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The topological structure of ‘mean dichotomy spectrum’ is shown in this article, as
an extension of Sacker–Sell spectrum and non-uniform dichotomy spectrum. With
regard to mean hyperbolic systems, the coexistence of expansion and contraction
behaviours can lead to non-hyperbolic phenomena during evolution process. To be
precise, distinct from uniform and non-uniform hyperbolic cases, error hyperbolic
degree ε(t, τ) is vital to depict the spectral manifolds. As application, the reducibility
theorem for mean hyperbolic systems is provided to deduce block diagonalization.
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1. Introduction

The notion of dichotomy spectrum can be traced to Sacker and Sell [14] for
analysing uniform exponential dichotomies about skew-product flows. For quali-
tative theory of dynamical systems, the dichotomy or Sacker–Sell spectrum plays
a significant role in reducibility and bifurcation theory.

It is well-known that the autonomous system ẋ = Ax can be transformed into
block diagonal form ẏ = T−1ATy with Jordan normal form T−1AT , where the
blocks correspond to different eigenvalues. In order to extend the Jordan normal
form to non-autonomous system, Siegmund [16] established a spectral theory for
which the notions of eigenvalues and eigenspaces are generalized to spectral intervals
and spectral manifolds. Furthermore, with the aid of dichotomy spectrum, the
reducibility for non-autonomous system ẋ = A(t)x with locally integrable function
A(t) has been shown in Siegmund [17].

Except for uniform dichotomy spectrum, with a suitably small error constant
ε, the non-uniform dichotomy spectrum also has attracted considerable atten-
tion of researchers and experts. For example, Chu et al. offered the non-uniform
dichotomy spectrum and proved reducibility for non-autonomous differential equa-
tions [2] and non-autonomous difference equations [3], respectively; Zhang depicted
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the normal form theory for non-autonomous differential systems by using non-
uniform dichotomy spectrum in [19]. Noticing that the topological structure of
non-uniform dichotomy spectrum can be applied to deduce block diagonalization
and the reducibility result for non-autonomous differential equations. The aim of
reduction is transforming a system of ordinary differential equation into another
system, which is simpler to analyse and has the same qualitative behaviours. For
more details about dichotomy spectrum and reducibility, see [1, 4, 10, 15] and
references therein.

Inspired by quasi-hyperbolic orbit segments in Liao [9] and mean hyperbolic
sets for autonomous systems in Sun et al. [18], mean hyperbolicity only requires
fixed average contraction and expansion rates measured at sufficiently long evo-
lution time length. Here, we refine the definition of mean hyperbolicity, such that
non-hyperbolic behaviours are allowed along the trajectories. Owing to mean hyper-
bolicity, the coexistence of expansion and contraction behaviours in generalized
stable or unstable spaces can cause very complicated dynamic phenomena, such
as coexistence of multiple complicated attractors and chaos, even in low dimen-
sions. Noticing that uniform and non-uniform hyperbolic systems can be viewed
as special cases of mean hyperbolic systems. With regard to non-autonomous
systems, we have constructed mean hyperbolic Smale horseshoe with infinite
branches in [7]. Recently, the equivalence between mean hyperbolicity and admis-
sibility is obtained for evolution equations in [8]. Therefore, the admissibility is
a practical skill to verify mean hyperbolicity for non-autonomous systems. In
addition, the Hartman–Grobman linearized theorem, the Hölder regularity, and
continuous dependence on perturbation have been established for mean hyperbolic
systems [6].

In this article, we investigate the mean dichotomy spectral theory, which contains
the topological structure of spectrum and decomposition of spectral manifolds. To
be precise, the mean hyperbolic system is kinematically similar to a block diagonal
system with suitable change of variables. Based on mean dichotomy spectrum, the
reducibility for mean hyperbolic system emphasizes that every block in diagonal
system has corresponding spectral interval and spectral manifold.

The content of this article is as follows. In §2, we present some basic concepts
and lemmas about mean hyperbolic systems. In §3, we describe the dynamical
skeleton of mean hyperbolic systems by spectral intervals and spectral manifolds
in Theorem 1. An explicit example of quasi-periodic system is provided, for which
the non-trivial mean dichotomy spectrum can be computed. In §4, the reducibility
theorem for mean hyperbolic systems is shown as application. More sophisticated
models and predictive frameworks can be developed for analysing complex systems
by mean hyperbolicity.

2. Preliminaries

In this section, the necessary notations, definitions, and lemmas are presented
for mean hyperbolic systems. In detail, the difference and connection among uni-
form, non-uniform, and mean hyperbolic systems are the preparations for mean
dichotomy spectral theory.
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Let us consider the non-autonomous differential equation on RN

ẋ = A(t)x, t ∈ R, (2.1)

with locally integrable matrix function A ∈ L1
loc(R,RN×N ), N ∈ N.

Definition 1. Denote T (t, s) as the evolution operator of (Equation 2.1), which
satisfies T (t, s)x(s) = x(t) and the following:

(a) T (s, s) = I, where I denotes the identity operator on X;
(b) T (t, τ)T (τ, s) = T (t, s), ∀ t, τ, s ∈ R;
(c) for every fixed x ∈ X, (t, s) 7→ T (t, s)x is continuous mapping.

Definition 2. The linear system (Equation 2.1) is called mean hyperbolic or mean
exponential dichotomic of type (K,L, ζ, ε), if there exist dichotomic projections
P (t) : R → RN×N , constants K > 0, L > 0, ζ > 0, and bounded function
0 6 |ε(t, s)| 6 ε∗ such that:

(a) T (t, s) ◦ P (s) = P (t) ◦ T (t, s), ∀ t, s ∈ R.
(b) The restriction T (t, s) | N (P (s)), t > s, is an isomorphism from N (P (s))

to N (P (t)), where N (P (s)) denotes the null space of P(s). We define T (s, t)
as the inverse

T (s, t) := [T (t, s) | N (P (s))]−1 : N (P (t)) → N (P (s)), s 6 t.

(c) There are error hyperbolic degree ε(t, s) and average hyperbolic degree ζ > 0
such that:

‖T (t, s) ◦ P (s)‖ 6 Ke−ζ(t−s)e
ε(t,s)|t−s|χ[−L,L](t−s)

, t > s, (2.2)

‖T (t, s) ◦ [I − P (s)]‖ 6 Keζ(t−s)e
ε(t,s)|t−s|χ[−L,L](t−s)

, t 6 s. (2.3)

Here, we provide several remarks to describe the characteristics of mean hyper-
bolicity, for the convenience of discussing the differences and relations between
mean hyperbolic, uniform, and non-uniform hyperbolic systems.

Remark 1. As t− s > L, for the generalized stable space R(P (s)), there exists a
sequence of {τk} with t = τk > τk−1 > · · · > τ0 = s such that |τj − τj−1| 6 L, j =
1, 2, . . . , k, and

‖T (t, s) ◦ P (s)‖
= ‖T (τk, τk−1) ◦ · · · ◦ T (τ1, τ0) ◦ P (τ0)‖
6 ‖T (τk, τk−1) ◦ P (τk−1)‖ · ‖T (τk−1, τk−2) ◦ P (τk−2)‖ · · · · · ‖T (τ1, τ0) ◦ P (s)‖
6 Ke−ζ(t−s)eε(τk,τk−1)|τk−τk−1|+···+ε(τ1,τ0)|τ1−τ0|.

Due to mean hyperbolicity, the error hyperbolic degree ε(τj , τj−1) may be positive
or negative such that norm inequality (Equation 2.2) is well defined. In a similar
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manner, as t−s < −L, the norm inequality (Equation 2.3) for generalized unstable
space N (P (s)) is also reasonable.

Remark 2. Mean hyperbolic system emphasizes that the average contraction and
expansion rates measured at sufficiently long time will be controlled. More specifi-
cally, for any given L> 0, mean hyperbolic systems exhibit the average contraction
and expansion rates as follows:

lim
|t−s|→∞

1

|t− s|
log ‖T (t, s) ◦ P (s)‖ 6 −ζ, t > s,

lim
|t−s|→∞

1

|t− s|
logm(T (s, t) ◦ [I − P (t)]) > ζ, t 6 s,

wherem(·) denotes the minimum of operator norm. The second inequality describes
the average expansion behaviour on generalized unstable space N (P (t)) along the
positive direction of time.

Let us recall the concepts of uniform and non-uniform hyperbolicities [5, 11–13].
The system (Equation 2.1) is called non-uniform hyperbolic, if there exist constants
K > 0, ζ > 0, ε > 0 satisfying the norm inequalities

‖T (t, s) ◦ P (s)‖ 6 Ke−ζ(t−s)+ε|s|, t > s,

‖T (t, s) ◦ [I − P (s)]‖ 6 Keζ(t−s)+ε|s|, t 6 s,

where constant ε indicates the non-uniform degree. Naturally, the uniform hyper-
bolicity is available as ε=0. Apparently, the non-uniform term eε|s| depends on
fixed non-uniform hyperbolic degree ε> 0 and initial time s ∈ R, laying stress
on inconsistency for different initial moments. It is noteworthy that non-uniform
hyperbolic degree ε is less than dichotomic exponent ζ to guarantee the contraction
trend as time t → ±∞.

Drawing inspiration from averaging principle, one introduce mean hyperbolic sys-
tems with coexisting compression and expansion behaviours for generalized stable
and unstable spaces. More precisely, compared to uniform and non-uniform hyper-
bolic systems, mean hyperbolic systems manifest distinct features: (a) Error term
eε(t,s)|t−s| relies on both initial time and end time of evolution operator T (t, s); (b)
The value of error hyperbolic degree ε(t, s) may be larger than average hyperbolic
degree ζ at some moments, which leads to non-hyperbolic behaviours within certain
evolution intervals; (c) It admits fixed average contraction and expansion rates.

For the sake of clarity, with distinct initial moments s ∈ R, we provide the
images of contraction tendency as t → +∞ for uniform, non-uniform, and mean
hyperbolicity in Figure 2.1. Evidently, if t ∈ [s, s + L], the upper bound of
norm inequality (Equation 2.2) for mean hyperbolic system is not necessarily
strictly decreasing as time t increases. The coexistence of expansion and contrac-
tion behaviours is allowable in generalized stable space R(P (s)) and generalized
unstable space N (P (s)).
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Figure 2.1. Uniform, non-uniform, and mean exponential dichotomy.

Lemma 1. Assume that system (Equation 2.1) is mean hyperbolic of type
(K,L, ζ, ε), one can choose approximate fundamental matrix X(t) of (Equation 2.1)
and invariant projector

P̂ =

(
IN1×N1

0N1×N2

0N2×N1
0N2×N2

)
with N1 = dim ImP̂ and N2 = dimKerP̂ , such that

‖X(t)P̂X−1(s)‖ 6 Ke−ζ(t−s)e
ε(t,s)|t−s|χ[−L,L](t−s)

, t > s, (2.4)

‖X(t)[I − P̂ ]X−1(s)‖ 6 Keζ(t−s)e
ε(t,s)|t−s|χ[−L,L](t−s)

, t 6 s. (2.5)

Proof. For the sake of completeness, we will provide a brief proof. For any given
τ ∈ R, there exists a non-singular matrix T ∈ RN×N such that

P̂ := T P (τ)T −1 =

(
IN1×N1

0N1×N2

0N2×N1
0N2×N2

)
.

Let us define X(t) := T (t, τ)T −1 and

‖X(t)P̂X−1(s)‖
= ‖T (t, τ)T −1P̂T T−1(s, τ)‖
= ‖T (t, τ)T (τ, s)P (s)‖
= ‖T (t, s) ◦ P (s)‖.

Owing to (Equation 2.2)–(Equation 2.3), the mean exponential dichotomy or mean
hyperbolicity of linear system (Equation 2.1) can be established with invariant

projector P̂ . �

3. Dichotomy spectrum for mean hyperbolic systems

With respect to mean hyperbolic systems, the generalized stable manifold Sγ,ε,L

and unstable manifold Uγ,ε,L relying on error function ε(t, τ) and L> 0, are the
main content that constitutes spectral manifolds. For non-trivial mean dichotomy
spectrum, we provide an explicit example with quasi-periodic coefficient matrix.
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The spectrum of linear system (Equation 2.1) is closely related to the shifted
system

ẋ = [A(t)− γI]x, γ ∈ R. (3.1)

Definition 3. The mean dichotomy spectrum of (Equation 2.1) is the set

ΣMED(A) := {γ ∈ R | (3.1) admits no mean exponential dichotomy}

and the resolvent set ρMED(A) := R \ ΣMED(A).

Similar to Sacker–Sell and non-uniform dichotomy spectrums, spectral intervals
and spectral manifolds are key components of spectral theory. It is widely known
that there are compression and expansion behaviours for classical stable and unsta-
ble manifolds respectively. For mean hyperbolic systems, the error hyperbolic degree
ε(t, τ) is essential to depict generalized stable and unstable manifolds.

Lemma 2. For γ ∈ ρMED(A), the shifted system (Equation 3.1) has mean
hyperbolicity of type (K,L, ζ, ε). We conclude that

Sγ,ε,L := {(τ, ξ) ∈ R×RN | sup
t>τ

{‖T (t, τ)ξ‖e−γte
−ε(t,τ)|t−τ |χ[−L,L](t−τ)} < ∞}

and

Uγ,ε,L := {(τ, ξ) ∈ R×RN | sup
t6τ

{‖T (t, τ)ξ‖e−γte
−ε(t,τ)|t−τ |χ[−L,L](t−τ)} < ∞}

are linear integral manifolds of system (Equation 2.1). As γ1 < γ2, the integral
manifolds satisfy Sγ1,ε,L

⊂ Sγ2,ε,L
and Uγ2,ε,L

⊂ Uγ1,ε,L
.

Proof. To keep this article as self-contained as possible, a simple proof is exhibited.
If we take (τ, ξ) ∈ Sγ,ε,L, then there is a constant Cγ,ε,L > 0 such that

‖T (t, τ)ξ‖e−γte
−ε(t,τ)|t−τ |χ[−L,L](t−τ)

6 Cγ,ε,L, t > τ.

Therefore, for any s ∈ R, due to 0 6 |ε(t, s)| 6 ε∗, one has

sup
s∈R

sup
t>τ

‖T (t, s)T (s, τ)ξ‖e−γte
−ε(t,s)|t−s|χ[−L,L](t−s)

= sup
s∈R

sup
t>τ

‖T (t, τ)ξ‖e−γte
−ε(t,s)|t−s|χ[−L,L](t−s)

6 sup
s∈R

sup
t>τ

Cγ,ε,Le
ε(t,τ)|t−τ |χ[−L,L](t−τ)

e
−ε(t,s)|t−s|χ[−L,L](t−s)

6 Cγ,ε,Le
2ε∗L

< +∞

and (s, T (s, τ)ξ) ∈ Sγ,ε,L. Notice that the fibre Sγ,ε,L(τ) := {ξ ∈ RN | (τ, ξ) ∈
Sγ,ε,L} is a linear subspace. The same method can be applied to Uγ,ε,L. Above all,
it can be asserted that invariant sets Sγ,ε,L and Uγ,ε,L are linear integral manifolds.
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As γ1 < γ2, the claims Sγ1,ε,L
⊂ Sγ2,ε,L

and Uγ2,ε,L
⊂ Uγ1,ε,L

follow easily from
e−γ2t 6 e−γ1t (t > 0) and e−γ1t 6 e−γ2t (t 6 0). The proof is completed. �

From discussion above, the invariant integral manifolds are well defined. Go a step
further, the following result shows the direct sum decomposition about generalized
stable and unstable manifolds.

Lemma 3. If shifted system (Equation 3.1) admits mean exponential dichotomy of
type (K,L, ζ, ε) for γ ∈ ρMED(A), then there exist invariant projectors P : R →
RN×N satisfying

Sγ,ε,L = ImP, Uγ,ε,L = KerP, Sγ,ε,L ⊕ Uγ,ε,L = R×RN .

Proof. For any fixed (τ, ξ) ∈ Sγ,ε,L, one has

‖T (t, τ)ξ‖ 6 Cγ,ε,Le
γte

ε(t,τ)|t−τ |χ[−L,L](t−τ)
, t > τ.

If ξ = ξ1 + ξ2 with ξ1 ∈ ImP (τ) and ξ2 ∈ KerP (τ), then we claim that ξ2 = 0.
Denote Tγ(t, s) := e−γ(t−s)T (t, s) as the evolution operator of shifted system

(Equation 3.1). Owing to mean exponential dichotomy of system (Equation 3.1),
there are positive constants K,L, ζ > 0 and bounded function 0 6 |ε(t, s)| 6 ε∗

such that

‖ξ2‖ = ‖Tγ(τ, t)Tγ(t, τ)[I − P (τ)]ξ‖
= ‖Tγ(τ, t)[I − P (t)]Tγ(t, τ)ξ‖
6 Keζ(τ−t)e

ε(τ,t)|t−τ |χ[−L,L](t−τ)‖Tγ(t, τ)ξ‖
6 Cγ,ε,LKeζ(τ−t)eγτe2ε

∗L.

Therefore, ξ2 = 0 by letting t → +∞, which means that Sγ,ε,L ⊂ ImP .
On the other hand, for any fixed τ ∈ R, if ξ ∈ ImP (τ), linking with mean

exponential dichotomy of shifted system (Equation 3.1), then we gain

‖Tγ(t, τ)P (τ)ξ‖ 6 Ke−ζ(t−τ)e
ε(t,τ)|t−τ |χ[−L,L](t−τ)‖ξ‖, t > τ,

and

‖T (t, τ)ξ‖ 6 Ke(γ−ζ)(t−τ)e
ε(t,τ)|t−τ |χ[−L,L](t−τ)‖ξ‖.

Naturally,

sup
t>τ

{‖T (t, τ)ξ‖e−γte
−ε(t,τ)|t−τ |χ[−L,L](t−τ)} < ∞.

Hence ξ ∈ Sγ,ε,L(τ). It is apparent that Sγ,ε,L = ImP . Using a similar method,
Uγ,ε,L = KerP and Sγ,ε,L ⊕ Uγ,ε,L = R×RN can be easily verified. �

Lemma 4. The resolvent set ρMED(A) is open and mean dichotomy spectrum
ΣMED(A) is a closed set. More precisely, for every γ ∈ ρMED(A), there exists
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constant β > 0 such that (γ − β, γ + β) ⊂ ρMED(A) and

Sκ,ε,L = Sγ,ε,L, Uκ,ε,L = Uγ,ε,L, ∀κ ∈ (γ − β, γ + β).

Proof. Let us consider the fundamental matrix Xγ(t) := e−γtX(t) with γ ∈
ρMED(A) for shifted system (Equation 3.1). According to the definition of resolvent

set, there exist projection P̂ , positive constants K,L, ζ > 0, and bounded function
ε(t, s) satisfying Lemma 1.

Without loss of generality, denote Xκ(t) := e(−κ+γ)tXγ(t) and β := ζ/2 > 0. For
any κ ∈ (γ − β, γ + β), it is apparent that as t > s,

‖Xκ(t)P̂X−1
κ (s)‖

= ‖e(−κ+γ)tXγ(t)P̂ e(κ−γ)sX−1
γ (s)‖

6 Ke(γ−κ−ζ)(t−s)e
ε(t,s)|t−s|χ[−L,L](t−s)

6 Ke−β(t−s)e
ε(t,s)|t−s|χ[−L,L](t−s)

.

(3.2)

As t 6 s, with projector I − P̂ , we conclude that

‖Xκ(t)[I − P̂ ]X−1
κ (s)‖

6 Ke(γ−κ+ζ)(t−s)e
ε(t,s)|t−s|χ[−L,L](t−s)

6 Keβ(t−s)e
ε(t,s)|t−s|χ[−L,L](t−s)

.

(3.3)

Thus, there are invariant projector P̂ , bounded function ε(t, s), and K,L, β >

0 such that κ ∈ ρMED(A). Owing to Lemma 3, Sκ,ε,L = ImP̂ = Sγ,ε,L and

Uκ,ε,L = KerP̂ = Uγ,ε,L. To summary, the conclusions that ρMED(A) is open set
and ΣMED(A) is closed set are presented. �

Lemma 5. For γ1, γ2 ∈ ρMED(A) with γ1 < γ2, denote integral manifold

W := Sγ2,ε,L
∩ Uγ1,ε,L

.

We have the following equivalent statements:

(a) W 6= R× {0};
(b) [γ1, γ2] ∩ ΣMED(A) 6= ∅;
(c) dimSγ1,ε,L

< dimSγ2,ε,L
;

(d) dimUγ1,ε,L
> dimUγ2,ε,L

.

Proof. The proof of the equivalent conclusions above for mean hyperbolic systems
is similar to the case of non-uniform exponential dichotomy in [2, 19].

(a) ⇒ (b) By contradiction and Lemmas 3–4, if [γ1, γ2] ⊂ ρMED(A) then

W := Sγ2,ε,L
∩ Uγ1,ε,L

= Sγ1,ε,L
∩ Uγ1,ε,L

= R× {0}.

(b) ⇒ (c) It follows from Lemma 2 that Sγ1,ε,L
⊂ Sγ2,ε,L

as γ1 < γ2. Assume
that dimSγ1,ε,L

> dimSγ2,ε,L
, we conclude Sγ1,ε,L

= Sγ2,ε,L
, which equals to

https://doi.org/10.1017/prm.2024.139 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2024.139


Dichotomy spectrum and reducibility for mean hyperbolic systems 9

[γ1, γ2] ∩ ΣMED(A) = ∅. The equivalence between (c) and (d) follows easily from
Lemma 3.

(d) ⇒ (a) Considering the set (Sγ2,ε,L
∪ Uγ1,ε,L

) \ (Sγ2,ε,L
∩ Uγ1,ε,L

) ⊂ R × RN

and

dim(Sγ2,ε,L
+ Uγ1,ε,L

) = dimSγ2,ε,L
+ dimUγ1,ε,L

− dim(Sγ2,ε,L
∩ Uγ1,ε,L

) 6 N,

therefore

dimW = dim(Sγ2,ε,L
∩ Uγ1,ε,L

)

> dimSγ2,ε,L
+ dimUγ1,ε,L

−N

> dimSγ2,ε,L
+ dimUγ2,ε,L

−N

= 0.

Hence W 6= R× {0}. The proof is completed. �

The spectral intervals and decomposition of spectral manifolds are constructed
for mean dichotomy spectrum, which are the foundation of reducibility and normal
form theory for mean hyperbolic systems.

Theorem 1. The mean dichotomy spectrum ΣMED(A) is a disjoint union of n
closed intervals with 0 6 n 6 N . To be precise, ΣMED(A) = ∅, or ΣMED(A) = R,
or ΣMED(A) is in one of the four cases

ΣMED(A) = I1 ∪ I2 ∪ · · · ∪ In−1 ∪ In,

with

I1 := [a1, b1] or (−∞, b1], Ik := [ak, bk] (k = 2, . . . , n−1), In := [an, bn] or [an,+∞),

where a1 6 b1 < a2 6 b2 < · · · < an 6 bn.

• Set b0 = −∞ and an+1 = +∞, if I1 and In are closed intervals, we can
choose γi ∈ (bi, ai+1), i = 0, . . . , n.

• If I1 = (−∞, b1], we take γ0 < b1 and set Sγ0,ε,L
:= R × {0}, Uγ0,ε,L

:=

R×RN .
• If In = [an,+∞), we take γn > an and set Sγn,ε,L := R × RN , Uγn,ε,L :=
R× {0}.

Then for every i = 1, . . . , n, the intersection

Wi := Sγi,ε,L
∩ Uγi−1,ε,L

is a linear integral manifold with dimWi > 1. Denote W0 := Sγ0,ε,L
and Wn+1 :=

Uγn,ε,L. The spectral manifolds Wi should satisfy the following decomposition

W0 ⊕W1 ⊕ · · · ⊕Wn+1 = R×RN .

Proof. According to Lemma 4, ΣMED(A) ⊂ R is a closed set. Except for empty set
or whole axis R, here we discuss the non-trivial situation. Without loss of generality,
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we assume that it consists of n closed disjoint intervals with n >N. Suppose that

ΣMED(A) = I1 ∪ I2 ∪ · · · ∪ In−1 ∪ In,

taking γi ∈ (bi, ai+1) for i = 1, . . . , N, linking with Lemma 5, we conclude

0 6 dimSγ1,ε,L
< dimSγ2,ε,L

< · · · < dimSγN ,ε,L 6 N.

The result above is available with either dimSγ1,ε,L
= 0 or dimSγN ,ε,L = N . If

dimSγ1,ε,L
= 0 then Sγ1,ε,L

= R×{0}, Uγ1,ε,L
= R×RN , and invariant projection

P (t) ≡ 0 for any t ∈ R.
Obviously, for all γ < γ1, as t 6 τ ,

‖Tγ(t, τ)[I − P (τ)]ξ‖
= e(−γ+γ1)(t−τ)‖Tγ1

(t, τ)[I − P (τ)]ξ‖
6 Ke(ζ−γ+γ1)(t−τ)e

ε(t,τ)|t−τ |χ[−L,L](t−τ)‖ξ‖,

hence γ ∈ ρMED(A) and (−∞, γ1] ⊂ ρMED(A). Actually, due to γ1 ∈ (b1, a2),
(−∞, γ1] ∩ ΣMED(A) 6= ∅, which contradicts (−∞, γ1] ⊂ ρMED(A).

Likewise, if dimSγN ,ε,L = N , we can prove [γN ,+∞) ⊂ ρMED(A). On the
contrary, [γN ,+∞) ∩ ΣMED(A) 6= ∅. In short, the number n of closed intervals is
no more than N.

Next we claim that dimWi > 1 for i = 1, . . . , n. As i =1, W1 = Sγ1,ε,L
∩Uγ0,ε,L

.
If spectral interval I1 = [a1, b1], then both γ0 ∈ (−∞, a1) and γ1 ∈ (b1, a2) belong
to ρMED(A). From Lemma 5, we conclude that

W1 = Sγ1,ε,L
∩ Uγ0,ε,L

) Sγ0,ε,L
∩ Uγ0,ε,L

and dimW1 > 1. If I1 = (−∞, b1] then W1 = Sγ1,ε,L
. By contradiction, we assume

that dimW1 = 0, i.e., W1 = Sγ1,ε,L
= R × {0} and P (t) ≡ 0. It is apparent that

(−∞, γ1] ⊂ ρMED(A), which contradicts γ1 ∈ (b1, a2). Therefore, dimW1 > 1.
As i > 1, we obtain [γi−1, γi] ∩ ΣMED(A) 6= ∅. Undoubtedly,

Wi = Sγi,ε,L
∩ Uγi−1,ε,L

) Sγi−1,ε,L
∩ Uγi−1,ε,L

and dimWi > 1.
Moreover, we deduce that Uγi,ε,L

= Wi+1 +Uγi+1,ε,L
for i = 0, 1, . . . , n− 1. Due

to Uγi,ε,L
= Uγi,ε,L

∩ (Sγi+1,ε,L
+ Uγi+1,ε,L

) = Uγi,ε,L
∩ Sγi+1,ε,L

+ Uγi+1,ε,L
=

Wi+1 + Uγi+1,ε,L
, we conclude that

R×RN = Sγ0,ε,L
+ Uγ0,ε,L

= W0 +W1 + Uγ1,ε,L

= W0 +W1 + · · ·+Wn + Uγn,ε,L

= W0 +W1 + · · ·+Wn +Wn+1.

For any 0 6 i < j 6 n+ 1, it is obvious that

Wi ∩Wj ⊂ Sγi,ε,L
∩ Uγj−1,ε,L

⊂ Sγi,ε,L
∩ Uγi,ε,L

= R× {0}
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and Wi ∩Wj = R× {0} for i 6= j. The statement of

W0 ⊕W1 ⊕ · · · ⊕Wn+1 = R×RN

is proved. Note that the linear integral manifolds W0, . . . ,Wn+1 are independent of
the choice of γi owing to Lemma 4. �

Example 1. Let us consider the quasi-periodic shifted system in R2 with

ẋ = [A(t)− γI]x

=

(
sin 2t+ sin

√
3t+ 1

6 − γ 0

0 sin 2t+ sin
√
3t− 1

4 − γ

)(
x1

x2

)
. (3.4)

Denote vector norm |v| :=
√
v21 + v22 for any v ∈ R2. For given initial value x(s) = v,

we assume that there exists invariant projector P(s) satisfying P (s)v = v1 and
[I − P (s)]v = v2, such that the evolution operators of (Equation 3.4) are

T1(t, s)v1 := Tγ(t, s) ◦ P (s)v = exp

[∫ t

s

(sin 2u+ sin
√
3u+

1

6
− γ)du

]
v1,

and

T2(t, s)v2 := Tγ(t, s) ◦ [I − P (s)]v = exp

[∫ t

s

(sin 2u+ sin
√
3u− 1

4
− γ)du

]
v2.

First of all, we consider the forward evolution with projector P as t > s. It is
obvious that there exists properly large constant L> 0 such that as t− s > L,

1

t− s
log ‖Tγ(t, s) ◦ P (s)‖

6
1

t− s

[ ∫ t

s
(sin 2u+ sin

√
3u+

1

6
− γ)du

]
6

1

t− s

[
− 1

2
cos 2u− 1√

3
cos

√
3u
] ∣∣t

s
+

1

6
− γ

<
1

5
− γ.

As 0 6 t− s 6 L, the norm satisfies

‖Tγ(t, s) ◦ P (s)‖
6 exp

[ ∫ t

s
(sin 2u+ sin

√
3u+

1

6
− γ)du

]
6 exp

{[
− 1

2
cos 2u− 1√

3
cos

√
3u
] ∣∣t

s
+ (

1

6
− γ)(t− s)

}
.
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The same method is applicable to the backward evolution with projection I −P
such that for t− s < −L,

1

t− s
log ‖Tγ(t, s) ◦ [I − P (s)]‖

6
1

t− s

[ ∫ t

s
(sin 2u+ sin

√
3u− 1

4
− γ)du

]
< −1

5
− γ;

and for −L 6 t− s 6 0,

‖Tγ(t, s) ◦ [I − P (s)]‖
6 exp

[ ∫ t

s
(sin 2u+ sin

√
3u− 1

4
− γ)du

]
6 exp

{[
− 1

2
cos 2u− 1√

3
cos

√
3u
] ∣∣t

s
− (

1

4
+ γ)(t− s)

}
.

Denote G(u) := −1

2
cos 2u − 1√

3
cos

√
3u and G(t) − G(s) := ε(t, s)|t − s|.

Naturally, it can be obtained that

‖Tγ(t, s) ◦ P (s)‖ 6 e(−γ+1
5 )(t−s)e

ε(t,s)|t−s|χ[s−L,s+L](t), t > s, (3.5)

and

‖Tγ(t, s) ◦ [I − P (s)]‖ 6 e(−γ− 1
5 )(t−s)e

ε(t,s)|t−s|χ[s−L,s+L](t), t 6 s. (3.6)

Therefore, there are invariant projection P(t),K =1, L> 0 and bounded function
ε(t, s) such that shifted system (Equation 3.4) is mean hyperbolic and (−∞,−1

5 )∪
(15 ,+∞) ⊂ ρMED(A).

• Here we claim that ΣMED(A) = [−1
5 ,

1
5 ].

From discussion above, we conclude that the mean dichotomy spectrum
ΣMED(A) ⊂ [−1

5 ,
1
5 ]. We only need to prove [−1

5 ,
1
5 ] ⊂ ΣMED(A). By Lemma 4, if

the shifted system (Equation 3.4) has mean hyperbolicity with γ = −1
5 , then there

exists β > 0 such that (− 1
5 − β,− 1

5 + β) ⊂ ρMED(A) with the same projector. By

contradiction, the bound of (Equation 3.5) is less than e
2
5 (t−s)+ε∗L; on the other

hand, the norm of (Equation 3.6) with backward evolution is no more than eε
∗L,

which cannot guarantee overall compression and expansion behaviours as t → ±∞.
Similarly, for any γ ∈ [−1

5 ,
1
5 ], we conclude that the shifted system (Equation 3.4)

has no mean hyperbolicity. Hence, [−1
5 ,

1
5 ] ⊂ ΣMED(A) and ΣMED(A) = [−1

5 ,
1
5 ].

• The dichotomy spectrum ΣED(A) = [−9
4 ,

13
6 ] and the non-uniform

dichotomy spectrum ΣNED(A) = [−9
4 ,

13
6 ].

Here, we recall that uniform and non-uniform hyperbolic are special cases for
mean hyperbolic systems. The results that cannot be ignored are ρED(A) ⊂
ρNED(A) ⊂ ρMED(A) and ΣMED(A) ⊂ ΣNED(A) ⊂ ΣED(A).
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Let us consider the norm

‖Tγ(t, s) ◦ P (s)‖ 6 e(−γ+13
6 )(t−s), t > s,

and

‖Tγ(t, s) ◦ [I − P (s)]‖ 6 e(−γ− 9
4 )(t−s), t 6 s.

It is evident that the shifted system (Equation 3.4) has exponential dichotomy iff
γ ∈ (−∞,−9

4 )∪(
13
6 ,+∞). In particular, the non-uniform hyperbolicity of (Equation

3.4) can be verified with ε=0. Therefore, ΣNED(A) = ΣED(A) = [−9
4 ,

13
6 ].

4. Reducibility for mean hyperbolic systems

In this section, the reducibility theory is illustrated for linear system (Equation
2.1) through mean dichotomy spectrum. The reducibility for mean hyperbolic sys-
tem emphasizes that system (Equation 2.1) is averagely kinematically similar to
a block diagonal system, of which every block has corresponding spectral interval
and spectral manifold.

Definition 4. Suppose that the linear system (Equation 2.1) is mean hyperbolic.
The system (Equation 2.1) is called reducible, denote A(t) ∼ B(t) or (Equation
2.1)∼(Equation 4.1), if it is averagely kinematically similar to system

ẏ = B(t)y, (4.1)

with the coefficient matrix

B(t) =

(
B1(t) 0

0 B2(t)

)
(4.2)

and B ∈ L1
loc(R,RN×N ), N ∈ N. Average kinematic similarity demands that there

exists an absolutely continuous function G : R → GLN (R) with

sup
t∈R

‖G(t)‖ < ∞, sup
t∈R

‖G−1(t)‖ < ∞

satisfying the differential equation

Ġ(t) = A(t)G(t)−G(t)B(t). (4.3)

The transformation x = G(t)y is referred to as Lyapunov transformation.

Lemma 6 ([17]). Let P ∈ RN×N be a symmetric projection and X : R → GLN (R)
be an absolutely continuous matrix. We have the following conclusions:

(a) The mapping

Ĥ(t) = PX(t)TX(t)P +QX(t)TX(t)Q

is absolutely continuous and Ĥ(t) is a positive definite, symmetric matrix for every
t ∈ R. There exists unique absolutely continuous function H : R → RN×N of
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positive definite symmetric matrices H(t) with

H2(t) = Ĥ(t), PH(t) = H(t)P.

(b) For any t ∈ R, the function G(t) := X(t)H−1(t) is absolutely continuous and
satisfying

G(t)PG−1(t) = X(t)PX−1(t),

G(t)QG−1(t) = X(t)QX−1(t),

‖G(t)‖ 6
√
2,

‖G−1(t)‖ 6 [‖X(t)PX−1(t)‖2 + ‖X(t)QX−1(t)‖2]
1
2 .

Remark 3. Differs from non-uniform dichotomy spectrum, due to non-uniform
term eε|s| relying on initial moment s ∈ R, the operator norm ‖G−1(t)‖ is
unbounded. Although the mean hyperbolic system emphasizes more complex
dynamic behaviours, such as non-hyperbolic phenomena during evolution process,
the norm of G−1(t) is bounded by the aid of characteristic function, which can
simplify the following calculation.

Theorem 2. Suppose that the system (Equation 2.1) is mean hyperbolic of type
(K,L, ζ, ε) with invariant projector P (t) 6= 0, I. We conclude that the linear system
(Equation 2.1) is averagely kinematically similar to the decoupled system

ẋ = B(t)x =

(
B1(t) 0

0 B2(t)

)
x (4.4)

for locally integrable matrix functions B1 : R → RN1×N1 and B2 : R → RN2×N2

with N1 := dim ImP and N2 := dimKerP . In addition, ΣMED(A) = ΣMED(B)
as A(t) ∼ B(t).

Proof. With regard to mean hyperbolic system (Equation 2.1), combining with
Lemma 1, there exist fundamental matrix X (t) and invariant projector

P̂0 =

(
IN1×N1

0N1×N2

0N2×N1
0N2×N2

)
, 0 < N1 < N,

such that inequalities (Equation 2.4)–(Equation 2.5) hold.
Denote B(t) := Ḣ(t)H−1(t) with H(t) = G−1(t)X(t) and B(t) = 0 for which

Ḣ(t) does not exist. Naturally, H (t) is the fundamental matrix of ẏ = B(t)y. As
t > s, we gain

‖H(t)P̂0H
−1(s)‖

= ‖G−1(t)X(t)P̂0X
−1(s)G(s)‖

6 ‖G−1(t)‖ · ‖X(t)P̂0X
−1(s)‖ · ‖G(s)‖

6 2K2e−ζ(t−s)e
ε(t,s)|t−s|χ[−L,L](t−s)

.
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Similar argument can be applied to the case of t 6 s and projector I − P̂0.
Apparently, system ẏ = B(t)y admits mean exponential dichotomy with the same

projector P̂0.
Next we prove that A(t) ∼ B(t) and B(t) has the block diagonal form. More

importantly, ΣMED(A) = ΣMED(B).
Let us consider

Ġ(t) = [X(t)H−1(t)]′

= A(t)G(t)−G(t)H−1(t)Ḣ(t)

= A(t)G(t)−G(t)B(t),

which means that there is Lyapunov transformation x = G(t)y such that ẋ =
A(t)x is averagely kinematically similar to ẏ = B(t)y. Based on the fact that

H(t),H−1(t), Ḣ(t) commute with invariant projector P̂0, we obtain that

P̂0Ḣ(t)H−1(t) = Ḣ(t)H−1(t)P̂0

for almost all t ∈ R. Therefore, due to P̂0B(t) = B(t)P̂0, one can decompose
B : R → RN×N into four functions with

B(t) =

(
B1(t) B3(t)

B4(t) B2(t)

)
, t ∈ R,

such that (
B1(t) B3(t)

0 0

)
=

(
B1(t) 0

B4(t) 0

)
, t ∈ R,

and B3(t) = B4(t) ≡ 0, t ∈ R. Hence, mean hyperbolic system (Equation 2.1) is
averagely kinematically similar to a decoupled system with diagonal matrix B(t).

If we take γ ∈ ρMED(A), there are positive constantsK1, L1, ζ1 > 0 and bounded
function ε1(t, s) such that for t > s

‖Xγ(t)P̂0X
−1
γ (s)‖

= e−γ(t−s)‖X(t)P̂0X
−1(s)‖

6 K1e
−ζ1(t−s)e

ε1(t,s)|t−s|χ[−L1,L1]
(t−s)

,

and

‖Hγ(t)P̂0H
−1
γ (s)‖

= e−γ(t−s)‖H(t)P̂0H
−1(s)‖

6 e−γ(t−s)‖G−1(t)‖ · ‖G(s)‖ · ‖X(t)P̂0X
−1(s)‖

6 2K2
1e

−ζ1(t−s)e
ε1(t,s)|t−s|χ[−L1,L1]

(t−s)
.

As discussed above, the mean hyperbolicity with fundamental matrix Hγ(t)

can be verified with projector I − P̂0 and t 6 s. Hence γ ∈ ρMED(B) and
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ρMED(A) ⊂ ρMED(B). The same principle also works in reverse such that
ΣMED(A) = ΣMED(B). �

Theorem 3. Assume that linear system (Equation 2.1) admits mean exponen-
tial dichotomy of type (K,L, ζ, ε). The mean dichotomy spectrum ΣMED(A) of
(Equation 2.1) is ∅ or R or the disjoint union of closed spectral intervals I1, . . . , In
with 1 6 n 6 N . Then there exists an average kinematic similar action G : R →
RN×N between (Equation 2.1) and block diagonal system

ẋ =


B0(t)

B1(t)
. . .

Bn+1(t)

x (4.5)

with locally integrable functions Bi : R → RNi×Ni , Ni = dimWi, and ΣMED(B0) =
∅, ΣMED(B1) = I1, . . . ,ΣMED(Bn) = In, ΣMED(Bn+1) = ∅.

Proof. Due to Lemma 4 and Theorem 1, the resolvent set ρMED(A) is open and
ΣMED(A) is the disjoint union of several closed intervals. Instead of talking about
trivial case ΣMED(A) = ∅ or ΣMED(A) = R, we suppose that

I1 := [a1, b1] or (−∞, b1], Ik := [ak, bk] (k = 2, . . . , n−1), In := [an, bn] or [an,+∞)

with a1 6 b1 < a2 6 b2 < · · · < an 6 bn.
Step 1. If I1 = [a1, b1], there is γ0 < a1 such that (−∞, γ0] ⊂ ρMED(A) and

W0 := Sγ0,ε,L
. It is obvious that

ẋ = [A(t)− γ0I]x

admits mean exponential dichotomy. In other words, there exist invariant projector
P̂0, constants K0 > 0, L0 > 0, ζ0 > 0, and bounded function 0 6 |ε0(t, s)| 6 ε∗0
such that

‖X(t)P̂0X
−1(s)‖ 6 K0e

(γ0−ζ0)(t−s)+ε0(t,s)|t−s|χ[−L,L](t−s)
, t > s, (4.6)

‖X(t)[I − P̂0]X
−1(s)‖ 6 K0e

(γ0+ζ0)(t−s)+ε0(t,s)|t−s|χ[−L,L](t−s)
, t 6 s. (4.7)

Claim: The system (Equation 2.1) is averagely kinematically similar to

ẏ = B(t)y =

(
B0(t) 0

0 B11(t)

)
y, (4.8)

with B0 : R → RN0×N0 and B11 : R → RM1×M1 , where N0 := dim ImP̂0 and
M1 := dimKerP̂0. Moreover, ΣMED(B0) = ∅ and ΣMED(B11) = ΣMED(A).

By Theorem 2, there exists Lyapunov transformation x = G(t)y such that mean
hyperbolic system (Equation 2.1) is averagely kinematically similar to decoupled
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system (Equation 4.8). Notice that systems (Equation 2.1) and (Equation 4.8)

have the same invariant projection P̂0 and mean dichotomy spectrum ΣMED(B) =
ΣMED(A).

For any γ > γ0, it is apparent that

‖Xγ(t)P̂0X
−1
γ (s)‖ 6 K0e

(−γ+γ0−ζ0)(t−s)+ε0(t,s)|t−s|χ[−L,L](t−s)
, t > s. (4.9)

Therefore, for any γ > a1 > γ0, ẋ = [B0(t)− γI]x admits mean hyperbolicity with
−γ + γ0 − ζ0 < 0 and ΣMED(B0) ⊂ (−∞, a1). However, ΣMED(B0) ⊂ ΣMED(A)
and ΣMED(B0) = ∅.

If I1 = (−∞, b1], we set W0 := Sγ0,ε,L
= R × {0}. An obvious fact is dimB0 =

dimW0 = 0, which leads to ΣMED(B0) = ∅. The result ΣMED(B11) = ΣMED(A)
is proved due to ΣMED(B) = ΣMED(A).

Step 2. If we take γ1 ∈ (b1, a2), then ẏ = (B(t) − γ1I)y is mean exponential

dichotomic with an invariant projection P̂1. There are positive constants K1, L1, ζ1
and bounded function ε1(t, s) such that

‖Y (t)P̂1Y
−1(s)‖ 6 K1e

(γ1−ζ1)(t−s)+ε1(t,s)|t−s|χ[−L1,L1]
(t−s)

, t > s, (4.10)

‖Y (t)[I − P̂1]Y
−1(s)‖ 6 K1e

(γ1+ζ1)(t−s)+ε1(t,s)|t−s|χ[−L1,L1]
(t−s)

, t 6 s, (4.11)

with the fundamental matrix Y (t) of linear system ẏ = B(t)y.
Linking ΣMED(B11) = ΣMED(A) with Theorem 2, there is diagonal matrix such

that

ẏ1 = B11(t)y1

is averagely kinematically similar to

ż1 = B∗(t)z1 =

(
B1(t) 0

0 B22(t)

)
z1

with Lyapunov transformation y1 = S11(t)z1 and ΣMED(B∗) = ΣMED(B11).
Denote

S1(t) =

(
IN1×N1

0

0 S11(t)

)
S0(t).

Therefore, the linear system (Equation 2.1) is averagely kinematically similar to

ż =

B0(t) 0 0

0 B1(t) 0

0 0 B22(t)

 z(t) (4.12)

with transformation x(t) = S1(t)z(t).
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For any γ ∈ [a2,+∞), the inequality

‖Zγ(t)P̂1Z
−1
γ (s)‖ 6 K1e

(−γ+γ1−ζ1)(t−s)+ε1(t,s)|t−s|χ[−L1,L1]
(t−s)

, t > s,

holds; in a similar way, the norm inequality

‖Zγ(t)[I − P̂1]Z
−1
γ (s)‖ 6 K1e

(−γ+γ1+ζ1)(t−s)+ε1(t,s)|t−s|χ[−L1,L1]
(t−s)

, t 6 s,

is true for any γ ∈ (−∞, b1]. To summarize, we obtain ΣMED(B0, B1) ⊂ (−∞, a2)
and ΣMED(B22) ⊂ (b1,+∞). Hence ΣMED(B1) = I1.

By induction, there is Lyapunov transformation x(t) = S∗(t)u(t) such that
system (Equation 2.1) is averagely kinematically similar to

u̇ =


B0(t)

B1(t)
. . .

Bn+1(t)

u(t), (4.13)

with ΣMED(B0) = ∅, ΣMED(Bi) = Ii for i = 1, . . . , n− 1.
If In = [an, bn], by taking γn ∈ (bn,+∞) and using same arguments as above,

we gain that ΣMED(B0, . . . , Bn) ⊂ (−∞, bn] and ΣMED(Bn+1) ⊂ (bn,+∞), which
means that ΣMED(Bn) = [an, bn] and ΣMED(Bn+1) = ∅.

If In = [an,+∞), then ΣMED(B0, . . . , Bn) ⊂ R and ΣMED(Bn) = [an,+∞).
Moreover, Wn+1 := Uγn,ε,L = R× {0} and ΣMED(Bn+1) = ∅.

Step 3. Next we prove that the order Ni of block Bi(t) equals to dimWi as
i = 0, . . . , n+ 1.

As I1 = [a1, b1], we can choose γ0 ∈ (−∞, a1) such that W0 = Sγ0,ε,L
and

N0 = dim ImP̂0 = dimSγ0,ε,L
= dimW0.

In particular, if I1 = (−∞, b1] then W0 = R× {0} and N0 = dimW0.

As γ1 ∈ (b1, a2), from discussion above, it is apparent that N0+N1 = dim ImP̂1,
and

dim ImP̂1 = dimSγ1,ε,L
= dim(Sγ1,ε,L

∩ (Sγ0,ε,L
⊕ Uγ0,ε,L

)) = dimW0 + dimW1,

thus N1 = dimW1. Likewise, for the case of γ2 ∈ (b2, a3), N2 = dimW2 depends
on the fact that

N0 +N1 +N2 = dim ImP̂2 = dimSγ2,ε,L
= dimSγ1,ε,L

+ dimW2.

By induction, we conclude Ni = dimWi for i = 0, . . . , n. In addition, for γn ∈
(bn,+∞) or γn ∈ (an,+∞), one has Nn+1 = dimWn+1 due to

N0 +N1 + · · ·+Nn+1 = dimW0 + dimW1 + · · ·+ dimWn+1.

The proof is completed. �
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