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Surjective isometries of metric geometries

A. F. Beardon and D. Minda

Abstract. Many authors define an isometry of a metric space to be a distance-preserving map
of the space onto itself. In this note, we discuss spaces for which surjectivity is a consequence
of the distance-preserving property rather than an initial assumption. �ese spaces include, for
example, the three classical (Euclidean, spherical, and hyperbolic) geometries of constant curvature
that are usually discussed independently of each other. In this partly expository paper, we explore
basic ideas about the isometries of a metric space, and apply these to various familiar metric
geometries.

1 Introduction

�e paper [28] begins with the sentence “One of the basic problems in geometric
investigations is this: given a space S endowed with a metric d, describe the group of
isometries of S with respect to the metric d.” �is sentence describes the content of
this paper, although we will take a very different path to that taken in [28]. A map
f ∶X → X is an isometry of a metric space (X , d) if it preserves distances; that is, if, for
all x and y inX, we have d( f (x), f (y)) = d(x , y). Obviously, an isometry is injective.
Although many authors find it convenient to include surjectivity in their definition
of an isometry, we will not do this; indeed, the motivation behind this paper was
to examine circumstances under which an isometry must necessarily be surjective.
Here, we will follow the terminology of Busemann [9, p. 15] and use the wordmotion
to signify a surjective isometry. Since any injective map (whether surjective or not)
of a set into itself is an isometry with respect to the discrete metric, there are many
metric spaces that support both motions (surjective isometries) and non-surjective
isometries. However, in all cases, the set of motions is a group under composition.
We denote the group of motions byM(X), and the semigroup of isometries by I(X).
�roughout, if f and g are maps, then f g (if defined) denotes the composite map
x ↦ f (g(x)), and f n denotes the n-th iterate of f.

�e second half of the paper concerns the isometry groups for Minkowski spaces
that are finite-dimensional, real, normed vector spaces. �e known isomorphism
groups for the ℓp norms onR

n are established in a simple manner. For n = 2, we find
the isometry group for norms with unit ball equal to a regular 2k-gon for any positive
integer k. �ere does not exist a norm on R

n with unit ball equal to a closed regular
polygon with an odd number of sides.
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2 Isometries and Motions of a Metric Space

�e following sufficient condition for an isometry to be surjective is well known, and,
for completeness, we give the short proof.

Lemma 2.1 Each isometry f of a compact metric space (X , d) is surjective.

Proof Choose any y in X. By compactness, the sequence y, f (y), f 2(y), . . . has a
convergent subsequence so, for any positive ε, there are positive integers p and q such
that d( f p(y), f p+q(y)) < ε. As d(y, f q(y)) = d( f p(y), f p+q(y)) < ε, this implies
that y is in the closure of f (X). As f (X) is compact, it is closed; thus, y ∈ f (X). ∎

Lemma 2.1 has the following consequence.

Corollary 2.2 Suppose that X and Y are metric spaces, that X is compact, and that
there is an isometry g of Y into X. �en any isometry f ∶X → Y is surjective, so Y is
isometrically equivalent to X.

Proof �emap g f is an isometry of X into itself so, from Lemma 2.1, g f (X) = X.
�us, g(Y) ⊂ X = g f (X) ⊂ g(Y), which shows that g(Y) = X. �us, g is a bijection
from Y to X so that Y = g−1(X) = f (X) and Y is isometrically equivalent to X. ∎

We can weaken the assumption of compactness in Lemma 2.1 at the cost of
including the existence of a fixed point. First, a metric space is said to be finitely
compact if each closed ball is compact.

Lemma 2.3 If an isometry f of a finitely compactmetric space (X , d) has a fixed point,
then it is surjective.

Proof Suppose that f has a fixed point y, and that r > 0, and let Br be the closed
(compact) ball with centre y and radius r. �en f is an isometry of Br into itself, so,
by Lemma 2.1, f (Br) = Br . As X = ∪r>0Br , this implies that f (X) = X. ∎

Next, we have a simple result that guarantees that all isometries are motions. �e
set I(X) of isometries of X acts transitively on X if, given any a and b in X, there is an
isometry g such that g(a) = b. Note that g need not be a motion, and that I(X) acts
transitively if merely some set of isometries acts transitively.

�eorem 2.4 Suppose that (X , d) is a finitely compact metric space whose isometries
act transitively on X. �en every isometry of (X , d) is a motion.

Proof Let f be any isometry of (X , d), and take any w in X. By transitivity, there is
an isometry g such that g( f (w)) = w. �en, by Lemma 2.3, g f (X) = X so that g is a

bijection of X onto itself. �us, f (X) = g−1(X) = X, so f is a motion of X. ∎

For example, the set of translations of a finite-dimensional normed vector space V
acts transitively on V, so every isometry of V is a motion of V. As another illustration
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of �eorem 2.4, we refer to Busemann’s text [9, pp. 345–346]. In the context of the
G-spaces considered by Busemann (these are finitely compact metric spaces with
modest, but natural, assumptions about distances between points; see [9, p. 37]),
Busemann defines a symmetry of X about a point x0 in X to be a motion f that is
an involution (not the identity) of X onto itself such that x0 is an isolated fixed point
of f (intuitively, f is a “rotation” of order two about x0). �e space X is symmetric if
such a symmetry exists at every point of X, and it is immediate for such spaces the
group M(X) acts transitively on X (for given any points p and q, we can “rotate” the
space about the midpoint of the segment [p, q]). �us, all isometries of symmetric
G-spaces are motions.

�eorem 2.4 gives a criterion for all isometries to be motions. By contrast, the next
result gives a criterion that guarantees that a given isometry is a motion. In addition,
this result frees us from the constraints of having a fixed point, and of mapping the
spaceX into itself.Wewill use the notation BX(a, r) for the closed ball inXwith centre
a and radius r, and similarly for BY(a, r).
�eorem 2.5 Let (X , d) and (Y , d′) be metric spaces, where (X , d) is finitely
compact, and let f ∶X → Y be an isometry. �en f (X) = Y if and only if there exists a
point a ∈ X such that for each r > 0 there is an isometryψr of BY( f (a), r) into BX(a, r).
Proof First, we suppose that themapsψr exist and show that f (X) = Y . For brevity,
for any positive r, let BX = BX(a, r) and BY = BY( f (a), r).We are given the existence
of an isometry ψr of BY into BX , and so, by Corollary 2.2, we see that, for any a in X,
and any positive r, f maps BX onto BY . Now take any y in Y and let r = dY( f (a), y).
�en y ∈ BY = f (BX), so that f (X) = Y . Finally, the reverse implication follows, for
if f (X) = Y , we can choose any a ∈ X and then take each ψr to be the restriction of
the isometry f −1 to BY( f (a), r). ∎

Observe that �eorem 2.5 (with Y = X) contains Lemma 2.3. Indeed, if f is an
isometry of a finitely compact space (X , d) with a fixed point a, then, for each
positive r, we can take eachψr in�eorem 2.5 to be the identitymap so that f (X) = X.
We can illustrate�eorem 2.5 in a concrete situation by examining the isometries and
motions of the space [0,+∞) (with the Euclidean metric) into itself. Here, the maps
x ↦ x + t, where t > 0, are isometries, but not motions.

We note that if �eorem 2.5 is applicable, then X and Y are homeomorphic (for
then f is a homeomorphism), and this shows that the conclusion may fail if we only
know that, for each a in X , an isometry ψa ,r ∶BY( f (a), r)→ BX(a, r) exists for some
positive r that depends on a. For example, we can take X = {0}, Y = {0, 1}, and f the
identity function on X. If Y is connected, then the suggested variant of �eorem 2.5
does hold.

Lemma 2.6 Suppose that (X , d) and (Y , d′) are metric spaces, where (X , d) is
finitely compact and f ∶X → Y an isometry. �en f (X) is closed in Y.

Proof Select any y in the closure of f (X). �en there is a sequence (xn) in X
with f (xn)→ y. A convergent sequence is bounded, so there exists R > 0 such that
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d′( f (x1), f (xn)) ≤ R for all n. �en d(x1 , xn) = d′( f (x1), f (xn)) ≤ R for all n. As X
is finitely compact, the closed ball with centre x1 and radiusR is compact. Hence, (xn)
has a convergent subsequence. �ere is no harm in assuming xn → x∗ ∈ X. Because f
is continuous, f (xn)→ f (x∗). Hence, y = f (x∗) ∈ f (X), so f (X) is closed. ∎

�eorem2.7 Let (X , d) and (Y , d′) bemetric spaces, where (X , d) is finitely compact
and (Y , d′) is connected, and let f ∶X → Y be an isometry. �en the following are
equivalent.

(i) f is a motion.
(ii) For each a ∈ X , there exists r = r(a) > 0 and an isometry ψa ,r of the closed ball

BY( f (a), r) into the closed ball BX(a, r).
(iii) f is an open mapping.

Proof First, we show that (i) implies (ii). Because f is a motion, it is surjective,
so f maps each closed ball BX(a, r) onto the closed ball BY( f (a), r). Hence, ψa ,r =( f ∣BX(a, r))−1 is an isometry of the required type.

Next, we demonstrate that (ii) implies (iii). We begin by verifying that f is an
isometry of BX = BX(a, r) onto BY = BY( f (a), r). Corollary 2.2 gives that f ∣BX is a
surjective isometry of BX onto BY . In particular, f ∣BX maps each open ball in X with
centre a and radius ρ ∈ (0, r) onto the open ball in Y with centre f (a) and radius ρ.
Because this holds for all a ∈ X, the function f maps open sets in X onto open sets
in Y.

Finally, (iii) entails (i). Because f is an open mapping, f (X) is an open subset
of Y. Lemma 2.6 implies that f (X) is a closed subset of Y. Since Y is connected,
f (X) = Y . ∎

3 Some Remarks

In this section, wemake a few brief (and somewhat informal) remarks on similar ideas
that interested readers may pursue at their leisure. First, we consider finitely compact
metric spaces. Busemann [9, p. 6] defines a metric space to be (i) compact if every
infinite subset has an accumulation point, and (ii) finitely compact if every bounded
infinite subset has an accumulation point [9, p. 37], but a more modern approach
is, of course, via open sets and sequential compactness. Here, we merely mention the
standard results that ametric space is compact if and only if it is sequentially compact,
and that it is finitely compact (in Busemann’s sense) if and only if each closed ball is
compact (which is our earlier definition). On [9, p. 403], Busemann remarks (with
references) that a Hausdorff topological space can be metrised so as to become a
finitely compact metric space if and only if it is locally compact and second countable,
and it is known that a second countable topological space is compact if and only if it
is sequentially compact [13, p. 235]. Finally, the interested reader can consult some of
Busemann’s ideas in [26].

Next, we consider the group of motions of a finitely compact metric space. If(X , d) is a finitely compact metric space, then the group M(X) of motions of X is a
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topological group. First, in [9, pp. 16–18] (see also [26, p. 118]) Busemann constructs a
metric δ on the groupM(X) ofmotions of ametric space (X , d) in such away that the
metric space (M(X), δ) is finitely compact when (X , d) is finitely compact, and also
compact when (X , d) is compact. For an alternative approach, see [27, p. 155], where
M(X) is given the structure of a topological group via the compact-open topology on
the space of continuous maps from X to itself.

�e next topic is concerned with non-expansive maps and local isometries. Let
f be a map of X into itself. �en f is (i) non-expansive if, for all x and y in X,
d( f (x), f (y)) ≤ d(x , y), and (ii) a local isometry if f is surjective, and if each x in
X has an open neighbourhood on which f is an isometry. �ere are many interesting
questions concerning these types of maps (for example, which conditions imply that
a local isometry is a motion?), and we refer the reader to [9–11, 18–20] for more
details.

Finally, suppose now that (X , d) is a finitely compact metric space whose isome-
tries act transitively on X (so motions and isometries coincide). �e stabiliser S(x)
of a point x in X is the group {g ∈M(X)∶ g(x) = x}, and if y = h(x), where h is an
isometry, then S(y) = hS(x)h−1; that is, S(x) and S(y) are conjugate subgroups. It
follows that the entire group M(X) is determined by any set T of isometries that acts
transitively on X, and the stabiliser S(ξ) of any given point ξ in X. Explicitly, if h is
any isometry ofX, then there is some t in T such that t(h(ξ)) = ξ, so that h = t−1g for
some t in T and some g in S(ξ). In some important examples, T is a normal subgroup
of M(X), and T ∩ S(ξ) contains only the identity map, and in this case, we say that
I(X) is the semi-direct product of S(ξ) and T.

4 Some Examples

Wenow apply the ideas above to a variety of examples, in each of which an isometry is
necessarily surjective.One of themost important tasks in an introduction to any of the
three classical geometries (Euclidean, spherical, and hyperbolic) of constant curvature
is to establish the group structure of the isometries, and, as we have seen, this depends
on the surjectivity of the isometries. It is a standard exercise, and an elementary one,
in linear algebra to show that every Euclidean isometry of Rn is the composition of a
translation and an orthogonal (linear) map of Rn onto itself. However, even more is
true, and in Section 5, we show that any isometry with respect to any norm on R

n is
surjective.

Spherical geometry is the geometry of the unit sphere S
n in R

n+1, and as Sn is
compact, every isometry of Sn is surjective. Hyperbolic n-space can be taken to be
the open unit ball Bn in R

n , equipped with the hyperbolic distance h that is derived
from the metric 2∣dx∣/(1 − ∥x∥2), and is given by

sinh2 1
2 h(x , y) = ∥x − y∥√(1 − ∥x∥2)(1 − ∥y∥2)

[4, p. 40]. It is known that each closed hyperbolic ball is a closed Euclidean ball;
thus, (Bn , h) is finitely compact. Further, as the inversion across any Euclidean
hypersphere that is orthogonal to the unit sphere Sn−1 is a hyperbolic isometry, we
see that the hyperbolic isometries act transitively on B

n . �us, every hyperbolic
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isometry is surjective. �e desired result can be achieved (in all three geometries
and in all dimensions) by, for example, applying�eorem 2.4, having first established
the existence of reflections across geodesics, planes, etc. as appropriate. Indeed, it is
also advantageous to show that every motion is a composition of such reflections. An
alternative approach (which has been mentioned above and also applies to all three
geometries) is to show that each geometry supports an isometry that is a “rotation of
order two” about any point of the space.

We discuss one more example in this section, namely, the quasi-hyperbolic plane,
which appears in a number of different situations.We begin with the complex planeC
equipped with the Euclidean metric, and the cyclic group T of translations generated
by z ↦ z + 2πi. From a topological perspective, the quotient spaceC/T is a Euclidean
cylinder (obtained by identifying the sides y = 0 and y = 2π of the strip {x + iy∶0 ≤
y ≤ 2π}), but from a complex analytic perspective, C/T is a Riemann surface that
is conformally equivalent to the punctured plane C/{0} (which is the image of its
universal covering spaceC by the universal coveringmap z ↦ exp z).Wewill consider
C/T from both points of view.

From the perspective of complex analysis, the quasi-hyperbolic plane is the set
C/{0} equipped with the quasi-hyperbolic distance µ derived from the quasi-
hyperbolic metric ∣dz∣/∣z∣ (which is the local projection of the Euclidean metric on
its universal covering space C). As any bounded set in (C/{0}, µ) lies in some
annulus {z∶ r ≤ ∣z∣ ≤ R}, where 0 < r ≤ R < +∞, this metric space is finitely compact.
Further, as Euclidean rotations about the origin, and maps z ↦ kz, where k ≠ 0, are
µ-isometries, the isometries act transitively on C/{0}, so each isometry is surjective.
Finally, the reader should note that this is not the same as the quasi-hyperbolic plane
that is defined in [9].

Let us now identify the quotient space C/T with the vertical Euclidean cylinder
C = S

1 ×R inR3, and give C the distance γ obtained by minimizing the Euclidean arc
length of paths on C. As vertical translations, and rotations about the vertical axis,
are isometries of C, the set of isometries acts transitively, so every isometry of C is
surjective. In fact, it can be shown that the quasi-hyperbolic length of a path inC/{0}
is the same as the Euclidean length of its image on C.

�e Euclidean isometries of the vertical cyclinder C arise in another context.
A frieze group is a discrete group F of isometries of C that leaves the real axis R
invariant, and has the property that its subgroup T of translations is an infinite cyclic
group (see, for example, [1, 23, 24]). As two frieze groups are identified if they are
conjugate by an affinemap, we can assume thatT is generated by z ↦ z + 2π. Now,T is
a normal subgroup of F, and by analyzing the structure of frieze groups, it follows that
each quotient group F/T is a subgroup of theKlein four-group, and from this (see [5]),
we can easily derive the familiar result that, up to conjugation, there are only seven
possible frieze groups. �is algebraic proof is much shorter than the usual arduous
geometric proof. Nowwe can identify the quotient spaceC/T with the cylinder C and
the quotient group F/T with a group of Euclidean isometries of C. As F acts discretely
onC, and the elements of F/T leave the circle S1 × {0} (which corresponds to the real
axis in C) invariant, we find that F/T is a finite group of isometries of C; thus, frieze
groups can be identified with certain finite subgroups of the isometry group of the
quasi-hyperbolic plane.
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Finally, we note that, up to a Euclidean isometry, the cylinder, the unit sphere,
and Euclidean planes are the only surfaces in R

3 that support a transitive group of
Euclidean isometries [15, p. 218]. More generally, on [9, p. 371], Busemann gives a
complete list of G-surfaces that possess a transitive group ofmotions (but a discussion
of this would take us too far afield).

5 Minkowski Spaces

A finite-dimensional, real, normed vector space is called aMinkowski space; see [26,
p. 146]. �e Mazur–Ulam theorem states that if E and F are real, normed vector
spaces, but not necessarily of finite dimension, and f is a surjective isometry of
E onto F, then f is an affine map; that is, the map x ↦ f (x) − f (0) is a linear
transformation. An elegant, short, and very elementary proof of this in [25] shows
that, under the given hypothesis, if a, b ∈ E, and t ∈ [0, 1], then f ((1 − t)a + tb) =(1 − t) f (a) + t f (b). �is, in turn, implies that f is affine.�e restriction to surjective
isometries here is necessary; for example, ifR2 has norm (x , y)↦max{∣x∣, ∣y∣}, then
the map f ∶R→ R

2 defined by f (x) = (x , sin x) is an isometry that is not affine [29].
However, a closed ball in a finite-dimensional normed space is compact [7, p. 63], and
the set of translations of a normed space acts transitively on that space.�us,�eorem
2.4 and the Mazur–Ulam theorem show that every isometry of a Minkowski space E
into itself is surjective, and therefore affine. For a general, elementary, account of these
ideas, see [21].

�ese remarks lead naturally to a discussion of different norms on Euclidean space
R

n , and while it is an elementary fact from linear algebra that every isometry of Rn

with the Euclidean norm is surjective and affine, the argument given above shows that
an isometry ofRn with respect to any norm is surjective and affine. In this discussion,
a point x in R

n is a row vector; its transpose xt is a column vector, and the Euclidean
norm, distance, and inner product are denoted by ∥x∥, ∥x − y∥, and x ⋅ y, respectively.
It is well known that if 1 ≤ p ≤ +∞, x = (x1 , . . . , xn), and

∥x∥p = ( n∑
j=1

∣x j ∣p)
1/p

,

∥x∥∞ =max{∣x j ∣∶ 1 ≤ j ≤ n},
then ∥x∥p is a norm onRn with dp(x , y) = ∥x − y∥p the associated distance function.
Of course, for p = 2, this is the usual Euclidean norm and distance. �e case p = 1 is
also popular, for in this case, the metric on R

n is the so-called taxicab distance d1.
�e elementary nature of this case has led to many instances of publications devoted
to exploring the isometries of these distances, sometimes of d1 for small values of n,
sometimes of d1 for all n, and sometimes for dp ; see, for example, [8, 12, 14, 17, 22, 28],
and doubtless, this list could be longer.

Simple descriptions of the isometries of each of the norms ∥x∥p are known. As
the case p = 2 leads to the familiar group of orthogonal matrices, let us assume that
p ≠ 2. We now give the isometry groups of the norms ∥x∥p when p ≠ 2. A real n × n
matrix is a permutation matrix if and only if it has exactly one non-zero entry in
each row and each column, and each such element is 1; a real n × n matrix is a
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signed permutation matrix if and only if it has exactly one non-zero entry in each
row and each column, and each such element is either 1 or −1. Because a determinant
changes by a factor −1 when we interchange two adjacent rows, we see that each such
matrix (of either type) is non-singular. Both types of matrices form a multiplicative
group, and a simple combinatorial argument shows that these groups have order
n ! and 2nn !, respectively. In fact, the signed permutation matrices are precisely the
matrices in the (Euclidean) orthogonal group that have integer entries. Indeed, it is
easy to see that a signed permutation matrix is orthogonal. Conversely, if A is an
orthogonal matrix, then each row and column has (as a vector) length 1, so if the
entries of A are integers, then each row and column can only have one non-zero
entry, and this entry must be ±1. Finally, if A is a signed permutation matrix, x ∈ Rn ,
and yt = Axt, then (y1 , . . . , yn) = (ε1xρ(1), . . . , εnxρ(n)) for some permutation ρ of{1, . . . , n}, and for some choice of each ε j from {−1, 1}. It is clear from this that any

signed permutationmatrix is a linear isometry of (Rn , dp). In fact, for p ≠ 2, these are
the only linear isometries of this space. �is can be proved by elementary arguments,
but we will present a more revealing proof (see �eorem 5.3) a�er discussing the
John inellipsoid and John circumellipsoid for a convex body relative to an arbitrary
norm on R

n .
An elementary example shows that the isometries of a norm on R

n need not
be Euclidean isometries. For example, consider the norm ∥(x , y)∥∗ = 2∣x∣ + ∣y∣ on
R

2. �e linear map f ∶R2 → R
2 given by (x , y)↦ (−y/2, 2x) preserves the norm∥ ⋅ ∥∗, and so provides an isometry of R2 with this norm that is not a Euclidean

isometry.

Let us now consider a general norm ∥x∥∗ on R
n . �en the closed unit ball B

∗
={x ∈ Rn

∶ ∥x∥∗ ≤ 1} for this norm is a compact convex subset of Rn that is symmetric
about about the origin (that is, it is invariant under the antipodal map x ↦ −x), and,
because of this, both the identity map and the antipodal map are isometries. In fact,
any compact convex set in R

n that has the origin as an interior point and that is
invariant under the antipodal map is the closed unit ball for some norm on R

n ; this
follows from a construction due to Minkowski; see [26, p. 156]. In particular, a closed
regular n-gon in R

2 with centre at the origin is the closed unit ball for a norm on R
2

if and only if n is even.
Wewill now introduce the concept of John ellipsoids. An ellipsoid inRn is the image

of the closed Euclidean unit ballB
n
= {x ∈ Rn

∶ ∥x∥ ≤ 1} (with respect to the Euclidean
norm ∥x∥) under a bijective linear map of Rn onto itself. A convex body is a compact
convex set with nonempty interior. In 1948, F. John proved that each convex body K
inR

n contains a unique ellipsoid of maximal volume, and, likewise, there is a unique
ellipsoid withminimal volume, which containsK [16].�ese ellipsoids are now called
the John inellipsoid, and the John circumellipsoid for K. When n = 2, the terms Steiner
inellipse and Steiner circumellipse are customary.

Lemma 5.1 Suppose that ∥x∥∗ is a norm on R
n with closed unit ball K for ∥x∥∗. If

either the John circumellipsoid or the John inellipsoid for K is the closed unit ball B
n
,

then every isometry of ∥x∥∗ is a Euclidean isometry.
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Proof It is not difficult to prove that if f is a bijective linear map ofRn onto itself,K
is a convex body and E is its John circumellipsoid (or John inellipsoid), then f (K)
is a convex body and f (E) is its John circumellipsoid (or John inellipsoid). �e
Mazur–Ulam theorem implies that every isometry for ∥x∥∗ is an affine mapping.

First, suppose that B
n
is the circumellipsoid for K and f is an isometry of ∥x∥∗.

�en f is affine and f (B n) = B n
. �e only affine self-maps of B

n
are the Euclidean

isometries, so f is a Euclidean isometry.�e argument whenB
n
is the John inellipsoid

is analogous. ∎

To complete our discussion, we need the following elegant characterization of

those cases in which the closed Euclidean unit ball B
n
is the John inellipsoid or John

circumellipsoid of a convex body. For a proof of this result, see especially [3, p. 13],
but also [2, 7, 16], and for a general perspective on these ideas, see [6].

�eorem5.2 Each convex bodyK contains a unique ellipsoid ofmaximal volume.�is

ellipsoid is B
n
if and only if B

n
⊂ K and, for some integerm, there are points u1 , . . . , um

in S
n−1
∩ ∂K, where Sn−1

= ∂B
n
, and positive numbers c1 , . . . , cm , such that

c1u1 +⋯+ cmum = 0,(5.1)

and, for all x in R
n ,

x =
m∑
j=1

c j(x⋅u j)u j .(5.2)

Likewise, K is contained in a unique ellipsoid of minimal volume that isB
n
if and only if

K ⊂ B
n
, and, for some integer m, there are points u1 , . . . , um in Sn−1

∩ ∂K , and positive
numbers c1 , . . . , cm , such that (5.1) and (5.2) hold.

We now determine the isometry group for the norm ∥ ⋅ ∥p when 1 ≤ p ≤ +∞ and
p ≠ 2 by making use of �eorem 5.2.

�eorem 5.3 If 1 ≤ p ≤ +∞ and p ≠ 2, then the isometry group I(Rn , dp) is the group
of n × n signed permutation matrices.

�us, for p ≠ 2 the group of isometries for dp is independent of p, and f ∶Rn → R
n

is an isometry of ∥ ⋅ ∥p if and only if there is a signed permutation matrix A with
f (x) = Ax t , where x = (x1 , . . . , xn).
Proof Immediately a�er introducing signed permutation matrices, we observed
that for any signed permutation matrix A, the map x ↦ Ax t belongs to I(Rn , dp). It
remains to show that every isometry of dp is given by a permutation matrix. Let Bp

denote the closed unit ball for ∥ ⋅ ∥p on R
n ; of course, B2 = B

n
.

We will use �eorem 5.2 with K = Bp , m = 2n,

c1 = ⋯ = c2n =
1
2 , and {u1 , . . . , u2n} = {e1 ,−e1 , . . . , en ,−en}.
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Because ∥u j∥p = 1 = ∥u j∥2, it is evident that u j ∈ S
n−1
∩ ∂Bp for all j. As (1/2)e j +(1/2)(−e j) = 0 for all j, it is clear that (5.1) holds. For x ∈ Rn , the identity x =∑n

j=1(x ⋅ e j)e j implies that (5.2) holds with c j = 1/2 for all j.
�e remainder of the proof naturally separates into the cases 2 < p ≤ +∞ and 1 ≤

p < 2. In both cases, we use the elementary inequality ∥x∥q ≤ ∥x∥p , which holds for
0 < p < q ≤ +∞. First, suppose that 2 < p ≤ +∞. �e inequality ∥x∥p ≤ ∥x∥2 implies

that B
n
⊂ Bp . �erefore, �eorem 5.2 implies that B

n
is the John inellipsoid for the

convex body Bp . �en Lemma 5.1 guarantees that every dp-isometry is a Euclidean
isometry.

Next, we prove that every dp-isometry is given by a signed permutation matrix.
We show that

{e1 ,−e1 , . . . , en ,−en} = ∂Bp ∩ S
n−1 .(5.3)

We already know that the le� side is a subset of the right side. In order to prove (5.3),
it is sufficient to show that if ∥x∥2 = 1 = ∥x∥p , equivalently, if

x21 +⋯+ x
2
n = 1 = ∣x1∣p +⋯+ ∣xn ∣p ,(5.4)

then x = ±e j for some j. First, suppose that 2 < p < +∞. If two of the x j are non-
zero, we can assume that they are x1 and x2. �en ∣x1∣p < ∣x1∣2 < 1 and ∣x2∣p < ∣x2∣2 < 1
while ∣x j ∣p ≤ ∣x j ∣2 for j = 3, . . . , n. �is violates (5.4), so if 2 < p < +∞, then x = ±e j
for some j. We leave the case p =∞ to the reader. �e fact that the identity (5.3)
holds implies that any Euclidean isometry of dp leaves the set {e1 ,−e1 , . . . , en ,−en}
invariant, and it is easy to see that this implies that f is a signed permutation matrix.

Now assume that 1 ≤ p < 2. �en ∥x∥2 ≤ ∥x∥p and so Bp ⊂ B
n
. Hence, �eorem

5.2 implies thatB
n
is the John circumellipsoid for Bp , and Lemma 5.1 guarantees that

every dp-isometry is a Euclidean isometry. As in the case 2 < p, it suffices to show
that (5.3) holds, and for this we need to verify that if (5.4) holds, then x = ±e j . If two
of the x j are non-zero, we can assume that they are x1 and x2. �en ∣x1∣2 < ∣x1∣p <
1 and ∣x2∣2 < ∣x2∣p < 1 while ∣x j ∣2 ≤ ∣x j ∣p for j = 3, . . . , n. �is contradicts (5.4), so if
1 ≤ p < 2, then x = ±e j for some j. As in the case 2 < p, this implies that when 1 ≤ p < 2,
every isometry of dp is a signed permutation matrix. ∎

6 Regular Polygons

In a similar elementary manner, we determine in the isometry group for a norm on
R

2 with closed unit ball equal to the closed regular 2k-gon P2k inscribed in the unit
circle and having one vertex at (1, 0). It is simpler to use complex notation in this
situation, so we do.

Let ∥z∥∗ be a norm on C, the complex plane, with closed unit ball P2k . Geometri-

cally, it is evident that B
2
is the John circumellipse for P2k , so Lemma 5.1 implies that

every isometry for ∥z∥∗ is given by an orthogonal matrix. We explicitly verify that B
2

is the John circumellipse. �e set S1
∩ ∂P2k consists of the vertices of P2k ; that

is, u j = exp( j2πi/(2k)) = exp( jπi/k) = ω j , 0 ≤ j ≤ 2k − 1, where ω = exp (πi/k)We
explicitly verify (5.1) and (5.2). Because the centre ofmass of the (2k)-th roots of unity
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is the origin, (5.1) holds for any choice of the same positive constant c j for all j. Now
we verify (5.2). For z ∈ C,

2k−1∑
j=0

(z ⋅ u j)u j =

2k−1∑
j=0

(z ⋅ ω j)ω j
=

2k−1∑
j=0

Re (zω j)ω j

=
1
2

2k−1∑
j=0

(zω j
+ zω j)ω j

= kz.

�us, c j = 1/k, 0 ≤ j ≤ 2k − 1, works in (5.2).

�eorem 6.1 �e group I(C, d∗) is the dihedral group D2k , the Euclidean group of
isometries for P2k .

Proof Because the closed unit disc is the John circumellipse forP2k , every isometry

for d∗ is given by an orthogonalmatrix that leaves the setB
2
invariant.�is Euclidean

isometry leaves the polygon P2k invariant, so it belongs to the dihedral group D2k ,
which is the Euclidean symmetry group of P2k and has 4k elements. Conversely, we
show that each f ∈ D2k is an isometry of d∗. Note that f ∈ D2k maps ∂P2k onto itself,
so ∥u∥∗ = 1 and ∥ f (u)∥∗ = 1 for all u ∈ ∂P2k . For any nonzero z ∈ C, u = z/∥z∥∗ lies
on ∂P2k . �erefore, for nonzero z ∈ C, z = tu, where t = ∥z∥∗ ≥ 0, and so

∥ f (z)∥∗ = ∥ f (tu)∥∗ = ∥t f (u)∥∗ = t∥ f (u)∥∗ = t = ∥tu∥∗ = ∥z∥∗ .
Hence, f is also a d∗ isometry. ∎

When k is even, this result is a special case of the classification of symmetric norms
on R

n [21, �m. 1]. A norm ∥x∥∗ on R
n is symmetric if ∥Px∥∗ = ∥x∥∗ for all x ∈ Rn

and all n × n signed permutation matrices P. When n = 2, a symmetric norm satisfies∥ ± e1∥∗ = ∥ ± e2∥∗. If ∥x∥∗ has closed unit ball equal to P2k , then ±e2 are vertices for
P2k if and only if k is even. Consequently, [21, �m. 1] only gives the isometry groups
for symmetric norms with closed unit ball is equal to P4k . Our elementary approach
produces the answer for any norm with unit ball P2k , k ≥ 1.
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