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Turbulent vortex dynamics is investigated in triply periodic turbulent flow with Kida’s
high symmetry (Kida, J. Phys. Soc. Japan, vol. 54, 1985, pp. 2132–2136) by means
of unstable periodic motion representing both the statistical and dynamical properties
of turbulence (van Veen et al., Fluid Dyn. Res., vol. 38, 2006, pp. 19–46). In the
periodic motion, the large-scale columnar vortices, the smaller-scale vortices and
the large-amplitude axial waves on the large-scale columnar vortices are detected.
In terms of mutual dynamical interaction between the large-scale columnar vortices
and smaller-scale vortices, we demonstrate a cyclic process of excitation of the
axial waves, which leads to large-amplitude fluctuations of the total kinetic energy
and enstrophy. This cyclic process is characterised by three distinct phases and is
therefore reminiscent of the regeneration cycle of near-wall turbulence structures
(Hamilton et al., J. Fluid Mech., vol. 287, 1995, pp. 317–348). Notably, such
oscillatory behaviour is observed even in freely decaying turbulence as a consequence
of the instantaneous energy transfer from smaller to larger scales.

Key words: isotropic turbulence, vortex dynamics, vortex interactions

1. Introduction
Nowadays, from results of laboratory experiments (e.g. Crow & Champagne 1971;

Brown & Roshko 1974) and numerical simulations (e.g. She, Jackson & Orszag 1990;
Jiménez et al. 1993), it has been widely recognised that, although fully developed
turbulence exhibits complicated spatio-temporal behaviour, it includes remarkable
spatially coherent structures. Understanding the dynamics of such coherent structures
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is one of the most important issues of turbulence research. Although well-known
statistical laws of turbulence such as Kolmogorov’s similarity theory (Kolmogorov
1941) have been presented, we are still far from understanding the dynamical
properties of turbulence structures associated with such statistical properties.

In order to tackle this important problem, we need to overcome the problems
associated with two major features of turbulence: the irreproducibility and the
complexity of instantaneous flow fields. One idea for overcoming the problems
associated with the former feature is to investigate invariant solutions, or skeletons of
turbulence, which represent the turbulent state very well. Examples of such invariant
solutions are travelling waves and time-periodic solutions (for an overview, see
Kawahara, Uhlmann & van Veen 2012). Early work along those lines was done by
Kawahara & Kida (2001), who found two unstable temporally periodic solutions to the
Navier–Stokes equation in a plane Couette system, one of which can reproduce both
the statistics and dynamics of turbulence, i.e. the regeneration mechanism of near-wall
turbulence structures (Hamilton, Kim & Waleffe 1995; Waleffe 1997). Subsequently,
van Veen, Kida & Kawahara (2006) found unstable periodic orbits for triply periodic
Kida–Pelz flow. One of these orbits, namely the one whose time period is the longest,
also reproduces certain statistics of turbulence, such as the mean energy dissipation
rate and energy spectrum. We will refer to the longest solution as having period 5
in reference to its discrete period on a Poincaré plane of intersection as used by van
Veen et al. (2006). Since the state point of the turbulent motion frequently approaches
the periodic orbit in phase space, it is regarded as being embedded in the turbulent
attractor; in other words, it is representative of turbulence (van Veen et al. 2006).
Crucially, it is invariant in phase space so that any instantaneous flow fields along it
are reproducible. Turbulence dynamics along a turbulent time segment is, on the other
hand, irreproducible and, moreover, it is uncertain whether the selected time segment
can be representative of turbulence – it may be transient or intermittent. The unstable
periodic orbit, which is representative of turbulence, is unique, being computed as
the solution to a boundary value problem in both space and time, whereby we are
able to avoid the arbitrary selection of turbulent time series. Based on the above
points, investigating reproducible dynamics of turbulent coherent structures in the
time-periodic solution is meaningful. In so doing, we attempt to clarify the typical
vortex dynamics that produces the observed statistics of turbulence.

By using the period-5 motion, we are also able to reduce the problems associated
with the latter feature, i.e. the complexity of instantaneous flow fields of turbulence.
Since Kida’s high symmetry is imposed on the flow field of the periodic motion,
the number of degrees of freedom of fluid motion is greatly reduced. Kida (1985)
originally imposed the high-symmetry on turbulent flow fields to reduce computation
time and memory requirements when performing long computations to observe the
Kolmogorov spectrum with limited computational resources (Kida & Murakami
1987). It is also useful to investigate typical vortex dynamics in turbulence, especially
because it enables the central axes of the larger-scale vortices to be fixed in space,
where the larger-scale vortices appear as a consequence of an external forcing which
preserves a high-symmetric flow field.

By exploiting the fact that the central axes of the larger-scale vortices are fixed
in space, we discover oscillatory motions along the axis, namely, the axial waves.
The existence of axial waves on a columnar vortex and their importance have been
addressed in many previous studies (e.g. Kelvin (1880), Moore & Saffman (1972),
Leibovich & Kribus (1990), Melander & Hussain (1994), Verzicco, Jiménez & Orlandi
(1995), Miyazaki & Hunt (2000), Takahashi, Ishii & Miyazaki (2005), Fabre, Sipp
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& Jacquin (2006), Pradeep & Hussain (2010), and references therein). Moore &
Saffman (1972) considered infinitesimal waves on a uniform vortex with axial flow.
They successfully constructed the generalised equation for the motion of a vortex
filament; however, if vortex breakdown (Leibovich 1978) occurs, it is not applicable
because the approximations used in their work may fail. Subsequently, nonlinear axial
waves on columnar vortices have been investigated by means of numerical simulations.
By examining the dynamics of an axisymmetric vortical structure in an incompressible
viscous fluid, Melander & Hussain (1994) observed the variations of vortex core size
accompanied by alternations of low vorticity areas along the columnar vortex, which
they call ‘core dynamics’. Verzicco et al. (1995) demonstrated the temporal behaviour
of columnar vortices under the effect of an inhomogeneous straining field, where a
columnar vortex with a uniform (or almost uniform) core forms from several separate
vortex pieces through the nonlinear effect of axial pressure gradients, which will be
found to play an important role in our result.

To the best of our knowledge, our discovery of the axial waves is the first for
triply periodic flow. In this paper, by investigating typical vortex dynamics in the
reproducible flow, we will demonstrate a new concept of vortex dynamics, that is,
a vortex interaction mechanism for generating large-amplitude axial waves. In the
situation that such large-amplitude axial waves are sustained, the intensification
of the activity of large-scale swirling flows and the creation of smaller-scale
vortices are cooperatively supported. This cooperative support between coherent
structures is reminiscent of the regeneration cycle of near-wall turbulence structures
(Hamilton et al. 1995; Waleffe 1997). Importantly, along with the temporal changes
in the activity of the coherent structures, the globally averaged quantities also
fluctuate with large amplitude in time, where such quantities play significant roles
in turbulence theories such as Kolmogorov’s similarity hypothesis (Kolmogorov
1941). Large-amplitude temporal fluctuations of globally averaged quantities in forced
turbulence in a triply periodic cubic domain have been observed and investigated in
previous studies (Kerr 1990; Kida & Ohkitani 1992; van Veen 2005; Yasuda, Goto
& Kawahara 2014; Goto & Vassilicos 2015, 2016). Goto & Vassilicos (2015, 2016)
have shown that such temporal behaviour of the total energy dissipation rate follows a
new dissipation scaling law for non-equilibrium turbulent flows (Valente & Vassilicos
2012; Dairay, Obligado & Vassilicos 2015; Vassilicos 2015). To date, many classic
turbulence theories and models have been developed based on Richardson’s idea of
an energy cascade (Richardson 1922): energy injected at large scales is transferred to
smaller and smaller scales and it eventually dissipates at the smallest scale, sometimes
referred to as the Kolmogorov scale. In this context, smaller-scale motions may be
regarded as being statistically passive towards larger-scale motions. However, in the
vortex interaction mechanism, smaller-scale vortices cause axial vortex stretching
generating strong inhomogeneous axial pressure gradients which intensify the axial
waves and consequently the activity of the larger-scale vortices. This intensification
is relevant to the instantaneous backscattering of energy.

In the next section, we explain the numerical simulation methods for high-
symmetric flow and unstable periodic motion, i.e. the period-5 motion to be
investigated. In § 3, we will examine the larger-scale vortices and smaller-scale
vortices in the period-5 motion. In § 4, we discuss the cyclic energy transfer dynamics
and investigate temporal fluctuations of globally averaged quantities decomposed in
scales and directions by a multi-scale and multi-orientation decomposition, and then
detect intensely fluctuating regions of quantities decomposed into scales and directions,
some of which are relevant for the axial waves. Subsequently, the axial waves on the
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larger-scale vortex will be detected and we present our main result of this paper, i.e. a
vortex interaction mechanism in § 5. In § 6, we investigate decaying high-symmetric
turbulence starting with one instantaneous flow field taken from the period-5 motion,
which is separated from the effect of the continuous energy input, and study the
instantaneous energy backscattering feature of turbulence by looking at the temporal
behaviour of the primary quantities in Kolmogorov’s theory, i.e. the energy dissipation
rate and energy spectrum. Finally, our concluding remarks are given in § 7.

2. Numerical simulation and periodic orbit computation
In this study, we solve the incompressible Navier–Stokes equation using direct

numerical simulations (DNS). We consider the motion of an incompressible viscous
fluid in a triply periodic box 0< x1, x2, x3 6 2π, where x= (x1, x2, x3) represents the
Cartesian coordinate system and the fluid density ρ is a constant. If the velocity and
vorticity are expanded in the Fourier series of N3 terms as

u(x, t)=
∑

k

ũ(k, t)eik·x, ω(x, t)=
∑

k

ω̃(k, t)eik·x, ω̃i(k, t)= iεijkkjũk(k, t),

(2.1a−c)

where the summation is over all wave vectors k = (k1, k2, k3) such that −(1/2)N <
k1, k2, k3 6 (1/2)N, then the vorticity and continuity equations are

∂

∂t
ω̃i(k, t)= εijkkjklũkul(k, t)− ν|k|2ω̃i(k, t) (i= 1, 2, 3), (2.2)

kiũi(k, t)= 0, (2.3)

where ν = µ/ρ is the kinematic viscosity, µ being the coefficient of viscosity, εijk
is the permutation tensor and summation over repeated indices is implied. Using the
continuity equation to eliminate one component of vorticity, two scalar equations are
time-stepped using the fourth-order Runge–Kutta–Gill method. The nonlinear term is
computed using the pseudo-spectral method with the usual 2/3-rule for dealiasing.
Energy is input by fixing in time all Fourier modes with magnitude kF =

√
11

(hereinafter referred to as fixed modes). More precisely, we set

ũ1(1,±1,±3)
ũ1(−1,±3,±1)
ũ2(±3, 1,±1)
ũ2(±1,−1,±3)
ũ3(±1,±3, 1)
ũ3(±3,±1,−1)


=

i
8
,

ũ1(1,±3,±1)
ũ1(−1,±1,±3)
ũ2(±1, 1,±3)
ũ2(±3,−1,±1)
ũ3(±3,±1, 1)
ũ3(±1,±3,−1)


=−

i
8

(any double sign), (2.4)

and the corresponding velocity field in physical space is represented by

u1(x1, x2, x3)= sin(x1)[cos(3x2) cos(x3)− cos(x2) cos(3x3)],

u2(x1, x2, x3)= sin(x2)[cos(3x3) cos(x1)− cos(x3) cos(3x1)],

u3(x1, x2, x3)= sin(x3)[cos(3x1) cos(x2)− cos(x1) cos(3x2)].

 (2.5)

Figure 1 shows streamlines of this velocity field in the fundamental box whose domain
is 0 6 x1, x2, x3 6 π/2, where the swirling flow around the diagonal connecting the
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x3
x3

x1

(0, 0, π/2)

(0, π/2, 0)
x1

O

A

x2
x2

FIGURE 1. (Colour online) Streamlines of the velocity field (2.5) in the fundamental box
whose domain is 0 6 x1, x2, x3 6 π/2, viewed from two different angles. The large-scale
swirling flow around the diagonal connecting the origin O to the point A (π/2, π/2, π/2)
is observed. Velocity is zero on the diagonal.

origin O to the point A(π/2,π/2,π/2) is observed. Note that velocity is zero on the
diagonal; therefore, the axial waves which will be discussed in § 5 are not directly
generated by the energy input mechanism.

The energy input rate can be computed from

e(t)=
∑
|k|=kF

ũi(k, t)
∂

∂t
ũi(k, t), (2.6)

where the time derivative on the right-hand side is computed from (2.2) before fixing
the forcing modes, i.e. the fixed modes. Defining that E(k, t) is the three-dimensional
energy spectrum at wavenumber k = |k|, the total kinetic energy K(t) and total
enstrophy Q(t) are computed as

K(t)=
∫
∞

0
E(k, t) dk=

1
(2π)3

∫
1
2
|u(x, t)|2 dx=

3
2

u′(t)2, (2.7)

Q(t)=
∫
∞

0
k2E(k, t) dk=

1
(2π)3

∫
1
2
|ω(x, t)|2dx=

3
2
ω′(t)2, (2.8)

where u′(t) and ω′(t) are the root mean square velocity and vorticity, respectively. The
total energy dissipation rate is given by ε(t)= 2νQ(t). We consider three characteristic
length scales of turbulence: the integral length scale L(t), the Taylor microscale λ(t)
and the Kolmogorov microscale η(t). The integral length scale L(t) is estimated by

L(t)=
π

2u′(t)2

∫
∞

0
k−1E(k, t) dk, (2.9)

and the Taylor microscale λ(t) and Kolmogorov microscale η(t) are, respectively,
defined as

λ(t)=

√
10νK(t)
ε(t)

, (2.10)

η(t)= ν3/4ε−1/4(t). (2.11)
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FIGURE 2. (Colour online) Time evolution of the period-5 motion with a resolution of
5123 at ν = 0.0035. 〈Rλ〉 = 69.6. 0 6 t/T 6 9.85. The red solid and blue dashed lines
indicate the total kinetic energy K(t) and the total energy dissipation rate ε(t), respectively.

The Reynolds number based on the Taylor microscale is defined as

Rλ(t)=

√
10
3

1
ν

K(t)
√
Q(t)
=

√
20
3ν

K(t)
√
ε(t)
=

u′(t)λ(t)
ν

. (2.12)

The large-eddy turnover time T is calculated by T = 〈L〉/〈u′〉, where 〈·〉 denotes the
time average.

We impose Kida’s high symmetry on the flow field (Kida 1985). The resulting
solutions are invariant under π/2 rotations around the three axes x1 = x2 = π/2,
x2 = x3 = π/2 and x3 = x1 = π/2 as well as under reflections in the three planes
x1 = π, x2 = π and x3 = π. The governing equations (2.2) are equivalent under
these symmetry operations. In this study, we use the simulation code which only
needs to compute a fraction, 1/192, of the Fourier coefficients in the expansions
given by (2.1). Because of the reduction, any high-symmetric initial condition will
give rise to a high-symmetric flow field for all time. Note that, if running DNS of
triply periodic flow without the reduction, such a spatial symmetry will be kept by
releasing numerical round-off errors by imposing the high-symmetry at each time
step. Otherwise, it will be eventually broken because the period-5 motion which we
investigate is linearly unstable (see van Veen et al. 2006).

The corresponding reduction in computation time and memory requirements was
exploited in van Veen et al. (2006) to compute time-periodic solutions, e.g. solutions
that satisfy ω(x,Tp)=ω(x, 0) for some period Tp, by Newton iteration. Here, we have
extended those computations to higher spatial resolution from 1283 to 5123 by using
Newton–Krylov iteration (Sánchez et al. 2004). The small-scale dissipative structures
are well-resolved in the period-5 motion with higher spatial resolution (5123) so that
our dynamical analysis when using it is more convincing. The time evolution of the
time-periodic solution with the higher spatial resolution (5123) at ν = 0.0035 (〈Rλ〉 =
69.6) is shown in figure 2. The time period is 9.85T . The time averaged length scales
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FIGURE 3. (Colour online) Normalised time-averaged energy dissipation rate, 〈ε〉/[〈u′〉3/〈L〉],
as a function of 〈Rλ〉. The closed squares indicate the long-term mean values of turbulent
states with a resolution of 1283 and 2563. The open squares indicate the mean values
for the period-5 motion with a resolution of 1283. The double circle indicates the mean
value for the period-5 motion with a resolution of 5123 at ν = 0.0035, which is used for
investigation.

are 〈L〉 = 0.634, 〈λ〉 = 0.429 and 〈η〉 = 0.0261 so that the corresponding wavenumbers
are kL = 2π/〈L〉 = 9.92, kλ = 2π/〈λ〉 = 14.6 and kη = 2π/〈η〉 = 240.

We observe in figure 2 that both K(t) and ε(t) oscillate significantly. Note that these
significant fluctuations are contributed by all Fourier modes with larger wavenumbers
than kF=

√
11 because of the fixing feature of the energy input mechanism (see (2.4)).

We also find that K(t) has five peaks and peaks of ε(t) come after those of K(t).
This time lag is due to energy transfer events from larger to smaller scales (van Veen
et al. 2006). Since the temporal standard deviation σε of ε of the period-5 motion is
comparable to that of turbulent motion, where σε/[〈u′〉3/〈L〉] is 0.0253 for the former
and 0.0480 for the latter, it is reasonable to investigate and discuss an oscillation
mechanism by means of the period-5 motion.

Figure 3 gives a comparison of energy dissipation rate between high-symmetric
turbulence and the time-periodic solutions. Clearly, the time-periodic solutions shown
in the figure reproduce the time-mean energy dissipation rate of turbulence. A
comparison of the time-averaged one-dimensional longitudinal energy spectra 〈E||〉(k)
of turbulence and periodic motion with a resolution of 5123 is shown in figure 4,
where E||(k1, t) = (1/2)

∑
k2,k3
|ũ1(k1, k2, k3, t)|2. The flow is well-resolved and the

energy spectra are close to each other.
Apart from reducing the number of Fourier modes in the simulations, the imposed

symmetries have the effect of fixing in space the larger-scale vortex, the central axis
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5/

4 )

FIGURE 4. Time-averaged one-dimensional longitudinal energy spectra. The closed
squares indicate the time-averaged spectrum of a turbulent state at ν = 0.0035 with a
resolution of 5123. The open triangles indicate that of the period-5 motion at ν = 0.0035
with a resolution of 5123. The dash-dotted line denotes a −5/3 slope.

of which coincides with the diagonal of a fundamental box. As for the fundamental
box whose domain is 06 x1, x2, x3 6π/2, the central axis coincides with the diagonal
connecting the origin O to the point A(π/2, π/2, π/2). Besides that, the complexity
of the time evolution of the flow field in a fundamental box is further reduced because
of the 2π/3 rotational symmetry around the central axis.

Finally, we discuss briefly the information on the structure of the unstable
eigenvectors or the stability properties of the steady solution at ν = 0.0035.
We obtained the nonlinear equilibrium solution numerically by tracking a stable
equilibrium solution for a large viscosity in ν down to ν = 0.0035 by using the
arc-length continuation method and computed its leading eigenvector. The most
unstable eigenvector contains most energy (by a factor greater than 10) in the forcing
wavenumber shell |k| = kF. The solution has 18 unstable eigenvalues in total and
seems unlikely to have much influence on the dynamics. Therefore, the steady
solution does not have a significant impact on our proposed mechanism, which will
appear in § 5.2.
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x3

eœ ez

er

x1

(0, 0, π/2)

(π/2, 0, 0)

O

A

(π/2, π/2, 0)x

z r

FIGURE 5. (Colour online) Cylindrical coordinate system (r, θ, z) in the fundamental box
0 6 x1, x2, x3 6π/2 and the corresponding three unit vectors er, eθ and ez.

3. Vortical structures in high-symmetric turbulence
In this section, we shall examine the vortical structures, i.e. the larger-scale

vortices and smaller-scale vortices in high-symmetric turbulence at moderate Reynolds
numbers. These vortices play an important role in the vortex interaction mechanism.

3.1. The larger-scale vortices
As previously seen in figure 1, the large-scale swirling flow around the diagonal
of a fundamental box is sustained by fixing the amplitude of a number of Fourier
coefficients in time (see (2.4)). Taking into account the flow characteristics, we
decompose the velocity vector u and the vorticity vector ω into three mutually
perpendicular components in a cylindrical coordinate system (r, θ, z) whose
longitudinal axis is defined by the diagonal line of a fundamental box (see figure 5).
In the cylindrical coordinate system, velocity vector u is expressed as u= (ur, uθ , uz),
where ur is the radial velocity, uθ the circumferential velocity, uz the axial velocity.
They are obtained by solving the following system of linear equations,ur

uθ
uz

= (er eθ ez
)−1

u1
u2
u3

 , (3.1)

where the 3 × 3 matrix, which is dependent upon x, is composed of the three unit
vectors: er = r/|r| = (x− z)/|x− z|, eθ = (z× r)/|z× r| and ez = z/|z| = 1/

√
3(1, 1, 1).

Vorticity vector ω is similarly expressed as ω = (ωr, ωθ , ωz), where ωr is the radial
vorticity, ωθ the circumferential vorticity and ωz the axial vorticity. Figure 6 shows
the time evolutions of 〈u2

r 〉f , 〈u
2
θ 〉f and 〈u2

z 〉f as well as 〈ω2
r 〉f , 〈ω

2
θ 〉f and 〈ω2

z 〉f for the
period-5 motion, where 〈·〉f indicates the spatially averaged value over the fundamental
box (0 6 x1, x2, x3 6 π/2). Over the whole time period, the temporal mean of 〈u2

θ 〉f
is much larger than those of 〈u2

r 〉f and 〈u2
z 〉f , and that of 〈ω2

z 〉f is much larger than
those of 〈ω2

r 〉f and 〈ω2
θ 〉f . It is therefore considered that, in a fundamental box, the

swirling flow around the diagonal is dominant and the corresponding columnar vortex
is the dominant flow structure. Hereinafter, we shall refer to the columnar vortex as
the larger-scale vortex. It is statistically sustained by the external forcing preserving a
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FIGURE 6. (Colour online) Time evolutions of the spatially averaged quantities over the
fundamental box (0 6 x1, x2, x3 6 π/2). (a) Blue dash-dotted, 〈u2

r 〉f /[2〈K〉]; green solid,
〈u2
θ 〉f /[2〈K〉]; red dashed, 〈u2

z 〉f /[2〈K〉]. (b) Blue dash-dotted, 〈ω2
r 〉f /[2〈Q〉]; green solid,

〈ω2
θ 〉f /[2〈Q〉]; red dashed, 〈ω2

z 〉f /[2〈Q〉].

high-symmetric flow field (Kida 1985). Figure 6(a) also shows that 〈u2
θ 〉f fluctuates

around its temporal mean with large amplitude and shows five peaks. The global
intensity of the large-scale swirling flow over the fundamental box becomes active and
quiescent alternately corresponding to the time variation of 〈u2

θ 〉f . Incidentally, the last
two large-amplitude oscillations of 〈ω2

θ 〉 correspond to generation and circumferential
vortex stretching of strong smaller-scale vortices, which will be presented in the next
subsection (§ 3.2).

The period-5 motion includes active and quiescent periods of time. Since we will
later discuss the closed regenerative cycle of the large-amplitude axial waves, which
is reminiscent of the regeneration cycle of near-wall turbulence structures (Hamilton
et al. 1995), it is convenient to have a well-defined period of time. In this paper,
by focusing on the time evolution of the global intensity of the large-scale swirling
flow over the fundamental box, we define a single cycle as the time period from
one time when 〈u2

θ 〉f attains a local maximum to the time when it attains the next
local one. Figure 7 shows the time period (6.27 6 t/T 6 9.18) including one of
the five cycles during which the most intense energy dissipation event takes place.
During this time period, 〈u2

θ 〉f attains its local maxima at t = t1 and t7, and its local
minimum at t = t4; ε attains its local maximum at t = t2 and its local minimum at
t = t5. This time period will be used when investigating the oscillatory evolution
in detail in § 5. Here, it is important to emphasise that, although we select it for
investigation, our proposed mechanism, a vortex interaction mechanism, plays an
important role in generating global oscillations whether or not the period includes
the most intense energy dissipation event. Indeed, in § 6 we will find its significance
even in decaying high-symmetric turbulence whose turbulence intensity is significantly
decreasing with time.

3.2. The smaller-scale vortices
3.2.1. Classification of smaller-scale vortices

Here, we shall introduce the smaller-scale vortices, the dynamics of which is
spatio-temporally simplified because of the symmetry constraint. We shall consider
smaller-scale vortices in the fundamental box (0 6 x1, x2, x3 6π/2). At this moderate
Reynolds number (〈Rλ〉 = 69.6), we can classify all the smaller-scale vortices into
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FIGURE 7. (Colour online) Time evolutions of 〈u2
θ 〉f (green solid line) and the total energy

dissipation rate ε (blue dashed line) (6.27 6 t/T 6 9.18). The seven dashed straight lines
from left to right indicate times t1 − t7: t1 = 6.74T , t2 = 7.04T , t3 = 7.40T , t4 = 7.66T ,
t5 = 8.09T , t6 = 8.38T and t7 = 8.70T . 〈u2

θ 〉f attains its local maxima at t= t1 and t7 and
its local minimum at t= t4. ε attains its local maximum at t= t2 and its local minimum
at t= t5.

two types, both of which are generated and stretched in the strong straining fields
appearing between the larger-scale vortices. Vortices of one type are created in the
strong straining fields near the origin O while vortices of the other type are created
in those near the point A(π/2, π/2, π/2). Recall that the generation mechanism of
smaller-scale vortices in strong straining regions between the larger-scale vortices was
previously reported by means of DNS of homogeneous isotropic turbulence at higher
Reynolds numbers (Goto 2008, 2012; Leung, Swaminathan & Davidson 2012; Goto,
Saito & Kawahara 2017) and is not specific to high-symmetric turbulence. Once they
are created in such a way, the former vortices start to move towards the origin O and
the latter towards the point A. Therefore, we hereinafter refer to the former group
of vortices as SV-O and the latter as SV-A. Note that both the origin O and the
point A are stagnation points of the velocity vector field. In order to grasp the spatial
arrangement of smaller-scale vortices, we plot in figure 8 an instantaneous flow field
of the period-5 motion in the 64 fundamental boxes (−π6 x1, x2, x3 6π). The cubic
domain drawn by thick black lines is −π/4 6 x1, x2, x3 6 π/4, whose centre is the
origin O, towards which the SV-O vortices converge. The cuboid domain drawn by
thick red lines is the two fundamental boxes (0 6 x1 6 π and 0 6 x2, x3 6 π/2). In
this domain, we observe not only the SV-O but also SV-A vortices which converge
towards the point A.

These vortices are similar to those in decaying high-symmetric turbulence which
were previously found and investigated by Boratav & Pelz (1994, 1995). They
performed DNS of decaying turbulence which starts with the initial velocity field
(2.5), and observed the smaller-scale vortices moving towards the stagnation points.
In the following, we will consider time evolutions of the SV-O and SV-A vortices in
high-symmetric flow with the external forcing (2.4).
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x2

x3

x1

A

(π, π, π)

(-π, -π, -π)

O

FIGURE 8. (Colour online) Snapshot of the flow field of the period-5 motion taken at
t/T = 4.47. The largest cubic domain drawn by thin black lines (64 fundamental boxes) is
−π6 x1, x2, x3 6π. The cubic subdomain drawn by thick black lines is −π/46 x1, x2, x3 6
π/4, whose centre is the origin O, which will appear in figure 9. The cuboid subdomain
drawn by thick red lines is 0 6 x1 6 π and 0 6 x2, x3 6 π/2, which will be shown
in figure 10. The smaller-scale vortices are visualised by grey-coloured isosurfaces of
|ω|2/〈ω′〉2 = 12, but they are coloured in green inside the subdomains. The blue-coloured
plane including three points O, A (π/2, π/2, π/2) and (0, π/2, 0) will be used in
figures 17 and 18.

3.2.2. Time evolutions and creation mechanisms of the SV-O and SV-A vortices
Firstly, we shall consider the time evolution and creation mechanism of the SV-O

vortices. Figure 9 shows the time evolution of the SV-O vortices visualised by
isosurfaces of enstrophy and the larger-scale vortices visualised by isosurfaces of low
pressure. To provide the information of the three-dimensional velocity field, we also
plot streamlines of the instantaneous velocity field. Since the velocity field has three
mirror symmetries with respect to three planes x1 = 0, x2 = 0 and x3 = 0, the origin
O is a stagnation point of the velocity vector field. This point is surrounded by the
eight large-scale swirling flows with different orientations. Because of the arrangement
of the larger-scale swirling flows, strong straining fields tend to be generated near
three planes x1 = 0, x2 = 0 and x3 = 0. The SV-O vortices are stretched and created
in the straining fields generated by local high-speed rotational motions around the
central axis of the larger-scale vortices (see figure 9a); they appear in the form of
counter-rotating vortex pairs (dipoles) (figure 9b). It is confirmed that, once they
are created, the SV-O vortices start to converge towards the origin O (figure 9b–e).
This convergence of the SV-O vortices has been explained in terms of the mutual
induction between the 12 vortices (six dipoles) (Boratav & Pelz 1995; Pelz 2001;
Kimura 2010). In the late stage of their convergence, they dissipate and diminish
strongly affected by viscosity; in the meantime, the new SV-O vortices are generated
far from the origin O as seen in figure 9( f ). This is the beginning of the next cycle.

Secondly, we discuss the SV-A vortices. In a fundamental box, we can only observe
parts of the SV-A vortices. In order to observe the whole picture of the individual
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FIGURE 9. (Colour online) Snapshots of the flow fields in the cubic domain −π/4 6
x1, x2, x3 6 π/4 whose centroid is the origin O. They are taken at (a) t = 8.29T ,
(b) 8.78T , (c) 9.14T , (d) 9.32T , (e) 9.45T , ( f ) 9.68T . The grey and green isosurfaces
indicate pressure p/[ρ〈u′〉2] = −2 and |ω|2/〈ω′〉2 = 18, respectively. The streamlines of
the instantaneous velocity fields are shown, where the red ones are in the domain 0 6
x1, x2, x3 6π/4 and the blue ones are in the domain 0 6 x1, x3 6π/4 and −π/4 6 x2 6 0.
The mirror symmetries with respect to the three planes x1 = 0, x2 = 0 and x3 = 0 are
observed. (a) The arrows show the rotation directions of the large-scale swirling flows.
(b) The arrows indicate a counter-rotating vortex pair (a dipole).

SV-A vortices, it is necessary to consider neighbouring fundamental boxes. This is
because these vortices cross a boundary plane between two fundamental boxes. As for
the fundamental box whose spatial domain is 0 6 x1, x2, x3 6 π/2, the SV-A vortices
cross three planes: x1 = π/2, x2 = π/2 and x3 = π/2. In the following, therefore, we
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FIGURE 10. (Colour online) Snapshots of the flow fields in the two neighbouring
fundamental boxes (0 6 x1 6 π and 0 6 x2, x3 6 π/2). They are taken at (a) t = 8.06T ,
(b) 8.19T , (c) 8.37T , (d) 8.51T , (e) 8.82T and ( f ) 9.40T . The light-grey, dark-grey
and green isosurfaces indicate p/[ρ〈u′〉2] = −2, SijSij/〈ω

′
〉

2
= 12 and |ω|2/〈ω′〉2 = 18,

respectively. The red streamlines of the instantaneous velocity fields are shown. (a) The
arrows show the rotation direction of the large-scale swirling flows. (c) The elliptic area
denoted by B indicates the region where strong straining fields are generated. (d) The
arrows indicate a counter-rotating vortex pair (a dipole). (e) The double arrow shows the
directions of stretching by the larger-scale vortices. The SV-A vortices are observed in the
shape of the letter S being wrapped around the larger-scale vortices.

shall consider the flow field in the two neighbouring fundamental boxes whose domain
is 0 6 x1 6 π and 0 6 x2, x3 6 π/2, where the whole picture of the SV-A vortices
crossing the plane x1 =π/2 is observed.

Figure 10 shows the time evolution of the SV-A vortices. The two larger-scale
vortices in the left and right fundamental boxes are visualised by the light-grey
isosurfaces of low pressure surrounded by streamlines of the instantaneous velocity
field, and the SV-A vortices are visualised by the green isosurfaces of enstrophy; the
strong straining flow fields are visualised by the dark-grey isosurfaces of SijSij, where
Sij = 1/2(∂ui/∂xj + ∂uj/∂xi) is the strain-rate tensor. The boundary plane x1 = π/2
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between the two adjacent fundamental boxes is located between the two identical
large-scale swirling flows with different orientations. When local rotational motions
near the point A start to get faster, strong straining fields are generated near the
plane x1 = π/2 (see the region B in figure 10c). In the vicinity of the strong strain
fields, the two SV-A vortices are created in the form of a counter-rotating vortex
pair (a dipole) and converge towards the stagnation point A being rolled up by the
larger-scale vortices (a counter-rotating vortex pair is denoted by the yellow arrows
in figure 10d). This convergence may be caused by the mutual induction of the SV-A
vortices as in the case of the SV-O vortices. As a result of being wrapped around
the larger-scale vortex, the isosurfaces of enstrophy are formed in the shape of the
letter S (see figure 10e). Eventually, the SV-A vortices dissipate because of viscosity.
Although not shown in figure 10, a total of 24 SV-A vortices (12 dipoles) in the
eight neighbouring fundamental boxes approach the stagnation point A.

Note that, although we have selected to demonstrate the six snapshots which
are taken from one of the five cyclic events, qualitatively similar spatio-temporal
evolutions of SV-O and SV-A vortices are also observed in the other events.

4. Cyclic energy transfer dynamics and the origin of fluctuations
In this section, we shall further investigate features of temporal oscillations of the

period-5 motion and discuss their relation to the observed primary flow structures: the
larger-scale and smaller-scale vortices.

4.1. Cyclic energy transfer dynamics
In figure 11(a), we show the time evolution of three-dimensional energy spectrum
E(k, t) of the period-5 motion, as was shown by van Veen et al. (2006). This
contour plot demonstrates that fluctuating energy is transferred from smaller to larger
wavenumbers in the high-wavenumber dissipation range (i.e. forward energy transfer).
Our new finding in this plot is the presence of large-amplitude temporal fluctuation
in E(k = 6, t), which has five peaks at times t = 0.0793T , 1.95T , 4.02T , 5.95T and
7.75T . Here, the wavenumber k = 6 is smaller than kL and kλ by a factor of 1.65
and 2.43, respectively, and about double the forcing wavenumber (kF =

√
11). It is

important to mention that intense forward energy transfer events are confirmed after
the maximum peaks of E(k = 6, t) by ridges of contour lines of energy spectrum
(figure 11a).

The temporal fluctuation of E(k=6, t) is plotted in figure 11(b) alongside with those
of K(t), ε(t) and 〈u2

θ 〉f (t). The local maxima of E(k = 6, t) are located between two
adjacent times which take a local maximum value of K(t), ε(t) and 〈u2

θ 〉f (t). The time
period of oscillation in E(k= 6, t) and the time lag of oscillations of 〈u2

θ 〉f (t) relative
to E(k= 6, t) are, respectively, estimated by the first peak of auto-correlation function
of time series of E(k = 6, t) and that of cross-correlation function between those of
E(k = 6, t) and 〈u2

θ 〉f (t), where the former is 2.02T and the latter is 0.896T . This
time lag and our qualitative observation of the cyclic intense forward energy transfer
events in figure 11(a) suggest to us that the increase of E(k= 6, t) subsequently leads
to those of 〈u2

θ 〉f (t), K(t) and ε(t) through an intense forward energy transfer and that
the excitation of E(k= 6, t) is a key ingredient in the cyclic energy transfer dynamics.

4.2. Scale-by-scale anisotropic fluctuations
The three-dimensional energy spectrum E(k, t), which has been discussed above, is
an orientation-averaged quantity in wave space, for a given wavenumber k. Note
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FIGURE 11. (Colour online) (a) Time evolution of energy spectrum of the period-5
motion. The horizontal and longitudinal axes represent the time and wavenumber,
respectively. The contours are not shown in the wavenumber range beyond k = 70
for clarity. (b) Temporal fluctuations of global quantities around their temporal mean
normalised by their temporal standard deviation. The grey, green, red and blue lines
correspond to E(k = 6, t), 〈u2

θ 〉f (t), K(t) and ε(t), respectively. (a,b) The five dashed
straight lines indicate the times when E(k = 6, t) attains its local maximum. The times
are t= 0.0793T , 1.95T , 4.02T , 5.95T and 7.75T from left to right.

that it does not include any information on anisotropic fluctuations because of the
orientation average. So far we have found that the flow is globally anisotropic and
directional in the fundamental box; the axis of the larger-scale vortex is oriented in
the z-direction and the smaller-scale vortices which are generated in the straining
regions appearing between larger-scale vortices also seem to have some preferential
orientations (see figures 9 and 10). Taking into account such a directional dependency
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FIGURE 12. (Colour online) Time evolutions of the directionally decomposed energy
spectra and the non-decomposed energy spectrum. The blue, green, red and black lines
correspond to Er(k= 6, t), Eθ (k= 6, t), Ez(k= 6, t) and Etot(k= 6, t), respectively.

in scales, we investigate the preferential directions of fluctuations of each mode so as
to find a clearer connection between the observed coherent structures and anisotropic
fluctuations. To attempt this, we introduce a multi-scale and multi-orientation
decomposition: velocity and vorticity fields are decomposed into Fourier modes
and three mutually orthogonal directions defined in the cylindrical coordinate system
(figure 5).

For the decomposition, we first compute kth-mode velocity u(k)(x, t) and kth-mode
vorticity ω(k)(x, t) in the Cartesian coordinate system which are, respectively, written
as

u(k)(x, t)=
∑

k−1/26|k′|<k+1/2

ũ(k′, t)eik′·x, ω(k)(x, t)=
∑

k−1/26|k′|<k+1/2

ω̃(k′, t)eik′·x.

(4.1a,b)

Using (3.1), we subsequently compute kth-mode radial velocity u(k)r , kth-mode
circumferential velocity u(k)θ , kth-mode axial velocity u(k)z from u(k) and kth-mode
radial vorticity ω(k)r , kth-mode circumferential vorticity ω

(k)
θ , kth-mode axial vorticity

ω(k)z from ω(k). By spatially averaging squared values of these quantities over the
fundamental box (0 6 x1, x2, x3 6 π/2) and halving them, we finally obtain the
radial energy spectrum Er(k, t) ≡ 1/2〈(u(k)r )

2
〉f (t), circumferential energy spectrum

Eθ(k, t)≡ 1/2〈(u(k)θ )2〉f (t), axial energy spectrum Ez(k, t)≡ 1/2〈(u(k)z )
2
〉f (t) for velocity,

and the radial enstrophy spectrum Dr(k, t)≡ 1/2〈(ω(k)r )
2
〉f (t), circumferential enstrophy

spectrum Dθ(k, t)≡1/2〈(ω(k)θ )2〉f (t), axial enstrophy spectrum Dz(k, t)≡1/2〈(ω(k)z )
2
〉f (t)

for vorticity. The non-decomposed energy spectrum and enstrophy spectrum are
respectively written as Etot(k, t) ≡ 1/2〈(u(k))2〉f (t) and Dtot(k, t) ≡ 1/2〈(ω(k))2〉f (t),
where Etot(k, t)= [Er + Eθ + Ez](k, t) and Dtot(k, t)= [Dr +Dθ +Dz](k, t).

To demonstrate an example of the decomposition we plot, in figure 12, the time
evolutions of three directionally decomposed energy spectra and non-decomposed
energy spectrum at k = 6. The time-averaged circumferential energy spectrum
〈Eθ 〉(k = 6) is more than four times as large as 〈Er〉(k = 6) and 〈Ez〉(k = 6):
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FIGURE 13. (Colour online) Linear-log plots of temporal standard deviations of
directionally decomposed and non-decomposed spectra. Circles, triangles, squares and
diamonds correspond respectively to (a) Er, Eθ , Ez, Etot and (b) Dr, Dθ , Dz, Dtot which
are defined in § 4. The 4th and 6th modes are highlighted by the black dashed vertical
lines. The red and blue dash-dotted vertical lines indicate the wavenumbers kL and kλ,
respectively.

〈Eθ 〉(k = 6)/〈Er〉(k = 6)= 5.20 and 〈Eθ 〉(k = 6)/〈Ez〉(k = 6)= 4.23. The amplitude of
temporal fluctuation of Eθ(k = 6, t) around its temporal mean is much larger than
those of Er(k= 6, t) and Ez(k= 6, t); the temporal standard deviation of Eθ(k= 6, t)
is larger than those of Er(k = 6, t) and Ez(k = 6, t) by a factor of 6.26 and 4.93,
respectively (i.e. σEθ (k=6)/σEr(k=6) = 6.26 and σEθ (k=6)/σEz(k=6) = 4.93). This means that
the temporal variation of Etot(k = 6, t) is mainly reflected by that of large-scale
swirling flow around the central axis of the larger-scale vortex.

Besides the 6th mode, let us examine anisotropic fluctuations of other modes.
Figure 13(a) shows the temporal standard deviations of the directionally decomposed
energy spectra Er(k, t), Eθ(k, t) and Ez(k, t), and the non-decomposed energy spectrum
Etot(k, t), as a function of wavenumber. All the lower modes than the 3rd mode are
not shown because Kida’s high symmetry (Kida 1985) sets their values to zero. It
is clear that temporal fluctuations of spectra are strongly directional at low Fourier
modes, including the 6th mode, such that the circumferential component is dominant
(see figure 13a). For the 4th mode, for instance, we verify that σEθ (k=4)/σEr(k=4)= 4.46
and σEθ (k=4)/σEz(k=4) = 4.29.

Figure 13(b) shows the temporal standard deviations of Dr(k, t), Dθ(k, t), Dz(k, t),
and Dtot(k, t). The temporal standard deviation of Dz(k, t) is larger than those of
Dr(k, t) and Dθ(k, t) at low modes (4 6 k 6 kL) with the exception of the 7th mode.
However, as the mode is increased from the 3rd mode, the temporal standard deviation
of Dθ(k, t) is increasing significantly; for several moderate modes comparable to kλ, it
is much larger than that of Dz(k, t). This demonstrates that, at moderate wavenumbers,
the temporal fluctuation of Dtot(k, t) is strongly affected by the events of generation,
circumferential vortex stretching and dissipation of the smaller-scale vortices.

4.3. Spatial distribution of intense anisotropic fluctuations
As the global fluctuations have been analysed into different directions and scales, we
next seek for the spatial origin of intense fluctuations of quantities based on multi-
scale and multi-orientation decomposition. In order to do this, we extract turbulent

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

37
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.370


A vortex interaction mechanism in high-symmetric turbulence 657

spatial fluctuations of different scales from multi-scale turbulent flow fields by using
a bandpass-filtering approach which has been exploited in the literature (Leung
et al. 2012; Cardesa, Vela-Martín & Jiménez 2017; Goto et al. 2017). For the filter,
we employ a sharp-cutoff bandpass filter since the Fourier mode decomposition has
been used in our preceding discussion. We compute the bandpass-filtered vorticity
field ω̂(x, t) in physical space by applying the sharp-cutoff bandpass filter G(k) to
the vorticity field in Fourier space as

ω̂(x, t)=
∑

k

G(k)ω̃(k, t)eik·x, (4.2)

where

G(k) = 1, for klow −
1
2 6 |k|< khigh +

1
2 ,

= 0, otherwise, (4.3)

and klow and khigh are the lower and higher cutoff wavenumbers, respectively.
Considering the dependency of anisotropic enstrophy fluctuation on different modes
(figure 13b), we use three wavenumber ranges: [R1] (klow, khigh) = (3, 6); [R2]
(klow, khigh) = (9, 16); [R3] (klow, khigh) = (16, 32). Here, we set the range [R1] to
include the fixed modes and intensely fluctuating modes of circumferential velocity
and axial vorticity, which are 4th and 6th modes, the range [R2] to include the
modes showing relatively strong fluctuation in circumferential enstrophy spectrum
seen in figure 13(b), and the range [R3] to have dissipative small scales. Using (3.1),
the filtered vorticity obtained is finally decomposed into the filtered radial vorticity
ω̂r(x, t), the filtered circumferential vorticity ω̂θ(x, t) and the filtered axial vorticity
ω̂z(x, t).

Because of Kida’s high symmetry (Kida 1985), which fixes in space the central
axes of larger-scale vortices, strongly fluctuating regions are spatially localised inside
a fundamental box. In order to detect such regions, we compute the temporal standard
deviation field Σ(x; A) of scalar quantity A, which is defined as

Σ(x; A)=

√
1
Tp

∫ Tp

0
(A(x, t)− 〈A〉(x))2 dt, (4.4)

where Tp is set to the time period of the period-5 motion.
Figure 14(a) shows the isosurfaces of large values of Σ(x; ω̂z). As for the

wavenumber range [R1], the isosurfaces which demonstrate the intensely fluctuating
regions of filtered axial vorticity are found on the diagonal, i.e. the central axis
of larger-scale vortex. Taking into account the fact that temporal fluctuation of
Dz(k = 6, t) is much larger than those of Dr(k = 6, t) and Dθ(k = 6, t), the spatial
origin of excitation of lower modes is considered to be the locations where the
isosurfaces are detected. Crucially, even for the filtered axial vorticity obtained with
higher wavenumber ranges [R2] and [R3] some isosurfaces of the high values which
exhibit strongly fluctuating regions are observed on the diagonal, even in the central
region of the fundamental box. The observed regions are associated with axial
stretching and compression dynamics by the nonlinear axial waves, which will appear
in the next section.

Figures 14(b) and 14(c) demonstrate the temporal standard deviation fields Σ(x; ω̂r)
and Σ(x; ω̂θ), respectively. It is found in the field of Σ(x; ω̂r) (figure 14b) that,
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FIGURE 14. (Colour online) Visualisations of temporal standard deviation fields of
(a) filtered axial vorticity ω̂z, (b) filtered radial vorticity ω̂r and (c) filtered circumferential
vorticity ω̂θ . Red, blue and green isosurfaces correspond respectively to the filtered
vorticity obtained with the ranges [R1] (klow, khigh)= (3, 6), [R2] (9, 16) and [R3] (16, 32),
which are explained in § 4.3. (a) Red, Σ(x; ω̂z)= 0.16〈ω′〉; blue, green, Σ(x; ω̂z)= 0.8〈ω′〉.
(b) Red, Σ(x; ω̂r)= 0.16〈ω′〉; blue, green, Σ(x; ω̂r)= 0.8〈ω′〉. (c) Red, Σ(x; ω̂θ )= 0.2〈ω′〉;
blue, green, Σ(x; ω̂θ )= 〈ω′〉.

unlike Σ(x; ω̂z), none of the isosurfaces appears on the diagonal. For Σ(x; ω̂θ), on
the other hand, some isosurfaces appear on the diagonal with the ranges [R2] and
[R3] (figure 14c). This result suggests that, since the smaller-scale vortices own strong
circumferential vorticity, there would be significant dynamical interactions between the
axial waves and smaller-scale vortices which induce axial flows on the diagonal. This
dynamical interaction will be discussed in § 5.2.

5. Large-amplitude oscillation in forced high-symmetric turbulence
5.1. Large-amplitude axial waves on larger-scale vortices

In § 4.1, we have detected the intense cyclic forward energy transfer events in the
period-5 motion, which are caused after excitations of the 6th mode. We have also
found that intensely fluctuating regions of bandpass-filtered axial vorticity obtained
with the low wavenumber range [R1] including the wavenumber k= 6 are located on
the central axis of the larger-scale vortex (§ 4.3). Based on these results, a question
arises: What physical mechanism causes excitations of the key mode, i.e. the 6th
mode? This question will be tackled by investigating nonlinear axial waves on the
larger-scale vortices. We will demonstrate that the large-amplitude oscillations of the
larger-scale vortices are caused with the aid of the nonlinear axial waves, which
are excited by the dynamical effect of smaller-scale vortices. Such a sustenance
mechanism can be described in terms of supportive dynamical interactions between
the larger-scale and smaller-scale vortices, which will be schematically summarised
in a cycle diagram (see figure 20). It is reminiscent of the regeneration cycle of
turbulent structures in wall-bounded shear flows (Hamilton et al. 1995; Waleffe 1997)
and transitional flows (Shimizu & Kida 2009).

We emphasise that nonlinear axial waves on larger-scale vortices are essential in the
cyclic process. The larger-scale vortices are the largest structures in high-symmetric
turbulence. Since there is no larger-scale strain field which gives rise to global
stretching or compression of the larger-scale vortices, they should be locally stretched
or compressed through nonlinear axial waves to oscillate. We will therefore pay
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attention to axial motions along the central axes of the larger-scale vortices. In
order to clarify this oscillation mechanism, we shall proceed with our discussion
based on the following perspectives: (i) local vortex stretching and compression
along the central axes of the larger-scale vortices and (ii) dynamical feedbacks from
smaller-scale vortices. To begin with, we shall confirm the axial waves.

We turn to figure 15 which shows the time evolution of axial motions along the
central axis of the larger-scale vortex in the fundamental box (0 6 x1, x2, x3 6 π/2)
for the period-5 motion. Within this time period (0 6 t/T 6 9.85), all the quantities
shown in the figure (axial velocity uz, axial vorticity ωz, axial vorticity stretching rate
ωz(∂uz/∂z) and pressure p) fluctuate cyclically, with large amplitude, five times. Along
the central axis, the axial vorticity ωz is not homogeneous; the area of lower vorticity
(local lower-speed rotational motion) and that of higher vorticity (local higher-speed
rotational motion) are alternately aligned. An important observation in figure 15 is
that the axial waves on the larger-scale vortex include a standing wave pattern and
two travelling wave patterns, depending on the axial position z (0 6 z/(

√
3π/2)6 1;

z = 0 (or z =
√

3π/2) represents the origin O (or the point A)). For convenience,
we hereinafter refer to the range 0.3 6 z/(

√
3π/2) 6 0.6 as the inner region, where

a standing wave pattern is observed, and the ranges 0 6 z/(
√

3π/2) 6 0.3 and
0.6 6 z/(

√
3π/2) 6 1, where travelling wave patterns are observed, as the outer-O

region and the outer-A region, respectively.
The standing wave pattern is observed in figure 15(b) such that the time evolution

of ωz in the range 0.3 6 z/(
√

3π/2) 6 0.6 shows temporal alternations of low and
high axial vorticity. The areas of low vorticity have often been called ‘bubbles’ in the
literature (e.g. Leibovich & Kribus 1990; Melander & Hussain 1994; Verzicco et al.
1995); they are considered as a consequence of local axial vorticity compression
in a longitudinal wave along the central axis of a columnar vortex. They are not
permanent flow structures (except in stationary flows or equilibrium solutions), but
decay because of local axial vorticity stretching which subsequently happens. Such
axial vorticity compression and stretching are caused by the axial flows accelerated
by the axial pressure gradient from the areas of lower axial vorticity, which nearly
corresponds to the higher-pressure areas, to those of higher axial vorticity, which
nearly corresponds to the lower-pressure areas. The reason why the areas of lower
(or higher) axial vorticity nearly correspond to those of higher (or lower) pressure
is due to the centrifugal force: If rotational motion around the central axis of a
larger-scale vortex gets faster (i.e. the axial vorticity ωz becomes larger), then shortly
pressure on the axis gets lower to counter-balance the centrifugal force because of
strong swirling motion induced by the rotational motion. Because of the axial pressure
gradient and the centrifugal force, axial inhomogeneity in axial vorticity and pressure
is a driving source of axial waves. Alternative explanations of axisymmetric standing
waves can be found in the literature (Melander & Hussain 1994; Fabre et al. 2006).

The travelling wave pattern is, on the other hand, observed such that the areas of
lower and higher vorticity in the range 06 z/(

√
3π/2)60.3 (the outer-O region) move

towards the origin O; those in 0.66 z/(
√

3π/2)61 (the outer-A region) move towards
the point A. In order to make this point more evident, we plot in figure 15(b) the
triangles along the central axis where the local maxima and minima of axial vorticity
ωz are detected. The plot of the filled (open) inverted triangles indicates that the local
maximum (local minimum) of axial vorticity propagates towards the origin O, whereas
that of the filled (open) triangles indicates that the local maximum (local minimum)
of axial vorticity propagates towards the point A.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

37
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.370


660 T. Yasuda, G. Kawahara, L. van Veen and S. Kida

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

t/T

1.0

0.8

0.6

0.4

0.2
O

1.0

0.8

0.6

0.4

0.2
O

1.0

0.8

0.6

0.4

0.2
O

1.0

0.8

0.6

0.4

0.2
O

A

A

A

A

z/
(�

3π
/2

)
z/

(�
3π

/2
)

150
100
50
0
-50
-100
-150

-0.4
-0.6
-0.8
-1.0
-1.2
-1.4

10
9
8
7
6
5
4
3
2
1
0

2.0
1.5
1.0
0.5
0
-0.5
-1.0
-1.5
-2.0

u z
/¯

u� ˘
ø z

/¯
ø� ˘

ø z
 (™

u z
/™

z)
/[

¯u
� ˘2 /¯

L˘
2 ]

p/
[®

¯u
� ˘2 ]

(a)

(b)

(c)

(d)

z/
(�

3π
/2

)
z/

(�
3π

/2
)

FIGURE 15. (Colour online) Time evolutions of physical quantities on the diagonal line of
the fundamental box (06 x1, x2, x3 6π/2) for the period-5 motion. Contour values denote
(a) axial velocity uz, (b) axial vorticity ωz, (c) axial vorticity stretching rate ωz(∂uz/∂z)
and (d) pressure p. Horizontal and vertical axes represent the time and coordinates on the
diagonal line (0 6 z/(

√
3π/2)6 1). z= 0 and z=

√
3π/2 correspond to the origin O and

point A, respectively. The thick and thin dashed lines represent times when 〈u2
θ 〉f attains a

local maximum and when E(k= 6, t) attains a local maximum, respectively. (b) The filled
(open) inverted triangles indicate the local maximum (local minimum) of axial vorticity
along the diagonal in the range 0 6 z/(

√
3π/2)6 0.3. The filled (open) triangles indicate

the local maximum (local minimum) of axial vorticity along the diagonal in the range
0.6 6 z/(

√
3π/2)6 1.
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FIGURE 16. (Colour online) Similar to figure 15, but focusing on the time period (6.276
t/T 6 9.18) shown in figure 7. The thick dashed lines correspond to times 1–7 shown in
figure 7. The thin dashed line denotes the time when E(k= 6, t) is maximal (t= 7.75T).
The double triangle and double inverted triangle indicate the locations of local minimum
pressure at t = t4 in the outer-A region and inner region, respectively. The double circle
indicates the zero-crossing point of axial velocity at t= t5.

Here, we shall explain in more detail the travelling wave pattern in the outer-A
region within the time period 6.27 6 t/T 6 9.18 (see figure 16). In the contour plot
of ωz (figure 16b), we observe that the strong axial vorticity region is moving from
its onset point towards the endpoint A of the diagonal. Within the shown time period
(6.276 t/T 6 9.18), the event of local maximum of axial vorticity propagating towards
the point A is observed twice. For the first propagation event, local maximum of axial
vorticity attains at (t, z/(

√
3π/2)) = (t1, 0.656), (t2, 0.758), (t3, 0.805), (t4, 0.867),

(t5, 0.914), (t6, 0.938) and (t7, 0.945), while (t, z/(
√

3π/2))= (t5, 0.648), (t6, 0.712)
and (t7, 0.766) for the second propagation event. We verify in our flow visualisation
(figure 17) that the yellow isosurface of the large value of ωz (= 4.54〈ω′〉) is moving
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FIGURE 17. (Colour online) Snapshots of the flow fields in the fundamental box (0 6
x1, x2, x3 6 π/2), taken at the corresponding times in figure 7: (a) t = t1 (6.74T), (b) t2
(7.04T), (c) t3 (7.40T), (d) t4 (7.66T), (e) t5 (8.09T), ( f ) t6 (8.38T), (g) t7 (8.70T).
The grey, yellow and blue-coloured isosurfaces represent p/[ρ〈u′〉2] = −2, ωz/〈ω

′
〉 = 4.54

and ωθ/〈ω
′
〉 = −4.54, respectively. The two-dimensional velocity vectors are shown on

the plane including the points O, A and (0, π/2, 0). The double triangle and double
inverted triangle indicate the locations of local minimum pressure at t= t4 in the outer-A
region and inner region, respectively. The double circle indicates the zero-crossing point of
axial velocity at t= t5. See the supplementary movie of the corresponding time evolution
available at https://doi.org/10.1017/jfm.2019.370.
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FIGURE 18. (Colour online) Snapshots of the flow fields in the fundamental box (0 6
x1, x2, x3 6π/2). They are taken at (a) t= t1 (6.74T), (b) t2 (7.04T), (c) t3 (7.40T), (d) t4
(7.66T). The grey, yellow, red and blue-coloured isosurfaces represent p/[ρ〈u′〉2] = −2,
ωz/〈ω

′
〉 = 4.54, ωθ/〈ω′〉 = 4.54 and ωθ/〈ω

′
〉 = −4.54, respectively. The two-dimensional

velocity vectors are shown on the plane including the points O, A and (0, π/2, 0). The
SV-A vortex denoted by the arrow is approaching towards the central axis of larger-scale
vortex and induces the strong axial flow (uz < 0).

towards the point A from t = t1 to t5 (the first propagation event). We also find
a strong spatio-temporal correlation between large axial vorticity and low pressure
regions (compare figures 16b and 16d). This occurs because of the centrifugal force
as discussed earlier. This high-speed rotation is moving together with the SV-A
vortices visualised by the blue isosurfaces of ωθ (figure 17).

In § 4, we have confirmed that the 4th and 6th modes are relevant for large-
amplitude fluctuations of larger-scale swirling flows (figure 13) and that an excitation
of the 6th mode is followed by an intense forward energy transfer event (figure 11).
We have also observed that intensely fluctuating regions of bandpass-filtered axial
vorticity obtained with the range [R1] that includes both 4th and 6th modes appear
on the diagonal (figure 14a). For later discussion regarding the association of these
modes with the vortex interaction mechanism, we shall confirm time evolutions of the
4th-mode axial vorticity ω(4)z and the 6th-mode axial vorticity ω(6)z on the diagonal in
figure 19. In the figure, we find that both ω(4)z and ω(6)z oscillate significantly on the
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FIGURE 19. (Colour online) Similar to figure 16, but the time evolutions of (a) 4th-mode
axial vorticity ω(4)z and (b) 6th-mode axial vorticity ω(6)z on the diagonal line of the
fundamental box (0 6 x1, x2, x3 6π/2) for the period-5 motion.

axis and that the significant oscillation of ω(4)z is happening in the inner region while
that of ω(6)z in the outer-O region and outer-A region. Such oscillations of the 4th
and 6th modes can be related respectively to the second and third harmonic standing
waves along the diagonal of the fundamental box whose endpoints are the origin
O and the point A. Here, the wavelength λm of the mth harmonic standing wave
is
√

3π/m and the length LD of the diagonal of the (2π)3 periodic box is 2
√

3π
so that the corresponding mode k is calculated by the equation k = LD/λm = 2m.
This gives k = 4 and 6 for the second harmonic (m = 2) and the third harmonic
(m = 3), respectively. Note also that ω(6)z becomes large in the outer-O region and
outer-A region when E(k= 6, t) attains a local maximum, which demonstrates that the
temporal fluctuation of ω(6)z in the local regions and that of E(k= 6, t) are temporally
correlated, and that there exists a time lag between excitations of ω(4)z and ω(6)z so
that they are not excited at the same time.

5.2. A vortex interaction mechanism
We are now ready to describe the vortex interaction mechanism (figure 20). This
mechanism forms a cyclic process characterised by three distinct phases. In order to
describe each phase, we shall follow the dynamical events by referring to the time
evolutions of the physical quantities on the central axis of the larger-scale vortex seen
in figure 16 (6.27 6 t/T 6 9.18).

In figure 16, the time evolution starts off at around when the rate of rotation in
the outer-A region is high (see figure 16b). Around t = t1, when 〈u2

θ 〉f attains its
first local maximum, strong SV-A vortices are generated in the strong strain regions
appearing between high-speed rotational motions of larger-scale vortices visualised by
the isosurface of ωz in figure 17(a). This event corresponds to the event (a) in the
vortex interaction mechanism (see figure 20).
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Local rotational motions of
larger-scale vortices

Axial pressure gradients Smaller-scale vortices

(b)
Smaller-scale vortices cause axial vortex stretching;

pressure is locally decreased because of the centrifugal force

(a)
Local rotational motions generate

strong straining fields;
smaller-scale vortices are generated

(c)
Axial pressure gradients

generate axial flows;
axial vortex stretching is caused

FIGURE 20. A vortex interaction mechanism for generating large-amplitude axial waves.

Once they have been generated, the SV-A vortices start to move towards the
stagnation point A. Together with them, the large axial vorticity region (corresponding
approximately to the low pressure region due to the centrifugal force) is moving
towards the point A, from t1 to t5 (see figure 17a–e). An important temporal behaviour
to note here is that the axial vorticity can get stronger despite being damped due to
the effect of viscosity while propagating. For the first propagation event, the axial
vorticity is getting stronger from t3 to t5 while it is getting weaker from t1 to t3 (see
figure 16b). This axial vorticity growth is caused with the aid of the dynamical effect
of smaller-scale vortices, which is explained as follows.

While travelling, the SV-A vortices are moving towards the central axis of
larger-scale vortices and some of them induce strong axial flow (uz < 0) in the
negative direction. These axial flows cause strong axial vorticity stretching leading to
the axial vorticity growth mentioned above. The four snapshots shown in figure 18
demonstrate how the SV-A vortices are moving towards the central axis and induce
the strong axial flow (uz < 0) during the first propagation event. In the figure, the
SV-A vortices are visualised by using isosurfaces of positive circumferential vorticity
(ωθ = 4.54〈ω′〉) and negative circumferential vorticity (ωθ = −4.54〈ω′〉); the latter
ones appear closer to the central axis. Here, let us focus on the evolution of one of
the latter ones denoted by the green arrow. It crosses the plane including the points
O, A and (0, π/2, 0). From the two-dimensional velocity vector field on the plane,
we find that, approaching the central axis, it assists in generating the strong axial
flow (uz < 0) in the negative direction (figure 18d). Note that, because of the 2π/3
rotational symmetry around the axis, generating the strong axial flow (uz < 0) is
assisted by the three vortices visualised by the blue isosurfaces which appear closer
to the axis than the other three. The other three SV-A vortices (visualised by the
red isosurfaces) assist in generating the axial flow (uz < 0) along the other axes. The
effect of this axial vorticity stretching is, because of the centrifugal force, that of
lowering pressure locally and significantly which sets a strong inhomogeneity along
the central axis in pressure and, therefore, strong axial pressure gradients. This is the
process (b) in the mechanism (see figure 20).
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(a) (b)

FIGURE 21. (Colour online) Cartoons of two different phases from the temporally cyclic
process. Larger-scale vortices (white) and SV-A vortices (green) are shown. Dashed
straight lines denote the central axis of larger-scale vortices. Black and yellow arrows
denote the direction of axial flows and rotational motions, respectively. (a) Local rotational
motions of larger-scale vortices strengthened by axial flows generate strong strain fields
(see the phase (a) in figure 20). (b) SV-A vortices induce strong axial flows being wrapped
around larger-scale vortices (see the phase (b) in figure 20).

It is observed that the strong axial inhomogeneity in pressure is set around t = t4

when 〈u2
θ 〉f attains its local minimum (figure 16d). In figure 16(d), we denote two

low-pressure regions by the double triangle and inverted double triangle for the
outer-A region and inner region, respectively. Because of the low-pressure regions,
strong axial pressure gradients are formed. The axial pressure gradients generated in
such a way cause the strong axial flows with positive direction (uz > 0) and negative
direction (uz < 0). At t= t5, we observe that axial vorticity stretching is caused by the
strong axial flows in two opposite directions generated because of the axial pressure
gradients; one accelerated axial flow is the strong axial flow (uz > 0) towards the
region where the pressure decreases (denoted by the red arrow in figure 16a) and
the other one is the one towards the inner region (denoted by the blue arrow). These
accelerated axial flows by the axial pressure gradients cause the strong axial vorticity
stretching in the outer-A region (figure 16c, t = t5–t7) so that the rate of rotation in
the region becomes higher. It leads to the second propagation event. This process
corresponds to (c) in the vortex interaction mechanism.

As seen in figure 19(b), this axial vortex stretching excites the 6th-mode axial
vorticity ω(6)z which corresponds to the local rotational motion of the larger-scale
vortex in the outer-A region. In other words, the 6th-mode axial vorticity ω(6)z in the
outer-A region fluctuates significantly with the aid of the dynamical effects of SV-A
vortices. After the excitation of the 6th mode, an intense forward energy transfer
event occurs, which subsequently leads to the increase of the total kinetic energy and
total energy dissipation rate (figure 11). It may be considered that significant temporal
modulation of the 4th-mode axial vorticity (figure 19a) is caused through the excited
axial waves and therefore there exists a time delay between the excitations of 4th
and 6th modes.

In summary, the coherent structures of the larger-scale and SV-A vortices
undergo the following temporally cyclic process through nonlinear axial waves
((i)→(ii)→(iii)→(i)):

(i) The local high-speed rotational motions of larger-scale vortices generate the
straining fields; because of these fields, the SV-A vortices are stretched and
generated (see the cartoon in figure 21a).
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(ii) The SV-A vortices are approaching the axis of the larger-scale vortices being
mutually induced by the other SV-A vortices and wrapped around the larger-scale
vortices; they induce the axial flows which cause strong axial vorticity stretching
leading to significant pressure reduction because of the centrifugal force, which
sets strong axial pressure gradients (see the cartoon in figure 21b).

(iii) The axial flows are accelerated by the axial pressure gradients; they cause the
axial vorticity stretching in the outer-A region. As a result, the local rotational
motions of the larger-scale vortices are intensified.

Although not shown here for economy of space, such a temporally cyclic process
is also present between the larger-scale and SV-O vortices. Based on the discussion
above, we propose a vortex interaction mechanism for generating large-amplitude axial
waves leading to fluctuations of globally averaged quantities, which is schematically
illustrated in the form of a cyclic process (figure 20).

6. Large-amplitude axial waves in freely decaying high-symmetric turbulence

In § 5, we have seen in the period-5 motion that the large-amplitude axial waves
on the larger-scale vortices are sustained with the aid of smaller-scale vortices. If
this is the case, an energy backscattering feature of turbulence could be captured,
which is not considered in Richardson’s view of an energy cascade (Richardson 1922).
Indeed, we will show that, because of the dynamical effect of smaller-scale vortices,
the temporal evolutions of the primary quantities in Kolmogorov’s theory, which is
based on the idea of Richardson’s energy cascade, exhibit the energy backscattering
feature, notwithstanding the fact that the periodic motion reproduces the Kolmogorov
energy spectrum in the dissipation range (figure 4).

In order to investigate the smaller-scale effects, we consider freely decaying high-
symmetric turbulence starting with one instantaneous flow field taken from the period-
5 motion. Figure 22 demonstrates one example of such decaying turbulence whose
initial condition is taken as the instantaneous field at t=0 in figure 2. The vertical and
horizontal axes are normalised by using the initial total kinetic energy K0 = K(t= 0)
per unit mass, the initial integral length scale L0 = L(t= 0) and the initial root-mean
square velocity u′0=u′(t=0). An advantage of investigating decaying turbulence is that
the smaller-scale effects become more detectable by cutting off the energy injection.
In so doing, we demonstrate that the mechanism of generation of oscillation plays a
significant role irrespective of the energy input. From the point of view of dynamical
systems, since we extract an initial phase point from the unstable periodic orbit in
phase space, its trajectory is a damped orbit which departs from it. In figure 22, the
phase point trajectory of the decaying orbit is found to meander around until it reaches
the fixed point.

Figure 23 shows the time evolution of physical quantities on the central axis of the
larger-scale vortex for the decaying turbulence (cf. figure 15). The contour values and
time are normalised by using K0, L0, u′0 and the initial root mean square vorticity ω′0=
ω′(t= 0). It is clearly observed that, although no energy is injected at the fixed modes
(k = kF), the cyclic evolution is repeated several times before decaying. At the early
stage of evolution, the SV-O and SV-A vortices are approaching the axis of the larger-
scale vortices; they induce strong axial flows which cause axial vorticity stretching in
the outer-O region and the outer-A region. Because of the dynamical effect of smaller-
scale vortices, the axial waves do not decay immediately but survive for a relatively
long duration. As the axial waves become weaker with the lapse of time, the growth
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FIGURE 22. (Colour online) Phase point trajectories in the two-dimensional phase plane
of the period-5 motion (red) and the decaying turbulence (black) which starts with the
instantaneous flow field taken from the period-5 motion at t = 0. The horizontal and
vertical axes denote the total kinetic energy and energy dissipation rate, respectively. The
five circles indicate the times when E(k= 6, t) attains its local maximum (see figure 25).

rate of axial vorticity because of the small-scale effect becomes smaller; eventually no
axial vorticity stretching is induced.

Next, we see the temporal behaviour of globally averaged quantities in the decaying
turbulence (see figure 24). Figure 24(a) displays the time evolution of the total kinetic
energy K(t) and the total energy dissipation rate ε(t), where both K(t) and ε(t)
decay with time. A prominent feature observed in figure 24(b) is that, despite no
fluctuating energy input being imposed on the fixed modes, the rate of change of
ε (i.e. (dε/dt)/ε) significantly fluctuates. Particularly, it becomes positive during the
time period of 0.502 6 t/T0 6 0.657. This observation highlights the fact that the
physical mechanism generating large-amplitude oscillations, identified in the previous
section, is not simply a passive response to the energy input mechanism, but rather a
genuine, consistent nonlinear process.

Finally, we shall consider the temporal behaviour of the energy spectrum E(k, t)
of the decaying turbulence (figure 25), which can be compared with that of the
period-5 motion (figure 11a). Although no energy is supplied at the fixed modes, the
contour lines include several ridges and valleys, as observed in the period-5 motion
(figure 11a). The existence of ridges and valleys indicates temporal alternation of
intense and quiescent forward energy transfer events, which has been detected in the
spectral analysis of forced turbulent flows (Kida & Ohkitani 1992; van Veen et al.
2006; Horiuti & Ozawa 2011; Yasuda et al. 2014). Here, it is significant to emphasise
that the energy spectrum at k= 6 (i.e. E(k= 6, t)) shows fluctuations with significant
amplitude and hence does not only decrease but also increases with time and that
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FIGURE 23. (Colour online) Similar to figure 15, but for the decaying turbulence which
starts with the instantaneous flow field taken from the period-5 motion at t= 0. The time
is normalised by the initial large-eddy turnover time T0 = L0/u′0. The five dashed straight
lines indicate the times when E(k= 6, t) attains its local maximum (see figure 25).
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FIGURE 24. (Colour online) Time evolution of the decaying turbulence which starts
with the instantaneous flow field taken from the period-5 motion at t = 0. The time is
normalised by the initial large-eddy turnover time T0= L0/u′0. (a) The total kinetic energy
K per unit mass (red solid line) and the energy dissipation rate ε per unit mass (blue
dashed line). (b) The rate of change of the energy dissipation rate (dε/dt)/ε. (a,b) The
five dashed straight lines indicate the times when E(k = 6, t) attains its local maximum
(see figure 25). (b) The first local maxima of (dε/dt)/ε after the times are indicated by
triangles.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

37
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.370


670 T. Yasuda, G. Kawahara, L. van Veen and S. Kida

10-1

10-2

10-3

10-4

10-5

10-6

10-7

E(
k,

 t)

10-8

10-9

10-10

10-11

10-12

10-13

0 2 4 6 8 10 12 14 16

k

t/T0

70
60
50
40

30

20

10

6

3

FIGURE 25. (Colour online) Time evolution of energy spectrum of the decaying
turbulence which starts with the instantaneous flow field taken from the period-5 motion
at t = 0. The horizontal and longitudinal axes represent the time and wavenumber,
respectively. The time is normalised by the initial large-eddy turnover time T0 = L0/u′0.
The contours are not shown in the wavenumber range beyond k= 70 for clarity. The five
dashed straight lines indicate the times when E(k= 6, t) attains its local maximum, which
are also shown in figures 22–24 for comparisons. The times are t = 0.0793T0, 2.27T0,
5.29T0, 9.22T0 and 13.4T0 from left to right.

it attains its local maximum earlier than those at all other wavenumbers, even the
wavenumber k = 4. The latter is consistent with the fact that a local maximum of
(dε/dt)/ε appears after E(k = 6, t) attains its local maximum (see figure 24b) and
supports our aforementioned statement that the excitation of the 6th mode is a key
ingredient in the cyclic energy transfer dynamics – it triggers an intense forward
energy transfer event.

In the decaying turbulence, the temporal fluctuations in E(k = 6, t) should not be
achieved without any instantaneous inverse energy transfer events. Such an energy
transfer event is caused as the excitation of the axial waves by the axial pressure
gradients in the process (c) in figure 20. The novel physical mechanism proposed
in the previous section, i.e. a vortex interaction mechanism for generating the large-
amplitude axial waves (figure 20), exhibits one of the physical mechanisms leading
to instantaneous energy transfer from smaller to larger scales in three-dimensional
turbulence without any wall boundary effects.

7. Summary and discussion

We have elucidated significant vortex dynamics by means of the unstable periodic
motion found by van Veen et al. (2006), which demonstrates reproducible dynamics of
coherent turbulent structures, helped by the spatio-temporal simplification of the flow
imposed by Kida’s high symmetry (Kida 1985). When investigating vortex dynamics,
the high-symmetry plays significant roles. The complexity of the spatio-temporal
evolution of coherent vortices is drastically reduced such that the central axes of the
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larger-scale vortices are fixed in space. Furthermore, the SV-O and SV-A vortices
move only in one direction, towards the origin O and the point A, respectively,
after their generation. By exploiting these facts, we detected axial waves along the
central axis and found a physical mechanism for sustaining large-amplitude axial
waves in forced high-symmetric turbulence. This mechanism, which we named a
vortex interaction mechanism, is illustrated in figure 20. In this mechanism, the
intensification of the local rotational motions of the larger-scale vortices and the
creation of the smaller-scale vortices are cooperatively supported. It is reminiscent
of the regeneration cycle of turbulence structures in wall-bounded shear flows and
transitional flows (see e.g. Hamilton et al. 1995; Waleffe 1997; Kawahara & Kida
2001; Shimizu & Kida 2009). Along with the large-amplitude axial waves, globally
averaged quantities fluctuate with large amplitude.

We have also detected the significant effect of the vortex interaction mechanism on
primary turbulence quantities, by analysing the decaying high-symmetric turbulence
whose initial flow field is taken from the periodic motion (see figure 22). Because
of the dynamical effects of smaller-scale vortices, the axial waves are observed
for a long period of time. Additionally, we have demonstrated the instantaneous
energy backscattering feature of turbulence by investigating temporal behaviour of
key quantities in Kolmogorov’s theory, i.e. the total energy dissipation rate and the
energy spectrum, although our Reynolds number is moderate and the onset of an
inertial-range energy spectrum is only observed. Notwithstanding the fact that no
energy input is imposed on the fixed modes, the rate of change of the total energy
dissipation rate fluctuates significantly (figure 24b), and so does the energy spectrum
(figure 25). The unsteadiness of the energy transfer is caused by the fluctuations of
the energy contained in intermediate length scales, which are about two times smaller
than the scale of the energy input mechanism. The axial motion of the corresponding
scale causes axial vorticity stretching/compression in the outer-O region and outer-A
region. It is amplified by the strong axial flows induced by the inhomogeneous
axial pressure gradients which are formed as the subsequent event of axial vortex
stretching by smaller-scale vortices. Hence, the vortex interaction mechanism may be
considered as one of the significant physical mechanisms leading to instantaneous
energy transfer from smaller to larger scales (instantaneous energy backscattering).
Although we found this mechanism at the moderate Reynolds number (〈Rλ〉 = 69.6),
this should play a significant role even at higher Reynolds numbers because, as in
the period-5 motion, the total kinetic energy and the total energy dissipation rate
fluctuate with large amplitude and active and quiescent periods of forward energy
transfer are observed in forced high-symmetric turbulence at 〈Rλ〉 ≈ 180 (see Kida
et al. 1990; Kida & Ohkitani 1992).

Recently, without imposing any spatial symmetries, Lucas & Kerswell (2017)
successfully detected a variety of unstable periodic solutions in three-dimensional
body-forced turbulence at moderate Reynolds numbers, which demonstrate the
characteristic features of the SSP (self-sustaining process) (Hamilton et al. 1995;
Waleffe 1997), VWI (vortex-wave interaction) theory (Hall & Smith 1991) and
‘anti-lift-up’ mechanism (Antkowiak & Brancher 2007), by exploiting accelerated
computations on graphics processing units (GPUs). (Lucas & Kerswell 2014). These
physical mechanisms detected in their unstable periodic motions can be closely
related to the vortex interaction mechanism in our periodic motion. More concretely,
the ‘lift-up’ mechanism of the SSP, i.e. the dynamical feedback of streamwise
vortices to the low-speed streak in the near wall region, may have to do with the
phase (b) and/or (c) in figure 20, while the streak meandering in the SSP and the
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‘anti-lift-up’ mechanism (Antkowiak & Brancher 2007) may be related to the phase
(a). Therefore, we speculate that the vortex interaction mechanism which can cause
instantaneous energy backscattering events plays a significant role even in spatially
periodic turbulence without any spatial symmetries imposed, at least, at moderate
Reynolds numbers.

Next, we discuss the possibility that the vortex interaction mechanism is significant
in unconstrained developed turbulence which possesses turbulent fluctuations over a
wide range of scales. In the following, we shall discuss this point from the viewpoints
of (i) the axial waves and (ii) the instantaneous energy backscattering feature.

(i) The axial waves: In unconstrained developed turbulence, axes of columnar
vortices are not fixed in space and can move around in a spatio-temporally
complicated manner. Because of this, it is difficult to investigate axial waves on
columnar vortices and their dynamical role has not been elucidated. By means of
DNS of homogeneous isotropic turbulence (〈Rλ〉 = 35–170), Jiménez & Wray (1994)
computed probability density functions for stretching along the axes of columnar
vortices and reported that axial compression is comparable to stretching. This may
imply the presence of axial waves on columnar vortices in unconstrained developed
turbulence, because axial vortex stretching and compression should be alternately
aligned along their axis.

(ii) The instantaneous energy backscattering feature: We consider that the
non-negligible instantaneous energy backscatter may be present in unconstrained
developed turbulence. In order to discuss this, we shall depict scale-by-scale energy
transfer in terms of energy spectrum function (figure 26). Here, we raise three types of
scenarios of scale-by-scale energy transfer: (i) temporally steady case; (ii) temporally
unsteady case without energy backscattering event; and (iii) temporally unsteady case
with energy backscattering events. For clarity, we consider high-Reynolds-number
turbulence exhibiting a wide inertial subrange. Given that total energy input e at
energy-containing wavenumbers is temporally balanced with total energy dissipation
ε at the dissipation-range wavenumbers (e= ε= ε1), no temporal change is observed in
the energy spectrum function (see figure 26a). Once ε2 (>ε1) is instantaneously input
at the energy-containing wavenumbers, we find excess energy spectrum by a bump
on the energy spectrum function. If energy backscattering events are negligible, it just
travels from small to large wavenumbers as time advances (figure 26b). If they are
significant, however, some small bumps are newly born at smaller wavenumbers than
the one for the original bump (figure 26c). These newly generated small bumps are
products of a consistent nonlinear process, not a passive response to the energy input
mechanism. The third case may be observed in the simulations of spatially periodic
turbulence driven by a steady external force in Yasuda et al. (2014), wherein figure 9
shows the plots of a time when excess energy spectrum from time-average one
takes its maximum over a cycle of quasi-cyclic evolution for a given wavenumber,
from small to large wavenumbers. The line connecting all the points of the time
successively from small to large wavenumbers is observed as a zigzag line. The
zigzag line includes the situation that the time when the excess energy spectrum at
a certain wavenumber takes its maximum appears later than the time when the one
at a larger wavenumber does. Clearly, this is not the case of figure 26(b) that energy
injected at the energy-containing wavenumbers is transferred successively from small
to large wavenumbers. Therefore, its energy transfer mechanism may be the case
of figure 26(c) which demonstrates the presence of significant instantaneous energy
backscattering. Hence, two key features of the vortex interaction mechanism may also
be found in unconstrained developed turbulence.
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FIGURE 26. (Colour online) Schematic views of three different types of scale-by-scale
energy transfer in high-Reynolds-number turbulence: (a) the temporally steady case,
(b) the temporally unsteady case without energy backscattering event and (c) the
temporally unsteady case with energy backscattering events. Horizontal and vertical axes
indicate the wavenumber and energy spectrum, respectively. (a) Temporally steady state is
achieved with the constant energy input ε1. (b,c) In addition to the constant energy input
ε1, ε2 (> ε1) is input at the instantaneous time denoted by the red solid line. The time
order is red solid, blue dashed and green dotted lines.

It is significant to look for any effects of the vortex interaction mechanism in
not only fully developed periodic turbulence but also other flow configurations. We
speculate that this type of dynamics can be detected in various flow configurations
where larger-scale and smaller-scale coherent structures can interact with each other
significantly and axial wave motions on larger-scale coherent vortical structures can
be identified, such as vortex reconnection (Kida & Takaoka 1994), turbulent mixing
layers (Schoppa, Hussain & Metcalfe 1995; Comte, Silvestrini & Bégou 1998),
turbulent wakes behind bluff bodies (Baj & Buxton 2017) and turbulent jets (Cafiero,
Discetti & Astarita 2015). It is interesting that, for a plane mixing layer, Schoppa
et al. (1995) reported a new physical mechanism of flow instability in a plane mixing
layer by using the idea of ‘core dynamics’ (Melander & Hussain 1994), where axial
wave motions on spanwise roll vortices affect the onset of flow instability. Considering
this, it is not difficult to imagine that, after smaller-scale rib-like streamwise vortical
structures are generated around larger-scale spanwise roll vortices, they interact with
each other, thereby causing the amplification of the axial waves as a consequence
of the instantaneous energy backscattering. Verifying whether the vortex interaction
mechanism indeed plays an important role in other flow configurations is left for
future study.

Our new discoveries regarding vortex dynamics make us confident that investigating
reproducible vortex dynamics by means of unstable periodic motion is a promising
approach to the study of vortex dynamics in turbulence. As discussed throughout this
article, the unstable periodic motion used in this study has the high-symmetry and its
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Reynolds number is moderate. In order to extend our approach to vortex dynamics
in unconstrained turbulence at high Reynolds number, our future work is therefore to
detect unstable periodic motions representing an energy spectrum with a wider inertial
subrange as well as energy cascade dynamics characterised by multi-scale coherent
structures, if any (Kawahara et al. 2012). Whether a periodic orbit can offer such
statistical description is still one of the challenging open problems of turbulence.

Following Lucas & Kerswell (2017), introducing GPU-accelerated efficient time
stepping is considered as a significant approach to problem-solving; however, it is still
difficult to discover high-Reynolds-number periodic solutions demonstrating a wide
inertial-subrange energy spectrum and inertial dynamics because of the limitation of
computational resources and the highly unstable and complicated temporal behaviour
of turbulence. Another potential approach is to search for such solutions to filtered
Navier–Stokes equations (i.e. the governing equations for large-eddy simulation), in
which the number of degrees of freedom of fluid motion can be drastically reduced
by modelling small-scale motions with eddy viscosity (see e.g. Yasuda et al. 2014;
Rawat et al. 2015; Sasaki et al. 2016; Hwang, Willis & Cossu 2016; Sekimoto &
Jiménez 2017; van Veen, Kawahara & Yasuda 2018). By exploiting such a new
approach, we would proceed further with work to reach our goal, desiring to fill a
gap in the dynamical systems approach to fully developed turbulence.
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