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In this paper we study the analytical obstructions preventing the germ of a generic
analytic family of elliptic ordinary differential equations from being isochronous. The
formal obstructions are purely arithmetical and can be set in terms of commutators.
The analytical obstructions arise out of the non-convergence of the normalizing
coordinates in the Poincaré–Dulac normalization process. The temporal part of the
invariant is the obstruction to isochronicity in a particular context.

1. Introduction

The word isochronous means literally at equal intervals of time. This term applies
to oscillators for which the frequency is independent of the amplitude. It formerly
referred to the timekeeping principle of pendulums studied by Galileo in the 16th
century. He claimed that a simple pendulum is isochronous; the period is approx-
imately independent of the amplitude or width of the swing. In 1673 Huygens
(see [14]) proved that Galileo’s claim on isochronicity (or isochrony) was accurate
only for small swings.
The term isochronous applies to a particular class of ordinary differential equa-

tions for which the return time to an analytic transversal is locally constant. The
subject enjoys great popularity among mathematicians and the study of such sys-
tems has been extensively developed. Much of the work done thus far comes from
the Spanish and Italian schools (see, for example, [1, 12, 13, 21]).
In this paper we study the analytical obstructions that prevent the unfolding

(deformation) of a germ of holomorphic elliptic ordinary differential equations from
being isochronous. Consider a germ of a planar analytic family of ordinary differ-
ential equations depending on one real parameter η and of the form

ẋ = α(η)x − β(η)y +
∑

j+k�2

bjk(η)x
jyk,

ẏ = β(η)x + α(η)y +
∑

j+k�2

cjk(η)x
jyk.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

∗Present address: School of Mathematics, Physics and Technology, The College of The
Bahamas, Oakes Field, PO Box N-4912, Nassau, Bahamas.

669

c© 2013 The Royal Society of Edinburgh

https://doi.org/10.1017/S0308210511000023 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210511000023


670 W. Arriagada-Silva

Hence, the origin (x, y) = (0, 0) is a singular point. We will assume that α, β, bjk,
cjk are real analytic and β(0) �= 0. System (1.1) is elliptic or monodromic, i.e. the
pair of eigenvalues are complex conjugate.
An isolated equilibrium of (1.1) is called a focus if there exists an open neigh-

bourhood containing the singularity where all the orbits spiral either in forward
or backward time. The focus is strong if the real part of the eigenvalues is non-
vanishing. It is weak otherwise. The singularity is called a centre if there exists a
punctured neighbourhood of the singular point filled with periodic orbits. An iso-
lated singularity of (1.1) is called isochronous if every periodic orbit has the same
minimal period.

Definition 1.1. Let fη be a germ of a real analytic family of functions. A mon-
odromic singularity of (1.1) is isochronous if there exists a germ of an analytic
change of coordinates, fibred over the parameter space, bringing the system into an
equation that in polar coordinates (r, θ) takes the form

ṙ = fη(r, θ),

θ̇ = β(η). (1.2)

It is well known that strong foci and non-degenerate centres have analytic isoch-
ronous sections (i.e. an analytic curve that meets each orbit contained in a neigh-
bourhood of the singularity at equal minimal time intervals). In [6], a simple holo-
morphic transformation has been introduced, applicable to quite a large class
of dynamical systems. The transformation yields autonomous systems that are
isochronous (see [7] for further examples). This justifies the notion that isochronous
systems are not rare in nature.
However, the case of a weak focus is radically different. The transformation of

definition 1.1 is generally non-convergent and a different treatment must be set. For
this, we assume in the following that (1.1) unfolds a weak focus, that is α(0) = 0.
We suppose also that the system is generic: α′(0) �= 0. Genericity and the implicit
function theorem allow us to take ε = α/β as a new parameter and to redefine β
as a function of ε. The eigenvalues become the complex conjugate pair β(ε)(ε± i).
We will write β instead of β(ε).
The foliation of (1.1) is described locally by the unfolding of the Poincaré first-

return map of the positive Ox-axis, Pε : (R
+, 0) → (R+, 0), also called (Poincaré)

monodromy. It is known that the germ of this map is analytic and can be extended
to an analytic diffeomorphism

Pε : (R, 0) → (R, 0). (1.3)

Isolated roots of the displacement function Pε(x) − x correspond to limit cycles
of the vector field. From the general theory, the normal form of the displacement
function always starts with an odd-power term x2k+1, k � 1. The coefficient �k(ε) of
this term is called the k-th Lyapunov constant. The system of differential equations
is of order k provided �j(0) = 0 for all j = 1, . . . , k−1 but �k(0) �= 0. In this case the
unfolding undergoes a genericAndronov–Hopf bifurcation of order k. Evidently, k−1
additional parameters are required to describe this bifurcation; k limit cycles appear
and merge with the origin as the parameters tend to the bifurcation value (typically
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(a) St rong focus (b) Weak focus (c) Limit cycle

Figure 1. Supercritical Hopf bifurcation.

0). The definition of the order is independent of the choice of the coordinate system;
the order is a geometric invariant of the germ of the analytic family. By definition,
the order of an integrable field is equal to +∞ (see [23]). For example, a germ of
a parameter-dependent real analytic family unfolds a centre at zero, if and only if
each Lyapunov constant vanishes at the bifurcation value. That is why centres are
also called weak foci of infinite order.
In this paper we will assume that (1.1) is of order 1. The Lyapunov first constant

can be then explicitly computed in terms of the coefficients:

�1 = 3b30 + b12 + c21 + 3c03 +
1

β
[b11(b20 + b02)− c11(c20 + c02)− 2b20c20 + 2b02c02].

In this case the system exhibits a generic Andronov–Hopf bifurcation of order 1
(or simply a Hopf bifurcation): the generic coalescence of a focus with a limit cycle
(see figure 1). The Hopf bifurcation is subcritical if the cycle is present on negative
values of ε. It is supercritical otherwise. Whether a Hopf bifurcation is subcritical or
supercritical can be found from the sign of the first Lyapunov coefficient. An �1(0)
of positive sign indicates a subcritical Hopf bifurcation and an �1(0) of negative
sign corresponds to a supercritical Hopf bifurcation.
In order to understand the analytical obstructions that prevent the change of

coordinates of definition 1.1 from being convergent, we compare the time part of
the system with the time part of an (isochronous) polynomial formal normal form. A
formal normal form for a germ of the family (1.1) is a germ of a 1-parameter family
of elliptic polynomial differential equations of degree 5 containing only resonant
monomials. This normal form has been generically denominated the model family.
We can bring the family (1.1) into its model via a formal local transformation
in a neighbourhood of zero. All the spaces of leaves of the foliation of the model
family glue trivially, so the model is too poor to encode all the rich dynamics of
an arbitrary analytic family with a Hopf bifurcation. There exists in general no
analytic family of changes of coordinates (and time scalings in the case of orbital
equivalence) to the model family. However, in the Glutsyuk point of view, there exist
local analytic families of changes of coordinates (and time scalings in the case of
orbital equivalence) to the model family over two canonical sectors of the parameter
space. The modulus represents the obstruction to glue the different local charts into
a global change of coordinates over a full neighbourhood of the origin of coordinates
containing the fixed points of the monodromy.
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Martinet and Ramis [18] characterize a planar vector field under orbital equiv-
alence by identifying the divergence of the normalizing formal power series with
the non-triviality of a collection of transition diffeomorphisms between consecutive
sectorial spaces of leaves. (Algebraically, the divergence of the normalizing coor-
dinate is identified with a cochain in the ring of summable power series.) In the
case of a saddle node, these invariants coincide with the Ecalle–Voronin invari-
ant of the holonomy of the strong separatrix. In the case of a saddle point, these
invariants coincide with the Ecalle–Voronin invariants of the holonomy of any sep-
aratrix. Meshcheryakova and Voronin added the first return time needed to iden-
tify classes of saddle nodes under conjugacy (vector fields). A different approach
uses the geometry of the leaves in the neighbourhood of the saddle node, which is
described in terms of asymptotic homology; see [22]. Both approaches have been
generalized (unfolded) to the case of singularities in a neighbourhood of the order-1
Hopf bifurcation. Indeed, in [2, 4, 5] we have proved that the invariants of analytic
classification under orbital equivalence of (1.1) coincide with the unfolding of the
Ecalle–Voronin invariants of the monodromy; see, for example, [2,3]. Furthermore,
we have identified a complete modulus of analytic classification under weak con-
jugacy via an uncoupling of the system into a time part and an orbital part. The
temporal invariants are related to the time part of the vector field.
The formal obstructions preventing the system from being isochronous have been

described before (see [1, 10, 12, 13]). They can be set in terms of commutators
between the vector field and a normal form. These criteria are purely arithmetical
and do not give conditions under which the normalizing coordinate of definition 1.1
converges. One way to study the analytic behaviour of the normalizing chart is
through identification of the temporal part of the modulus. Indeed, since the sin-
gular points of (1.1) are hyperbolic on values ε �= 0, it is possible to temporally
normalize the family (1.1) via an analytic change of coordinates on those values of
the parameter. However, there exists in general a mismatch between the normaliz-
ing coordinate defined on ε ∈ R− and the one defined on ε ∈ R+. The temporal part
of the Glutsyuk modulus measures such an incompatibility and, in general, it mea-
sures the set of analytical obstructions to temporal normalizability over extended
sectorial domains of the (complexified) parameter space.

2. The isochronicity problem

A cross-section through the origin Σ ⊂ R2 for the foliation of (1.1) is a simple
real analytic transversal arc without contact and with the origin as an endpoint
(see [13]). Given p ∈ Σ and ε small, let φtε(p) be the flow of (1.1) with initial
condition φ0ε(p) = p. Since (1.1) is monodromic, there exists a germ of an analytic
function τΣ(ε, ·) : Σ → R+ such that φ

τΣ(ε,p)
ε (p) ∈ Σ and φtε(p) /∈ Σ for every 0 <

t < τΣ(ε, p).

Definition 2.1. The Poincaré monodromy (1.3) of (1.1) is defined by

p �→ φτΣ(ε,p)
ε (p).

The germ of the function τΣ(ε, p) is called the period associated with the section Σ.
If τΣ(ε, ·) is (locally) constant, then the singular point of (1.1) is called isochronous
and Σ is an isochronous section.
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Figure 2. The complexification of the real line and its blow-up.

The period depends strongly on Σ if the system is not a centre (in the latter case
the period is independent of Σ). Note that Σ is isochronous if either φtε (the flow
for positive real time) or φ−t

ε (the reversed flow) has the following property: there
exists a family of real constants Tε > 0 (analytic in ε) such that for all p ∈ Σ the
two following conditions are met.

(i) φnTε
ε (p) ∈ Σ for every n ∈ N,

(ii) φtε(p) �∈ Σ for every t > 0, t �= nTε.

The family of constants Tε is the period of Σ. If the latter is isochronous, then
every curve s �→ φsε(Σ), with 0 < s < Tε, is an isochronous section of the system
at the singular point (see [21]). Hence, in that case, the system has infinitely many
isochronous sections. A special case covered by definition 1.1 occurs when the sys-
tem can be linearized near the singularity (by the Poincaré linearization theorem).
Thus, every strong focus or every non-degenerate centre of an analytic system has
isochronous sections. (In the case of a centre, every section through the origin Σ is
isochronous.) As pointed out before, the case of a weak focus is radically different.
In general, the task of finding isochronous sections for holomorphic deformations of
weak foci is involved and different techniques are needed.
First, we complexify the time t, coordinates (x, y) and parameter ε. (We will

restrict the values of the (complex) parameter ε to special sectorial domains where
the singular points of the system are hyperbolic; see below.) Once the coordinates
(x, y) have been complexified, we set variables z = x+iy, w = x−iy and express the
complexified family of vector fields in these new coordinates. By the Hadamard–
Perron theorem for holomorphic flows (see [16]), there exists a real analytic change
of coordinates bringing the complexified system into the form

ż = zβ

(
ε+ i +

∑
j+k�2

ajk(ε)z
jwk

)
,

ẇ = wβ

(
ε− i +

∑
j+k�2

ajk(ε̄)w
jzk

)
,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
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S− S+

Figure 3. Sectorial domains in parameter space.

with coefficients ajk depending analytically on ε. Here, the map z �→ z̄ is the usual
complex conjugation. In parallel, the complexification embeds the monodromy (1.3)
in a complex real analytic family Pε : Σ → Σ called, by analogy, the Poincaré mon-
odromy of (2.1), defined on the cross-section Σ : {z = w}, which is the complex-
ification of the real Ox-axis. The (complex) monodromy is defined as the second
iterate of the holonomy self-map (or semi-monodromy) Qε along the equator RP 1

of the exceptional divisor CP 1 after standard blow-up [3]; see figure 2. The semi-
monodromy unfolds the germ of a codimension-1 real analytic diffeomorphism that,
after elimination of the quadratic term by a normal form argument, has the form
Q0(w) = −w∓ 1

2w
3+aw5+· · · . We will assume that the unfolding Qε(w) = Q(w, ε)

is generic, i.e. (∂2Q/∂w∂ε)(0, 0) �= 0.
Let ρ be a positive real number. In the following, we will restrict the complexified

parameter to two different sectorial domains of the parameter space containing
negative and positive segments of the real line and denoted

S− = {ε ∈ C : arg(ε) ∈ (12π + δ, 32π − δ), |ε| < ρ},
S+ = {ε ∈ C : arg(ε) ∈ (− 1

2π + δ, 12π − δ), |ε| < ρ},
where δ ∈ (0, π/2); see figure 3. It is possible to choose ρ > 0 sufficiently small such
that the singular points of (2.1) are hyperbolic and then linearizable independently
over S− and S+. In this case, we say we are in the Glutsyuk point of view of
the dynamics. It is known that it is not possible, in general, to embed the two
linearizing charts (corresponding to S− and S+, respectively) in a holomorphic
change of coordinates defined over a full neighbourhood of the origin (with the
values of ε in the union of the two sectorial domains; see, for example, [8, 15]).

2.1. Time and orbital parts: model family

The isochronicity problem is closely related to a more general problem: the tem-
poral normalizability of the family of analytic systems (see [4]). The analytical
obstructions that prevent the system from being isochronous can be identified with
the non-triviality of a functional component of the modulus of analytic classification
under weak conjugacy plus an additional vanishing condition. Indeed, the modulus
has two functional parts: the orbital part and the temporal part. We will prove that
two isochronous families (2.1) with the same period Tε must belong to the same
temporal class and that their formal temporal invariant vanishes identically (see
definition 2.5).
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2.1.1. Weak conjugacy

Two germs of complex analytic families (2.1) are weakly analytically (respectively
formally) conjugate if, for every fixed value of ε, there exists the germ of a holo-
morphic (respectively formal) change of coordinates Ψε(z, w) and a holomorphic
reparametrization ε′ = κ(ε) bringing the first ε-system into the second ε′-system.
The term weak means that the equivalence Ψε depends analytically (respectively
formally) on ε �= 0 and continuously on ε at ε = 0.
Two germs of complex analytic families of diffeomorphisms (1.3) are weakly ana-

lytically (respectively formally) conjugate if, for every fixed value of ε, there exists
a germ of holomorphic (respectively formal) conjugacy hε between the two fami-
lies of diffeomorphisms and a holomorphic reparametrization κ. The conjugacy hε

depends analytically (respectively formally) on ε �= 0 and continuously on ε at
ε = 0.
A conjugacy between two germs of analytic families of vector fields (respectively

diffeomorphisms) is called real if the reparametrization κ is real and the change of
coordinates Ψε (respectively the conjugacy hε) preserves the real plane (respectively
the real line) on real values of the parameter. A conjugacy between two families
of differential equations must preserve the time parametrization along the orbits of
the vector fields (i.e. no time scaling is allowed). On the contrary, if two systems
are orbitally equivalent then there is a change of coordinates sending the leaves of
one of them into leaves of a non-vanishing multiple (the time scaling) of the other
system. Two families of vector fields can be (weakly) conjugate only if they are
(weakly) orbitally equivalent.
In the Glutsyuk point of view, the modulus under conjugacy of an analytic family

is constructed by adding the temporal part to the modulus of orbital equivalence
(see [5]) on values ε ∈ S− ∪ S+, as explained below. Furthermore, it is known (see,
for example, [3,5]) that two generic systems (2.1) are (weakly) analytically orbitally
equivalent if and only if the germs of their monodromies (1.3) are (weakly) analyt-
ically conjugate.

Proposition 2.2 (see [4]). There exists a germ of real analytic change of coordin-
ates bringing (2.1) into a prepared form

ż = ztε(u)(i +Aε(z, w)),

ẇ = wtε(u)(−i +Aε(z, w)),

}

where Aε = ε + · · · is analytic in (z, w) and ε. The term u = zw is the resonant
monomial. The germ of function tε = tε(u) is called the time part of (2.2). (Note
that the time part is a function of the resonant monomial.) In these coordinates,
the invariant manifold m of the orbital part

Xε = z(i +Aε)
∂

∂z
+ w(−i +Aε)

∂

∂w
(2.3)

is given by m = {ε+ su = 0} and the monodromy of Xε has the form

Pε(w) = w + w(ε+ sw2)(2π +O(w) +O(ε)), (2.4)
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where O(ε) = ε((2π)2)/(2!) + ε2((2π)3)/(3!) + · · · . In particular, P ′
ε(0) = exp(2πε)

and the parameter ε is called canonical. It is an invariant. The formal invariant
B(ε) is defined implicitly through P ′

ε(±
√−sε) = exp(−4πε(1− sB(ε)ε)).

It is clear that the time part tε can be computed along with any solution (z, w)
of (2.2) through the formula

tε(u) =
1

2i

żw − zẇ

zw
(2.5)

for every fixed value of the parameter.

Definition 2.3. A germ of family (2.2) is isochronous if there exists a germ of real
analytic change of coordinates, depending holomorphically on ε, bringing the time
part tε into the constant β in (1.2) (called the period) and bringing the orbital part
Xε into a (generically) different orbital part Xε.

The orbital part Xε also has the form (2.3). It is easy to see that the orbital parts
of monodromic families are isochronous in the following sense.

Corollary 2.4. Let (z, w) be an integral curve of an orbital part Xε of the form
(2.3). That is, (ż, ẇ)T = Xε(z, w). Then,

1

2i

żw − zẇ

zw
= 1,

i.e. the orbital part is isochronous with speed 1 and hence with period 2π.

Therefore, the obstructions preventing the family (2.2) from being isochronous
are closely and solely related to its time part. Furthermore, by [3, lemma 2.4] the
orbital part (2.3) is formally equivalent to

z(i + (ε+ su)(1 + B(ε)u))
∂

∂z
+ w(−i + (ε+ su)(1 + B(ε)u))

∂

∂w
. (2.6)

The constant B(ε) in this form is called the orbital formal invariant, defined implic-
itly in proposition 2.2. It unfolds the orbital formal invariant B(0). The latter is
computed through successive elimination of non-resonant monomials of the nonlin-
ear part via Poincaré–Dulac normalization (see [3]).
By ellipticity, the monodromy (2.4) has two analytic return times naturally asso-

ciated with it. The first is the return time near the origin and is denoted τ0. The
other is the return time near the invariant manifold m and is denoted τm. These
times are only formal invariants of the family under (weak) conjugacy (i.e. they can
change if time scalings are allowed along the leaves of the foliation of (2.2)). It is
easy to prove via (2.6) that τ0(ε) = 2π/β and we can scale variables such that

τm(ε) =
τ0(ε)

1− sεC(ε)

for a real constant C(ε) that is completely determined by τm. Note that

C(ε) =
1

sε

(
1− τ0

τm

)
(2.7)
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and hence C = 0 if and only if τ0 = τm on every ε �= 0. The constant C(ε) depends
analytically on ε �= 0 and admits a continuous limit at ε = 0; see [20].

Definition 2.5. The constant C(ε) is the formal temporal invariant of (2.2).

The time part (2.5) is, generically, not a germ of an analytic function. However,
it proves analytic in the case of elliptic singularities (see [4]). Furthermore, the
preparation of proposition 2.2 brings the time part into

tε(u) = β(1 + C(ε)u)(1 +O(u(ε+ su))). (2.8)

This argument leads us to compare (2.2) with the normal form

ż = zβ(1 + C(ε)u)(i + (ε+ su)(1 + B(ε)u)),

ẇ = wβ(1 + C(ε)u)(−i + (ε+ su)(1 + B(ε)u)), (2.9)

which is called the model family of (2.2). The sign s = ±1 coincides with the sign
of �(0) (the Lyapunov constant of (1.1) at ε = 0). By analogy, the germ of analytic
map �ε = β(1 + C(ε)u) is called the time part of the normal form. The germ of
vector field (2.6), denoted Xε, is the orbital part of the normal form.
In order to define the normal form of the Poincaré monodromy we compute the

speed of the orbits along the skew -resonant monomial v =
√
u. The formal normal

form of the Poincaré monodromy of Xε is thus the time-2π flow of the equation
v̇ = v(ε+sv2)(1+B(ε)v2). Hence, the monodromy and its formal normal form have
the same multipliers.

2.2. Orbital part of the Glutsyuk invariant

In [5] we studied the obstructions that prevent the orbital part of the system (2.2)
from being equivalent to (2.6), through identification of a complete modulus under
orbital equivalence. On values of ε �= 0, the invariant is constructed via comparison
of the orbit space of the monodromy (2.4) and the orbit space of its formal normal
form. In the orbital case, the normal form of the monodromy corresponds to the
time-2π map of the formal vector field

w(ε+ sw2)

1 + A(ε)w2

∂

∂w

for values of ε in S− ∪ S+, where

A(ε) =
B(ε)

sεB(ε)− 1
. (2.10)

In the Glutsyuk point of view, there are orbits connecting the fixed points of the
monodromy in a small neighbourhood of zero. Indeed, the fixed points are hyper-
bolic and thus linearizable. In particular, the monodromy is normalizable. The
respective normalizing coordinates over S− and S+ are denoted ϕ− and ϕ+. The
orbit space of Pε is obtained by taking three closed curves {�0, �+, �−} around the
fixed points, and then taking their images {Pε(�0),Pε(�+),Pε(�−)}. Since the fixed
points are hyperbolic, the closed regions {C0, C+, C−} between the curves and their
images are isomorphic to three closed annuli.
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ψ2,εψ1,ε

T1,ε
∞ Tε

0 T2,ε
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Figure 4. Orbit space of the monodromy.

We identify �# ∼ Pε(�#), where # ∈ {0,+,−}. Then, the quotient C#/ ∼ is a
conformal torus; see figure 4. The orbit space is conformally equivalent to the union
of three tori T0

ε, T
∞
1,ε, T

∞
2,ε plus the three singular points, such that: each orbit has

at most one point in each torus, each orbit is either a fixed point or is represented
in a torus and some orbits may have representatives in two different tori. Let us
denote

LC(w) = Cw (2.11)

the linear map, for any C ∈ C. The orbital part of the Glutsyuk modulus con-
sists in the identification of orbits via (almost) intrinsic coordinates on the tori.
Indeed, by Abel’s theorem (see [11]) each torus T is a quotient T = C

∗/LC for
some C ∈ C

∗. Then, a natural coordinate on T is the projection of a coordinate on
C

∗ = CP
1\{0,∞}. The identification of orbits in two different tori induces germs

of families of analytic diffeomorphisms

ψj,ε : C
∗ �→ C

∗ (2.12)

for j ∈ {1, 2}, such that ψj,ε ◦ LC1 = LC2 ◦ ψj,ε if ψj,ε represents a map from
T1 = C∗/LC1 to T2 = C∗/LC2 .
It is known that the modulus is represented by only one germ ψε. The orbital

part of the modulus measures the obstruction to match together in a holomorphic
chart the two (generically) different normalizing charts ϕ− and ϕ+. We refer the
reader to [5] for further details on the orbital part of the invariant and symmetries.

3. Temporal normalization and isochronicity

In [4], we ask the question of whether there exists a weak conjugacy bringing the
family (2.2), with the time part (2.8), into a family with the time part �ε = β(1 +
C(ε)u) and the orbital part Xε; see definition 2.3. Inasmuch as tεXε and �εXε would
be weakly orbitally equivalent we can suppose, in particular, that the conjugacy
fixes the orbital part and Xε = Xε. (Such conjugacies are called symmetries of
the foliation.) Any such symmetry brings the term 1 +O(u(ε + su)) of (2.8) to 1.
Furthermore, it is known that any such conjugacy must be given by the ξε-flow of
the vector field �εXε for some real function ξε (see [20]). The latter is a solution of
the cohomological equation

Xε · ξε = 1

tε
− 1

�ε
. (3.1)

https://doi.org/10.1017/S0308210511000023 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210511000023


Analytic obstructions to isochronicity in codimension 1∗ 679

w+1w

e−2πiWφ     ° qε±,ε
0,∞

Figure 5. On the left, the 4 domains of sectorial trivialization.

Definition 3.1. The family �εXε is the temporal normal form of the family tεXε.
If (3.1) admits a solution ξε then tεXε is called temporally normalizable. The orbital
symmetry is called a temporal normalizing coordinate.

In contrast to the orbital case (foliation), the obstructions to solving (3.1) give
rise to the temporal part of the modulus. Hence, the temporal part of the invariant of
a prepared system (2.1) is related to its monodromy. If this temporal part happens
to be trivial, the vector field is temporally normalizable. There are, in general,
formal and analytical obstructions preventing the system from being temporally
normalizable.

3.1. Temporal functional part of the invariant

In the Glutsyuk point of view, i.e. when the parameter is taken over the two
sectors S− and S+, the fixed points of the monodromy (2.4) are hyperbolic. In
particular, the system tεXε is temporally normalizable over those sectors. That is,
there are two normalizing coordinates (sectorial conjugacies) defined, respectively,
on values ε ∈ S− and ε ∈ S+ bringing the system tεXε into its temporal formal
normal form �εXε. In general, the two conjugacies do not coincide. The temporal
part of the Glutsyuk invariant measures the obstructions for these normalizing
coordinates to match together and embed in a single analytic conjugacy. This is an
exceptional situation rather than the general rule (Stokes phenomenon).
In order to find solutions of (3.1) we need to work in the blow-up space. In this

space the monodromy is constructed as an iterate of the holonomy of the cross-
section Σ : {z = w}. The (complex) desingularization of the origin (z, w) = (0, 0)
endows the exceptional divisor with complex coordinates (Z,w) and (z,W ) around
the singular points (Z,w) = (0, 0) and (z,W ) = (0, 0), respectively; see figure 2.
The variables (z, w) are then retrieved through the blow-down map (c1, c2) where
c1 : (Z,w) �→ (Zw,w) = (z, w) and c2 : (z,W ) �→ (z, zW ) = (z, w), respectively
(see [3, 16]).
We denote by TεXε and TεXε the pullback of the vector fields tεXε and �εXε,

respectively, by the map c1. (The functions Tε, Tε are the blow-up of the time parts
of the fields, and Xε is the blow-up of the orbital part.) Let (z, w) be an integral
curve of the field tεXε. According to (2.5) (in terms of the chart (Z,w)) we have

tε(u) =
1

2i

(
d

dt

(
z

w

))(
z

w

)−1

=
1

2i

Ż

Z
= Tε(Z,w)

or, equivalently, Ż = 2iTε(Z,w)Z in (Z,w) coordinates (c1 complex chart). On the
other hand, a time form dt of the vector field Xε is a 1-form such that iXε dt = 1,
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P±

P0

Pε

Figure 6. A global portrait of Rε.

where iXε is the interior product on 1-forms: iXε dt = dt(Xε). By the equation
above, this form can be taken as

dt =
dZ

2iTε(Z,w)Z
.

Then, the function ξε in (3.1) must solve the integral equation

(ξε ◦ Pε)(w) − ξε(w) =

∫

γ2(w)

(
1

Tε
− 1

Tε

)
dt, (3.2)

where Pε is the monodromy of the system, γ2 is the monodromy path given by
the double circuit around the singular point (Z,w) = (0, 0), obtained by lifting the
equator of the divisor. (This circuit is not a simple Jordan curve, but a double curve
instead.) Define

κε(w) =

∫

γ(w)

(
1

Tε
− 1

Tε

)
dt, (3.3)

where γ is the semi-monodromy path given by the simple circuit around the singular
point (Z,w) = (0, 0) obtained by lifting the equator of the divisor. (Corollary 3.2
of [3] proves that the integral in (3.2) and κ(ε) are well-defined. Furthermore, the
integral in (3.2) is the second iterate of κ(ε).) Let (Z(t), w(t)) be an integral curve
of the field TεXε with initial condition (1, w0) ∈ Σ. It is known (see [19]) that the
function ∫ t

0

(
1

Tε
− 1

Tε

)∣∣∣∣
(Z(s),w(s))

ds, (3.4)

defined on a neighbourhood of the origin minus the axis Z = 0, is uniformly
bounded. Therefore, κε(w) is holomorphic in w over a full neighbourhood of zero.
In [4], we proved that the solution ξε of (3.2) is obtained through an intermediary

step consisting of straightening the monodromy into translation by one; see figure 5.
Indeed, ξε is the composite function

ξε = Ξ0,∞
±,ε ◦ Φ0,∞

±,ε ◦ qε, (3.5)

where qε is a iπ/ε-periodic multi-valued map with target space a 2-folded Riemann
surface Rε deprived of a countable number of holes [2, 5, 17, 19]; see figure 6. The
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ζε

∞ ∞

Figure 7. Domain of the temporal part of the invariant.

maps Φ0,∞
±,ε : Q0,∞

± → C are germs of holomorphic sectorial trivializations conjugat-
ing the monodromy Pε = qε ◦ Pε ◦ q−1

ε with the translation by one W �→ W+1, and
known as real Fatou–Glutsyuk coordinates (see [5]). The domain Q0,∞

± ⊂ Rε of the
Fatou coordinate is called a translation domain. The subscripts ± on the coordinate
and its domain make reference to the sheets of Rε: the one on top corresponding
to the image through qε of a neighbourhood of the non-zero fixed point +

√−sε
of the monodromy, the one below corresponding to the image of a neighbourhood
of the other non-zero fixed point −√−sε; see (2.4). The superscripts 0, ∞ indi-
cate whether the translation domain contains a neighbourhood of P 0 = qε(0) or a
neighbourhood of P± = qε(±

√−sε).
The maps Ξ0,∞

±,ε : Φ0,∞
±,ε (Q

0,∞
± ) → C are (unique up to constant) germs of holo-

morphic functions characterized by the following property:

Ξ0,∞
ε,± (W + 1)− Ξ0,∞

ε,± (W) = κε ◦ q−1
ε ◦ Φ0,∞

±,ε (W) + κε ◦ q−1
ε ◦ Φ0,∞

∓,ε (W + 1
2 )

(see [4]). These analytic maps are endowed with particular symmetries. Further-
more, it is known that the coordinate (3.5) is real and well defined; its values are
independent of the sub- and superscripts ±, 0, ∞, whence the notation (see [4]).
The solution (3.5) is also unique provided it unfolds the identity as ε→ 0.
Let δ0,∞±,ε be the complex coordinate induced by Ξ0,∞

±,ε on the Riemann sphere
CP 1 via the exponential map E : W �→ exp(−2πiW), i.e. δ = Ξ ◦ E−1. Let us define
germs of holomorphic functions ζε on the Riemann sphere as follows. If ε ∈ S− then
we set

ζ±±
ε = δ0±,ε − δ∞±,ε ◦ (ψ±±

ε )−1,

while if ε ∈ S+, then we write

ζ±±
ε = δ∞±,ε − δ0±,ε ◦ (ψ±±

ε )−1,

where ψε = {ψ±±
ε } is the orbital part of the Glutsyuk invariant (2.12). In either

case, the collection above will be denoted ζε. The chart ζε is by no means a diffeo-
morphism. However, it depends analytically on ε �= 0 over the union S− ∪ S+ and
continuously on ε at ε = 0. The domain of the functions ζε corresponds to open
annuli containing the real equator RP 1 of the Riemann sphere; see figure 7.

Definition 3.2. The temporal part of the Glutsyuk modulus consists of the coef-
ficient β = β(ε), the formal temporal invariant C(ε) and the family of equivalence
classes of ζε with respect to the equivalence relation

ζε ∼ ζ̂ε ⇐⇒ ∃d(ε) ∈ C : ζε ◦ Ld(ε) = ζ̂ε.
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The symbol ζε denotes any chosen component ζ±±
ε of the functional part and Ld(ε)

is the linear map (2.11). The constant d(ε) is not necessarily real on real ε, but
it must satisfy the identity d(ε)d(ε̄) = 1 (thus taking its values on the unit circle
on ε real). Besides, it depends analytically on ε �= 0 over the union S− ∪ S+ and
continuously on ε at ε = 0.

The non triviality of the functional part ζε is a measure of the obstructions to glue
together the two different temporal normalizing coordinates (induced, respectively,
on values ε ∈ S− and ε ∈ S+) in a uniform analytic conjugacy; see definition 3.1.
The space of temporal moduli is also a huge functional space of infinite dimension
(see [15]). As in the orbital case, temporally normalizable systems unfolding a weak
focus are quite exceptional. However, monodromic isochronous dynamical systems
(i.e. germs of elliptic families of differential equations for which (2.5) is holomor-
phically conjugate to a constant on every integral solution) other than weak foci
are generically not rare. For example, it has been observed that a certain class of
Hamiltonian systems are very often isochronous; see [7, ch. 2]. Evidently, integrable
monodromic singularities (centres) are always isochronous.

3.2. Symmetries of the temporal part

(The justification for the symmetries presented in this section can be found in [4].)
The temporal part is the germ of a non-ramified function that is invariant under
rotations of angle −2πi in the source space, i.e.

ζε ◦ Lexp(−2πi) = ζε.

Moreover, it is possible to choose representatives of the temporal Glutsyuk invariant
such that

ζ++
ε ◦ L−1 = ζ−−

ε ,

ζ−+
ε ◦ L−1 = ζ+−

ε (3.6)

for every ε ∈ S− ∪ S+. Define complex numbers

α0(ε) =
2πi

ε
, α∞(ε) = −πi(1− sA(ε)ε)

ε
,

where A(ε) is the formal invariant (2.10). There exists a representative of the tem-
poral part of the modulus that satisfies, in addition to (3.6), the identities

ε ∈ S− :

{
ζ++
ε ◦ Lexp(iπα0) = ζ+−

ε ,

ζ−−
ε ◦ Lexp(iπα0) = ζ−+

ε ,
ε ∈ S+ :

{
ζ++
ε ◦ Lexp(2πiα∞) = ζ−+

ε ,

ζ−−
ε ◦ Lexp(2πiα∞) = ζ+−

ε .

(3.7)
The temporal part ζε is invariant under reflection with respect to the real equator
of CP 1. This comes from a symmetry on the coefficients of its asymptotic expansion
in the annulus containing RP 1.

Theorem 3.3. Let w = E(W) be the coordinate induced in the Riemann sphere
as described in § 2.2. (W is the image of the Fatou coordinate.) There exists a
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representative of the temporal part of the modulus with asymptotic expansion in the
Laurent series

ζε(w) =
+∞∑
−∞

an(ε)w
n

such that if ε ∈ S−, then an(ε) = a−n(ε̄) for every n ∈ Z, and if ε ∈ S+, then
an(ε) = (−1)na−n(ε̄) for every integer n.

Proof. We start by fixing coordinates δ0,∞±,ε . Let

ζ±±
ε (w) =

+∞∑
−∞

a±±
n (ε)wn

be the asymptotic expansion of each component of the temporal part. It is known
(see [4, (4.17)]) that the coefficients are two-by-two related through

a++
n (ε) = a+−

n (ε̄),

a−−
n (ε) = a−+

n (ε̄). (3.8)

Let ε ∈ S−. We will check the case +−; the rest of the identities are completely
analogous. Combining the first identity in (3.8) with ζ++

ε ◦ Lexp(iπα0) = ζ+−
ε in (3.7)

yields the relation

a+−
n (ε̄)enπiα0 = a+−

n (ε) (3.9)

on every ε ∈ S− and n ∈ Z. According to definition 3.2, the composition of ζ+−
ε with

the linear map Lexp(πi(α0/2)) in the source space defines a new representative of the
temporal part. (Indeed, the constant exp(πi(α0/2)) is not a value of the real circle
on real ε.) However, it is easily seen that the new representative ζ+−

ε ◦ Lexp(πi(α0/2))

satisfies the relation

+∞∑
−∞

a+−
−n (ε̄)e

nπi(α0/2)wn =

+∞∑
−∞

a+−
n (ε)enπi(α0/2)wn

and this yields the required property.
The case ε ∈ S+ requires an additional step. It is clear that the identities on the

right-hand side in (3.7) and (3.8) imply simultaneously that

a+−
−n (ε̄)e

2πiα∞ = a−+
n (ε) and a−−

−n (ε̄)e
2πiα∞ = a++

n (ε)

for each n ∈ Z. Subsequent non-circular corrections ζ+−
ε �→ ζ+−

ε ◦ Lexp(πiα∞),
ζ−+
ε �→ ζ−+

ε ◦ Lexp(πiα∞) and ζ−−
ε �→ ζ−−

ε ◦ Lexp(πiᾱ∞), ζ
++
ε �→ ζ++

ε ◦ Lexp(πiᾱ∞)

yield new representatives of the temporal part, for which

a++
n (ε) = a−−

−n (ε̄) and a+−
n (ε) = a−+

−n (ε̄),

respectively. Since this representative also satisfies (3.6), the desired conclusion
follows.

Corollary 3.4. A representative of the temporal part of the Glutsyuk modulus is
completely determined by only one of its components ζ±±

ε .
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This justifies the use of the notation ζε above, instead of writing explicitly the
superscripts ±±.
As announced in the title of this section, the normalizability of the system carries

the information about its isochronicity. Indeed, the triviality of the functional part
ζε defines two types of temporally normalizable systems.

Lemma 3.5 (see [4]). Consider two germs of generic families of real analytic vec-
tor fields (2.2) with the same speed β(ε), same sign s and same formal temporal
invariant C(ε). These families are weakly analytically conjugate by real conjugacy,
if and only if the orbital and temporal (functional) parts of their moduli coincide.

Theorem 3.6. The family (2.2) is isochronous if and only if the temporal part ζε
is trivial and the formal temporal invariant C(ε) vanishes identically.

Proof. If the family is isochronous then there exists a real analytic conjugacy
(depending holomorphically on the parameter) bringing (2.2) into a family with
the time part β (thus with trivial temporal part of the modulus) and orbital part
Xε. After applying a symmetry of the foliation, we can suppose that Xε coincides
with the orbital part of (2.2). Inasmuch as the orbital part is isochronous with
period 2π (see corollary 2.4), the formal temporal invariant must vanish identically.
By lemma 3.5, the temporal part of the modulus of the resulting family is trivial.
Conversely, suppose that the temporal part of the functional modulus of (2.2) is

trivial. Then, there is no obstruction to solving the cohomological equation (3.1).
The solution defines a real analytic germ of weak conjugacy (depending analytically
on ε �= 0 and continuously on ε at ε = 0), fixing the orbital part (2.3) and bringing
the time part of the family into �ε = β(1+C(ε)u). Inasmuch as the formal temporal
invariant C(ε) is identically null, the family is isochronous.

4. Examples via the Darboux criterion

Let p ∈ C[z, w] be a degree-m, square-free polynomial in complex coordinates (z, w).
An algebraic curve C = {p = 0} ⊂ C2 of degree m is invariant under a degree-r
polynomial vector field F on the affine plane C2 if the Lie derivative F · p takes the
form F · p = pq, where q ∈ C[z, w] is the cofactor of p and deg(q) � r− 1. It is well
known that if any such vector field F has n different irreducible invariant curves
C1, . . . , Cn, then it admits a (multivalued) first integral of the form H = pα1

1 · · · pαn
n ,

provided
n∑
1

αjqj = 0.

The pis are irreducible polynomials in (z, w) determining the respective curves Ci.
The exponents αi ∈ C are not all equal to zero. The vector field F is said to be
Darboux integrable. Yet, if

n∑
1

αjqj = div(F ),

where div(F ) is the divergence of the vector field F , then H is still a (reciprocal)
first integral provided that exactly two factors pj(z, w) = z+o(z, w) and pk(z, w) =
w + o(z, w) vanish at the origin and αj , αk are not both integers greater than 1
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(see [9]). The topological type of an elliptic singularity is completely determined by
the existence of first integrals.

Proposition 4.1 (see [16]). A monodromic integrable (either formally or analyti-
cally) singularity is a centre.

Example 4.2. Let a, b, c be real constants. The origin of coordinates in R2 is a
centre for the planar system

ẋ = −y + (x2 + y2)(ax+ (b− c)y),

ẏ = x+ (x2 + y2)((b + c)x− ay). (4.1)

Indeed, the function H = p1p2 is a first integral of (4.1), where p1(x, y) = x + iy
and p2(x, y) = x− iy. The latter are invariant lines of (4.1):

∂pj
∂x

ẋ+
∂pj
∂y

ẏ = pjqj ,

where q1(x, y) = a(x2 − y2) + 2bxy + i(1 − 2axy + b(x2 − y2) + c(x2 + y2)) and
q2(x, y) = a(x2 − y2) + 2bxy − i(1 − 2axy + b(x2 − y2) + c(x2 + y2)). It is easy to
see that q1 + q2 = div(F ), where F is the right-hand side of (4.1).

In some cases, a similar criterion allows one to decide whether the vector field is
orbitally normalizable or not.

Theorem 4.3 (see [9]). Suppose that the vector field F has two factors of the form
pj(z, w) = z+o(z, w) and pk(z, w) = w+o(z, w) for j, k ∈ {1, . . . , n}. Let α1, . . . , αn

be a collection of complex numbers such that

n∑
1

αjqj = div(F ).

If αj, αk are integers greater than 1, then the vector field F is orbitally normalizable.

Example 4.4 (see [21]). Consider the Liénard differential equation with damping
in the real coordinate x = x(t): ẍ − 4x2ẋ + x + x5 = 0. The coordinate y = −ẋ
brings this equation into a planar polynomial equivalent system

ẋ = −y,
ẏ = x+ 4x2y + x5. (4.2)

The system is of order 1 with the Lyapunov first constant �1 = 4. Thus, the origin
is a weak focus with eigenvalues ±i. Moreover, the system is isochronous. Indeed,
the change of coordinates (x, y) �→ (X,Y −X3) brings (4.2) into

Ẋ = −Y +X3,

Ẏ = X +X2Y, (4.3)

with the (planar) time part

t(X,Y ) =
XẎ − ẊY

X2 + Y 2
= 1.
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One further step consists of establishing whether (4.3) is normalizable or not.
Complexification of the latter systems yields the isochronous form

ż = iz + 1
4z(z + w)2,

ẇ = −iw + 1
4w(z + w)2. (4.4)

(This system is already in the form (2.1).) Let F be the right-hand side of (4.4) and
set p1(z, w) = z and p2(z, w) = w with respective cofactors q1(z, w) = i+ 1

4 (z+w)
2

and q2(z, w) = −i + 1
4 (z + w)2. Then, it is easily seen that

F · pi = ∂pi
∂z

ż +
∂pi
∂w

ẇ = piqi

and

α1q1 + α2q2 = (z + w)2 = div(F ),

with α1 = α2 = 2. By theorem 4.3, system (4.2) is orbitally normalizable and
therefore normalizable.

Example 4.5. More generally, let γ be any real number. The system

ẋ = −y − x2 + γx3,

ẏ = x+ 2xy + 2x3 + γx2y − γx4 (4.5)

has the Lyapunov first constant equal to 4γ and the eigenvalues at the origin are
±i. Thus, the origin is a weak isochronous focus of order 1 if γ �= 0. This becomes
clear if we take the change of coordinates (x, y) �→ (X,Y −X2) and subsequently
complexify variables, so as to bring (4.5) into the form

ż = iz + 1
4γz(z + w)2,

ẏ = −iw + 1
4γw(z + w)2, (4.6)

with the time part t(z, w) = (żw − zẇ)/zw = 1. The divergence of the right-hand
side is equal to γ(z + w)2 = α1q1 + α2q2, with α1 = α2 = 2 and q1(z, w) =
i + 1

4γ(z + w)2, q2(z, w) = −i + 1
4γ(z + w)2. By theorem 4.3, the system (4.5) is

normalizable.

5. Final remarks

As far as the author is aware, this paper relates for the first time (in the category of
monodromic analytic systems) two different properties that can be detected in the
invariant of analytic classification: temporal normalizability and isochronicity. The
former property has been described in [4]. In that article, we basically identify the
analytical obstructions preventing the family from being temporally normalizable
and investigate the inherent symmetries on the modulus. In this paper, we establish
the existence of two classes of temporally normalizable systems: those with vanish-
ing formal temporal invariant, and those for which C(ε) is not identically zero on
values ε ∈ S+ ∪ S− (codimension 1). Theorem 3.6 states that monodromic sys-
tems of the first category are isochronous. The invariant of analytic classification
is, therefore, different for both classes of differential equations. Furthermore, the
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parametrization along the orbits of the foliation of a family with vanishing formal
temporal invariant admits a geometrical interpretation in the phase space. This is
not always the case for families of the second class. This distinction is important,
because it tells us something about the rareness of isochronous weak foci; the latter
are scarce in the class of normalizable elliptic singularities. The reference [4] does
not take this into account.
In this paper we identify the symmetries on the modulus in almost intrinsic

coordinates and give a geometrical interpretation of the invariant in terms of its
asymptotic Laurent expansion (see theorem 3.3).
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