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SUMMARY
A fast and accurate method for detecting the collisions of
convex polyhedra in a graphical simulation environment
based on a newly developed method of distance estimate is
presented. By the simultaneous use of the enclosing and the
enclosed ellipsoids of convex polyhedra, potential collisions
can be detected more accurate than those methods using
only bounding volume for object representation, and more
efficient than the polyhedral methods. An approach for
computing the enclosed ellipsoid of a convex polyhedron by
compressing, stretching and scaling operations on its best-fit
enclosing ellipsoid is introduced. Graphical simulations of
two case studies (moving polyhedral objects in three-
dimensional space and multiple robot arms undergoing
straight line motions) are conducted to demonstrate the
accuracy of the proposed algorithm for collision detection.

KEYWORDS: Distance estimate, Collision detection; Ellipsoid;
Bounding volume representation.

1. INTRODUCTION
Methods for computing minimum separation distance and
detecting intersections of three-dimensional objects play an
important role for many applications in robotics, virtual
reality, computer graphics and visualization. There are
many research efforts devoted to the collision detection
problems.1–7 In many cases the performance of the overall
application is greatly determined by the efficiency of
distance computation algorithms. Several methods based on
polyhedral model for computing the Euclidean distance
between two polyhedra are proposed.8–10 They interactively
find pairs of points, one on each convex polyhedron, so that
the distance between the points monotonically converges to
the minimum. However, such kind of methods has a
computational expense which is nearly linear with the total
number of vertices. To reduce the computational complexity
for real-time applications, an alternative method, called
bounding volume scheme, modeling a polyhedron with a
simpler geometrical primitive or a union of primitives to
simplify the procedure of minimum distance estimation is
adopted widely. Consequently, how to accurately model
convex polyhedra is very important for efficient minimum
separating distance computation and collision detection.

In bounding volume scheme, it is very common to
represent an object using a sphere.2,3 The reason for
adopting such a simple primitive is to reduce the complexity
in representation and collision detection since a sphere is
invariant in its orientation. However, e.g. for robotic
applications, such kind of representation does not have
enough accuracy since the link of a robot arm is usually
rectangular. To increase the representational accuracy, a
representation approach called dynamic spheres is pro-
posed,4 which are parametric volumes composed of a
number of spheres, the positions and radii of which vary
linearly over the extent of the object. Hierarchical spherical
representations were also proposed for more accurate
representations.5,6,11 The collision radii are chosen so that
the collision detection time is low and the available free
workspace for each object is as large as possible. However,
a large number of spheres are needed to represent longer
objects with reasonable accuracy, and hence the computa-
tion cost for collision detection increases. Besides, when the
geometric primitives are near or in collision such method
must check all the pairs of spheres for intersection
detection, not efficient in the real-time applications.

Octree is also a widespread hierarchical representation of
bounding volume schemes for detecting collision.12,13

Octree representation methods recursively decompose
objects up to a given resolution level and maintain these
boxes using a tree structure. It is easy to detect collision by
means of searching the nodes of the tree structure, however,
it is not suitable and efficient to represent dynamic objects
for separating distance computation and collision detec-
tion.

For modeling of links of robot manipulators a cylinder14

or a combination of a cylinder with two hemispheres15,16 are
popular representation to model a robot manipulator due to
the geometrical shape of links. Unfortunately, with respect
to a Cartesian coordinate system, the mathematical expres-
sions become complicated so that restricts the real-time
application.

Enclosing ellipsoids are also used as primitives for
collision detection due to their simple geometric features.7,17

However, detecting intersection between two ellipsoids is
not an easy task and such bounding volume models also
suffer from representation accuracy for collision detection.

The aim of this work is to develop an efficient and
accurate collision detection method based on a newly
developed distance estimate between convex polyhedra to
overcome the problems encountered in bounding volume
schemes. The proposed method approximates convex poly-
hedra by enclosing and enclosed ellopsoids, then the
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collision detection procedure can be performed by comput-
ing the distance between two convex polyhedra through
their enclosed ellipsoids and their distance estimate errors.
The outline of this paper is as follows. Section 2 describes
the approach for the construction of enclosing and enclosed
ellopsoids of convex polyhedra. Distance estimates of
polyhedra based on enclosed ellopsoids are introduced in
Section 3. Section 4 presents the proposed method for
collision detection and the simulation results are shown in
Section 5. Finally, Section 6 concludes the paper.

2. ELLIPSOID MODELS
Complex objects are generally represented as a union of
simpler primitives.10 However, the primitives should reflect
a good balance between the efficiency of primitive-primitive
intersection detections and the number of primitives
required to adequately represent the world model. For the
proposed algorithm, ellipsoids are selected to represent
objects. An ellipsoid is capable of representing a convex
polyhedron, such as robot’s links, in the direction of its axis.
Besides, the main advantage of ellipsoid model is that it is
very simple in mathematical representation; therefore it can
reduce the complexity of computations to be required. As
for a non-convex polyhedron, it can be decomposed into a
union of convex polyhedra or be paved to form a new
convex polyhedron; then the proposed algorithm can be
applied to generate enclosing and enclosed ellipsoids. Since
the aim of the paper focuses on a fast distance estimate, how
to convert a non-convex polyhedron into a convex one is not
investigated anymore in the remains of this article. An
ellipsoid is represented as �n(y, Y) in this paper, where n is
the dimension, y is the center, and Y is the characteristic
matrix.

2.1. Enclosing ellipsoid
Löwner-John (L-J) ellipsoid, the minimum-volume enclos-
ing ellipsoid of a body, is an intuitively appealing means to
lump the detailed geometry into a single quadratic surface.
The computation of the L-J ellipsoid is a convex optimiza-
tion problem7 whose solution can be derived by applying the
ellipsoid algorithm.7,18

2.2. Intersection check
Since the intersection check plays an important role for
enclosed ellipsoid computation, the procedure about how to
perform the check is introduced first. To confirm that a
convex polyhedron contains an ellipsoid, it is necessary to
check whether the ellopsoid intersects with the facets of the
convex polyhedron or not. As such, the distance computa-
tion between an ellipsoid and a certain plane is needed.
Therefore appropriate coordinate transformations are
brought in to tackle this problem.

The basic idea is to transform an ellipsoid into a unit ball
centered at the origin and compute the distance from the ball
to the transformed plane. Let �3(x0, X) be an enclosed
ellopsoid. Since the matrix X is positive-definite and
symmetric, the ellipsoid can be represent as X�1/2Bo + x0,
where Bo represents a unit ball centered at the origin and
X1/2 is the square root matrix of X. Suppose x is a position
vector in world coordinate, while the ellipsoid is trans-
formed into a ball centered at the origin of a coordinate, the
position vector x with respect to the new coordinate is
represented as

x� = X1/2(x-c). (1)

As shown in Figure 1(a), take three distinct points P1, P2 and
P3 (for example, three vertices) on the facet P into
consideration. Through the transformation mentioned in Eq.
(1), they become P1�, P2�, and P3�, respectively, and form a
plane P� with respect to the new coordinate as shown in
Figure 1(b). Then, the plane P� in three-dimension can be
represented as

n • x� = d, (2)

where n is the normal vector of the transformed plane and
is given as (P2��P1�)� (P3��P1�). The d can be derived
easily by submitting P1�, P2�, or P3� into Eq. (2). Since the
center of the transformed ball is the origin of the new
coordinate, therefore, the distance between the transformed
ball and the transformed plane can be calculated simply by

I (�3(x0,X )) =
� d �
� n �

�1, (3)

where � n � is the norm of normal vector n. As depicted in
Figure 1(b), I(�3(x0, X )) is a signed distance and used to be
the indicator for checking whether the unit ball intersects

Fig. 1. Intersection check procedure for enclosed ellipsoid computation. (a) The original coordinate. (b) The equivalently transformed
coordinate.
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with any face of the convext polyhedron or not. If
I(�3(x0, X)) is smaller than zero, then we have a case of
intersection.

2.3. Enclosed ellipsoid
It is a very difficult to generate an enclosed ellipsoid with a
maximum volume for a convex polyhedron since the
procedure depends on the geometrical shape and the
selection of the center coordinate of the enclosed ellopsoid.
Therefore, the proposed method just focuses on generating
an enclosed ellopsoid, which is as large as possible, to fit the
polyhedron tightly. For our implementation, a 3-phase
approach, which shrinks, stretches, and then scales an L-J
ellipsoid, is proposed.

Phase 1 – Isotropically shrinking all principal axes An
initial enclosed ellopsoid is obtained by shrinking the L-J
ellipsoid along its principal axes isotropically to be
contained in the polyhedron in Phase 1. Let �n(y, Y) be the
minimum volume n-ellipsoid containing a convex poly-
hedron in n-dimensional space. Then, the initial enclosed
ellopsoid is given as �n(y,(n + 1)2Y), formed by shrinking
�n(y,Y) from its center by a factor of (n + 1), to guarantee
that the polyhedron contains the initial ellipsoid.18 There-
fore, the ellipsoid �3 (y,16Y) is selected to be the initial
guess for enclosed ellipsoid computation in 3-dimensional
case. The regulation of the shrinking factor is based on
bisection methods. The phase terminates with a user-defined
error while the ellipsoid cannot extend further without
intersection with the facets of a polyhedron.

Phase 2 – Stretching The Phase 1 terminates while the
enclosed ellipsoid is very close to one of the polyhedron’s
facets; however, it still has some free space to enlarge the
enclosed ellopsoid. Stretching operation19 is applied to
expanding the enclosed ellipsoid along a given direction in
Phase 2. Let s be the point to adapt to and �3(c,M) be the
enclosed ellopsoid generated in Phase 1. The idea is to move
the ellopsoid’s center towards to the point. i.e. s, and then
stretch the ellipsoid along the movement direction such that
the old border point in the opposite direction remains a
border point. Therefore the new center is represented as

c� = c + �(s�c),

where � determines how far to move the ellipsoid’s center.
With the normalized distance vector

a = M1/2(s�c) / � M1/2(s�c) � ,

the new transformation matrix is given as

M�1/2 = (I + (��1)aaT )M1/2,

where

� = 1/ (1 + � �M1/2(s�c) � ).

It is worth to notice that enlarging an ellipsoid means that its
transformation matrix makes the vectors shorter, therefore �
is always smaller than 1. In the sketching opertion, s is given
as l · (sm �c) / � sm �c � , where l is the distance from the
farthest facet of the polyhedron to c, the center of enclosed

ellipsoid, and sm is the mass center of vetices of the farthest
facet. In our implementation, � is initialized as 1 and inside
the range from 0 to 1. The selection of � is also based on the
bisection method. The algorithm terminates while the
variation of � is smaller than 0.005.

As mentioned, the old border point in the opposite of the
stretching direction is still a border point of the new
ellipsoid, it implies that perhaps there is free space for the
ellipsoid to expand in the opposite side. Therefore, the
stretching operation is applied once again for possibly
enlarging the ellipsoid. In order to hold the interface point
between the facet of a polyhedron and the ellopsoid, the new
s, which needs to be adapted to, is given as

s = l · (c�si ) / � c�si � ,

where si is the interface point.

Phase 3 – One by one enlarging each radius. Let
�3(c�,M� ) be the enclosed ellipsoid generated by means of
stretching. Since the matrix M� is symmetric and positive-
definite, it can be diagonalized through a rotational matrix
V. The relation is expressed as

D = V�1M�V.

In fact, matrix V is the matrix of eigenvectors of matrix M�
and matrix D is the canonical form of M� — a diagonal
matrix with M�’s eigenvalues on the main diagonal. Since
the inverse square roots of matrix M�’s eigenvalues are
equivalent to the length of principal axes of the enclosing
ellopsoid, the change of ellopsoid’s each radius can be
performed individually by means of multiplying matrix D
with a scaling matrix S, which is also diagonal. Therefore,
each new radius of the enclosed ellipsoid can be written as

D� = SD,

where S is one of Sx =

sx

0
0

0
1
0

0
0
1

, Sy =

1
0
0

0
sy

0

0
0
1

, or

Sz =

1
0
0

0
1
0

0
0
sz

; and the enlarged enclosed ellopsoid can

be represented as

M� = VD�V�1.

By the use of scaling operations, the length of each principal
axis of the enclosed ellopsoid is extended individually until
the enlarging process induces the ellipsoid to intersect with
facets of the polyhedron.

Since �3(c,M�) is generated by stretching along a
specified vector and, then, enlarging some axes of �3(c,M)
generated in Phase 1, the following relationship
�3(c,M)��3(c,M� ) always holds.

The summary of the algorithm for enclosed ellipsoid
computation is described in Figure 2.

3. DISTANCE ESTIMATE BASED ON ENCLOSED
ELLOPSOIDS
As depicted in Figure 3, the enclosed ellipsoids and the
enclosing ellipsoids, i.e. L-J ellipsoids, are used for
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Phase 1 – Isotropically shrinking all principal axes
m ← 0;
n ← 16;
Repeat{

�3(c,M)=�3(y,nY), where �3(y,nY) is the L-J ellipsoid of the convex polyhedron;
t ← n�m;
If (I(�3(c,M))>0 for all facets of the convex polyhedron)

n ← (n+m)/2;
Else

m ← n;
n ← m+ t/2;

} Until (t<0.005);

Phase 2 – Stretching
� ← 1;
�L ← 0;
Compute l, the maximum distance between the enclosed ellipsoid’s center and the farthest facet;
Compute sm, the center of the farthest facet;
s ← l · (sm �c) / � sm �c � ;
a = M1/2(s�c) / � M1/2(s�c) � ;
Repeat {

�T ← ���L;
c�s ← c + �(s�c);
� ← 1/(1 + � �M1/2(s�c) � );
M�s

1/2 = (I + (��1)aaT)M1/2;
If (I(�2(c�s,M�s))>0 for all facets of the convex polyhedron)

�L ← � ;
� ← �L + �T/2;

Else
� ← (� + � + �L)/2;

} Until (�T <0.005);
Compute the interface point si between the facet, which is mentioned above, and the ellipsoid
s ← l · (c�s �si � ; c�s �si �;
a = M1/2(s�c�s) / � M�s

1/2(s�c�s) � ;
Repeat {

�T ← ���L;
c� ← c�s + �(s�c�s);
� ← 1/(1 + � �M�s

1/2(s�c�s) � );
M�1/2 = (I + (��1)aaT)M�s

1/2;
If (I(�3(c�,M�))>0 for all facets of the convex polyhedron)

�L ← �;
� ← �L + �T / 2;

Else
� ← (� + �L) / 2;

} Until (�T <0.005);

Phase 3 – One by one enlarging each radius
VDV�1 ← M�;
For (axes of the ellipsoid){

Repeat{
Scale one principal axis of the ellipsoid by

�3(c�,M�) ← �3(c�,VSDV�1), where S is one of Sx, Sy or Sz;
If (I(�3(c�,M�))>0 for all facets of the convex polyhedron)

D = SD;
} Until (The ellipsoid touches the polyhedron);

}

Fig. 2. Procedure for enclosed ellipsoid computation.
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approximation of convex polyhedra. Since there is a
fullblown approach to compute the closest points between
two separate ellipsoids, therefore, if the closest points
between two enclosed ellipsoids are computed, then a
straight line equation can be generated based on these two
points. The central idea of the proposed method is to rapidly
estimate the closest points bewteen polyhedral objects by
means of computing the intersection points of the line
equation with the polyhedra or enclosing ellipsoid. Conse-
quently, based on the enclosed ellipsoids, a tight distance
estimate between two polyhedra can be derived accurately
and efficiently.20 The distance estimate involves the compu-
tation of enclosing and enclosed ellipsoids of polyhedra
(presented in Section 2) and the computation of estimated
closest points (to be introduced in the following subsec-
tions).

3.1 Lower bound
In general, the minimum distance between the bounding
volumes, i.e. the enclosing ellipsoids �3

o1 and �3
o2 in Figure 3,

is set as the lower bound of distance estimate and is used for
collision detection. However, due to representation error
induced from the difference between a real polyhedron and
its ellipsoid model, the minimum distance between the
enclosing ellipsoids is too conservative to be the lower

bound for distance estimate. Therefore, the intersection
points p1 and p2, at which the shortest path between the
enclosed ellipsoids �3

i1 and �3
i1, intersects with the enclosing

L-J ellipsoids, are more suitable points for lower bound
distance estimate geometrically since p1p2 is equal or larger
than the minimum distance between the two enclosing
ellipsoids and is closer to the real distance between the two
polyhedra. The relationship among those estimted distances
could be represented as follows:

real distance > p1p2 ≥ Denclosing,

where Denclosing is the minimum distance between the
enclosing ellipsoids. The closest points x* and y* of two
enclosed ellipsoids �3

i1(a, A) and �3
i2(b, B) can be computed

as:7

x* = �min(M)[�min(M)A�I]�1
Aa,

where

M =� A�1

�A�1/2a(A�1/2a)T

�I
A�1 � .

�min(M) is the eigenvalue of M with minimal real part and
x* ��3

i1(a, A). Once x* is obtained, the other closest point

Fig. 3. The distance estimates based on enclosed ellipsoids.

for (i = 1 to the number of the facets of the polyhedron)
{

ti ← k�ani • x*

ani • (y*�x*)
; Solutions of ani • v(t) = ki for the ith facet

if (ti <0)
ti ← 1;

}
tmin = min{ti};
q = (y*�x*) · tmin + x*;

Fig. 4. Finding the intersection point q between L(x*, y*) and a polyhedron.
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y* � �3
i2(b, B) can be derived in the same way. Therefore,

the intersection points P1 and p2 of L(x̄*, ȳ*), the straight
line connecting the closest points x* and y* on the enclosed
ellipsoids, with the L-J ellipsoids �i1

3(a, A) and �i2
3(b, B) are

computed respectively based on the coordinate transforma-
tions.

x̄* = A1/2(x*�a) and ȳ* = A1/2(y*�a).

Then, the problem becomes how to compute the intersection
point of a unit ball Bo centered at the origin and a line L(x̄*,
ȳ*). The points on the line L(x̄*, ȳ*) can be described as
vector v with a parameter t:

v(t) = (ȳ*� x̄*) · t + x̄*.

The intersection with the unit ball Bo occurs when

� v(t) � = 1 or � an �2 t2 + � x̄* �2 + 2(an • x̄* )t = 1,

where an = ȳ*� x̄*, and the solution

t� =
�(an • x̄*)2 � � an �2 ( � x̄* �2 �1)� (an • x̄*)

� an �2

The intersection point is found as

P1 = a + A�1/2v(t�).

The other intersection point p2 also can be obtained by the
same way. It is worth to notice that 0< t�<1 while the two
enclosing L-J ellipsoids are apart. If a L-J ellipsoid
intersects with the enclosed ellipsoid of the other poly-
hedron, t� will be larger than 1.

3.2. Upper bound
It is intuitive to set the minimum distance between the two
enclosed ellipsoids as the upper bound. However, this kind
of upper bound still can be improved by taking the

Fig. 5. Flowchart of the collision detection procedure.
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polyhedral facets information into consideration. Let the ith
face of a polyhedron be represented by a plane equation
ani • x = ki. Suppose the polyhedron intersects with the line
L(x*, y*), whose points are described by

v(t) = (y*�x*) · t + x*,

at the point q, the intersection point q can be found
algebraically by solving the minimum and positive t, or, tmin

subject to ani • v(t) = ki. The process is summarized in Figure
4.

Thus, the intersection points q1 and q2 of both polyhedra
can be computed respectively. These two points are close to
the closest points of the enclosed ellipsoids between the
polyhedra. The upper bound of distance estimate is thus
apparently improved by replacing the distance between two
enclosed ellipsoids with q1q2.

3.3. Distance estimate error
For one of the polyhedra and its L-J ellipsoid, the distance
estimate error is thus computed by piqi. The error varies
with the sizes of the ellipsoids, and the orientations and
shapes of the polyhedral objects. Generally, a larger
estimate error of distance will be in the direction of its
longest axis for a slender object. The distance estimate error
plays the role of a safe margin in the proposed collision
detection algorith; it can be seen that a larger estimate error
of distance will lead to more inaccurate detections.

4. COLLISION DETECTION
For collision detection problems, in general, only the
bounding volume, e.g. the enclosing ellipsoids, is applied to
perform the intersection checks. However, due to the limit
of representation model’s precision, such strategies may
cause a lot of false alarms. To overcome such kind of
problem, more related information about polyhedra is
required for accurate collision detection. To avoid expensive
computational expense, a hierarchical checking strategy
based on the proposed distance estimate method is intro-
duced. If all the enclosing ellipsoids are far apart, the lower
bound of the distance estimate between two polyhedra is
larger than zero and collision free is guaranteed. A further
collision detection needs to be performed only when the

enclosing ellipsoids intersect with others. In this way, the
proposed approach can be used to efficiently localize
collisions in space.

Based on the relationship of enclosing and enclosed
ellipsoids of polyhedra, a heuristic approach is proposed to
improve the accuracy of the collision detection algorithms
based only on bounding volume representation. According
to the geometrical relationship, two types of cases are taken
into consideration:

Case 1. Intersection-free between two enclosing ellipsoids
Case 2. Intersection between two enclosing ellipsoids but

intersection-free between two enclosed ellipsoids

It is obvious that case 1 is collision free. Therefore, as the
lower bound of the distance estimate between two poly-
hedra is larger than zero, collision-free is guaranteed. Now,
only case 2 is indeterminate for collision detection. For

Fig. 6. The moving direction for all dynamic polyhedra.

Fig. 7. The time histories of distances, i.e. qiqj and piqi.
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further details, case 2 can be categorized into the following
three types:

1. �3
i1(ci1, Mi1)��3

o2(co2, Mo2) = 	 and
�3

o1(co1, Mo1)��3
i2(ci2, Mi2) = 	

2. �3
i1(ci1, Mi1)��3

o2(co2, Mo2) ≠ 	 and
, or

�3
o1(co1, Mo1)��3

i2(ci2, Mi2) = 	

�3
i1(ci1, Mi1)��3

o2(co2, Mo2) = 	 and
�3

o1(co1, Mo1)��3
i2(ci2, Mi2) ≠ 	

3. �3
i1(ci1, Mi1)��3

o2(co2, Mo2) ≠ 	 and
�3

o1(co1, Mo1)��3
i2(ci2, Mi2) ≠ 	

Both the geometrical order of the closest points, which
locate on the enclosing and the enclosed ellipsoids of the
two polyhedra for distance estimate, and the parameters ti�,
which are derived for computing the closest points of L-J
ellipsoids, are used to tell the type of intersection. A
“correct” geometrical order of the set of closet points can be
checked easily by using sign( →p1 p2 • →q1 q2 ), the sign of the
inner product →p1 p2 • →q1 q2 . For two far apart polyhedra,
sign ( · ) is always larger than zero. If sign( · ) is equal to
zero, the two enclosing ellipsoid collide at one point. If
sign( · ) is small than zero, then this implies that the

geometrical order is violated and there are intersections
among these ellipsoids.

Let’s take a view at ti�. For type 1, both ti� are in the range
of [0, 1]; only one ti� is larger than 1 indicates the type 2
intersection that the L-J ellipsoid intersects with the
enclosed ellipsoid of the other polyhedron; and both ti� are
larger that 1 implies type 3. The type 3 implies that the two
polyhedra may be very close and there is a high probability
of collision betwen the polyhedra. Therefore, the situation
of type 3 is directoy categorized as a potential collision.
According to the different intersection situations, we can
understand the emergency about the current status of those
dynamic polyhedra.

As for collision detection, since the representation of
ellipsoid model is an approximation to the original poly-
hedron, a conservative estimate for collision detection is

Fig. 8. Status of polyhedra at indicated time steps.

Fig. 9. The time histories of collision detection, i.e. sign(·), based
on ellipsoidal bounding volume representation for all moving
objects.
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reasonable. The most popular and straightforward way is the
use of safe margin to keep the object passing at a safe
distance. This idea is also adopted here. The distance
estimate error, i.e. p1q1 or p2q2, are set as the safe margin for
the proposed algorithm. Since q1 and q2 are derived from the
polyhedra and their enclosed ellipsoids, they are not the real
closest points between the two polyhedra. In fact, q1q2 is
larger than the minimal distance between the two polyhedra.
Therefore, if the distance, i.e. q1q2, between two polyhedra
is smaller than p1q1 or p2q2, the two polyhedra may be in the
situation of potential collision. Inspired by the above idea,
the criterion for collision detection is therefore given as: if
q1q2 > min(p1q1, p2q2) is satisfied, it is categorized as
collision-free; otherwise, it is judged as potential collision.
Since the detection of potential collision is based on the
distance estimate error, a larger distance estimate error leads
to more false warnings for collision detection. It is
undesirable for path planning problem to have a workspace
that is cluttered with obstacles. Hence, an artificial threshold
is given to overcome this drawback. The criterion for
collision detection is thus replaced by

q1q2 > min(p1q1, p2q2, threshold ).

The flowchart of the whole process for collision detection is
shown in Figure 5.

5. SIMULATION
Two examples are given in this section to demonstrate the
proposed approach for collision detection in various appli-
cations.

5.1. Example 1
Three dynamic convex polyhedra, one for rotation and two
for translation, are introduced in this simulation. Geometri-
cally, A1 is a rectangular solid, A2 is a chock and A3 is a
combination of two pyramids.

For L-J ellipsoid computation, the relative accuracy 
 is
set as 1.01 in the simulation; in other words, the volume of
an approximate enclosing ellipsoid is not 1.01 times larger
than the volume of the L-J ellipsoid. The L-J ellipsoids are
computed as �3(co1, M1), �

3(co2, M2) and �3(co3, M3), respec-
tively. After the L-J ellipsoids containing convex polyhedra
are generated, the proposed three-phase approach is then
applied to generating the enclosed ellipsoids via the L-J
ellipsoids. The initial enclosed ellipsoid for computation is

Fig. 10. (a) PUMA560 manipulator. (b) Polyhedral model of PUMA560. (c) L-J ellipsoids, i.e. the ellipsoidal bounding volume
representation, for PUMA560. (d) Enclosed ellipsoids for PUMA560.
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given as �3(co, 16M) and the enlarging factor for phase 3 is
set as 1.01. Through compressing, stretching and scaling
phases, these enclosed ellipsoids are computed as
�3(ci1, N1), �

3(ci2, N2) and �3(ci3, N3).
The motions of dynamic polyhedra are described in terms

of the motion of their mass centers. As for the trajectories of
the translating polyhedra, the mass center of A2 and A3 move
from (10.0, 10.0, �4.0) to (10.0, 30.0, 6.0) and from (14.0,
28.0, 10.0) to (�6.0, 28.0, �10.0) in 20 sec, respectively.
The A1’s mass center locates at (19.0, 25.0, 15.0) and it
rotates about z-axis by 3 deg/sec with respect to its mass

center from �30 deg orientation. The moving directions of
polyhedra are shown in Figure 6.

In this simulation, all the above polyhedra move without
colliding for all durations. The distances qiqj and piqi are
exhibited in Figure 7. From the results shown in Figure 7,
the proposed collision detection algorithm correctly detects
that all the moving polyhedra are collision free. Some
snapshots of the simulation are shown in Figure 8. As
mentioned in Sec. 4, two L-J ellipsoids collide with the
other one if sign( · ) is negative. The time histories of
sign( · ) for this simulation are displayed in Figure 9. As
shown in Figure 9, if only the L-J ellipsoids, i.e. the
bounding volumes, are applied for collision detection, some
false alarms will be assumed. Therefore, in comparison with
those approaches using only bounding ellipsoids, the
proposed approach can provide a more accurate estimate
about the occurrence of collisions.

5.2. Example 2
Two PUMA560 robot arms manipulating in a cluttered
workspace is introduced in this example. In this simulation,
each robot needs to avoid collision with both static
obstacle4s and dynamic obstacles. It is assumed that the two
robots stand away from each other so that their link 1 and
link 2 may not collide with their counterparts. Therefore,
only links 3 to link 6 are involved in collision detection for
dunamic obstacles, i.e. links of the other robot arm. The

Fig. 11. The tips’ trajectories of the two PUMA560 manip-
ulators.

Fig. 12. The time histories of distances, i.e. qiqj and piqi, for the
two robot manipulators. (a) For robot manipulator 1 (b) for robot
manipulator 2.

Fig. 13. The time histories of collision detection, i.e. sign(·),
based on ellipsoidal bounding volume representation.
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Table I. Collision detection results by different methods.

Time Practical State Ellipsoidal Bounding Volume Proposed
Index Method

0 No collision • Robot1’s link4&5 collides with the desk2 No collision
• Robot2’s link2 collides with the vertical obstacle

1 No collision • Robot1’s link4&5 collides with the desk2 No collision
• Robot2’s link2 collides with the vertical obstacle

2 No collision • Robot1’s link4&5 collides with the desk2 No collision
• Robot2’s link2 collides with the vertical obstacle

3 No collision • Robot1’s link4&5 collides with the desk2 No collision
• Robot2’s link2 collides with the vertical obstacle

4 No collision • Robot2’s link2 collides with the vertical obstacle No collision

5 No collision • Robot2’s link2 collides with the vertical obstacle No collision

6 No collision • Robot2’s link2 collides with the vertical obstacle No collision

7 No collision • Robot2’s link2 collides with the vertical obstacle No collision

8 No collision • Robot2’s link2 collides with the vertical obstacle No collision

9 No collision • Robot2’s link2 collides with the vertical obstacle No collision

10 No collision No collision No collision

11 No collision No collision No collision

12 No collision • Robot1’s link4&5 collides with the obstacle No collision
located on the desk1

13 No collision • Robot1’s link4&5 collides with the obstacle No collision
located on the desk1

14 No collision • Robot1’s link4&5 collides with the obstacle No collision
located on the desk1

15 No collision • Robot1’s link4&5 collides with the obstacle No collision
located on the desk1

16 No collision • Robot1’s link4&5 collides with the desk1 No collision
• Robot1’s link4&5 collides with the obstacle

located on the desk1

17 No collision • Robot1’s link4&5 collides with the desk1 No collision
• Robot1’s link4&5 collides with the obstacle

located on the desk1

18 No collision • Robot1’s link4&5 collides with the desk1 No collision
• Robot1’s link4&5 collides with the obstacle

located on the desk1

19 No collision • Robot1’s link4&5 collides with the desk1 No collision
• Robot1’s link4&5 collides with Robot2’s

link4&5

20 No collision • Robot1’s link4&5 collides with the desk1 No collision
• Robot2’s link4&5 collides with the desk1
• Robot1’s link4&5 collides with Robot2’s

link4&5
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base coordinates for the two PUMA560 arms with respect to
the world coordinate are

Brobot1 =

1

0

0

0

0

1

0

0

0

0

1

0

0

0

0

1

and Brobot2 =

�1
0
0
0

0
�1
0
0

0
0
1
0

1100mm

0

0

1

.

In this simulation, the link 4 and the link 5 of a PUMA560
are lumped together heuristically for convenience and the
saving of computation time since the rotation of joint 5 will
not affect the lumped geometrical shape of the link 4 and the
link 5. Besides, the L-J ellipsoid computation is based on
polyhedral model, therefore, all the curved surfaces of links

are first approximated with a union of several facets. The
transition from an original PUMA560 manipulator to the
polyhedra model of a PUMA560 for ellipsoid computation
and the generated enclosing and enclosed ellipsoids for a
PUMA560 are shown in Figure 10. The parameters of those
ellipsoids generated for a PUMA560 are given in Reference
21. The operating time for this simulation is 20 sec. As
shown in Figure 11, the trajectories for the two robot’s tips
are given as follows: Robot 1 moves from (�350.0,
�650.0, 550.0) to (350.0, �20.0, 550.0) during the first 15
seconds and them moves toward (550.0, 30.0, 550.0) during
the rest of time to avoid the static obstacle. Robot 2 moves
from (650.0, �350.0, 660.4) to (550.0, �150.0, 550.0). All
the coordinates of set points are with respect to the world
coordinate.

Fig. 14. Snapshots showing the closest points between robots and obstacles.
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The same as the previous example, during the full
operating time, the robot arms don’t collide with any
obstacle. The minimum distance estimates of qiqj and piqi

for the two robot arms are shown in Figure 12. It shows
good results that the proposed method correctly detects
collision condition and no false alarms. In contrast, if only
the bounding volumes are applied for collision detection, as
shown in Figure 13 and detailed in Table I, a lot of false
alarms will be generated. Several snapshots showing the
closest points between robots and obstacles are shown in
Figure 14. The results show that the proposed approach is
efficient and accurate for detecting collisions of both static
and dynamic obstacles; therefore in terms of the number of
false alarms the proposed method is superior to the
traditional bounding volume scheme in robotic applica-
tions.

5.3. Discussion
The proposed method not only provides a more accurate and
efficient solution for miminum distance estimates and
collision detection, besides, with comparison to the
approaches directly computing the minimum distance
between two polyhedra, it requires less computation time.
For two polyhedra have l and m facets, respectively,
polyhedral approaches need l*m operations to determine the
closest facets for computing the minimum distance. The
computational complexity is O(n2). In contrast, as the
closest points of enclosed ellipsoids are determined, the
proposed method needs l + m operations to find the closest
facets for distance computation. The computational com-
plexity is therefore concluded as O(n); in other words, the
complexity linearly increases with the total number of
facets. In fact, efficiency comparisons with existing poly-
hedral approaches prove the efficiency of the proposed
approach.23 This advantage makes the proposed method
more suitable and practicable for realtime applications than
the approaches directly computing the minimum distance.

6. CONCLUSIONS
An efficient and accurate collision detection method based
on a new distance estimate making use of the enclosed
ellipsoids of convex polyhedra is presented in this paper. It
is able to provide a more accurate estimate about the
occurrence of collisions and reduces the number of false
alarms. Not only for collision detection, the proposed
method also provides fast and accurate distance estimates
among convex polyhedra for local distancebased realtime
path planning methods, e.g. artificial potential field
method.22 In comparison with the traditional bounding
volume approaches that model convex polyhedra utilizing
only the enveloping ellipsoids or spheres, the proposed
method makes use of additional interior representation, the
enclosed ellipsoids, for minimum distance estimates
between convex polyhedra. Moreover, due to the use of
ellipsoid models to simplify the representation complexity
of convex polyhedra, the computational complexity for

minimum distance computation is also significantly
reduced, as compared with the polyhedral models.
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