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SUMMARY
Considering the polishing requirements for high-precision aspherical optical mirrors, a hybrid polishing robot com-
posed of a serial–parallel manipulator and a dual rotor grinding system is proposed. Firstly, based on the kinematics
of serial components, the equivalent load model for the parallel manipulator is established. Then, the elastodynamic
model of kinematic branched-chains of the parallel manipulator is established by using the spatial beam element,
and the rigid–flexible coupling dynamic model of the polishing robot is obtained with Kineto-elasto dynamics the-
ory. Further, considering the dynamic properties of the joint clearance, the rigid–flexible coupling dynamic model
with the joint clearance for the polishing robot is established. Finally, the equivalent load distribution of the parallel
manipulator is analyzed, and the effect of the branched-chain elasticity and joint clearance on the motion error of the
polishing robot is studied. This article provides a theoretical basis for improving the motion accuracy and dynamic
performance of the hybrid polishing robot.

1. Introduction
Large aperture and high precision optical mirrors put forward higher requirements for optical processing
equipment, and the traditional polishing equipment mainly adopts a gantry structure, which has the
problems of the huge structure, poor flexibility, and high cost. With the advantages of high flexibility,
low cost, and multiple assistance, industrial robots have been introduced into the fields of manufacturing
and motion simulation [1–3]. Further, compared with the serial mechanism, the parallel manipulator
(PM) has the advantages of high stiffness, high precision, and high bearing capacity, which is widely
used for many fields [4, 5].

Parallel or hybrid robots for polishing operations are required to drive the grinding system to traverse
every point of the mirror surface and adjust the motion attitude in real time. Therefore, the robot needs
high dynamic performance and motion accuracy. Lin et al. [6] developed a five degrees of freedom
(5-DOF) hybrid polishing machine and studied the dynamics and control performance. Xu et al. [7]
designed a serial–parallel polishing machine for polishing the free-form surface. In addition, a single
PM cannot meet the machining need of large-scale parts due to the limitation of the motion workspace,
and multiple robots have to be used for collaborative processing. Meanwhile, researchers have developed
a hybrid robot, which consists of a rotating module connected to a PM and can achieve five or six degrees
of freedom in the workspace [8, 9]. Besides, the PM consists of several kinematic branched-chains and
various motion joints, the elastic deformation of the motion components, the clearance, friction, and
contact deformation for the motion joints will affect the dynamic characteristics and motion accuracy
of the robot [10, 11]. A lot of studies have been carried out on the optimization of structure and control
parameters [12, 13], motion coupling control [14], disturbance suppression or compensation [15, 16]
for PMs. Dynamic modeling methods for PMs include Newton–Euler method, Lagrange method, virtual
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work principle method, and Kane method [17–20]. Dong et al. [21] present a semi-analytical approach
for elastodynamic modeling of Tricept robot based on the screw theory and combined with the dual
properties of twist/wrench systems and a static condensation technique. For the elastodynamic of fully
flexible parallel robots, Cammarata provided a novel derivation of the Cartesian stiffness and inertia
matrices for PMs, the proposed method allows for obtaining consistent Cartesian matrices at different
nodes of interest without redefining the transformation matrices typical of the Jacobian-based methods
[22]. Alessandro et al. [23] performed the elastodynamic optimization of a 3T1R PM and based on the
fixed pose optimization and the global optimization inside a cube, the first natural frequency and its
distribution within the robots constant orientation workspace are analyzed. Most researchers usually
regard the motion joint as the ideal joint. When the clearance of the motion joint is considered, the
clearance can be simplified as fixed assembly clearance [24] or irregular clearance caused by wear in
practice [25]. However, due to the complexity of the irregular clearance caused by the wear of the moving
pair, many studies are focused on the fixed assembly clearance [26]. The existence of the clearance
of the motion joint will cause a collision in the motion joint. Chen et al. [27] deduced the nonlinear
dynamics equation for 4UPS-RPU PM with spherical clearance by Lagrange method. Based on elastic
Hertz theory with a dissipative term, Varedi-Koulaei et al. used a continuous contact force model to
evaluate the contact force and analyzed the effects of working speed and clearance size on the dynamic
characteristics of a planar mechanical system [28]. Xu et al. introduced an improved impact force model
and a modified friction force model to evaluate the effects of impact and friction in the clearance joints
for a planar PM which has two clearance joints in the left wing and right wing [29]. When a parallel
or hybrid robot is applied to large optical mirror polishing, it is necessary to establish a rigid–flexible
coupling dynamic model to analyze the distribution characteristics of the robot’s load and motion errors
and to consider the influence of the joint effects for improving the dynamic performance and motion
accuracy of the polishing robot. In addition, the rigid–flexible coupling dynamics analysis considering
the joint clearance also provides the basis for the optimization of structural parameters and the design
of control strategies for the polishing robot.

The rest of this article is organized as follows. In Section 2, the structure and coordinate systems of the
polishing robot are introduced. In Section 3, the kinematic and dynamic models of the serial component
of the polishing robot are established. In Section 4, the rigid–flexible coupling dynamic model of the PM
for the polishing robot is established considering the elastic deformation of kinematic branched-chains.
In Section 5, considering the influence of the joint clearance, the rigid–flexible coupling dynamic model
with the joint clearance is further obtained. In Section 6, the equivalent load distribution of the serial
component on the PM is analyzed, and the effect of branch-chains elasticity and joint clearance on the
motion error of the moving platform is studied.

2. Description and Coordinate Systems of Polishing Robot
The hybrid polishing robot is composed of a 3UPS/UP PM and a serial component consisting of 2R
series rotary joints and a dual rotor grinding system. The structure and topology of the hybrid polishing
robot are shown in Fig. 1(a) and (b). The 3UPS/UP PM consists of a static platform, a moving platform,
three UPS branched-chains with the same structure, and a UP branched-chain. The UPS branched-chain
is connected to the moving platform with a composite spherical joint and to the static platform with a
Hooke joint, points Ai and Bi (i = 1, 2, 3) are the center points of the rotating shaft for the composite
spherical joint and Hooke joint. Besides, the composite spherical joint can be seen as a combination
of a rotating joint and a Hooke joint, and point Di is the connection point of the rotating joint for the
composite spherical joint. The UP branched-chain is fixed to the moving platform and connected to the
static platform by a Hooke joint and point B is the center point of the rotating shaft for the Hooke joint.
2R series rotary joints are divided into the first joint and the second joint. The PM and 2R series rotary
joints move in concert during the mirror polishing process, which can meet the 5-DOF motion demand
of the grinding system in the workspace.
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(a)

(b) (c)

Figure 1. Hybrid polishing robot: (a) CAD model, (b) topology, (c) diagram of dual rotor grinding
system.

In the process of large-scale optical mirror polishing, the removal function needs to be closer to
the Gauss function to get better surface convergence. Thus, a planetary dual rotor grinding system is
designed based on a combination of orbital and rotational motions of a small grinding tool, and the
diagram of the grinding system is shown in Fig. 1(c). The orbital motor of the grinding system drives
the rotation of the eccentric slider, which is fixed at one end to the orbital frame with two sets of vertical
arrangement rails. The rotational motor is located in the orbital frame and drives the grinding tool with
a pneumatic pressure system to complete the mirror processing. In addition, the size of the grinding tool
can be adjusted to suit different polishing requirements.

Based on the right-hand rule, the base coordinate system {B-xyz} is established at point B, x-axis
passes through the midpoint of B1B2, and z-axis is perpendicular to the static platform. The conjoined
coordinate system {A-x4y4z4} of the UP branched-chain and moving platform are established at point
A, x4-axis passes through the midpoint of A1A2, z4-axis along the axis of UP branched-chain. The ref-
erence coordinate system {Bi-xiyizi} (i = 1, 2, 3) and the conjoined coordinate system {Bi-uiviwi} for
UPS branched-chain BiCiDiAi are established at point Bi, xi-axis and zi-axis are parallel to x-axis and
z-axis, respectively, vi-axis coincides with the axis of the far frame of UPS branched-chain Hooke joint,
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Table I. D-H parameters of serial component.

i αi-1 ai-1 d θ i

5 0 0 d4 θ 5

6 π /2 0 0 θ 6

7 −π /2 a6 0 θ 7

8 0 0 d7 θ 8

Figure 2. Motion diagram of serial component.

wi-axis along the axis of UPS branched-chain. For the serial component, the conjoined coordinate system
{P-x5y5z5} of the first joint and conjoined coordinate system {P-x6y6z6} of the second joint are estab-
lished at point P, which is the intersection of rotation axes of the first joint and the second joint, y5-axis
along the rotation axis of the second joint, z5-axis coincides with the rotation axis of the first joint,
z6-axis coincides with y5-axis and has the same direction, and x6-axis coincides with the installation
axis of the supporting part of the grinding system. The conjoined coordinate system {H-x7y7z7} of the
orbital motion component is established at point H, which is the intersection point of the orbital motion
axis and x6-axis, z7-axis coincides with the orbital motion axis, and x7-axis is parallel to the offset direc-
tion of the eccentric slider. The conjoined coordinate system {N-x8y8z8} is established at point N, which
is the intersection point of the rotational motion axis and x7-axis, z8-axis coincides with the rotational
motion axis, and x8-axis and y7-axis are parallel and opposite.

3. Dynamic Model of Serial Component of Polishing Robot
The serial component of the hybrid polishing robot consists of 2R series rotary joints and a dual rotor
grinding system, and the kinematics can be analyzed with D-H method. The motion diagram of the serial
component is shown in Fig. 2. Combined with Fig. 1, the motion parameters of the serial component
are shown in Table I.

The motion parameters of 2R series rotary joints and dual rotor grinding system are measured in the
conjoined coordinate system {A-x4y4z4}, and we can obtain:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

4
5T =

[
4
5R n54

0 1

]

4
6T = 4

5T5
6T =

[
4
6R n64

0 1

] ,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

4
7T = 4

5T5
6T6

7T =
[

4
7R n74

0 1

]

4
8T = 4

5T5
6T6

7T7
8T =

[
4
8R n84

0 1

] (1)
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where j
iTand j

iR (i, j = 4, 5, 6, 7, 8) are the transformation matrix and attitude matrix of the coordinate
system i relative to the coordinate system j, and i and j indicate the subscripts of the axes of the coordinate
systems; and nij is the coordinate origin vector of the coordinate system i in the conjoined coordinate
system {A-x4y4z4}.

The attitude matrix is rewritten as j
iR = [exij eyij ezij], and exij , eyij , and ezij are the unit direction vectors

for the xi-axis, yi-axis and zi-axis, and we can obtain:{
ekij = j

iRekii

0
i R = 0

4R4
i R

(i = 5, 6, 7, 8, k = x, y, z) (2)

where exii = [ 1 0 0 ]T , eyii = [ 0 1 0 ]T and ezii = [ 0 0 1 ]T , 0
4R is the attitude matrix of the coordinate

system {A-x4y4z4} relative to the base coordinate system {B-xyz}.
Based on the principle of angular velocity superposition, the angular velocities of the first joint, the

second joint, the orbital motion component, and the rotational motion component are denoted as:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ωfir = ω40 + θ̇5ez50

ωsec = ω40 + θ̇5ez50 + θ̇6ez60

ωorb = ω40 + θ̇5ez50 + θ̇6ez60 + θ̇7ez70

ωrot = ω40 + θ̇5ez50 + θ̇6ez60 + θ̇7ez70 + θ̇8ez80

(3)

where ω40 is the angular velocity of the moving platform in the base coordinate system, and ezi0 (i=5, 6,
7, 8) is the unit direction vector in the corresponding conjoined coordinate system. Further, the angular
acceleration of each component for the serial component can be obtained by deriving Eq. (3).

Considering the structure features of 2R series rotary joints and dual rotor grinding system, the elas-
tic deformation can be negligible. The grinding tool of the double rotor grinding system is supplied
with output pressure to polish the optical mirror surface by two low friction cylinders, while the output
pressure is a constant related to the polishing process. The load acting on 3UPS/UP PM by the serial
component can be converted into the equivalent force and moment. Based on the Newton–Euler method,
the equivalent force is the sum of the polishing force and the gravity of each component, and the equiva-
lent moment is the sum of the moments produced by the gravity of each component, the polishing force
and the inertia force of each component. The equivalent load can be expressed as:⎧⎪⎨

⎪⎩
Fser = Fgri + (mrot + morb + msec + mfir)g

Fgri = −Pgri

(
πD2

tool

4

)
ez80

(4)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Mser = Mgri + Mg + MI

Mgri = 0
4R(4

8RD8 + n84) × Fgri

Mg = 0
4R(4

8Rdcrot + n84) × (mrotg)+ 0
4R(4

7Rdcorb + n74) × (morbg)

+0
4R(4

6Rdcsec + n64) × (msecg)+ 0
4R(4

5Rdcfir + n54) × (
mfirg

)
MI = Irot0εrot + ωrot × Irot0ωrot + Iorb0εorb + ωorb × Iorb0ωorb

+ Isec0εsec + ωsec × Isec0ωsec + Ifir0εfir + ωfir × Ifir0ωfir

(5)

where Fgri is the polishing force, mrot , morb, msec, and mfir (εrot , εorb, εsec, and εfir) are the masses (angular
accelerations) of the rotational motion component, orbital motion component, second joint and first
joint, g is the gravity acceleration vector, Pgri is the polishing output pressure, Dtool is the diameter of
the grinding tool, D8 is the coordinate vector of point N in the conjoined coordinate system {A-x4y4z4},
dcrot , dcorb, dcsec, and dcfir are the coordinate vectors of the centroid of each component, and Irot0, Iorb0,
Isec0, and Ifir0 are the inertia matrices of each component in the base coordinate system.
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Figure 3. Diagram of beam element generalized coordinates.

4. Rigid–Flexible Coupling Dynamic Model of PM
The PM of the polishing robot consists of three UPS branched-chains and a UP branched-chain, and
the UPS branched-chains have the same structural parameters. In the rigid–flexible coupling dynamic
modeling, there are the following assumptions: (1) The static platform and moving platform are con-
sidered as the rigid body; (2) The actual motion of the polishing robot is a linear superposition of rigid
and elastic motions, ignoring the coupling term. The rigid–flexible coupling dynamic model of PM is
analyzed with Kineto-elasto dynamics method.

4.1. Element dynamic model
The rods in the UPS branched-chains and UP branched-chain are considered to be elastomers. The beam
element containing two nodes is selected as the basic elastic model and the diagram is shown in Fig. 3,
and 18 generalized coordinates are used to describe the elastic displacements. δ1–δ3 and δ10–δ12 are the
elastic linear displacements at the nodes of the beam element, δ4–δ6 and δ13–δ15 are the elastic angular
displacements, and δ7–δ9 and δ16–δ18 are the elastic curvatures. The dynamic model of the beam element
can be obtained from Lagrange equation:{

M0δ̈ + K0δ = F0 + N0 + G0

G0 = −M0δ̈r

(6)

where M0 is the element mass matrix, K0 is the element stiffness matrix, F0 is the external load matrix,
N0 is the load matrix of other elements on the beam element, G0 is the inertial matrix, and δ̈r is the
element acceleration array.

4.2. Rigid–flexible coupling dynamic model of branched-chains
According to the structural characteristics of the UPS branched-chain, the branched-chain BiCiDiAi

(i = 1, 2, 3) can be divided into three beam elements, and the generalized coordinates in the element
coordinate system and base coordinate system are shown in Fig. 4. The prismatic joint Ci can be consid-
ered as a rigid connection to eliminate the degree of freedom, and the branched-chain can be regarded
as an “instantaneous structure”. There are 12 non-zero coordinates in the element BiCi. The node Di is
a rotating joint connection point of the composite spherical joint, the elastic curvature along the axis is
zero, hence there are 17 non-zero coordinates in the element CiDi. Both ends of the element DiAi are
rotating joints, and there are 14 non-zero coordinates.

The attitude matrix of the element coordinate system {Bi-uiviwi} relative to the base coordinate sys-
tem {B-xyz} can be obtained by rotating � i around the y-axis and then rotating �i around the ui-axis.
And the attitude transformation matrix is orthogonal, so we can obtain:

i
0R = 0

i R
−1 = 0

i R
T =

⎡
⎢⎣

cψi sϕisψi cϕisϕi

0 cϕi −sϕi

−sψi sϕicψi cϕicψi

⎤
⎥⎦ (7)

Since node Ci is assumed to be a rigid connection, the coordinates of the two elements at this node are
the same. The node Di belongs to two elements, thus the elastic displacements of the two elements are
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(a) (b)

Figure 4. Generalized coordinates of UPS branched-chain: (a) in element coordinate system, (b) in
base coordinate system.

the same, but the angular displacements and curvatures are different in the base coordinate system. The
elastic deformation of UPS branched-chain can be expressed by 43 non-zero coordinates in the element
coordinate system and δAiBi = [δi1, δi2, · · · , δi43]T, and 31 non-zero coordinates in the base coordinate
system and U i = [ui1, ui2, · · · , ui31]T . And the following correspondence exists:

δAiBi = BiU i (8)

Bi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

R∗
i1

R∗
i2

i
0R

i
0R

i
0R

i
0R

i
0R

i
0R

i
0R

i
0R

R∗
i2

i
0R

i
0R

R∗
i2

i
0R

R∗
i2

R∗
i1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

43×31

where R∗
i1 =

[
cφi sϕisφi

0 cϕi

]
and R∗

i2 = cϕicφi.
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(a) (b)

Figure 5. Generalized coordinates of UP branched-chain: (a) in element coordinate system, (b) in base
coordinate system.

The UP branched-chain BA is connected with the static platform by a Hooke joint, which can be
regarded as a beam element. The generalized coordinates in the element coordinate system and base
coordinate system are shown in Fig. 5. The Hooke joint consists of a combination of two rotating joints
with mutually perpendicular axes, so the elastic curvatures in these two directions are zero. Point B is the
connection point between UP branched-chain and the static platform, the elastic linear displacements and
elastic angular displacement around the axis are zero, and there are 12 non-zero generalized coordinates
for the UP branched-chain. Similarly, the attitude matrix from the coordinate system {B-xyz} to the
element coordinate system {B-u4v4w4} can be written as:

4
0R = 0

4R
−1 = 0

4R
T =

⎡
⎢⎣

cφ4 sϕ4sφ4 cϕ4sφ4

0 cϕ4 −sϕ4

−sφ4 sϕ4cφ4 cϕ4cφ

⎤
⎥⎦ (9)

The nonzero elastic deformation coordinates of UP branched-chain can be expressed as δ4 =
[δ41, δ42, · · · , δ412]T in element coordinate system, and written as U4 = [u41, u42, · · · , u412]T in the base
coordinate system. And the mapping can be described as:

δ4 = B4U4 (10)

B4 = diag(R∗
41, R∗

42, 4
0R, 4

0R)

Where R∗
41 =

[
cφ4 sϕ4sψ4

0 cψ4

]
and R∗

42 = cϕ4cψ4.

Based on the dynamic model of the beam element Eq. (6), the dynamic models of elements BiCi,
CiDi and DiAi of UPS branched-chain BiCiDiAi can be obtained. Furthermore, the dynamic model of
UPS branched-chain in the base coordinate system {B-xyz} can be expressed as:

M iÜi + K iUi = Fi + N i + Gi
(i = 1, 2, 3) (11)

M i = BT
i Me0iBi, K i = BT

i Ke0iBi, Gi = −M iÜri

where M i, K i, Ui, Fi, N i, and Gi are the mass matrix, stiffness matrix, elastic deformation generalized
coordinates, external load matrix, the load matrix of other elements and inertial force matrix for UPS
branched-chain in the base coordinate system; Me0i and Ke0i are the mass matrix and stiffness matrix
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Figure 6. Position diagram of moving platform considering branched-chains elasticity.

for UPS branched-chain in element coordinate system; Üri is the rigid body motion acceleration array
of UPS branched-chain.

Similarly, the dynamic model of UP branched-chain can be obtained.

4.3. Kinematic constraint of PM
Considering the elastic deformation of branched-chains, the reference point of the moving platform
changes from point A to point A′, as shown in Fig. 6. The transformation matrix 0

4T from the coordinate
system {A-x4y4z4} to the coordinate system {B-xyz} can be expressed as:

0
4T =

[
0
4R rA

0 1

]
, rA = (xA, yA, zA)T (12)

where rA is the coordinate vector of point A in the coordinate system {B-xyz}.
The change of position and attitude parameters (δxA, δyA, δzA, δγ A, δβA, δαA) of the moving platform

caused by the elastic deformation of the branched-chains tend to zero, and based on Taylor formula and
Maclaurin expansion, the coordinate of point A′

i can be expressed as:

⎡
⎢⎢⎢⎢⎣

xA′
i

yA′
i

zA′
i

1

⎤
⎥⎥⎥⎥⎦=�T

⎡
⎢⎢⎢⎢⎣

xAi

yAi

zAi

1

⎤
⎥⎥⎥⎥⎦ , �T ≈

⎡
⎢⎢⎢⎢⎣

1 −δαA δβA δxA

δαA 1 δγA δyA

−δβA δγA 1 δzA

0 0 0 1

⎤
⎥⎥⎥⎥⎦ (13)

The node elastic deformation at point Ai can be expressed as:

⎡
⎢⎢⎢⎢⎣
�xAi

�yAi

�zAi

1

⎤
⎥⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎣

xA′
i

yA′
i

zA′
i

1

⎤
⎥⎥⎥⎥⎦−

⎡
⎢⎢⎢⎢⎣

xAi

yAi

zAi

1

⎤
⎥⎥⎥⎥⎦= (�T − E4×4)

⎡
⎢⎢⎢⎢⎣

xAi

yAi

zAi

1

⎤
⎥⎥⎥⎥⎦ (14)
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The kinematic constraint between the UPS branched-chain and the moving platform deformation is
as follows: ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

UAi = J iUA

J i =
⎡
⎢⎣

1 0 0 0 zAi −yA i

0 1 0 −zAi 0 xAi

0 0 1 yA i
−xAi 0

⎤
⎥⎦ (15)

Where J i is the kinematic constraint matrix of PM, UAi is the elastic linear displacement vector of the
node Ai, and UA is the elastic displacement of the reference point of the moving platform.

The front end of UP branched-chain is fixedly connected with the moving platform, and the elastic
linear displacements and elastic angular displacements of the front-end node for UP branched-chain are
the same as those of the moving platform. There is a kinematic constraint as follows:

U ′
A = J4UA, J4 = E6×6 (16)

where UA
′ is the elastic displacement of the front-end node for UP branched-chain.

4.4. Dynamic model of moving platform
The coupling effect of the rigid motion of the moving platform and the elastic motion caused by
branched-chains elasticity is not considered, the velocity and acceleration of the reference point for
the moving platform in the base coordinate system {B-xyz} can be expressed as:{

u̇A
′ = [ ẋA + u̇1 ẏA + u̇2 żA + u̇3 γ̇A + u̇4 β̇A + u̇5 α̇A + u̇6 ]T

üA
′ = [ ẍA + ü1 ÿA + ü2 z̈A + ü3 γ̈A + ü4 β̈A + ü5 α̈A + ü6 ]T

(17)

where [ẋA, ẏA, żA, γ̇A, β̇A, α̇A]T and [ẍA, ÿA, z̈A, γ̈A, β̈A, α̈A]T are the velocity and acceleration of the refer-
ence point A when the moving platform is in rigid body motion.

Based on Newton–Euler method, the dynamic model of the moving platforms can be written as:
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

mA 0 0 0 0 0

0 mA 0 0 0 0

0 0 mA 0 0 0

0 0 0 Ixx Ixy Ixz

0 0 0 Iyx Iyy Iyz

0 0 0 Izx Izy Izz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ẍA + ü1

ÿA + ü2

z̈A + ü3

γ̈A + ü4

β̈A + ü5

α̈A + ü6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑
Fix∑
Fiy∑
Fiz∑
Mix∑
Miy∑
Miz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑
FAx∑
FAy∑
FAz∑
MAx∑
MAy∑
MAz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(18)

where mA is the mass of the moving platform; Ixx, Ixy, . . ., and Izz are the rotational inertia for the
moving platform;

∑
Fikand

∑
Mik (

∑
FAk and

∑
MAk) (k = x, y, z) are the force and moment of the

branched-chains acting on the moving platform (the force and moment acting on the moving platform
under external loads) along the axis of the base coordinate system.

The external forces and moments of the PM are influenced by 2R series rotary joints and dual rotor
grinding system, and we can obtain:{[∑

FAx

∑
FAy

∑
FAz

]T = Fser

[
∑

MAx

∑
MAy

∑
MAz ]T = Mser

(19)

https://doi.org/10.1017/S0263574721001594 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574721001594


2178 Feng Guo et al.

The dynamic model of the moving platform can be rewritten as:⎧⎪⎪⎨
⎪⎪⎩

MAÜA
′ = FA + NA + G0

G0 =
[

mAg − mAaA

−IAω̇A − ωA × (IAωA)

]
(20)

where MA is the mass matrix, FA is the external load matrix, NA is the load matrix of other elements on
the moving platform, and G0 is the inertial matrix.

The generalized coordinates for UPS branched-chain can be rewritten as U∗
i =

[ui1, · · · , ui26, ui30, ui31, u1, u2, u3, u4, u5, u6]T , and the generalized coordinates of UP branched-
chain can be rewritten as U∗

4 = [u41, u42 , u43, u410, u411, u412, u1, u2, u3, u4, u5, u6]T . According to the
kinematic constraints Eqs. (15) and (16), we can obtain:

Ui = RiU∗
i ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ri =
⎡
⎢⎣

[E]25×25 0 0

0 0 [J i]3×6

0 [E]3×3 0

⎤
⎥⎦

31×34

R4 =
⎡
⎢⎣

[E]3×3 0 0

0 0 [J i]6×6

0 [E]3×3 0

⎤
⎥⎦

12×12

(i = 1, 2, 3) (21)

Substituting Eq. (21) into Eq. (20), we can obtain:

M iRiÜ
∗
i + K iRiU∗

i = Fi + N i + Gi
(i = 1, 2, 3, 4) (23)

Eq. (23) is left multiplied by RT
i , and it can be rewritten as:

M iÜ
∗
i + K iU∗

i = Fi,

⎧⎪⎨
⎪⎩

M i = RT
i M iRi

K i = RT
i K iRi

Fi = RT
i

(
Fi + N i + Gi

) (i = 1, 2, 3, 4) (24)

Meanwhile, M i, K i, Fi, and U∗
i can be decomposed as follows:

M i =
[[

M11
i

]
28×28

[
M12

i

]
28×6[

M21
i

]
6×28

[
M22

i

]
6×6

]
(i = 1, 2, 3), M4 =

[[
M11

4

]
6×6

[
M12

4

]
6×6[

M21
4

]
6×6

[
M22

4

]
6×6

]

K i =
[[

K11
i

]
28×28

[
K12

i

]
28×6[

K21
i

]
6×28

[
K22

i

]
6×6

]
(i = 1, 2, 3), K4 =

[[
K11

4

]
6×6

[
K12

4

]
6×6[

K21
4

]
6×6

[
K22

4

]
6×6

]

Fi =
[[

Fi
1

]
28×1[

Fi
2

]
6×1

]
(i = 1, 2, 3), F4 =

[[
Fi

1

]
6×1[

Fi
2

]
6×1

]

U∗
i =

[[
Ui

]
28×1[

UA

]
6×1

]
(i = 1, 2, 3), U∗

4 =
[[

U i
1

]
6×1[

U i
2

]
6×1

]
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4.5. Rigid–flexible coupling dynamic model of PM
Assembling the dynamic models of the branched-chains and moving platform, the generalized coordi-
nates of the PM can be written as U = [U1, U2, U3, U4]T, and the rigid–flexible coupling dynamic model
can be expressed as follows: {

MÜ + KU = F + G

G = −MÜr

(25)

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

M11
1 M12

1

M11
2 M12

2

M11
3 M12

3

M11
4 M12

4

M21
1 M21

2 M21
3 M21

4 MA + M22
1 + M22

2 + M22
3 + M22

4

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

K =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

K11
1 K12

1

K11
2 K12

2

K11
3 K12

3

K11
4 K12

4

K21
1 K21

2 K21
3 K21

4 K22
1 + K22

2 + K22
3 + K22

4

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, F =

⎡
⎢⎢⎢⎢⎣

[F1
1]28×1

[F2
1]28×1

[F3
1]28×1

[F4
1]6×1

⎤
⎥⎥⎥⎥⎦

where M is the total mass matrix of the PM, K is the total stiffness matrix of the PM, F is the generalized
force matrix of the PM, and Ür is the acceleration array of the rigid body motion corresponding to the
generalized coordinates.

Considering the effect of viscous damping in rigid–flexible coupling dynamics modeling, the
dynamic model of PM can be expressed as follows:{

MÜ + CU̇ + KU = F + G

C = λ1M + λ2K
(26)

where C is the damping matrix of the PM, U̇ is the first derivative of the generalized coordinates, and
λ1 and λ2 are the Rayleigh damping coefficients.

5. Rigid–Flexible Coupling Dynamic Model with Joint Clearance
5.1. Kinematic analysis with joint clearance
The branched-chains for the PM consist of several Hooke joints and spherical joints, which are composed
of rotating bearings. The local coordinate system {OH-xHyHzH} is established in the rotating joint with
clearance, as shown in Fig. 7, OH is the geometric center of the outer ring, xH-axis is along the radial
direction of the rotating joint and zH-axis along the axial direction of the rotating joint. RH is the radius
of the outer ring with clearance, rh is the radius of the inner ring with clearance, Oh is the geometric
center of the inner ring for the rotating joint, and Od is the radial center point of the end face for the
rotating joint.

During the polishing robot operation, the radial distance between the inner and outer rings of the
rotating joint varies continuously due to the clearance. The polishing robot branched-chains contain
rotating joints with various size parameters, and only axial motion errors are taken into account. As
shown in Fig. 7, the radial clearance error Cr and the axial clearance error Ct for the rotating joint can
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Figure 7. Structure and collision diagram of rotating joint with clearance.

be written as follows: {
Cr = δrnr

Ct = δtnt

(27)

where δr (δt) is the radial error (axial error) of the rotating joint when there is no collision, and nr (nt) is
the unit direction vector of radial vibration (axial vibration).

With the changing motion state of the polishing robot, the clearance of the rotating joint shows ran-
domness and uncertainty. In order to reflect the motion state of robot joints more realistically, the joint
clearance can be described statistically and considered to follow a normal distribution. The probability
density functions of the radial clearance and axial clearance can be expressed as:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

fr(xH, yH) =

⎧⎪⎨
⎪⎩

1√
2πσr

eκr 0 ≤ x2
H + y2

H ≤ δ2
rm

0 other

ft(zH) =

⎧⎪⎨
⎪⎩

1√
2πσt

eκt 0 ≤ zH ≤ δtm

0 other

(28)

where κr =
(√

x2
H+y2

H−μr√
2σr

)2

and κt =
(

zH−μt√
2σt

)2

; δrm is the maximum value of the radial joint clearance with-

out collision and δrm = RH − rh; δtm is the maximum value of the axial joint clearance without collision;
σ r and σ t (μr and μt) are the standard deviation (average value) of the probability density function.

When there is no collision in the rotating joint, the radial clearance δrc is equal to δr and the axial
clearance δtc is equal to δt, δr and δt are the mathematical expectation of probability density function for
the joint clearance. When there is a collision in the rotating joint, δrc = δrm + δrf and δtc = δtm + δtf, δrf

and δtf are the elastic displacements with the joint collision.
The center point of the joint inner ring moves in a cylindrical area with the center point of the joint

outer ring as the center and the radius of the maximum distance δrc between the inner and outer ring
axes. The position of any point I of the K+1-th joint connector is shown in Fig. 8. LK+1 is the modulus
of the vector of the point I in the joint coordinate system, θ d1 is the angle between the centerline of the
inner ring and outer ring and the xH-axis positive direction, and θ d2 is the angle between the K+1-th
joint connector and the xH-axis positive direction.

The Hook joints in UPS branched-chains and UP branched-chain can be decomposed into two sets
of mutually perpendicular rotating joints, and the composite spherical joints in UPS branched-chains
can be decomposed into three sets of mutually vertical rotating joints. And the joint coordinate system
with joint clearance is shown in Fig. 9. In the joint coordinate system, the coordinates of the point I of
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Figure 8. Diagram of motion position for joint connector.

(a) (b)

Figure 9. Diagram of joint coordinate systems: (a) UPS branched-chain, (b) UP branched-chain.

the K+1-th joint connector can be expressed as:⎧⎪⎨
⎪⎩

xI = δrc cos θd1 + LK+1 cos θd2

yI = δrc sin θd1 + LK+1 sin θd2

zI = δtc

(29)

Thus, in the joint coordinate system, considering the joint clearance, the coordinate of any point I of
the K+1-th joint connector for i-th branched-chain can be expressed as PHiI = [xI, yI, zI]T. The transfor-
mation matrix of the j-th rotating joint coordinate system of the i-th branched-chain relative to the base
coordinate system is TH0ij , thus, the vector of the point I in the K+1-th joint connector can be expressed
as PH0iI = TH0ijPHiI.

The joint clearance for the polishing robot is generally small, and the force caused by the speed
change is generally small, so only the joint impact force and friction force with the joint clearance are
considered, and the diagram of joint collision with clearance is shown in Fig. 7. When the inner and
outer of the rotating joint collide with each other, the contact points are Cr1 and Ct1, and the position
vectors in the base coordinate system are rCr1 and rCt1, respectively. At the end of the joint collision,
the contact points of the joint inner ring are Cr2 and Cr2, and the position vectors in the base coordinate
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system are rCr2 and rCt2, respectively. And we can obtain:{
rCr1 = ROH + nRRH

rCr2 = rOh + nRrh

(30)

When a radial collision occurs between the inner and outer rings for the rotating joint, the normal
and tangential velocities can be expressed as:{

vHn = [(ṙCr1 − ṙCr2)TnR]ṅR

vHt = ṙCr1 − ṙCr2 − vHn

(31)

In the same way, when an axial collision occurs, we can obtain:{
vHn = [(ṙCt1 − ṙCt2)TnR]ṅR

vHt = ṙCt1 − ṙCt2 − vHn

(32)

5.2. Joint contact force with clearance
In the polishing process for optical mirrors, the 2R series rotary joints and dual rotor grinding system
exert periodic force on the PM. Therefore, the Lankarani–Nikravesh model with a high coefficient of
restitution and low energy consumption can be used to represent the contact force.⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
FN = Kδ1.5

(
1 + 3

(
1 − c2

)
δ̇c

4δ̇0

)

K = 4

3 (δ1 + δ2)

√
rHRH

RH − rH

(33)

where K is the stiffness coefficient; c is the restitution coefficient; δi (i=1, 2) is the parameter related to
the component material; δi = (1 − v2

i )/Ei, vi and Ei is the Poisson’s ratio and elastic modulus; δ̇0 and δ̇c

are the collision velocity and relative velocity.
The joint friction can be described with the Coulomb model,

f H = −μFN(vHn + vHt) (34)

where μ is the friction coefficient.
Therefore, the joint contact force with the clearance can be expressed as:

FH = nRFN + f H (35)

5.3. Dynamic model of polishing robot with joint clearance
Based on the Jacobian matrix of the PM, the joint contact force FH with clearance can be transformed
into the joint space, and it can be written as:

FHA = JT
HFH (36)

Substituting Eq. (36) into Eq. (26), the rigid–flexible coupling dynamics of the PM with the joint
clearance can be rewritten as:

MHÜH + CHU̇H + KHUH = FH + GH (37)

where MH, KH, FH and GH are the mass matrix, stiffness matrix, matrix of forces and moments between
the elements and matrix of the external force and inertial force for the PM with the joint clearance; UH

is the generalized coordinate vector of the PM in the elastic motion of the branched-chains with the joint
clearance, U̇H and ÜH are the generalized velocity vector and generalized acceleration vector of the PM
in the elastic motion of the branched-chains with the joint clearance.
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Table II. Structure parameters of polishing robot.

Parameters Value
Diameter of static platform external circle (m) 0.8
Diameter of moving platform external circle (m) 0.3
Distance between point B and point P d4 (m) 0.432
Inner/outer diameter of element CD (mm) 45/69
Diameter of element DA (mm) 36
Distance between point P and point H a6 (m) 0.228
Distance between point H and point N d7 (m) 0.020
Diameter of grinding tool Dtool (mm) 10
Inner/outer diameter of element BC (mm) 92/108
Element density (g·cm3) 7.9
Polishing output pressure Pgri (KPa) 20
Mass of rotational component mrot (Kg) 1.536
Mass of first joint mfir (Kg) 71.661
Mass of orbital component morb (Kg) 19.015
Mass of second joint msec (Kg) 45.449
Elastic modulus (Pa) 1.96×1011

Inertia matrix of rotational component (kg·m2) diag(0.05,0.05,0)
Inertia matrix of second joint (kg·m2) diag(0.802,0.499,1.173)
Inertia matrix of first joint (kg·m2) diag(2.085,1.573,1.584)

Inertia matrix of orbital component (kg·m2)

⎡
⎣ 0.371 −0.004 0.011

−0.004 0.481 0.010
0.011 0.010 0.193

⎤
⎦

Table III. Dynamics parameters of PM with joint clearance.

Parameters Value
Restitution coefficient 0.9
Poisson’s ratio 0.3
Collision depth (mm) 0.1
Friction coefficient 0.01
Standard deviation of probability function 1
Rayleigh damping coefficient λ1 2×10-3

Rayleigh damping coefficient λ2 3×10-4

6. Dynamic Simulation
In the base coordinate system {B-xyz}, the motion trajectory of the moving platform and 2R series rotary
joints for the polishing robot is given in Eq. (38) and the units are mm and rad. The angular velocities
of the rotational motion and orbital motion for the grinding system during the polishing process of the
optical mirror are ωrot=14π rad/s and ωorb=12π rad/s. And the parameters of the polishing robot are
shown in Tables II and III. ⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

x = 300cos(0.01π t)

y = 300cos(0.01π t)

z = 1100

θ5 = π t/100

θ6 = 2(π/2 − atan(1/3))sin(π t/200)

(38)
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(a) (b)

Figure 10. Equivalent load of PM: (a) equivalent force, (b) equivalent moment.

The equivalent load of the serial component on the moving platform of the PM is shown in Fig. 10.
The reference point of the moving platform moves in a circle at a fixed distance from the static plat-
form, so the forces change with time as a trigonometric function. The equivalent force and moment
are mainly from the gravity of the 2R series rotary joints and dual rotor grinding system and polishing
force. The rotational and orbital axes are parallel for the grinding system, and the force acting on the
PM is not affected by the rotational and orbital motions, but only related to the motion attitude of the
PM. Figure 10(a) shows that the equivalent force in the z-axis is much greater than that in the x-axis and
y-axis, and the equivalent force with smaller amplitude is mainly produced by the motion of the moving
platform and larger amplitude is mainly produced by the motion of the 2R series rotary joints.

The frequency of the rotational and orbital motions for the grinding system is relatively high, thus
the equivalent load of the serial component on the PM is mainly in the form of the moment, and the
equivalent moment is strip in shape. Figure 10(b) shows that the equivalent moment is the superposition
of two trigonometric functions, the larger amplitude of the equivalent moment is mainly affected by the
orbital motion and the smaller amplitude is mainly affected by the rotational motion. The equivalent
moment components along the x-axis and y-axis have large amplitude variations, while the component
along the z-axis is small.

Under the action of the serial component of the polishing robot, the position and angle errors of the
moving platform for the PM considering the branched-chains elastic deformation are shown in Fig. 11.
Due to the periodic variation of the equivalent force and moment of the serial component on the PM,
the motion errors of the PM also present a strip trend. From the local amplification results, it can be
seen that the errors are the superposition of two high frequency periodic deformations, the motion error
with a smaller amplitude is affected by the rotational motion of the grinding system and the motion error
with a larger amplitude is affected by the orbital motion of the grinding system. The position error of the
moving platform with the branched-chains elasticity along the x-axis and y-axis varies between ±0.03
mm and the angle error varies between ±2.74×10-5 rad. Figure 11(c1) and (c2) show that the position
error and the angle error along the z-axis have two different amplitudes, this is due to the periodic motion
of the second joint of 2R series rotary joints, and at the boundary of motion space, the force and the
moment exerted by the serial component on the PM are different. Besides, the motion period of the
second joint is twice that of the PM, thus the error also has different amplitudes. The position error
along the z-axis varies from −0.008 to 0.0047 mm, and the angle error varies from −7.45×10-7 rad
to 6.33×10-7 rad. For the polishing robot, the UP branched-chain is fixed to the moving platform and
the structure size is large, so the high stiffness of the z-axis leads to less error with the influence of the
elastic deformation. Furthermore, the equivalent moment along the z-axis of the serial component is
very small, thus the angle error along the z-axis has a small value and presents a straight strip.

To further analyze the influence of the joint clearance on the motion accuracy of the polishing robot,
the polishing robot also follows the motion law of Eq. (38). The Hooke joint of branched-chains is
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(a1) (a2)

(b1) (b2)

(c1) (c2)

Figure 11. Motion error of moving platform considering branched-chains elasticity: (a1) position error
in x-axis direction, (a2) angle error in x-axis direction, (b1) position error in y-axis direction, (b2) angle
error in y-axis direction, (c1) position error in z-axis direction, and (c2) angle error in z-axis direction.

formed by two sets of rolling bearings with the same structure and vertically intersecting axes, and the
composite spherical joint of UPS branched-chains is formed by three sets of rolling bearings with the
same structure and vertically intersecting axes. The joint clearance parameters of the branched-chains
for the dynamics simulation are shown in Table IV. Taking the first 0.2 s of the simulation motion
time, the position error at the reference point of the moving platform is shown in Fig. 12 when only the
branched-chain elasticity is considered. The simulation motion time is shorter than that of the polishing

https://doi.org/10.1017/S0263574721001594 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574721001594


2186 Feng Guo et al.

Table IV. Joint clearance parameters of branched-chains.

Joint number H i1 H i2 H i3 H i4 H i5 H41 H42

Radial clearance (mm) 0.05 0.05 0.03 0.03 0.03 0.07 0.07
Axial clearance (mm) 0.04 0.04 0.02 0.03 0.03 0.05 0.05

Figure 12. Motion error of moving platform considering branched-chain elasticity.

robot, thus there is no periodic amplitude caused by the orbital and rotational motion of the dual rotor
grinding system.

When considering the elasticity of the branched-chains and joint clearance, the position error of the
moving platform is shown in Fig. 13. Combined with Fig. 12, we find that the position error of the
reference point of the moving platform is greatly affected by the elastic deformation of the branched-
chains, and the changing trend is similar to that when only considering the elasticity of the branched-
chain. The equivalent force and moment of the dual rotor grinding system on the moving platform
are larger than the impact force and friction caused by the joint clearance. The joint clearances of the
polishing robot lead to a small amplitude oscillation of the error of the moving platform. At the same
time, in the simulation time, the equivalent force and moment of the moving platform along the x-axis
are relatively large, which leads to the error of the x-axis is larger than that of the y-axis and z-axis.

7. Conclusion
This article proposes a hybrid polishing robot consisting of a 3-DOF PM, 2R series rotary joints and a
dual rotor grinding system with high polishing accuracy, compactness and stiffness to comply with the
trend of high precision operation of optical mirrors.

(1) Based on the kinematics of the 2R series rotary joints and dual rotor grinding system of the
polishing robot, the equivalent load model of the serial components on the PM is established.
The results show that the equivalent force is mainly distributed along z-axis, and the equiva-
lent moment is mainly distributed in x-axis and y-axis and consists of the superposition of two
trigonometric functions.

(2) Based on the rigid–flexible coupling dynamic model of the PM, the elasticity of the branched-
chains mainly leads to motion errors of the moving platform in x-axis and y-axis and the robot
is more resistant to deformation in z-axis. Due to the high-frequency motion of the grinding
system, the motion errors of the moving platform have a striped distribution in all directions.
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(a) (b)

(c)

Figure 13. Motion error of moving platform considering branched-chain elasticity and joint clearance:
(a) x-axis, (b) y-axis, (c) z-axis.

(3) When the joint clearance is considered in the rigid–flexible coupling dynamics, the motion errors
of the PM moving platform considering both joint clearance and branched-chain elasticity have
a local runout compared with the motion errors considering only the branched-chain elasticity.

The analysis of rigid–flexible coupling dynamics of the polishing robot including the branched-chain
elasticity and joint clearance provides a theoretical basis for improving the motion accuracy and dynamic
characteristics of the polishing robot.
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