ISOM Q1, and Q is nontrivial. Then, Q lives on C , and C = U (Q)
by the theorem, so, by Fact 4.6, WQ ⊆ U (Q). Also, since Q lives on WQ , it follows by
Lemma 4.17 that U (Q) ⊆ WQ . So in both cases, U (Q) = WQ . �

Putting together all the above, we obtain a final characterization of ISOM decompos-
ability.

COROLLARY 4.20. (FIN) Q is ISOM decomposable if and only if Q is EXT, WQ exists,
and Q does not distinguish subsets of WQ of the same size.

The restriction to finite universes is essential for the results in this subsection. For
example, the quantifier mentioned in footnote 2, Q = infinitely many numbers, is nontrivial
and ISOM decomposable, WQ = ∅, Q does not live on any finite set, and for each n,
Q = (infinitely many)N−{0,1,...,n} (where N = {0, 1, 2, . . .}).
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4.5. Some instructive examples. Suppose Q = QC
1 , where Q1 is not ISOM. Can

we conclude anything about the ISOM decomposability of Q? No: Even if Q is ISOM

decomposable, it is equal to QC
1 for infinitely many C and infinitely many non-ISOM Q1.

We give some examples to illustrate that natural quantifiers of the form QC
1 with non-ISOM

Q1 are sometimes ISOM decomposable and sometimes not.
In section 2.1, we defined simple possessive quantifiers like John’s by:

John’sM (A, B) ⇐⇒ ∅ 
= A ∩ R j ⊆ B,

(where R j = {b : R( j, b)}, and j = John). This is a special case of:

Q2 of John’sM (A, B) ⇐⇒ ∅ 
= A ∩ R j & Q2(A ∩ R j , B).

Compare sentences like:

(17) John’s bikes were (all) stolen.

(18) Most of Mary’s friends are here.

(19) All but two of Henry’s job applications failed.

Here, Q2 = all, most, and all but two, respectively. None of the possessive type 〈1, 1〉
quantifiers in (17)–(19) is ISOM, but we still have the following.

FACT 4.21. If Q2 is CONSERV, EXT, and ISOM, quantifiers of the form Q = (Q2 of
John’s)C are ISOM decomposable. Moreover (FIN), WQ = C ∩ R j .

Proof. Q is clearly EXT. We have:

(20) Q(B) ⇐⇒ ∅ 
= C ∩ R j & Q2(C ∩ R j , B).

If C ∩ R j = ∅, then Q is trivial and hence trivially ISOM decomposable, and WQ = ∅
(Lemma 4.5, part (a)). If C ∩ R j 
= ∅, then, by (20), Q = (Q2)

C∩R j and hence is ISOM

decomposable by the assumption on Q2. Also, if FIN holds, we see from Corollary 4.19
that WQ = C ∩ R j . �

Thus, the smallest set that, say, John’s books lives on is not the set of books in the
discourse universe, but the set of books owned by John (if R = owns) (cf. Corollary 4.20).

What about other frozen possessive quantifiers? I will not try to answer this question
in any generality here but only give a few more illustrative examples. Consider the deter-
miner some student’s. This has (at least) two readings, a universal and an existential one,
illustrated by:

(21) Some student’s tennis rackets were stolen.

(22) Some student’s books were left in the classroom.

A plausible reading of (21) is that some students had all their tennis rackets stolen, whereas
(22) can be taken to mean that some, but not necessarily all, of the students’ books had been
left in the room. The two readings are given by, respectively,

(23) (some D’s)u(A, B) ⇐⇒ ∃a ∈ D (∅ 
= A ∩ Ra ⊆ B).

(24) (some D’s)e(A, B) ⇐⇒ ∃a ∈ D (∅ 
= A ∩ Ra ∩ B).

FACT 4.22. Q = ((some D’s)e)C is ISOM decomposable, for all D, C, and R.

Proof. We use Theorem 4.14. Let:

(25) C0 = C ∩ ⋃
a∈D Ra .
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It is not hard to verify that:

(26) Q lives on C0.

Also, it follows from the definition of (some D′s)e that:

(27) If ∅ 
= B ⊆ C0, then Q(B) holds.

This entails that Q does not distinguish subsets of C0 of the same size. Since Q is clearly
EXT, it follows from Theorem 4.14 that Q is ISOM decomposable. �

Although I will not prove it here, it is a general fact about possessive quantifiers frozen
to a set C that they live on the set C0 defined in (25). In particular, ((some D’s)u)C does so,
and we see that (with D = {j}) the quantifiers (Q2 of John’s)C do so too. In this latter case,
we have WQ = C0 = C ∩ R j , but in general, WQ can be a proper subset of C0. To give an
example, suppose D = {s1, s2}, C = {b1, b2}, and R = {(s1, b1), (s2, b1), (s2, b2)}. Then,
C0 = C , and one easily verifies that with Q = ((some D’s)u)C , we have ¬Q(∅), Q({b1}),
¬Q({b2}), and Q({b1, b2}). From this, one sees that:

WQ = {b1}.
For this particular choice of C, D, R, we also have that ((some D’s)u)C is ISOM decom-
posable. This is a consequence of Corollary 4.20.

FACT 4.23. (FIN) If Q is EXT, and WQ exists and has at most one element, Q is ISOM

decomposable.

Proof. Then, Q trivially does not distinguish subsets of WQ of the same size! �
However, a similar example shows that a slightly different possessive quantifier need not

be ISOM decomposable. Consider:

(28) (Exactly) two students’ dorm rooms were burglarized.

One plausible interpretation is:

(29) two D’s(A, B) ⇐⇒ |D ∩ {a : ∅ 
= A ∩ Ra ⊆ B}| = 2.

Let D = {s1, s2, s3}, C = {b1, b2}, and R = {(s1, b1), (s2, b1), (s3, b2)}. Again C0 = C ,
and one sees that with Q = (two D’s)C , we have ¬Q(∅), Q({b1}), ¬Q({b2}), and
¬Q({b1, b2}). For example, in the last case, the number of Ds such that every C they
are related to by R belongs to {b1, b2} is 3, not 2. But then, Q lives neither on {b1} nor on
{b2}, although it does live on C0 = {b1, b2}. So WQ = {b1, b2}, and it follows that Q does
distinguish some subsets of WQ of the same cardinality (namely, {b1} and {b2}). We have
shown the following.

FACT 4.24. There are D, C, and R such that (two D’s)C is not ISOM decomposable.

We see that the ISOM decomposability (or not) of frozen possessive quantifiers some-
times depends on the choice of the ‘possessor’ relation. For example, we can make the
following observation.4

FACT 4.25. If R is a (partial) function, then for all D and C, Q = ((some D’s)u)C is
ISOM decomposable.

4 Thanks to Christian Bennet for the suggestion.
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Proof. That R is a partial function means that for all a, Ra has at most one element. From
this, and the fact that Q is monotone (Q(B) and B ⊆ B ′ implies Q(B ′)), one verifies that,
with C0 as in (25),

(30) for B ⊆ C0: Q(B) ⇐⇒ B 
= ∅ & ∀b ∈ B Q({b}).
It follows that for all non-empty subsets B of C0 we have Q(B). So in particular, Q does
not distinguish subsets of C0 of the same size. Since Q lives on C0 and is EXT, Q is ISOM

decomposable, by Theorem 4.14. �
However, most ‘possessor’ relations, like real ownership, are not partial functions (one

normally owns many different things).
Note finally that although the proof of Fact 4.24 makes use of Corollary 4.20, it identifies

a finite set as the smallest set the quantifier lives on. This is independent of the size of
the universe; a finite counterexample to ISOM decomposability is given, and this fact, in
contrast with positive results of ISOM decomposability using Corollary 4.20, like Fact 4.23,
does not rely on FIN. The same holds for our final example.

FACT 4.26. There are D, C, and R such that Q = ((some D’s)u)C is not ISOM decom-
posable.

Proof. Let D = {s1, s2, s3}, C = {b1, b2, b3, b4}, and (draw a diagram!) R = {(s1, b1),
(s2, b1), (s2, b2), (s3, b3), (s3, b4)}. As to subsets of C0 = C , we then have:

(i) Q holds of {b1} and its supersets and of {b3, b4} and its supersets.

(ii) Q does not hold of: ∅, {b2}, {b3}, or {b4}, nor of {b2, b3} or {b2, b4}.
Using the monotonicity of Q, and going through the various cases, one can verify that:

(31) Q lives on {b1, b3, b4},
and then that

(32) WQ = {b1, b3, b4}.
So Q distinguishes subsets of WQ of the same size (e.g., {b1} and {b3}) and hence is not
ISOM decomposable. �

Observe also that:

((some D’s)u)C =
∨
a∈D

(all of a’s)C ,

so we have another illustration of the fact that ISOM decomposability is not closed under
disjunction (cf. Fact 4.15).

5. Applications. Noun phrases abound in most languages, as immediate constituents
of other phrases: sentences, verb phrases, prepositional phrases, and so forth. In a composi-
tional semantics, the semantic value of the larger phrase is determined by the values of the
immediate constituents (and the ‘mode of composition’). Suppose the value of the NP is of
the form QC , but calculating the value of the larger phrase requires access to C and/or Q.
Then, we have at least a prima facie problem for compositionality since the phrases whose
values are Q and C are not immediate constituents of the larger phrase. Does this situation
actually occur? We look at two cases.
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5.1. Reciprocals. Consider the sentences5:

(33) Most of the pirates stared at each other in surprise.

(34) Most of the boys in my class know each other.

In examples like this, each other can be construed as a type 〈1, 2〉 quantifier E O , where
E O(A, R) says roughly that all individuals in A ‘R each other’. But this can mean different
things. For example, in (34), we seem to have:

E O1(A, R) ⇐⇒ ∀a, b ∈ A(a 
= b ⇒ R(a, b)).

(33), on the other hand, rather uses E O2:

E O2(A, R) ⇐⇒ ∀a ∈ A∃b ∈ A(a 
= b & R(a, b)).

(It is difficult to stare at more than one person at a time.)
The meaning of the whole sentence can then be obtained as a ‘Ramsey lift’ along the

following scheme:

(35) Rami (Q)(C, R) ⇐⇒ ∃X ⊆ C(QC (X) & E Oi (X, R)).

That is, if Q is a type 〈1, 1〉 quantifier like most (one usually assumes that the quantifier
is increasing in the right argument, like most, or John’s), (35) gives a type 〈1, 2〉 quantifier
Rami (Q) suitable for interpreting certain reciprocal sentences.

The most natural compositional analysis of sentences like (33) and (34) would seem to
go like this:

[Det C] [R each other]

QC λX E O(X,R).

But to get the meaning of the sentence, according to (35), at the last step, we in general
need access not only to QC but also to C . Thus, Theorem 4.18 applies, when QC is
ISOM decomposable (like most pirates or John’s companions) and only finite universes
are considered. Since C = U (QC ) = WQC , this theorem guarantees the compositionality
of the corresponding reciprocal constructions.6

5.2. Possessives. Next, consider:

(36) Most planets’ rings are made of ice.

Here too we have an NP, most planets, whose interpretation is of the form QC and which
is naturally seen as an immediate constituent of the phrase most planets’ (which can be
taken to be a determiner). But in this case, access to C does not seem to be enough. This is
because most in (36) does not really quantify over all the planets, but only over those that
have rings. Planets without rings are irrelevant to the truth value of (36). The phenomenon
was called narrowing in Barker (1995) (from which the example is taken).

5 See Dalrymple et al. (1998) for a treatment of the semantics of reciprocals. (33) is a variant of a
sentence discussed there.

6 One may note that since Q is CONSERV,

Ram1(Q)(C, R) ⇐⇒ ∃X (QC (X) & E O1(X, R)).

So in this case, access to C is in fact not needed. This is because E O1 is defined by a universal
condition. But E O2 is not, and C cannot be similarly eliminated for Ram2(Q).
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Thus, we need access to QC ′
, for some C ′ ⊆ C . But, as we have seen, this is in general

not possible. One cannot recover Q from QC and therefore not QC ′
either, when C ′ 
= C ,

even if C ′ is known. In Peters and Westerståhl (in preparation), we analyze the situation
and conclude that this appears to constitute a serious problem for the compositionality of
the semantics for possessives.

We also note a related problem for possessive semantics. If one construes the semantics
so that not QC but both Q and C are taken as arguments when calculating the meaning
of possessive phrases, one has an additional problem besides compositionality: What to do
when the NP is not quantified, as in (37) and (38)?

(37) Mary’s grant applications were successful.

(38) John or Mary’s grant applications were successful.

The obvious answer is: decompose! But one problem is that such decomposition is not
unique. For example, Im = all {m} = (all ei)

{m}, and the truth conditions vary slightly with
the decomposition chosen.7 Another issue is that phrases of the form [NP ’s] are sometimes
problematic. Consider:

(39) (?) John, or Mary and Sue’s grant applications were successful.

(40) (?) Some man or every woman’s grant applications were successful.

Many speakers find (39) and (40) meaningless or at least very strange.8 Our logical results
may apply here too. For example, we note that the NPs in (39) and (40) are not ISOM

decomposable (Fact 4.15), in contrast with those in (37) and (38). These issues too are
discussed further in Peters & Westerståhl (in preparation).

In conclusion, the ubiquity of linguistic constructions involving phrases whose interpre-
tations are type 〈1〉 quantifiers, decomposable or not, makes it likely that the simple logical
facts about decomposition established in this note are relevant to various issues in natural
language semantics.
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