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We analyse the survival time of a general duplex system sustained by an auxiliary cold standby

unit and subjected to priority rules. The duplex system is attended by two general repairmen

Rp and Rh. Repairman Rp has priority in repairing failed units with regard to repairman

Rh provided that both repairmen are jointly idle. Otherwise, the priority is overruled. The

auxiliary unit has its own repair facility. The duplex system has overall, break-in priority

(often called pre-emptive priority) in operation and in standby with regard to the auxiliary

unit. The analysis of the survival time is based on advanced complex function theory

(sectionally holomorphic functions). The main problem is to convert a functional equation

into a (parameter dependent) Sokhotski–Plemelj problem.

Key words: duplex system, priority rule, survival function, stopping time, security interval,

sectionally holomorphic function.

1 Introduction

Standby provides a powerful tool to increase the reliability and quality of operational

systems, e.g. [2, 6, 8, 19]. A frequently employed standby mode is the so-called “cold”

standby. The notion of cold standby signifies that a backup unit is kept in reserve, with a

zero failure rate, until the repairable online unit fails, e.g. [26]. An alternative cold standby

mode occurs in the management of robot-safety device systems to prolong the lifetime

of the safety unit, i.e. upon failure of the robot, the safety device is shut-off and kept in

cold standby until the repair of the robot has been completed, e.g. [24]. The involvement

of cold standby redundancy in satellite systems has been cited by Kim et al. [9]. Standby

systems are frequently endowed with priority rules. For instance, the external power

supply station of a technical plant has usually overall (pre-emptive) priority in operation

with regard to an internal (local) power generator in standby, i.e. the local generator

is only deployed if the external station is down. Engineering systems characterized by

cold standby and subjected to priority rules have received considerable attention in the
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previous Literature, e.g. [17]. A comprehensive review has been compiled by Leung et

al. [10]. However, most of the systems are dealing with a repair priority rule and with

a single repairman, e.g. [11, 25]. Alternatively, a repairable duplex system characterized

by an overall (pre-emptive) priority in operation with regard to a cold standby unit and

with general distributions for failure and repair has been introduced by Vanderperre and

Makhanov [23].

A basic duplex system endowed with cold standby and with a single repairman,

henceforth called the G-system, has been cited by Gnedenko and Ushakov [8, p. 275]. The

G-system consists of an active unit, the online unit, sustained by an identical unit in cold

standby attended by a single repairman. The G-system is down if both units are down.

Otherwise, the G-system is up. The G-system acts as a closed queuing system evolving in

time, i.e. a failed unit goes immediately into repair provided that the repairman is idle.

Otherwise, the failed unit has to queue for repair. On the other hand, a repaired unit lines

up in cold standby if the remaining unit is still available. Otherwise, the repaired unit

becomes instantaneously operative. Any repair is assumed to be perfect.

As a modification, we first consider a G-system attended by two general heterogeneous

repairmen Rp and Rh, henceforth called the P-system. The P-system is endowed with the

following priority rule. Repairman Rp has priority in repairing failed units with regard

to repairman Rh provided that both repairmen are idle. Otherwise, the priority rule is

over-ruled. The P-system is up, if at least one unit (called a p-unit) is up. Otherwise,

the P-system is down. Apart from a tangible variant of the G-system, e.g. [20], we now

introduce the so-called T-system. The T-system consists of the P-system sustained by an

additional auxiliary unit in cold standby, henceforth called the s-unit. Each p-unit has

overall (pre-emptive) priority both in operation and in standby with regard to the s-unit.

Thus, the s-unit is only deployed if the P-system is down. The T-system is up if at least one

unit is up. Otherwise, the T-system is down. Finally, we assume that the s-unit has its own

repairman Rs. The various states of the T-system are described in Section 2, Figures 2–6.

A practical example of an s-unit is the so-called ram air turbine (RAT). The device

consists of a small propeller that, upon request, drops out of the bottom of an aircraft (cf.

the landing gear) converting kinetic energy, induced by the airstream, into electrical power.

Thus, the RAT is actually a small wind turbine! Note that this auxiliary power device can

provide almost all vital components with the required amount of power needed to monitor

the plane’s flight control in case of emergency. So, the RAT increases the reliability of

the aircraft. However, note that the device is only deployed if the global (internal) power

generator system (usually a multiple standby system) is down. Therefore, the RAT is a

non-priority unit designed to operate in the exceptional case of (internal) loss of power.

In order to derive the survival function of the T-system, we employ a stochastic process

describing the various states of the T-system and endowed with time-dependent transition

measures satisfying coupled partial differential equations. The solution procedure of the

equations is based on a refined application of the theory of sectionally holomorphic

functions, e.g. [7, 12] combined with the notion of dual transforms, [21]. The main

problem is to convert a functional equation into a Sokhotski–Plemelj problem.

Furthermore, we introduce a security interval [0, τ) related to a security level 0 < δ < 1

and satisfying a suitable risk criterion. The security interval ensures a survival of the

T-system up to time τ with probability δ.
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Finally, as an example, we consider the case of Coxian repair time distributions. Some

graphs are displaying the survival function jointly with the security interval corresponding

to a security level of 90%.

2 Formulations, stochastic process, survival function

We now focus on the survival function of the T-system. In order to introduce a precise

definition of the survival time, we employ a stochastic process {Nt, t � 0} with (discrete)

statespace {A,B, C, Cs, D} where D is an absorbing state, characterized by the following

exhaustive set of mutually independent events.

{Nt = A}: “All units of the T-system are up at time t.”

{Nt = B}: “The P-system is up, repairman Rp is busy and the s-unit is in cold standby

at time t.”

{Nt = C}: “The P-system is up, repairman Rh is busy and the s-unit is in cold standby

at time t.”

{Nt = Cs}: “The P-system is down and the s-unit is operative at time t.”

{Nt = D}: “The T-system is down at time t.”

Note that the absorbing property of state D signifies that the process {Nt}, once entered

state D at some random time θ, cannot escape state D anymore. Therefore, taking our

priority rule into account, we may assume that a failure of the s-unit is catastrophic,

i.e. terminates the lifetime of the T-system. The inclusion of state D into the state space

of the process {Nt} invokes the introduction of a so-called stopping time, e.g. [3, Ch. 1,

pp. 1–3; 5, p. 190]. Consequently, we first define the non-Markovian process {Nt} on

a filtered probability space {Ω,A, P ,F} where the history F := Ft, t � 0 satisfies the

Dellacherie-conditions,

• F0 contains the P -null sets of A,
• ∀t � 0, Ft =

⋂
u<t Fu i.e. the family F is right-continuous.

Consider the F-stopping time (Markov time)

θ := inf {t > 0 : Nt = D|N0 = A} .

We assume that the T-system starts functioning at some time origin t = 0 in state A, i.e.

let N0 = A with probability one. Thus, from t = 0 onwards, θ is the survival time (lifetime)

of the T-system. The corresponding survival function is denoted by R(t). Clearly,

R(t) = Pr {θ > t} , t � 0.

It should be noted that θ does not depend on the repair time of the s-unit. Therefore, the

state space of the process {Nt} is sufficient (exhaustive) to describe the random behaviour

of the T-system during the survival time θ. Figure 1 displays the transitions of Nt related

to failures and repairs. An upward (downward) arrow corresponds to a repair (failure) of

a unit.
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Figure 1. Transition diagram related to failures and repairs.

p-unit p-unit 

non-priority unit

in cold standby
p-unit in cold

standby
operative p-unit idle repairmen

pR and
hR

s-unit

P-system

Figure 2. Functional block-diagram of the T-system operating in state A.

Figure 3. Functional block-diagram of the T-system operating in state B.

The various states of the T-system are described by functional block-diagrams in

Figures 2–6.

Along with the survival function of the T-system, we now introduce a security interval

[0, τ), where

τ := sup
{
t � 0 : R(t−) � δ

}

for some 0 < δ < 1, which is called the security level. In practice, δ is usually large.

For instance, δ = 0.9. Therefore, we require that the T-system satisfies the risk criterion

limt↑τ R(t) � δ � 0. Note that the security interval, corresponding to the security level δ,

ensures a continuous operation (survival) of the T-system up to time τ with probability δ.
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Figure 4. Functional block-diagram of the T-system operating in state C.

Figure 5. Functional block-diagram of the T-system operating in state Cs.

busy repairmen 
pR ,

hR and
sR

Figure 6. The T-system down state D.

3 Assumptions, definitions, properties

3.1 Assumptions

Consider the T-system satisfying the following assumptions. Each operative p-unit has a

failure-free time f with distribution F(·), F(0) = 0, a constant repair rate μ if the repair

is carried out by repairman Rp and a repair time r with distribution R(·), R(0) = 0 if the

repair is performed by repairman Rh. The s-unit has a zero failure rate in standby (cold

standby) and a constant failure rate λs in the operative state. We recall that the s-unit is

only deployed if the P-system is down. Therefore, θ is independent of the repair time rs
of the s-unit. Consequently, the repair time distribution of rs needs no specification. All

underlying random variables are supposed to be independent and any repair is perfect.

3.2 Definitions and properties

Characteristic functions (and their duals) are formulated in terms of a complex transform

variable.

For instance,

Eeiωr =

∫ ∞

0

eiωx dR(x), Imω � 0.

Note that

Ee−iωr =

∫ 0

−∞
eiωx d{(1 − R((−x)−)}, Imω � 0.

The corresponding Fourier–Stieljes transforms are called dual transforms. Without loss

of generality (see Remarks 8.1), we may assume that F and R have density functions of

bounded variation on [0,∞) with finite mean. A (vector) Markov characterization of the
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non-Markovian process {Nt, t � 0}, with absorbing state D, is piecewise and conditionally

defined by the following:

{(Nt,Xt)} if Nt = A, where Xt denotes the remaining failure-free time of the p-unit

being operative at time t,

{(Nt,Xt)} if Nt = B,

{(Nt, Yt)} if Nt = Cs, where Yt denotes the remaining repair time of failed p-unit under

progressive R-repair at time t.

{(Nt, Xt, Yt)} if Nt = C.

{Nt} if Nt = D, the absorbing state.

The state space of the underlying Markov process is given by

{(A, x)}
⋃
{(B, x)}

⋃
{(Cs, y)}

⋃
{(C, x, y)}

⋃
{D} , x � 0, y � 0.

For K = A,B, C, Cs, D let pK (t) := Pr {Nt = K} , t � 0, where∑
K pK (t) = 1.

Finally, we introduce the measures

pA(t, x)dx := Pr {Nt = A, x− Δx < Xt � x} ,
pB(t, x)dx := Pr {Nt = B, x− Δx < Xt � x} ,
pCs (t, y)dy := Pr {Nt = Cs, y − Δy < Yt � y} ,

pC (t, x, y)dxdy := Pr {Nt = C, x− Δx < Xt � x, y − Δy < Yt � y} .

Note that, for instance,

pC (t) =

∫ ∞

0

∫ ∞

0

pC (t, x, y)dxdy.

The indicator (function) of an event {Nt = K} ∈ A is denoted by 1 {Nt = K}. The

complex plane and the real line are respectively denoted by C and R with obvious

superscript notations such as C+ and C−. For instance,

C+ := {ω ∈ C : Im ω > 0} .

The Laplace transform of any locally integrable and bounded function on [0,∞) is

denoted by the corresponding character marked with an asterisk. For instance,

p∗(z) :=

∫ ∞

0

e−ztp(t)dt, Re z > 0.

Moreover, if p(t) is of bounded variation on [0,∞), the product rule for Lebesgue–Stieltjes

integrals, e.g. [3, Appendix], entails that

zp∗(z) :=

∫ ∞

0−
e−ztdp(t), Re z > 0.

Let α(τ), τ ∈ R be a bounded and continuous function. α(·) is called Γ−integrable if

lim
T→∞
ε↓0

∫
ΓT,ε

α(τ)
dτ

τ− u
, u ∈ R
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exists, where ΓT, ε := (−T , u− ε]
⋃

[u+ ε, T ). The corresponding integral, denoted by

1

2πi

∫
Γ

α(τ)
dτ

τ− u

is called a Cauchy principal value in double sense. A function α(τ), τ ∈ R is Lipschitz-

continuous (L-continuous) on R if ∀τ1, τ2 ∈ R there exists a constant c such that

|α(τ2) − α(τ1)| � c|τ2 − τ1|.

The function α(τ), τ ∈ R is called L-continuous at infinity if

|α(τ)| = O

(
1

|τ|

)
, |τ| → ∞.

Note that the L-continuity of α(·) on R and at infinity is sufficient for the existence of the

Cauchy-type integral

1

2πi

∫
Γ

α(τ)
dτ

τ− ω
, ω ∈ C.

4 Differential equations

In order to derive a set of differential equations, we observe the behaviour of the T-system

in some time interval [t, t+ Δ], Δ ↓ 0. Applying a general birth and death technique, e.g.

[22] and taking the absorbing state D into account, yields the balance equations

pA(t+ Δ, x− Δ) = pA(t, x) + μ pB(t, x)Δ+ pC (t, x, 0)Δ+ o(Δ),

pB(t+ Δ, x− Δ) = pB(t, x)(1 − μΔ) + (pA(t, 0) + pCs (t, 0))
dF

dx
Δ+ o(Δ),

pC (t+ Δ, x− Δ, y − Δ) = pC (t, x, y) + μ pCs (t, y)
dF

dx
Δ+ o(Δ),

pCs (t+ Δ, y − Δ) = pCs (t, y)(1 − (μ+ λs)Δ) + pB(t, 0)
dR

dy
Δ+

pC (t, 0, y)Δ+ o(Δ),

pD(t+ Δ) = pD(t) + λs pCs (t)Δ+ o(Δ),

where the notation o(Δ), Δ ↓ 0 stands for any function K(·) such that

lim
Δ↓0

K(Δ)

Δ
= 0.

Taking the definition of directional derivative into account, for instance,

(
∂

∂t
− ∂

∂x
− ∂

∂y

)
pC (t, x, y) := lim

Δ↓0

pC (t+ Δ, x− Δ, y − Δ) − pC (t, x, y)

Δ
,
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entails that for t > 0, x > 0, y > 0

(
∂

∂t
− ∂

∂x

)
pA(t, x) = μpB(t, x) + pC (t, x, 0), (4.1)

(
μ+

∂

∂t
− ∂

∂x

)
pB(t, x) = [pA(t, 0) + pCs (t, 0)]

dF

dx
, (4.2)

(
∂

∂t
− ∂

∂x
− ∂

∂y

)
pC (t, x, y) = μpCs (t, y)

dF

dx
, (4.3)

(
λs + μ+

∂

∂t
− ∂

∂y

)
pCs (t, y) = pC (t, 0, y) + pB(t, 0)

dR

dy
, (4.4)

d

dt
pD(t) = λspCs (t). (4.5)

Note that the initial condition N0 = A, X0 = f with probability one, entails that pA(0, x) =

dF/dx.

Moreover, Pr {θ � t} = pD(t). Finally, observe that the equations (4.1)−(4.5) are con-

sistent with the probability law
∑

K pK (t) = 1 and that pA(0) = 1.

5 Functional equation

First, we remark that our set of differential equations is well adapted to a transformation

by means of Laplace–Fourier transforms of the underlying transition functions. As a

matter of fact, the transition functions are bounded on their appropriate regions and

locally integrable with respect to t. Consequently, each Laplace transform exists for

Re z > 0. Moreover, the obvious integrability of the density functions and the transition

functions with regard to x, y also implies the integrability of the corresponding partial

derivatives. Applying a Laplace–Fourier transform technique to the equations and taking

the initial condition into account yields the equations

(z + iω)

∫ ∞

0

e−ztE(eiωXt1 {Nt = A})dt+ p∗A(z, 0) =

μ

∫ ∞

0

e−ztE(eiωXt1 {Nt = B})dt+
∫ ∞

0

eiωxp∗C (z, x, 0)dx+ Eeiωf, (5.1)

(z + μ+ iω)

∫ ∞

0

e−ztE(eiωXt1 {Nt = B})dt+ p∗B(z, 0) =

(p∗A(z, 0) + p∗Cs (z, 0))Eeiωf, (5.2)

(z + iω + iη)

∫ ∞

0

e−ztE(eiωXteiηYt1 {Nt = C})dt+
∫ ∞

0

eiωxp∗C (z, x, 0)dx+
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∫ ∞

0

eiηyp∗C (z, 0, y)dy = μEeiωf
∫ ∞

0

e−ztE(eiηYt1 {Nt = Cs})dt, (5.3)

(z + λs + μ+ iη)

∫ ∞

0

e−ztE(eiηYt1 {Nt = Cs})dt+ p∗Cs (z, 0) =

∫ ∞

0

eiηyp∗C(z, 0, y)dy + p∗B(z, 0)Eeiηr, (5.4)

zp∗D(z) = Ee−zθ = λsp
∗
Cs

(z). (5.5)

Substituting ω = i(μ+ z) into equation (5.2), yields

p∗B(z, 0) = p∗(z)Ee−(z+μ)f,

where

p∗(z) := p∗A(z, 0) + p∗Cs (z, 0).

Hence,

p∗B(z) = p∗(z)
1 − Ee−(z+μ)f

z + μ
. (5.6)

Adding equations (5.1)−(5.4) yields the functional equation

(z + iω)

[∫ ∞

0

e−ztE(eiωXt1 {Nt = A})dt+
∫ ∞

0

e−ztE(eiωXt1 {Nt = B})dt
]

+p∗B(z, 0)(1 − Eeiηr) + (p∗A(z, 0) + p∗Cs (z, 0))(1 − Eeiωf)+

(z + iω + iη)

∫ ∞

0

e−ztE(eiωXteiηYt1 {Nt = C})dt+

(λs + μ(1 − Eeiωf) + z + iη)

∫ ∞

0

e−ztE(eiηYt1 {Nt = Cs})dt = Eeiωf, (5.7)

valid for Re z > 0, Imω � 0, Im η � 0.

6 Determination of Ee−zθ

Substituting ω = iz, η = 0 into the function equation (5.7), yields the basic relation

p∗(z)(1 − Ee−zf) + (z + λs + μ(1 − Ee−zf))p∗Cs (z) = Ee−zf . (6.1)
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Hence, by equation (5.5),

Ee−zθ = λs
Ee−zf − p∗(z)(1 − Ee−zf)

z + λs + μ(1 − Ee−zf)
. (6.2)

Note that the Laplace transforms of the survival function is uniquely determined by the

relation

R∗(z) =

∫ ∞

0

e−ztP r {θ > t} dt =
1 − Ee−zθ

z
. (6.3)

Some algebra reveals that

1 − Ee−zθ

z
=

1 + 1−Ee−zf

z
[μ+ λs(1 + p∗(z))]

z + λs + μ(1 − Ee−zf)
. (6.4)

7 A Sokhotski–Plemelj problem

In order to determine p∗(z), we first transform the functional equation (5.7) into a

preliminary equation by substituting ω = −τ+ iz, η = τ, Re z = ε > 0, τ ∈ R.

Some algebra entails that

p−z (τ)

∫ ∞

0

e−ztE(eiτYt 1 {Nt = Cs})dt−
{
iτ

[ ∫ ∞

0

e−ztE(e−i(τ−iz)Xt1 {Nt = A})dt+

∫ ∞

0

e−ztE(e−i(τ−iz)Xt1 {Nt = B})dt
]
− p∗(z)(1 − Ee−i(τ−iz)f + Ee−(z+μ)f) + Ee−i(τ−iz)f

}

= p∗(z)EeiτrEe−(z+μ)f, (7.1)

where

p−z (ω) := iω + z + λs + μ(1 − Ee−i(ω−iz)f), Imω � 0. (7.2)

Next, we need the following property.

Lemma 7.1 The function p−z (ω), Imω � 0 is zero-free in C− ⋃
R.

Proof Clearly, p−z (ω) = (iω + z + λs + μ)(1 − ε−z (ω)), where

ε−z (ω) :=
μ

iω + z + λs + μ
Ee−i(ω−iz)f.

Consider the region D− with boundary [−T , T ]
⋃
CT where CT denotes the semi-circle

with radius T as depicted in Figure 7. Note that for all ω ∈ C− ⋃
R,

|ε−z (ω)| < 1.

https://doi.org/10.1017/S0956792516000127 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792516000127


A functional equation 133

Figure 7. Region D− with boundary [−T , T ]
⋃
CT .

Applying Rouchés theorem, e.g. [14], to the functions 1 and ε−z (ω), being analytic in

C−, shows that p−z (ω) has no zeros inside D−. However, since T is arbitrary large and

since

1 − ε−z (ω) → 1, |ω| → ∞,−π � argω � 0,

we may conclude that p−z (ω) is zero-free in C−. In addition, we have for τ ∈ R,

|p−z (τ)| � |iτ+ z + λs + μ||1 − |ε−z (τ)|| > 0.

Hence, p−z (ω) has no zeros in C− ⋃
R. �

Remark 7.1 Lemma 7.1 allows to transform equation (7.1) into a relevant boundary value

equation on the real line. Dividing equation (7.1) by the factor p−z (τ) entails that

ψ+
z (τ) − ψ−

z (τ) = p∗(z)Ee−(z+μ)fϕz(τ), τ ∈ R (7.3)

where

ψ+
z (ω) :=

∫ ∞

0

e−ztE(eiωYt1 {Nt = Cs})dt, Imω � 0. (7.4)

ψ−
z (ω) :=

{
iω

[ ∫ ∞

0

e−ztE(e−i(ω−iz)Xt1 {Nt = A})dt+

∫ ∞

0

e−ztE(e−i(ω−iz)Xt1 {Nt = B})dt
]
−

p∗(z)(1 − E(e−i(ω−iz)f + E(e−(z+μ)f)+
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E e−i(ω−iz)f
}
/p−z (ω), Imω � 0.

ϕz(τ) :=
Eeiτr

p
−
z (τ)

, τ ∈ R.

Equation (7.3) constitutes a z-dependent Sokhotski–Plemelj problem on R, solvable by the

theory of sectionally holomorphic functions, e.g. [7, Ch. 1, pp. 1–44] combined with the notion

of dual transforms, [21]. For direct reference, we state the following particular definition:

Definition 7.1 A bounded function L(ω) is called sectionally holomorphic in C cut along

the real line R if it satisfies the following properties:

• L(ω) is analytic in C+ and C−,

• L(ω) has distinct boundary values L+(u) and L−(u), u ∈ R,

where

L+(u) := lim
ω→u
ω∈C+

L(ω),

L−(u) := lim
ω→u
ω∈C−

L(ω).

The function L(ω) is called regular if L(∞) = 0. We will show that the function

1

2πi

∫
Γ

ϕz(τ)
dτ

τ− ω

is sectionally holomorphic in C cut along R and present the solution of the Sokhotski–Plemelj

problem generated by equation (7.3). First, we need the following property.

Property 7.1 The function ϕz(τ) is L-continuous on R and at infinity.

Proof Clearly,

∣∣∣∣ ddτEeiτr
∣∣∣∣ � Er, where Er denotes the mean of r, i.e. Er =

∫ ∞
0
tdR(t).

Hence, by the mean value theorem for derivatives, e.g. [1, p. 110], there exists a constant

c = Er such that for all τ1, τ2 ∈ R

|Eeiτ1r − Eeiτ2r| � c|τ1 − τ2|.

Thus, Eeiτr is L-continuous on R. In a similar way we can show that 1/p−z (τ) is also

L-continuous on R. Hence, the function ϕz(τ), being a product of bounded L-continuous

functions, is L-continuous on R. Finally, note that

|p−z (τ)|−1 = O(|τ|−1) if |τ| → ∞.
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Hence, the function ϕz(τ) is also L-continuous at infinity. �

Corollary 7.1 The boundary value equation (7.3) has a unique solution

p∗(z)Ee−(z+μ)f 1

2πi

∫
Γ

ϕz(τ)
dτ

τ− ω
, ω ∈ C.

The corresponding Cauchy-type integral generates a regular sectionally holomorphic function

in C cut along the real line. The proof follows from Property 7.1 and the straightforward

mathematical tools compiled in the Appendix.

8 Determination of p∗(z)

By Corollary 7.1, we have

ψ+
z (ω) = p∗(z)Ee−(z+μ)f 1

2πi

∫
Γ

ϕz(τ)
dτ

τ− ω
, ω ∈ C+. (8.1)

Note that equation (8.1) is only valid for Imω > 0. However, equation (7.4) and the

continuity of ψ+
z (ω) at ω = 0 entails that

p∗Cs (z) = p∗(z)Ee−(z+μ)f γ(z), (8.2)

where

γ(z) := lim
ω→0
ω∈C+

1

2πi

∫
Γ

ϕz(τ)
dτ

τ− ω
.

Note that, see Appendix, equation (A.1)

γ(z) =
1

2
ϕz(0) +

1

2πi

∫
Γ

ϕz(τ)
dτ

τ
.

From equations (6.1) and (8.2), we finally obtain

p∗(z) =
Ee−zf

1 − Ee−zf + (z + λs + μ(1 − Ee−zf))Ee−(z+μ)fγ(z)
. (8.3)

Remark 8.1 It should be noted that the kernel ϕz(·) preserves all the relevant properties to

ensure the existence of the Cauchy-type integral

1

2πi

∫
Γ

ϕz(τ)
dτ

τ− ω
, ω ∈ C

for an arbitrary repair time distribution. In fact, the generality of Lemma 7.1 ensures that

the order relation

|ϕz(τ)| = O(|τ|−1), |τ| → ∞

also holds for any R with finite mean Er. The requirements of finite moments is extremely
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mild. As a matter of fact, the current probability distributions employed to model repair times,

e.g. [2] even have moments of any order. Consequently, our initial assumption concerning

the existence of density functions is totally superfluous to ensure the existence of p∗(·).

9 Application example: Coxian distribution

Next, we derive an algorithm to compute p∗(z). Let

Eeiωr = Am(ω)/Bn (ω), 0 � m < n, Im ω � 0,

where Am(ω), Bn (ω) are polynomials of degree m, n. Cox[4] has shown that this exclusive

family of probability distributions is surprisingly large. In addition, a particular family of

discrete Coxian distributions, e.g. [16], is quite useful to model the reliability of engineering

systems. Clearly,

1

2πi

∫
Γ

ϕz(τ)
dτ

τ− ζ
=

1

2πi

∫
Γ

Kz(τ)
dτ

τ− ζ
, ζ ∈ C+,

where

Kz(τ) :=
Am(τ)

Bn(τ)

1

p
−
z (τ)

, τ ∈ R.

The polynomial equation Bn(ω) = 0, has n roots ωj; j = 1, 2, . . . , n (counted according

to multiplicity) located in C−. Consequently, the function Kz(τ) can be extended to a

meromorphic function in C. Whence by continuity,

lim
ζ→0
ζ∈C+

1

2πi

∫
Γ

Kz(τ)
dτ

τ− ζ
=

1

2πi

∫
L
Kz(τ)

dτ

τ
= γ(z),

where L denotes the real line deformed at the origin of C by an open semi-disk lying

entirely in C− with radius smaller than min {|ωj |, j = 1, . . . , n} . Evaluating

1

2πi

∫
L
Kz(τ)

dτ

τ

by means of the Cauchy residue theorem, e.g. [1, p. 460], reveals that

γ(z) = −
n∑
j=1

Resω=ωj

{
Kz(ω)ω−1

}
, (9.1)

where the minus sign is due to clockwise integration along a closed contour surrounding the

poles ωj; j = 1, 2, . . . , n. As an application, we consider the so-called hyper-exponential

distribution with negative weight:

R(t) := p1(1 − e−λ1t) + p2(1 − e−λ2t),

where p1 > 0, p1 + p2 = 1, λ1p1 + λ2p2 = 0 where without loss of generality 0 < λ1 < λ2.

Observe that we allow p2 to be negative. However, since R(·) is supposed to be a probability

https://doi.org/10.1017/S0956792516000127 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792516000127


A functional equation 137

distribution, we must have p1 > 0. Note that (1 − R(·))−1 is log-convex. Hence, r has an

increasing repair rate. Moreover, R(·) is uni-model, i.e. R(·) has a single maximum

tmax = (log λ2 − log λ1)/(λ2 − λ1).

Lastly, R′(0) = 0 and R′(·) is strongly decreasing in a neighbourhood of infinity. Hence,

R(·) belongs to an important family of Coxian distributions with tractable engineering

properties. For instance, R(·) is suitable to model repair times. Note that

Eeiτr =
−λ1λ2

(τ+ iλ1)(τ+ iλ2)
.

Hence, by equation (9.1),

γ(z) =
1

λ2 − λ1
(α(z) − β(z)), (9.2)

where

α(z) :=
λ1

z + λ1 + λs + μ(1 − Ee−(λ1+z)f)
; β(z) :=

λ2

z + λ2 + λs + μ(1 − Ee−(λ2+z)f)
.

Finally, as an application, we consider the Erlang distribution

F(t) = 1 − e−λt
M−1∑
k=0

(λt)k

k!
, M � 1

to model the failure process of the p-unit. Note that F(·) has an increasing failure rate,

Birolini [2, p. 423], and that Ee−zf = (λ/(λ+z))M. As a numerical example, we consider the

case λ = 1, λs = 2, μ = 3, λ1 = 1,λ2 = 2, M = 2. Note that the condition p1λ1 + p2λ2 = 0,

p1 + p2 = 1 implies p1 = 2, p2 = −1.

By equations (6.4), (8.3) and (9.2), we obtain R∗(z) = N(z)/D(z), where

N(z) : = 43521 + 135999z + 182008z2 + 137230z3 + 64379z4 + 19529z5 + 3838z6 + 472z7

+ 33z8 + z9,

D(z) : = 582 + 44541z + 136705z2 + 182242z3 + 137266z4 + 64381z5 + 19529z6 + 3838z7

+ 472z8 + 33z9 + z10.

The equation D(z) = 0 has the following roots:

(−6.97696,−5.26265,−4.22192 − 0.990541i,−4.22192 + 0.990541i,−4.15178,

− 2.73415,−2.14942,−2.,−1.26759,−0.0136262).

Clearly, R(t) is continuous on (0,∞) and of bounded variation on [0,∞). Note that

R(0) = 1. Hence, by the inversion theorem

R(t) = lim
T→∞

∫ iT

−iT
ezt
N(z)

D(z)
dz, t > 0.
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Figure 8. Graph of R(t) with the security interval [0, σ], σ = 9.071, corresponding to the security

level δ = 0.9.

An application of the residue theorem for Laplace transforms, e.g. [1, p. 438, Theorem

16.39], reveals that

R(t) = −0.000510512e−6.97696t + 0.0180696e−5.26265t + 0.000350361e−4.15178t

−0.0248004e−2.73415t − 0.0758886e−2.14942t + 0.0909091e−2t − 0.0345735e−1.26759t

+1.0192e−0.0136262t + 0.00724082e−4.22192t cos 0.990541t

+0.0449386e−4.22192t sin 0.990541t.

Figure 8 displays the graph of R(t), 0 � t � 100, together with the security interval

[0, σ], σ = 9.071, corresponding to the security level δ = 0.9. The interval ensures the

survival of the T-system up to time σ with probability 90%.

10 Conclusions

The Laplace transform of the survival function related to the T-system can be derived

by solving a set of coupled partial differential equations corresponding to a stochastic

process with an absorbing barrier. The important case of Coxian distributions shows how

to obtain computational results for the survival function by a numerical analysis based

on the inversion formula for Laplace transforms. Therefore, we may conclude that our

proposed differential equations approach provides a tangible contribution to statistical

reliability engineering and its ramifications.
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Appendix A

For direct reference, we propose to state some particular properties of sectionally holo-

morphic functions and their ramifications for the solution of some boundary value

problems on the real line. See Gakhov [7, pp. 1–360], Lu [12, pp. 1–73], Roos

[15, pp. 118–242] for proofs and details. Let ϕ(τ) be a function satisfying the Hölder

(Lipschitz) condition on R and at infinity. In addition, let

L+(u) := lim
ω→u
ω∈C+

1

2πi

∫
Γ

ϕ(τ)
dτ

τ− ω
, u ∈ R,

L−(u) := lim
ω→u
ω∈C−

1

2πi

∫
Γ

ϕ(τ)
dτ

τ− ω
, u ∈ R.

We have

L+(u) =
1

2
ϕ(u) +

1

2πi

∫
Γ

ϕ(τ)
dτ

τ− u
. (A 1)

L−(u) = −1

2
ϕ(u) +

1

2πi

∫
Γ

ϕ(τ)
dτ

τ− u
. (A 2)

Hence, for u ∈ R

L+(u) − L−(u) = ϕ(u), (A 3)

L+(u) + L−(u)

2
=

1

2πi

∫
Γ

ϕ(τ)
dτ

τ− u
. (A 4)

The relations (A.1)–(A.4) are called the Sokhotski–Plemelj formulas on the real line.

The functions L+(u), L−(u) are continuous on R and infinity. The function ϕ(τ) has a

unique decomposition and the resulting boundary value equation (A.3) has a unique

regular solution

1

2πi

∫
Γ

ϕ(τ)
dτ

τ− ω
,

valid for all ω ∈ C and the Cauchy-type integral generates a regular sectionally holo-

morphic function in C cut along the real line. Furthermore,

L+(ω) =

∫
Γ

ϕ(τ)
dτ

τ− ω
, ω ∈ C+,

L−(ω) =

∫
Γ

ϕ(τ)
dτ

τ− ω
, ω ∈ C−.
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