
RTMix– towards a standardised interactive
electroacoustic art performance interface

IVICA ICO BUKVIC

3346 Sherlock Ave #21, Cincinnati, OH 45220, USA
E-mail: ico@fuse.net
URL: http://meowing.ccm.uc.edu/~ico/

The following article offers an analytical overview of the
currently available software technologies designed to
assist in creation, dissemination, and most importantly
performance of interactive electroacoustic art. By
grouping the software into two basic groups based on
their interfaces, my aim is to provide a comprehensive list
of two groups’ strengths and shortcomings, therefore
exposing common issues that arise whenever a composer
utilises such software interfaces in performance settings.
Finally, as an incentive in solving a number of given
problems, the author will present RTMix, his own
software creation that has been designed primarily as a
standardised interface for the purpose of easier
production, performance and dissemination of the
interactive electroacoustic artwork.

1. INTRODUCTION

Interactive multimedia art by definition encompasses
any kind of artistic work that requires live interaction
between the computer and a live performer. In such a
symbiotic relationship between the inherently ‘stupid’,
yet immensely powerful machine and the intellectually
superior, but computationally less agile human per-
former, there is always a mediator, aninterfacewhose
purpose is to bridge these dramatic differences between
the two participants, relaying pertinent information in
order to ensure a successful interaction. Sometimes the
interface consists of a composer who is running the
computer, where the performer receives computer-
related cues from the composer. At other times, the
interfaceis perhaps a little more elegant, where the per-
former has a hands-on communication with the com-
puter via the MIDI (Musical Instrument Digital
Interface) pedals and other kinds of interactive control-
lers, or by having a visual display of the computer’s
activity and current state. No matter what the means of
communication are, it is obvious that theinterfaceis the
most important element in the interactive art perform-
ance whose flexibility and reliability means the differ-
ence between a successful execution and a complete dis-
aster. In the following article I will focus on this kind of
interface in order to generate a list of desired features
that would constitute its best possible incarnation cap-
able of seamless integration into just about any kind of
interactive art.

Organised Sound7(3): 275–286 2002 Cambridge University Press. Printed in the United Kingdom. DOI:10.1017/S1355771802003072

1.1. Background

Interactivity has played a very important part in the
shaping of the electroacoustic medium ever since the
first electronic music studios came into existence. Begin-
ning with modular positioning of speakers in Stockhau-
sen’sKontakteand Pierre Henry’s real-time routing of
the audio signal during the performance of hispotent-
iomètre d’espace, Morton Subotnick’sGhost Electronics
in works such asTrembling, as well as today’s numerous
installations and interactive concerts, such as recent
Telesymphony, it is quite apparent that composers and
audiences alike have always had a great deal of interest
in this form of artistic expression. Although the curiosity
was always there, it was not until very recently that this
kind of artistic expression was avoided due to the sheer
cost of the technology and the logistical support required
for it to be successfully deployed in a performance of
any kind.

1.2. Advent of portable computing

Perhaps one of the most revolutionary technological
advancements to have spurred the development of the
interactive electroacoustic medium was the advent of
affordable supercomputing portable computers. Ever
since their first introduction on the market, the so-called
computernotebooks(a.k.a.laptopsor powerbooks) have
kept improving, becoming lighter, more powerful as
well as more affordable, even upgradeable – many
manufacturers, such asDell, SagerandEurocomoffer
laptops that can be upgraded nearly as easily as desktop
computers. WithCPUs (Central Processing Units) soar-
ing over the 3 GHz (gigaHertz) mark,Hyper-Threading
abilities (Intel’s concept of treating one processor as if
it were two by the Operating System in order to
maximise CPU efficiency and task queuing),SSE2
(Intel’s Streamlined Single-Instruction-Multiple-Data
Extensions) 3DNow! (AMD’s set of multimedia
instructions) andAltiVec (PowerPCprocessor’s set of
additional instructions a.k.a.Velocity Engine) vector-
based float-point calculating engines, today’s computers
are capable of billions of calculations every second. In
addition, computers are now becoming more and more
modular, where each particular task is taken over by a

https://doi.org/10.1017/S1355771802003072 Published online by Cambridge University Press

https://doi.org/10.1017/S1355771802003072


276 Ivica Ico Bukvic

dedicated hardware – video and graphics are handled by
the powerfulGPUs (Graphics Processing Units), sound
is managed through high-quality externalDSP (Digital
Signal Processing) cards, while all other peripheral com-
munications are managed with either dedicated on-board
chips or add-in cards.

These portable workstations and their usability are the
main focus of this article due to the simple fact that
they are nowadays capable of tackling just about any
computational task, and as such do not require any addi-
tional external hardware (apart from the sound-making
equipment, such as the off-board soundcards for the pur-
pose of limiting possible electromagnetic interference
with the tightly concentrated hardware contained within
a typical notebook) that would potentially limit their
portability as well as affordability.

1.3. Interactive art performance interfaces

With such developments in the world of technology, a
new market opened up with a need for software capable
of harnessing newly acquired computing power. As a
result, during the last decade of the twentieth century,
several important software packages (or updates to the
existing software) whose focus was on real-time multi-
media data processing took shape, some of them becom-
ing widely accepted standards among multimedia art-
ists – MIT’s Csound, IRCAM’s FTS and laterCycling
74’s Max/MSPas well as Miller Puckette’sPure Data
(a.k.a.PD), Brad Garton, John Gibson and Dave Top-
per’s RTcmix modification of Paul Lansky’sCmix,
James McCartney’sSupercollider, and many more. With
a strong response from the artistic community, these
applications quickly gained momentum. Some of them
were designed as open-source software (i.e.PD and
Cmix) and continue to develop at a steady rate as stable
cross-platform solutions, while others branched off and
became closed-source commercial applications (such as
the ubiquitousMax/MSP).

All of the listed software packages have one thing in
common: they utilise the onboardCPUs for both their
DSP-oriented tasksas well as theinterface. While they
are not the only available interactive art tools, they do
make up the majority of this market in terms of their
popularity and widespread use, and as such will serve as
a basis for the definition of the two types of interfaces.
Yet it must be pointed out that in addition to these, there
are some very potent, but architecturally rather different
kinds of interfaces that offer the same functionality
utilising dedicated hardware rather than the built-in
CPUs for DSP-related purposes. A typical example is
the Capybara hardware that is accompanied by the
equally powerfulKyma interface. Although their per-
formance is rather impressive, their design does not fit
into the scope of this article because they do not employ
the computer’sCPU for the sound-processing tasks.
Rather they utilise computers only for interface purposes

rendering them merely as expensive display adapters.
Whereas this kind of solution was certainly one of the
most popular ones, if not the only viable option during
the early 1990s, it is now becoming less and less
common since today’s onboardCPUs are capable of
offering nearly the same kind of computational power
as these systems at a fraction of their size and cost. Their
usually not-so-optimal size (and inherently their
portability) coupled with their price tag render this kind
of interface simply uneconomical. All these factors, as
well as the fact that such interfaces are not required to
use minimal amounts of the processing power (since the
interface does not share the computing power with the
DSP-based tasks) make any further comparisons
between these hardware solutions and the previously
mentioned software-only ones not only unfair, but more
importantly impossible to present in an objective fash-
ion. Hence, they will be excluded from the given pool
of commonly used and generally widespread software
interfaces.

Yet in spite of the sudden popularity of the interactive
art medium, even today many composers and performers
shy away from its potential, seeing it as being too haz-
ardous, unpredictable, and too difficult to control in per-
formance settings; with all kinds of last-minute problems
of a technological nature, as well as the apparent lack of
concert halls equipped for such events, the interactive
electroacoustic medium has as many admirers as it has
critics. Furthermore, due to such technical volatility,
works are hard to judge since it is nearly impossible to
separate the listener’s impression of the technological
implementation and the creation’s artistic merit. For
instance, a work whose performance suffers from tech-
nical difficulties may be better than that which is per-
ceived, while a mediocre work’s weaknesses can be
craftily occluded by the impressive on-stage display of
technology. To this day, the lack of a comprehensive,
standardised and easy-to-use interface has made it not
only difficult for composers to work within this medium
without being hindered by technical limitations, but has
also warranted a lack of transportability and per-
formability, as well as stalled development of any kind
of aesthetics upon which an interactive work could be
criticised. So what is the source of this problem and
what can we do to circumvent it? In order to answer
these questions, I will take a closer look at the software
performance interfaces currently in use by interactive
multimedia artists, grouping them according to their fea-
tures as well as the ways they encourage the user to
approach the music-making process.

2. THE BIG ‘TWO’

All of the aforementioned software packages have been
designed with a particular premise and/or approach to
creating and executing interactive multimedia installa-
tions, and therefore, just as with any software package,

https://doi.org/10.1017/S1355771802003072 Published online by Cambridge University Press

https://doi.org/10.1017/S1355771802003072


RTMix 277

each offers its own set of strengths and weaknesses. Fur-
thermore, each stimulates the musician to approach the
music-making process from a different perspective:
object-orientedapplications, such asPD and its ‘com-
mercial brother’Max/MSP, provide musicians with rudi-
mentary objects that when coupled together into an elab-
orate contraption can result in very complex interface
designs. Applications such asCsoundandCmix tackle
this issue with a morelinear approach, where the so-
calledscriptsor scriptfilescontain information as to how
to manipulate availableinstrumentsand which are trig-
gerable via a simple command-line interface. While
these four software packages are far from being all-
encompassing examples of the current interactive art
software scene, they do represent the two extreme con-
cepts of software interface design. Most of the other
applications fall either neatly into one of these categories
or, more commonly, are a combination of the two. A
majority of the software released in the last couple of
years usually draws upon both of these concepts, making
this distinction somewhat arcane, perhaps in the same
fashion as the ideas ofmusique concre`teand the German
Studio of Colognestyles are now known simply as the
initial two approaches to electroacoustic music that have
long disappeared in their pure form, and only remain for
aesthetic, analytical and historical purposes. Therefore,
the lack of the ‘pure’ presence of these two approaches
in today’s software does not negate the need to clearly
establish a set of parameters that will help us define the
two groups and help us further analyse and cross-
compare their traits in order to better understand the
problems of the current widely used software interfaces
and issues surrounding their deployment.

For the purpose of further analysis I will label the two
groups based on their interfaces asobject-oriented
versuslinear, visual versusscript-based, or asmodular
versusstandardised. By offering a closer look at the fea-
tures and functionalities of these two groups, I will
supply a cumulative list of desirable characteristics that
can further serve as a basis for a potentially all-
encompassing, standardised and technologically less
demanding performance interface that would supply an
easier and more reliable relaying of the information
between performer(s) and computer. With such an inter-
face, interactive electroacoustic music would not only
become more accessible, but would also cease to suffer
from the problematic elision of the technological prow-
ess and the work’s artistic merit from a critical stand-
point, since the technological aspect would be simpler
to execute, and therefore less important in the overall
perception of the work of art. To put it in practical terms,
currently a large number of interactive installations are
like gargantuan home-made contraptions put together
with ‘Scotch’ tape, and whose operability itself is
impressive enough, something that can potentially over-
shadow the fact that the contraption may not be doing
anything remarkable, other than ‘not break’. Through

better, and more importantly standardised interface
implementation, the contraption would become more of
an instrument that could be, just like any other instru-
ment in the orchestra, practised and perfected to the
point that its utilisation could be considered just as virtu-
osic as playing a violin, or a piano. Then, the techno-
logy-inspired awe would be no greater than the appreci-
ation of the architectural design of a piano during a
performance of a solo piano work. Interactive art would
then be perceived as a work of art, rather than a witty
display of technology.

2.1. Object-oriented interfaces

Object-orientedinterfaces, such asPD and Max/MSP,
are also generallyvisually based, as well asmodular.
Many other software applications adhere to this kind of
concept: jMax, FX2, EyesWeb, Spiral Synth Modular,
GlameandVaz Modular, just to name a few. All of these
applications have a lot in common: a visually oriented
and a highly customisable interface, a set of relatively
basic objects, as well as some kind of hierarchically
based means of interconnecting theGUI (Graphic User
Interface) elements (or objects). I will focus primarily on
PD andMax/MSP, as signature examples of this group.

Due to the object-oriented nature of this software,
users have a vast amount of flexibility, being able to
create interfaces of just about any type, size and func-
tionality. Needless to say, this kind of interface flexibil-
ity leads to a greater artistic freedom – utilising such an
interface, the user has complete choice over the design,
order and arrangement of the various interface elements
(i.e. buttons and sliders). This is perhaps one of the most
powerful traits of this type of interface. Furthermore, by
a simple incorporation of newly designed objects, the
existing designs can be easily expanded to intercommun-
icate with just about any MIDI-capable interface, as well
as any other type of interactive controller.

Yet another impressive aspect of this kind of interface
is its modularity. Through a simple, yet powerful con-
cept of cord-like connections between the objects, the
information streamed from various sources can be easily
re-routed and displayed as needed, regardless of its data
type. Armed with such an array of features, these
applications offer a practically unbeatable set of options
to any artist.

However, with versatility comes another not-so-
desired feature, and that is complexity. The majority of
composers utilising this kind of interface opt to perform
their own works, or at least run the technical aspects of
the show, in either case having firm control over the
execution of the piece. This performance practice dom-
inates interactive electroacoustic art, and while found in
other music genres, more often we find composers writ-
ing works for others to perform. At this point it is
important to ask ourselves whether this kind of interact-
ive art performance practice arose out of necessity or

https://doi.org/10.1017/S1355771802003072 Published online by Cambridge University Press

https://doi.org/10.1017/S1355771802003072


278 Ivica Ico Bukvic

purely for artistic reasons. While there is no way of
proving the dominance of either of these interpretations,
there is no reason to dispute the observation that com-
posers, by knowing their own creations the best from
both the technical and artistic standpoints, and more
importantly the custom-designed interface, tend to prefer
‘running the show’ themselves in order to minimise the
possibility of something going amiss. If we agree with
this observation, then it is easy to further conclude that
there is such a thing as an ‘over-customisable’ interface
that can potentially limit the performability aspect of the
work in the settings where composer is not able to phys-
ically control the interface and/or relay information
between the computer and a performer. Even if we try
to imagine performers utilising such custom-made inter-
faces themselves (assuming, of course, that the per-
former is someone other than the composer), then we
will have to agree that each such interaction would
require the performer to relearn the interface’s modular
layout. Such lack of standardisation produces an impres-
sion that each performance is like attempting to write a
paper on a word processor that continuously shuffles the
places and positions of the commonly accessed options.
Arguably, we live in an age of ‘globalisation’ where
common computer users are becoming more and more
computer literate. Still, it would be hard to argue that
playing a violin that continuously changes a number of
strings, as well as tunings, would be an easy feat in any
respect.

Due to the fact that these kinds of applications usually
embed the performance interface into the instrument
itself, interface users are often facing the on-screen clut-
ter, the objects that are a part of the instrument’s inner
workings but have no useful purpose, being visible
during the performance. This is generally a significant
problem with most of the applications that fall into this
group. However, some of the software, such asMax/
MSP, have provided in their later updates tools that fur-
nish users with means of occluding information that is
not important to the performer. Even though these
improvements are certainly noteworthy, they still do not
solve the core problem of this group, and that is the lack
of standardised performance interface.

In terms of robustness and theCPU footprint, both
of the given interfaces do not fare the best. TheirCPU
utilisation vastly varies depending on the complexity and
size of the interface itself. As such, they perhaps take
away too many computing cycles that could otherwise
be used for the most important aspect of the perform-
ance – the sound itself.

2.2. Linear interfaces

The most characteristic feature of the second,stand-
ardisedgroup is the lack of a visual interface a.k.a.GUI,
which is usually supplemented by the command-line-
based interface. Again, a number of software packages

utilise this sort of interface, such asCsound, RTcmix,
LISP-based CLM, SAOL-basedpackages,STK, Squeak,
Jsyn, etc. The two applications I will use as typical
examples of this type areCsoundandRtcmix.

Most of the software that falls into this category stems
from the era of Unix dominance (which is arguably
returning with the increasedLinux Operating System’s
popularity as well as Apple’s recent choice to baseOS
X’s architecture on theFreeBSD-basedkernel) and are
therefore predominantly command-line driven. The
command-line calls are naturally standardised and,
hence, this kind of an approach exemplifies less com-
plexity and an easier learning curve from the aspect of
end-user/performer. Its utilisation, however, does require
a certain amount of end-user’sOS (Operating System)
literacy and therefore creates an apprehensive environ-
ment for the performer who may not be familiar with
theOS, the command-line interface, or both. Some ver-
sions of these applications do circumvent this issue in a
relatively graceful fashion, such asCsounddistributions
with a simpleGUI, where all of the operations are man-
aged with ‘point ’n’ click’ elegance. Yet, this kind of
visual supplement to the core application’s concept
should be regarded as an ‘after-market addition’ since it
does not represent a typical scenario within this group,
nor is it usually geared towards real-time performance,
therefore making it an irrelevant aspect within the con-
text of this group.

The command-line design consequently requires
instruments’ inner workings to be stored in the so-called
scorefilesor any other types ofscriptfileswhere they are
hidden away from the end-user. This is very convenient
for the performers who do not wish to be bothered by
the instrument’s architectural design and are only
expected to trigger the actual event as indicated in the
performance notes. Still, the interface’s lack of visual
stimuli leaves a lot to be desired, especially in critically
timed situations where asking a performer to trigger an
event is hardly practical – after all, the interface itself
usually does not supply any timing information. This
kind of compositional approach can thus create an array
of problems as to how to synchronise the computer-
based and ‘live’ elements of the work. Furthermore, such
limitations of these interfaces make them a less popular
choice for composers of interactive art, a fact that is
rather unfortunate considering their immense flexibility
and versatility.

Since both the entire instrument and the performance
are stored in a linear format (scriptfilesare constructed
using text, which is linear by nature), most composers
utilising this kind of an interface end up being motivated
to compose in a linear, or streamlined fashion com-
pacting their whole performance into onescriptfile that
then becomes a focal place of their work where all of the
timing information is internalised. All of the processes
contained in such a script are timed relatively with
respect to each other and once the script has been

https://doi.org/10.1017/S1355771802003072 Published online by Cambridge University Press

https://doi.org/10.1017/S1355771802003072


RTMix 279

executed, it takes on an irreversible path continuing until
the process ends or is prematurely terminated. Needless
to say, such a design imposes certain strains on real-time
performance due to its rigidity. Performers have very
little margin for error and rehearsals are often managed
as if the work were written for a ‘tape-and-instrument’
medium. In addition, this event co-dependency makes it
nearly impossible to play back only a snippet from the
middle of the script, further complicating rehearsal coor-
dination. On the other hand, splitting up thescriptfile
into several sub-scripts in order to alleviate this limita-
tion sometimes is simply not possible since there may
be a required co-dependency between events that cannot
be implemented if each script becomes an independent
process. Consequently, these two factors seem to be the
greatest limitations of this kind of an approach to inter-
active music composition and performance.

While a linear approach does have its shortcomings,
it does have several very important advantages. The first
one is the fact that the time-based flow of events is gen-
erally rather easy to track when looking at thescriptfile,
and is therefore relatively useful for the purposes of
scoring, or storing the work in some other legible
format. The second one is its standardised (albeit
unfriendly) user interface that requires no learning curve
beyond the initial familiarisation from the performer’s
aspect (especially when performing different works
utilising the same interface). Finally, this group’s inter-
face exhibits obviously minimalCPU utilisation (since
in essence it has no visual elements that require real-time
updates).

3. SHADES OF GREY

Certainly not all software interfaces fall neatly into these
two categories; a vast number draw their inspiration
from both groups. For instance, applications likeBuzz,
which is a cross-breed between a tracker and an object-
oriented filter system, carry traits of both of the groups –
on one hand,Buzzresembles a Max-like object-oriented
design, while at the same time it also has a script-based
tracker which is strictly concerned with linear ordering
of the events;Supercollideris a powerful scripting lan-
guage (based onSmalltalk) that also has a fully cus-
tomisableGUI, as well as a scripting language that is,
contrary to other typical script-based interfaces, object-
oriented. EvenRtcmixandCsoundhave several different
GUIs designed to harness their power via a visual inter-
face, such asCecilia andVisual Orchestrafor Csound
and Soundmesh(a.k.a. Internet Sound Exchange) for
Rtcmix. Yet, the presence of such software does not help
us decipher the plausible elements that would constitute
the ultimate standardised interface for interactive elec-
troacoustic art, since all of these again have their own
shortcomings which are hard to codify because of their
unclear categorisation in respect to the aforementioned
two groups. Hence, these applications will not be taken

into account when attempting to draw parallels between
the two inherently different approaches to constructing
an interactive art performance interface.

4. DRAWING PARALLELS AND CONNECTING
THE DOTS

After having a closer look at the two given groups, we
can now more easily discern and compare their indi-
vidual advantages as well as common disadvantages.
This information can further help us propose an optimal
standardised interface for the performance of interactive
electroacoustic art. Standardisation is an important
aspect as its presence would encourage easier dissemina-
tion of works, as well as an increased chance for
repeated performances and hence a greater exposure. In
addition, because of its standardisation (and con-
sequently potential wide use), composers using such an
interface would not have to worry as much about tech-
nical problems or feel compelled to take an active part in
the performance, but rather be able in a more traditional
fashion to simply sit back and enjoy their own work.

Through comparison of the two groups we can
observe the following: while the object-oriented inter-
faces offer customisability, by default they lack in pro-
viding a legible timeline for the work. The linear group
offers an easily decipherable flow of events stored in
so-calledscriptfiles(although this information is gener-
ally occluded at run time), but does not lend itself to
easy debugging or partial playback. The visual interface
of the first group is certainly more advanced than that of
the second, but it requires more computing power and
its customisability warrants the lack of standardisation
and therefore proportionally increases the learning curve
for the end-user, having furthermore an inverse effect on
the transportability and performability of the pieces. The
second group has its own drawbacks in terms of the
accessibility of the command-line-based interface imply-
ing an additional knowledge of both theOS and the
application in question, but at the same time offers
standardisation which should generally warrant an easier
learning curve from the performer’s standpoint (again,
assuming that the performer and composer are not the
same person).

What is peculiar to the majority of the discussed inter-
faces, regardless of the group they belong to, is their
exclusivity – the fact that very few of the listed software
interfaces are designed to cooperate between each other,
sharing and routing the processed data. This limiting
factor simply restricts the composer’s imagination,
having their creativity subdued by the technology it
employs. While there are ways around this issue, such
as routing audio data via network sockets, and inter-
cepting it with a different application, this is neither
elegant nor a commonly used solution to this problem.
More often, composers simply choose not to bother with
this kind of functionality, rightfully being worried about

https://doi.org/10.1017/S1355771802003072 Published online by Cambridge University Press

https://doi.org/10.1017/S1355771802003072


280 Ivica Ico Bukvic

potential technical problems that might arise from using
such a complex set-up. A side-effect of such a design is
the fact that software interfaces tend to take over the
sound and video resources so that they cannot be shared
simultaneously among a larger pool of applications.

Finally, due to the overall complexity of both
approaches, many of the interactive works become
extremely difficult to perform properly or are too
expensive to produce, lacking the replayability factor,
whereas in those not-so-common instances where com-
plex pieces are well executed and where technological
prowess shines, the audience is often so impressed by
the technical elements of the work that it becomes hard
to make a sane judgement about the artistic value of the
work. In order to thwart this kind of flux between art
and technology and furthermore to simplify the process
of artistic creation, and even more importantly perform-
ance, the artistic community needs to have more easy
access to a comprehensive and easy-to-use interface that
will shift the focus from the technology to values of
greater importance, such as the overall artistic merit of
one’s creation.

While all these observations may appear to be overly
critical, it is important to emphasise that it is not the
author’s intention to scrutinise the existing pool of
applications rendering them as inadequate, but rather to
provide an insight into the desired features of a software
application that would not only provide a user-friendly
environment, where the composer’s flow of thought
would not be pulled away from the artistic creation, but
also that would provide for a comfortable performance
interface in settings where the composer’s physical pres-
ence and technical support would not be feasible. In
addition, this kind of insight could provide us with an
additional set of desirable features that a universal inter-
active electroacoustic art interface could and, more
importantly, should have.

By now, it is obvious that neither of the two available
groups provide for the best environments for interactive
art. And while one can easily argue that the creative
process is a very individual issue and presumably not up
for discussion, I would like to propose a set of guidelines
that would provide for a universally better interface and
offer the following benefits: easier learning curve, driven
by a linear and easy-to-debug scripting language capable
of triggering external applications and events regardless
of their type and/or origin; a networkable interface for
the purpose of coordination of larger performing forces;
software with a minimalCPU-utilisation footprint;
powerful standardisedGUI that would offer strong
visual stimuli for both compositional, rehearsal and per-
formance purposes, yet not overwhelm the performer
with unimportant information; expandability; portability;
and an interface requiring minimal knowledge of the
computer’s inner workings, as well as usefulness beyond

its original purpose. Furthermore, there are several addi-
tional desirable features that could help the overall per-
ception of an interactive work by improving the aesthet-
ics of the presentation, such as having the interface
residing on-stage, where its presence could add a phys-
ical dimension to its otherwise bodiless sonic presence,
as well as potentially the role of an equal in the overall
sound-making process by becoming a virtual performer
and a visually noticeable participant of the ensemble.
This kind of an interface would also allow the performer
to have a direct interaction, without a middle-person or
an arbiter (such as is the case with many of today’s inter-
active artworks). Interaction on this level would allow
the interface to be more integrated into the performance,
providing the audience with a much more rewarding
visual experience. Finally, the interface should be
designed in such a way that it ought to avoid the redund-
ant re-implementation of existing software capabilities,
and rather pose as an all-inclusive unifying tool that
would furnish the user with greater freedom by allowing
simultaneous usage of various unrelated processes.

Motivated by the above-mentioned problems and aes-
thetical choices, most of which were a result of first-
hand experiences, it was my intention to design such an
interface that could be used for interactive multimedia
art and whose design would be focused on tackling
issues related to the deployment of such artistic cre-
ations.RTMix (named after theRTcmixreal-time audio
manipulating and synthesis scripting language that has
been used predominantly in my recent interactive
works), designed primarily as an open-source project for
the Linux platform in Autumn 2001, has since grown to
be an acknowledged interactive art solution among the
Linux audio community, and continues to be developed
under the sponsorship of the University Research Coun-
cil Grant of the University of Cincinnati, as well as a
part of the author’s Dissertation project.

5. RTMIX TO THE RESCUE!

RTMix is designed to serve as a fully fledged perform-
ance and composition interface. While it does not offer
perfect solutions to all of the aforementioned problems,
it certainly addresses a significant number of them by
allowing the user to shift focus from the technical
hurdles of performing an interactive work to more plaus-
ible artistic elements, providing a standardised interface,
easier learning curve, as well as the coexistence of dif-
ferent sound-making andDSPsoftware applications.

5.1. The interface

RTMix’s GUI was designed using aGPL-licensedcross-
platformQt toolkit and is in essence a large, easily vis-
ible stopwatch, which is the timing centre of all events
that unfold during the performance. The stopwatch is

https://doi.org/10.1017/S1355771802003072 Published online by Cambridge University Press

https://doi.org/10.1017/S1355771802003072


RTMix 281

split up into the main timer and the countdown clock
that is used to foreshadow strictly timed events, so that
the performer can be prepared for the oncoming attack.
The interface is enhanced with large mock-lamps whose
sole purpose is to grab the performer’s attention during
rehearsals and the actual performance when this is
needed. RTMix is also fitted with a ‘panic’ button that
can instantaneously kill all of the currently active pro-
cesses and provide quick cessation of a sound in the case
of a feedback or a similar technical problem that requires
a quick reaction. Furthermore, the ‘settings’ menu
enables the user to customise the appearance of just
about every aspect of theGUI, including visual stimuli.
However, this customisation does have limits that have
been imposed in order to keep a certain level of stand-
ardisation. There are additional resizable ‘warning’ win-
dows (up to four per client) that can serve the same pur-
pose as the main timer but offer greater flexibility with
screen positioning, as well as more comprehensive rout-
ing of the cues to different performers. The interface
also has up to four metronome windows which are fully
customisable in terms of displaying complex metres by
coupling metre subdivisions into horizontal groups, as
well as presenting a wide range of tempi. Other external
windows are also available, such as mirror representa-
tions of main timers (for dual-screen uses) as well as a
custom widget with six additional generic visual stimuli.
All of these objects are guided by the so-called ‘event-
script’ that can be edited either within the application
or by any other simple text editor. The syntax for the
‘event-script’ resembles Paul Lansky’sRT script where
each event has its name and is followed by a list of
parameters that are blocked off with parentheses. There
are currently twenty different types of events that the
interface understands and all are geared towards trig-
gering different events at different times, as well as con-
trolling the visual interface and the flow of time.

5.2. Linear scripting language

The ‘event-script’ is built upon the premise that it must
provide the user with the greatest possible amount of
error-logging information, so that editing can be as
simple as possible. Linear scripts are inherently hard to
debug and therefore the ‘event-script’ allows only one
event per line in order to minimise the parser’s confu-
sion with error reporting which is often found in bracket-
dependent and multi-line-command scripting languages.

The events that populate the ‘event-script’ can be gro-
uped into several subcategories: transport control events,
probability events, metronome events, text events, net-
work events, and real-time events. Transport events
focus primarily on the basic transport controls, such as
fast-forward, reverse, play, pause and stop. Coupled with
them are so-called Checkpoints whose purpose is to
index the performance in order for the user to be able to

cycle quickly between them. Events are basically an
array of system calls that can be triggered in various
ways. Some of them are simple events that are executed
immediately when called, while others are ‘countdown’
events that actually have preparation time before their
execution. The benefit of having such events is rather
obvious when it comes to synchronising live performer
with computer I/O (input and output), regardless of
whether it is a tape or interactive work. Probability
events are based on chance numbers and can be used in
various ways to toggle events or alter their various
aspects and characteristics. This introduces an element
of indeterminacy that can be extensively harnessed
through this kind of interface. Metronome events pertain
primarily to metronomes which are sometimes needed
in live settings when the timings are rather complex and
performers require additional help in keeping in time
with the other performers (whether that be a computer or
another live performer). Text events are for information
purposes, to notify composers and performers alike of
the incoming events, as well as subtle changes that are
otherwise hard to communicate via any other visual
stimuli. Network events are responsible for negotiating
client–server connections as well as adjusting local net-
working settings, while real-time events are potentially
all other events with a real-time flag switched on. Such
events can be triggered at any moment, resulting in an
immediate reaction. Many of these objects lend them-
selves to an array of secondary uses. For more informa-
tion about the available commands, see the table.

Each event has a set of mandatory and optional para-
meters. Mandatory parameters depend on the event, but
generally all events require exact timing (or in the case
of real-time events, a binding to a real-time trigger).
Optional elements add text notification and visual stim-
uli functionality. This means that most of the events that
do not evoke sound processes are by default mute in
terms of visual (or any other type of) notifications, while
event-evoking commands have preset ways of notifying
the user. All these behaviours can be altered as the user
deems fit. With this kind of an approach, the software
offers a default, easy-to-use environment, but at the
same time lends itself to modifications by advanced
users, while providing a level of flexibility that does not
compromise the overall interface’s standard.

5.3. Intercommunication and networkability

With these basic building blocks, and the fact that the
interface is utilising system calls to just about any kind
of event, one can create a very complex collage of
events that range from regular sound playbacks to trig-
gering complex scripts viaCsound, RTcmix, GUI-less
PD session, or any other sound-making application.
What this means is that the application itself does not
generate any sound, but rather relies on other external

https://doi.org/10.1017/S1355771802003072 Published online by Cambridge University Press

https://doi.org/10.1017/S1355771802003072


282 Ivica Ico Bukvic

Table. List of currently available events.

ID# Event name Description

1 Event Makes system calls to invoke other
applications at a given time.

2 Countdown Initiates a countdown process,
triggering an event upon its
completion.

3 Text Displays text notifications in the
notification window at a specific time.

4 Checkpoint Marks a place in the timeline for
easier navigation purposes, as well as
for Jump, Rew, and Ffw objects.

5 Pause Pauses the performance.
6 Stop Stops the performance.
7 Clear Clears the notification window.
8 Warning Similar to Countdown, except that the

event is initiated immediately,
followed by the countdown process.

9 Metronome Sets up the metronome parameters
(metre, tempo).

10 Jump Jumps to a particular place within the
performance – it can be either relative
or absolute.

11 Randomise Randomises a value and stores it into
one of the slots of the 256-value array.

12 Change Changes a particular parameter using a
given equation and (if applicable) one
of the values from the array.

13 Seed Seeds the randomisation process.
14 Rew Rewinds arbitrary number of

checkpoints.
15 Ffw Fast-forwards arbitrary number of

checkpoints.
16 Togglemetro Toggles metronome activity and/or

resets it.
17 Assign Assigns a specific value into one of

the slots of the 256-value array .
18 Togglert Toggles triggerability of the real-time

events.
19 Setnet Sets local or remote networking

options (i.e. IP and Port values).
20 Togglenet Toggles networkability of the local

client.

applications that can be triggered with automation flags
and therefore set into motion instantaneously. This cer-
tainly introduces the first drawback of such architectural
design, and that is the issue of latency in instances where
it takes time to instantiate the application (this is cer-
tainly the case withPD). But surprisingly enough, many
other applications have instantaneous response, espe-
cially in the Linux OSwhich is currently the most effi-
cient multitasking platform available. In addition, nearly
all of the Linux-basedapplications can be triggered via
command-line calls, and as such the majority of them
are compatible withRTMix.

Being able to control a plethora of various unrelated
events,RTMix maximises the versatility of a portable

computer while minimising the implementation of
redundant elements into its interface. It also enables the
user to combine sonic processes from various applica-
tions, thus removing the currently existing limitation of
using only one application at one time –RTMix is able
to serve as a front-end for just about any kind of soft-
ware and hence offers the badly needed standardisation
of interface for just about any kind of interactive art
performance.

Networkability is yet another powerful feature that
enables each client to control multiple ‘slave’ clients,
and therefore coordinate larger performing forces that
are not able to cluster around the single display screen.
In this setting, the master client simply emits the events
to the desired client, which upon receiving the event
immediately interprets and executes it. With such a
design, it is easy to envision a vastly greater applicability
of this interface, even in situations that are not associated
with the music-making process, such as coordination of
stage lighting.

5.4. Applicability and other benefits – the good . . .

The RTMix interface has been designed placing
emphasis on ‘user-friendliness’. Most of the options
contain their own clearly annotated and easily accessible
‘point ’n’ click’ GUI counterparts. The main window
has the bottom half dedicated to a series of tabs whose
functionality is rather self-explanatory: ‘Performance’
tab (with all of the text notifications), ‘Editor’ (for file
input and output options, as well as error logging and
text editing), ‘Network Settings’ tab (for communication
with otherRTMix clients via the TCP/IP protocol), and
the ‘Real-Time’ tab (where the user can review controls
and settings for the real-time events that can be triggered
at any given moment). (NB: Since the application is still
under heavy development, the actual layout stated above
reflects only the current version 0.52.)

The other advantage of this system is the compactness
of the ‘event-scripts’. The event-scripts only contain the
scripting text that is compiled at the beginning of the
performance and stored into the doubly-linked data cue.
This offers greater transportability (with the assumption
that the receiving client already has all the sounds and
events to be played out), and in errata-like situations,
simple adjustments, annotations and timings can be
easily e-mailed to the recipient or performer of the work.

Given that the interface utilises the open-sourcedQt
toolkit and no platform-specific code, it should theoretic-
ally work on any Operating System thatQt toolkit sup-
ports (currentlyLinux, Mac OS X, as well as any other
Unix-based OS, andWindows). Therefore, the choice of
the Qt toolkit makesRTMix compatible with the three
most dominant platforms on the market.

Applications ofRTMix take many forms. From being
a composition interface, to a performance and coaching

https://doi.org/10.1017/S1355771802003072 Published online by Cambridge University Press

https://doi.org/10.1017/S1355771802003072


RTMix 283

interface, to non-musical event triggering and coordina-
tion, RTMix offers a unifying platform for a variety of
uses. Practically any array of events that require timing
of any kind can be triggered utilising the scripting lan-
guage (even such preposterous tasks as using the inter-
face as a robust alarm clock).RTMix offers up to one
hundredth of a second resolution accuracy and even in
settings where the flow of events is supposed to be ran-
domised, it is possible to create such script through the
use of random number generating routines and real-time
jumps between checkpoints. This enables users to free
themselves from strict timings, makingRTMix an
equally adequate solution for aleatoric sorts of artistic
expression. Furthermore, the real-time events (whose
listing is occluded from the user in the performance set-
ting, yet easily accessible and annotated on the ‘Real-
Time’ tab) can be used to provide an even more inde-
terminate event-triggering mechanism in situations
where the timing mechanism may appear to be too con-
stricting.

RTMix in interactive settings can therefore pose as a
mediator between computer and live performer or com-
puter and a group of performers. It is a rather affordable
solution in terms ofCPU utilisation, enabling users to
use the majority of the computing power for the import-
ant sound-making events. In addition to its default pur-
pose,RTMix can be used in purely acoustic settings as
the synchronisation tool between players with difficult
parts or even allowing conductors to have a finer control
over the tape or some other interactive aspects of a par-
ticular work. Through careful use of a metronome and
visual stimuli (that are large enough to be perceived
through peripheral vision), the amount of distraction is
brought down to a minimum, while enabling performers
to better synchronise with each other. The checkpoint
events can also be used for the purpose of more efficient
utilisation of rehearsal time. Even non-interactive elec-
tronic music can also benefit from its use since it can be
utilised as a simple mixer, as well as a precise timer
between the tape and (if applicable) live part. Moreover,
any combination of the aforementioned media can also
benefit from its timing mechanism which would warrant
greater coordination between the parts. Finally, due to
its unique design, this interface encourages its presence
on the stage, therefore being a perfect solution to the
desired set of aesthetic improvements suggested by the
author.

RTMix is also a composition tool where final assem-
bly of all previously designed processes can be com-
bined into a final collage for fine-tuning purposes. In
this sense,RTMixserves as an object-based (yet linearly
ordered) counterpart to both linear and object-oriented
languages and processes. Composers can more easily
troubleshoot their creations and run only the trouble-
some sections due to the fact that the work has been
subdivided into more manageable and self-enclosed
events and/or sections.

Finally, RTMix can be used for coaching purposes.
The importance of its coaching capabilities is immeasur-
able since to this day many interactive works require
elaborate set-ups and usually the presence of the com-
poser, and in situations where the composer’s attendance
is for whatever reason impractical, complex works
requiring professional and knowledgeable assistance
simply end-up being dropped from the repertoire or per-
formed poorly at best. WithRTMix, it is now possible
to conveniently e-mail annotated ‘event-scripts’ to the
performer (as well as any other personnel involved in
the production of the performance) who, after uploading
the newly acquired script, would rehearse the work
while being tutored and warned by the newly added
annotations of possible pitfalls, difficult sections in the
piece, as well as anticipating important downbeats.

5.5. . . . and the bad

WhileRTMixaddresses many of the problems associated
with standardisation of the interactive electroacoustic art
performance interface, it is not perfect. Just like any
other software, it has shortfalls and weaknesses, some of
them being simply unavoidable. For instance, the fact
that once the system call has been executed and an
external event has been evoked,RTMix has no further
control over it (the so-called ‘runaway process’) other
than killing it, is certainly is not a trivial one. There is
unfortunately nothing to be done about this aspect of the
application since it would otherwise need to be aware of
each triggered application’s inner workings in order to
make it capable of changing the other software’s behavi-
our, something that is simply impractical, if not imposs-
ible to implement. In addition, there is the aforemen-
tioned issue of the polling of signal sources into one data
stream before sending this to theDSP chip for output.
In order to achieve low-latency operability, most of the
software applications were designed to take over the
DSPhardware exclusively and therefore virtually block
any other software from accessing it. This is a known
limitation of a long-standing champion of this kind of
implementation, theASIO (Audio Stream Input/Output)
standard. On the other hand, if access to the hardware
were to be shared, the latency would often need to be
compromised. Neither of these options are an acceptable
solution to the needs of theRTMix interface. However,
this issue is gradually being addressed by the newOSs;
bothWindows XPandMac OS Xhave nearly solved this
problem with completely rebuilt audio driver imple-
mentations that allow polling of the DSP resource while
supplying ASIO-like latencies. TheLinux OS audio-
developers community has approached this issue with
an out-of-kernel solution, using aJACK sound server.
Although still in development, it currently has the great-
est potential for solving the above-mentioned issue
because it not only allows extremely low latency but
in addition allows inter-application transportation of the

https://doi.org/10.1017/S1355771802003072 Published online by Cambridge University Press

https://doi.org/10.1017/S1355771802003072


284 Ivica Ico Bukvic

audio signal, therefore posing as an extremely efficient
software patch bay. (Based on information obtained
from Paul Davis, one of the leadingJACK developers,
the process itself theoretically does not add any more
latency to the system than what the extremely efficient
ALSAdrivers are able to supply, which is roughly 2.6
milliseconds on a somewhat outdated dual Pentium II
450 MHz). Still, despite the great strides in system and
hardware advancements, software applications have yet
to embrace the new standards. Given the current circum-
stances surrounding this issue, it is perhaps safe to
assume that the problem will resolve itself, and therefore
RTMix’s framework is not one that should be amended.

5.6. Future

In order to attain even greater flexibility, theMIDI proto-
col will be implemented in one ofRTMix’s future
incarnations, where practically any of the available
events will be triggerable via aMIDI controller. With
such an addition, users will be less bound to the immedi-
ate presence of a laptop keyboard (which is the default
real-time triggering mechanism) and physical contact
with the computer, which will in turn add more elegance
to the on-stage interaction between the computer and
performer(s).

The ‘event-script’, while being as user-friendly as the
text interface permits, is still not the optimal working
environment for a composer. Hence, there are plans for
the future version to incorporate a streamlinedGUI used
for adding, editing and removing of the events. This
way, ‘event-scripts’ will be automatically generated
through utilisation of theGUI, while the advanced users
will still have accessibility to them in their text-form and
an ability to easily edit them by hand if they desire to
do so.

6. RTMIX IN ACTION

RTMix has so far been utilised in two of the author’s
works: SlipStreamScapes III: The Seaand his more
recent SlipStreamScapes V: Lullaby. Both of these
works employ multipleRTcmixscripts, as well as play-
back of live-recorded and other samples stored on the
computer’s hard drive – often having a mixture of these
running concurrently. Due toRTMix’s small footprint
(less than 3% of CPU utilisation on a 1 GHz Pentium
III laptop), most of the resources were successfully
deployed over the multiple instances of scripts running
simultaneously. In order to attain the ability to playback
multiple audio streams from different processes, only
two available CODEC pathways in combination with the
KDE’s artsd sound daemon were utilised on a consumer-
grade ESS Maestro 3i soundcard at 16-bit 44.1 kHz
sound resolution. In the following section, I will focus
on my latest creationSlipStreamScapes V: Lullabyin
order to provide a more detailed description ofRTMix’s

deployment in a real-time setting, as well as to assess
the repercussions of its integration.

6.1.SlipStreamScapes V: Lullaby

Lullaby is a work for piano duo and computer that draws
from Modal PulseandMinimalist aesthetics. The work
also carries a strong programmatic element, describing
one’s soul transcendence from reality into a state of deep
slumber. The role of the two pianos is tipped in favour
of the first piano part. The second piano part compens-
ates for the lesser amount of activity by also requiring
the performer to interact with the computer. In order to
further explain the interaction between the computer and
the two pianos, I will present a quick overview of the
underlying process that is assigned to the computer part
as well as the work’s overall structure.

The computer utilisesRTMixas a front-end to a series
of RTcmixscripts. The scripts are designed in such a
way that they process the two pianos separately. The
only process that affects the first piano part is the author-
designed instrument calledMOCKBEND (based on
Doug Scott’sTRANS, and John Gibson’sTRANSBEND).
The purpose of this instrument is to bend the pitch of
the incoming audio feed in real time. Thus, the first
piano part through interaction with the computer
becomes a two-part texture built from the real acoustic
and surreal textures, the second being a result of the
acoustic piano being processed through the aforemen-
tioned instrument. The second piano is processed
through relatively simpleREVERB and PANECHO
instruments. Both feeds are further passed through a
COMPRESSORinstrument that ensures that the outgo-
ing audio output’s amplitude will remain within reason-
able limits. The routing of the audio signal is achieved
within Rtcmixthrough utilisation of built-inAUX buses.
All of the instruments are often running concurrently,
having multi-layered instances of the same instrument.

The form of the work resembles a simple arch-like
shape, the ascent being a little longer than the release.
The build-up is constructed as a mostly solo section by
the first piano, where an introductory pitch-bend process
provides a misleading impression of a honky-tonk piano.
As the texture has been fully established, the second
piano enters with the background chord texture that is
being reverberated and echoed, while the first piano’s
part begins to be complemented by the ‘pitch-bent’
mirror image. The bending of the pitch proceeds in a
sinusoidal fashion, always revisiting the zero-bend posi-
tion (equiv. to the null position on the sine curve), while
becoming faster and moving farther away from the ori-
ginating pitch (a sine curve with an increasing
amplitude). The arrival to the climax of the work (that
in programmatic terms corresponds to the moment of
transcendence into the realm of dreams) is signalled by
the maximum density of the ‘pitch-bending’ process that
creates an impression of FM synthesis of the inbound

https://doi.org/10.1017/S1355771802003072 Published online by Cambridge University Press

https://doi.org/10.1017/S1355771802003072


RTMix 285

first piano audio signal, as well as by phasing out of the
second piano texture, which is replaced by the probabil-
ity-based additions of ‘pitch-bent tails’ that originate
from the first piano’s texture. The ‘tails’ are structured
to be more densely populated the closer they are to the
climactic point, while they become softer and sparser as
the piece draws towards closure. These computer-
determined textures are unique to every performance and
they are created by selecting a random deviation from
the originating pitch of the first piano part. Immediately
following the introduction of the ‘tails’, the second piano
rejoins the texture, but this time complementing the first
piano texture with its dry, unprocessed ostinato pattern.
As the piece approaches the end, the second piano and
the computer parts slowly fade out, leaving the first
piano to conclude the work.

6.2. Assessing the damage (or lack thereof)

As can be observed from the structural overview of the
work, there are both strictly timed and more aleatoric
sections found inLullaby. RTMixwas utilised in both of
these situations without any apparent problems. During
the dress rehearsal, the only thing that needed to be
adjusted software-side was the audio-level coming out
of the laptop. The hardware utilised was aDELL Inspi-
ron 8000 with a 1 GHz Pentium III processor, using
Mandrake 8.1 Linux OS. Maximum CPU utilisation
measured during the rehearsal was approximately 40%,
0–3% of that being attributed toRTMix. Furthermore,
there was a noticeable increase in rehearsal efficiency
when compared to the initial performance of theSlip-
StreamScapes III: The Seathat utilised an early com-
mand-line-based version ofRTMix. The strictly timed
attacks were executed with greater ease due to imple-
mentation of the timing and countdown mechanisms, as
well as visual stimuli that helped both performers
anticipate oncoming critical events, while causing min-
imal possible amounts of distraction.

The piece was favourably received by the audience,
the most impressive aspect being the seamless integra-
tion of the acoustic and processed counterparts. This was
done by amplifying a portion of the acoustic signal and
feeding it through the speakers in order to create the
same ‘space’ for both sonic sources. To date the work
has received three performances, the first at the College-
Conservatory of Music, University of Cincinnati, the
second at the Indiana University, and the third as a part
of theOCEAn2002 conference in Oberlin, Ohio.

Apart from the gratifying artistically based criticism,
the reaction of the pianists involved in the performance
was favourable in that the piece did not require large
amounts of custom notation, which in turn allowed for
a faster learning of the work. The interface was also very
easy to deploy since all of the on-screen controls were
visually very accessible as well as mostly self-
explanatory, while interacting with theGUI during the

rehearsals and performances was further simplified by
the fact that all of the on-screen controls have their
respective keyboard accelerators (i.e. the Play button can
be triggered either with a mouse click or with a simple
press of the ‘CTRL+ArrowUp’ combination of keys).
What was perhaps most impressive about these three
performances was the noticeable lack of the performers’
apprehension towards the interface. Because the inter-
face was standardised, provided transparency to the
actual computational process taking place during the
show, and also offered a number of integration tools for
rehearsal purposes, the pianists adapted rather quickly to
the new interface. Moreover, the second and third per-
formances were clearly the easiest deployment of the
interactive interface in my career – both pianists, being
acquainted withRTMix and its functionality were able
to perform the work with an unmatched ease. While the
three performances certainly cannot be seen as a trend
in themselves (obviously more performances are needed
before this kind of observation could have any reason-
able weight), the comments received by the performers
involved in the performances who had no prior know-
ledge ofRTMix’s existence, point to a fact that this inter-
face caused less apprehension than other currently avail-
able interactive electroacoustic art performance
interfaces. Finally, no interface-related problems were
encountered during any of the performances, and there
were no audible ‘glitches’ during the sound playback.

7. NICE, BUT WHERE DO I GET IT, AND HOW
MUCH DOES IT COST?

RTMix is a free (as in ‘free beer’) open-source cross-
platform application (distributed under the GPL licence)
that is currently available for download from both the
author’s website and the College-Conservatory of Music
Center for Computer Music website (a.k.a. (CCM)2). It
has been designed primarily to offer interactive multime-
dia artists greater freedom of utilising different sound-
making and processing applications at the same time in
a coordinated fashion, while providing a streamlined
interface for both the needs of composers and per-
formers.

ACKNOWLEDGEMENTS

Firstly, I would like to thank my wife Anamaria for her
kind, loving support and understanding, as well as my
newborn son Sebastian who has been one of the greatest
inspirations in my life. Secondly, I would like to thank
my parents who through their hard work and sacrifice
have provided me with the opportunity to obtain a high-
quality education. I would also like to thank my mentor
Mara Helmuth for her ongoing support, as well as the
University of Cincinnati University Research Council
for sponsoring in part the development ofRTMix.

https://doi.org/10.1017/S1355771802003072 Published online by Cambridge University Press

https://doi.org/10.1017/S1355771802003072


286 Ivica Ico Bukvic

REFERENCES*

3DNow!. http://www.3dnow.net
ALSA. http://www.alsa-project.org
Altivec. http://developer.apple.com/hardware/ve/
Apple Corp. http://www.apple.com
ASIO. http://www.steinberg.net/en/ps/start/steinberg solution/

technology/
Bukvic, I. 2002. RTMix: a real-time interactive electroacoustic

music performance, composition, and coaching interface.
In Proc. of the Int. Computer Music Conf. International
Computer Music Association.

Buzz. http://www.buzzmachines.com
(CCM)2 Studios. http://meowing.ccm.uc.edu
Cecilia. http://www.musique.umontreal.ca/electro/CEC/
CLM. http://ccrma-www.stanford.edu/software/clm/
Csound. http://www.csounds.com
Dell Corp. http://www.dell.com
Eurocom Corp. http://www.eurocom.ca
FreeBSD. http://www.freebsd.org
Garton, B., and Topper, D. 1997. RTcmix – using CMIX in

real-time. InProc. of the Int. Computer Music Conf. Inter-
national Computer Music Association.

Glame. http://glame.sourceforge.net
Globalisation. http://www.imf.org/external/np/exr/ib/2000/

041200.htm
GPL License. http://www.gnu.org/licenses/licenses.html
Helmuth, M. 2000. Internet sound exchange. InProc. of the

Int. Computer Music Conf. International Computer Music
Association.

Henry, P. http://www.pierrehenry.de
Hyper-Threading. http://www.intel.com/technology/

hyperthread/

*Cambridge University Press accepts no responsibility for content on
the websites mentioned in this article.

ICMC 2002. http://www.icmc2002.org
IRCAM. http://www.ircam.fr
JACK. http://jackit.sf.net
JMax. http://www.ircam.fr/jmax
JSyn. http://www.softsynth.com/jsyn/
KDE. http://www.kde.org
Kyma/Capybara. http://www.symbolicsound.com
Lansky, P. http://www.newalbion.com/artists/lanskyp/
Linux Audio Developers. http://www.linuxdj.com/audio/lad/
Max/MSP. http://www.cycling74.com
MIDI. http://www.midi.com
MIT. http://www.mit.edu
OCEAn. http://www.timara.oberlin.edu/ocean/index.htm
potentiome`tre d’espace. http://www.zvonar.com/writing/

spatial music/Short History.html
Pure-Data. http://www.pure-data.org
Qt. http://www.trolltech.com
RT. http://www.music.princeton.edu/winham/PPSK/sgi.rt.html
RTcmix. http://www.people.virginia.edu/~djt7p/Cmix/

Cmix.htm
RTMix. http://meowing.ccm.uc.edu/~ico/
Sager Corp. http://www.sagernotebook.com
SAOL. http://web.media.mit.edu/~eds/mpeg4-old/
Smalltalk. http://www.smalltalk.org
Soundmesh. http://meowing.ccm.uc.edu/softmus.htm
Spiral Synth Modular. http://www.pawfal.org/Software/SSM/
Squeak. http://squeak.org
SSE2. http://www.tommesani.com/SSE2Intro.html
STK. http://ccrma-www.stanford.edu/software/stk/

information.html
Stockhausen, K. http://www.stockhausen.org
Subotnick, M. http://www.newalbion.com/artists/subotnickm/
Supercollider. http://www.audiosynth.com
Telesymphony. http://www.flong.com/telesymphony/
Vaz Modular. http://www.software-technology.com
Visual Orchestra. http://www2.hku.nl/~perry/visorc/index.htm

https://doi.org/10.1017/S1355771802003072 Published online by Cambridge University Press

https://doi.org/10.1017/S1355771802003072

