
Math. Struct. in Comp. Science (2013), vol. 23, pp. 915–933. c© Cambridge University Press 2013

doi:10.1017/S0960129512000291

Applications and extensions of Alloy: past, present

and future

EMINA TORLAK †, MANA TAGHDIRI ‡, GREG DENNIS § and

JOSEPH P. NEAR ¶

†University of California, Berkeley, U.S.A.

Email: emina@eecs.berkeley.edu
‡Karlsruhe Institute of Technology,

Karlsruhe, Germany

Email: taghdiri@ira.uka.de
§Google, Cambridge, MA., U.S.A.

Email: gdennis@alum.mit.edu
¶Computer Science and Artificial Intelligence Laboratory, MIT,

Cambridge, MA., U.S.A.

Email: jnear@csail.mit.edu

Received 18 March 2011; revised 10 July 2011

Alloy is a declarative language for lightweight modelling and analysis of software. The core

of the language is based on first-order relational logic, which offers an attractive balance

between analysability and expressiveness. The logic is expressive enough to capture the

intricacies of real systems, but is also simple enough to support fully automated analysis

with the Alloy Analyzer. The Analyzer is built on a SAT-based constraint solver and

provides automated simulation, checking and debugging of Alloy specifications. Because of

its automated analysis and expressive logic, Alloy has been applied in a wide variety of

domains. These applications have motivated a number of extensions both to the Alloy

language and to its SAT-based analysis. This paper provides an overview of Alloy in the

context of its three largest application domains, lightweight modelling, bounded code

verification and test-case generation, and three recent application-driven extensions, an

imperative extension to the language, a compiler to executable code and a proof-capable

analyser based on SMT.

1. Introduction

Alloy (Jackson 2006) is a declarative language for lightweight modelling and analysis of

software systems. The core of the language is based on relational logic, which is a simple

but powerful combination of first-order logic, relational algebra and transitive closure.

By design, Alloy offers an attractive balance between analysability and expressiveness.

Its underlying logic is expressive enough to capture the intricacies of real systems (for

example, the flash file system (Kang and Jackson 2009)), but is also simple enough to

support fully automated analysis.

Alloy is equipped with simulation, checking and debugging analyses provided by the

Alloy Analyzer (Chang 2007). The Analyzer can simulate a system by exhaustively

searching for a finite instance of its specification; it can check that the system has a

https://doi.org/10.1017/S0960129512000291 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000291

E. Torlak, M. Taghdiri, G. Dennis and J. P. Near 916

desired property by searching for a counterexample to that property; and, finally, it can

help debug an overconstrained specification by highlighting any constraints that conflict

with one another. All three analyses are performed by reducing Alloy to relational logic,

and solving the resulting constraints with Kodkod (Torlak 2009), which is an efficient,

SAT-based solver for relational satisfiability problems. Kodkod works by translating a

relational problem to a set of equisatisfiable boolean clauses, which are decided by an

off-the-shelf SAT solver. The SAT solver is pluggable, ensuring that both Kodkod and

Alloy users automatically benefit from the continuing advances in SAT solving technology.

The versatility of Alloy, coupled with the fully automated analysis, has motivated its

use in a wide range of practical and exploratory applications. Examples include:

— design modelling and analysis (Kang and Jackson 2009; Ramananandro 2008);

— bounded program verification (Dennis et al. 2006; Dennis 2009; Dolby et al. 2007;

Galeotti et al. 2010; Taghdiri and Jackson 2007; Torlak et al. 2010);

— test-case generation (Abdul Khalek and Khurshid 2010; Shao et al. 2007; de la Riva

et al. 2010; Uzuncaova and Khurshid 2008; Uzuncaova et al. 2008);

— specification extraction (Taghdiri et al. 2006); counterexample generation (Blanchette

and Nipkow 2009; Spiridonov and Khurshid 2007); and

— declarative configuration (Narain et al. 2008; Yeung 2006).

The use of Alloy by the wider community has driven a number of extensions to the

language, as well as a number of alternatives to its SAT-based analysis. Each of these

addresses a key challenge that emerged from the efforts to apply Alloy:

(1) a lack of built-in support (such as control constructs) for modelling dynamic systems;

(2) a lack of automated assistance for compiling an Alloy specification into an executable

implementation;

(3) a lack of support for verifying rather than just checking properties of specifications;

and

(4) the limited support provided for numerical constraints.

DynAlloy (Frias et al. 2005) and Imperative Alloy (Near and Jackson 2010) tackle the first

challenge by extending Alloy with imperative constructs, which enable concise modelling

of dynamic systems. Several approaches have also been developed to help with the

implementation and verification challenges. These include:

— a recent compiler from Imperative Alloy to Prolog (Near 2010);

— a translator from a stylised subset of Alloy to SQL (Krishnamurthi et al. 2008);

— an automated Alloy prover based on SMT (El-Ghazi and Taghdiri 2011); and

— two interactive provers based on PVS (Frias et al. 2007) and Athena (Arkoudas

et al. 2003).

The SMT-based approach also addresses the fourth challenge by providing effective

support for numerical constraints.

The current paper provides an overview of Alloy in the context of past and present

applications, with an eye toward the future of the language and its analysis. We begin

by briefly introducing the Alloy language and the Analyzer (Section 2). We then present

three sets of applications to highlight the strengths and limitations of the Alloy approach

https://doi.org/10.1017/S0960129512000291 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000291

Applications and extensions of Alloy: past, present and future 917

(Section 3). To conclude, we review recent efforts to address these limitations and discuss

directions for future development (Sections 4–5).

2. A brief guide to Alloy: relations, models and cores

Alloy can be viewed roughly as a minimalist subset of Z (Spivey 1992), with a strong

connection to data modelling languages such as ER (Chen 1976) and SDM (Hammer

and McLeod 1978). The logic of Alloy is based on a single concept – that of a relation.

Functions are treated as binary relations; sets are unary relations; and scalars are singleton

unary relations. An Alloy specification is a collection of first-order constraints over

relational variables. The constituent tuples of these variables are drawn from a universe

of uninterpreted elements, or atoms.
For example, the following is a tiny, stand-alone specification of LISP-style lists:

1 sig Thing {}
2 sig List {
3 car: lone Thing,

4 cdr: lone List

5 }

The specification is defined over two sets, Thing and List, and two binary relations, car

and cdr. The set Thing models the objects that can be stored in Lists. The relations car

and cdr model the ‘car’ and ‘cdr’ pointers of a list: car maps each List to a Thing (if

any) that is stored in the list, and cdr maps every List to its tail (if any), which is also a

List. The keyword lone constrains the pointer relations to be partial functions from their

domain to their range, allowing some lists to be empty (that is, with no ‘car’ or ‘cdr’).
Given the above five lines of Alloy, we can use the Alloy Analyzer to simulate some

lists to ensure that the specification is consistent:

6 run {} for 3

The run command instructs the Analyzer to search for a model, or an instance, of the

list specification that contains up to three lists and up to three things. An instance of a

specification is a binding of its free variables – in this case, Thing, List, car and cdr – to

sets of tuples that makes the specification true.

Executing the command produces the following instance:

Thing �→ {〈Thing0〉}
List �→ {〈List0〉, 〈List1〉}
car �→ {〈List0, Thing0〉, 〈List1, Thing0〉}
cdr �→ {〈List0, List1〉, 〈List1, List1〉}

List0 List1cdr

Thing0

car

cdr

car

The Analyzer automatically produces a visualisation of the instance, as shown on the

right. The actual variable bindings are shown on the left for completeness. It is easy to

see that the bindings satisfy the list constraints.

https://doi.org/10.1017/S0960129512000291 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000291

E. Torlak, M. Taghdiri, G. Dennis and J. P. Near 918

While demonstrating the consistency of our specification, the above instance also
demonstrates that its constraints are quite weak. In particular, they allow lists with infinite
(cyclic) ‘cdr’ pointers. To ensure that all lists terminate, we can refine the specification by
introducing a special ‘nil’ list:

7 one sig Nil extends List {}
8 fact {
9 no Nil.car

10 no Nil.cdr

11 all l: List − Nil | some l.car and some l.cdr

12 all l: List | Nil in l.ˆcdr

13 }

The Nil list is unique and has neither a ‘car’ nor a ‘cdr’ (lines 7–10). Non-nil lists have

both (line 11), and the transitive closure (ˆ) of every list’s cdr includes Nil (line 12). That

is, following the ‘cdr’ pointer from any list eventually leads to the ‘nil’ list. Because ‘nil’

itself has no ‘cdr,’ the above constraints imply that all lists are finite.
We can now re-execute the run command (line 6) to search for some well-formed lists.

This time, however, the Analyzer finds no satisfying instance. Instead, it reports that the
specification is unsatisfiable and produces the following minimal unsatisfiable core:

10 no Nil.cdr

12 all l: List | Nil in l.ˆcdr

A minimal core of an unsatisfiable specification is a subset of its constraints that is also

unsatisfiable, but that becomes satisfiable if any of the included constraints are removed.

In other words, a minimal core pinpoints an irreducible source of inconsistency in the

specification. In our case, the conflicting constraints are pointing out that Nil has no cdr

and, as a result, Nil cannot be reached from itself by traversing cdr one or more times.

To fix the inconsistency, we weaken the constraint on line 12 by replacing the transitive

closure operator with ‘*’, which stands for reflexive transitive closure. Since Nil can be

reached from itself by traversing cdr zero or more times, the amended specification is

satisfiable. The Analyzer confirms this by producing a satisfying instance:

Thing �→ {〈Thing0〉}
List �→ {〈List0〉, 〈Nil〉}
Nil �→ {〈Nil〉}
car �→ {〈List0, Thing0〉}
cdr �→ {〈List0, Nil〉}

List0 Nilcdr

Thing0

car

https://doi.org/10.1017/S0960129512000291 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000291

Applications and extensions of Alloy: past, present and future 919

In addition to simulation and debugging, the Analyzer can also be used for checking
whether an Alloy specification implies a desired property. For example, consider extending
the amended list specification with the following definition of a prefix relation:

14 pred prefixes[pre: List → List] {
15 all l: List | Nil in l.pre

16 all l: List − Nil | l not in Nil.pre

17 all l, p: List − Nil | (p in l.pre) iff (l.car = p.car and p.cdr in l.cdr.pre)

18 }

The keyword pred introduces a parameterised fact or a predicate. The above predicate

constrains its input relation to map every List to all Lists that are its prefixes. In particular,

Nil is a prefix of every list (line 15); non-empty lists are not prefixes of Nil (line 16); and

a non-empty list p is a prefix of l if and only if they have the same car, and the cdr of p

is a prefix of the cdr of l (line 17).
A prefix relation on lists should be anti-symmetric – if two lists are prefixes of each

other, they must be equal. To check this, we execute the following command:

19 check {
20 all pre: List → List | all l, p: List |
21 (prefixes[pre] and p in l.pre and l in p.pre) implies p = l

22 } for 3

The check is performed by searching for a finite instance of the specification that

satisfies the negation of the checked property. Such an instance, if found, is called a

counterexample, and it shows a state that violates the property but is allowed by the

specification.

The counterexample to our property is given below:

Nil $pre

List0
($p)

$pre cdr

$pre

List1
($l)

$pre

Thing0

car

$pre cdr

$pre

car

It demonstrates two distinct witness lists, $l and $p, that are nonetheless prefixes of each

other according to a witness prefix relation $pre. The witness relations are called skolem

variables, which are automatically created by the Analyzer for each existentially quantified

variable. (The universally quantified variables pre, p and l in the check command become

existentially quantified when the checked formula is negated.)

https://doi.org/10.1017/S0960129512000291 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000291

E. Torlak, M. Taghdiri, G. Dennis and J. P. Near 920

As the counterexample shows, the problem with this formulation of anti-symmetry is
the use of identity instead of structural equivalence to compare the lists l and p. While $l
and $p are not identical, they are, in fact, structurally equivalent. The Analyzer yields no
counterexamples, even in a universe with up to eight lists and things, when checking the
following modified anti-symmetry property:

18 pred equivalence[eq: List → List] {
19 all a, b: List | a in b.eq iff (a.car = b.car and a.cdr in b.cdr.eq)

20 }
21 check {
22 all pre, eq: List → List | all l, p: List |
23 (prefixes[pre] and equivalence[eq] and p in l.pre and l in p.pre) implies p in l.eq

24 } for 8

Of course, the lack of a counterexample does not constitute a proof. The Alloy

Analyzer can only perform finite simulations and checks since its underlying constraint

solving engine, called Kodkod, is based on a SAT solver. Exactly how the engine works,

both as an instance finder and a core extractor, is described elsewhere (Torlak and

Jackson 2007; Torlak et al. 2008; Torlak 2009). We note here only that Kodkod takes

as input a problem in bounded relational logic, which extends the logic of Alloy with a

mechanism for specifying partial instances. A partial instance is simply the known part

of a desired solution to a given set of constraints. For example, every Sudoku puzzle is a

constraint solving problem for which the pre-filled cells form a partial solution. Kodkod

is built to exploit partial instances for faster constraint solving, and it is thus applicable

to large relational problems for which a solution is already partly determined – such as

course scheduling (Yeung 2006) or network configuration (Narain et al. 2008). In contrast

to Kodkod, the Alloy Analyzer takes as input the relational logic of Alloy, which has

no notion of a partial instance. With the Analyzer, partial solutions must be encoded

implicitly as additional constraints, resulting in a larger problem that is harder rather

than easier to solve. Kodkod also differs from the Analyzer in that it is designed as a

constraint solving API for use by automated tools, while the Analyzer is an IDE for

interactive modelling and the analysis of software systems.

3. Past and present applications

The Alloy toolset has been applied in a wide range of domains over the past decade.

In this section, we focus on the three largest ones: modelling and analysis of software

systems; bounded program verification; and test-case generation.

3.1. Modelling and analysis of software systems

By far the most popular use for Alloy has been the lightweight modelling and analysis

of complex systems. Its expressive logic, automated analysis and visualisation capabilities

provide a powerful combination of features for incremental building and exploration

of system designs. The toy list example in Section 2 demonstrates, in miniature, the

lightweight approach to modelling encouraged by Alloy. The user may start with a few

https://doi.org/10.1017/S0960129512000291 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000291

Applications and extensions of Alloy: past, present and future 921

key constraints, check that they capture relevant design properties in a desirable way and

then enrich the specification with additional details.

Some of the systems studied with Alloy include:

— a library information system (Frappier et al. 2010);

— the flash filesystem (Kang and Jackson 2008; Kang and Jackson 2009);

— the Mondex electronic purse (Ramananandro 2008);

— cryptographic protocols (Gassend et al. 2008);

— a proton therapy machine (Seater et al. 2007; Dennis et al. 2004);

— semantic web ontologies (Wang et al. 2006); and

— a multicast key management scheme (Taghdiri and Jackson 2003).

We will discuss the three most recent studies below – see the original papers for details

of the others.

The case study in Frappier et al. (2010) describes the modelling and analysis of a

library information system using Alloy and five other tools – CADP (Garavel et al. 2007),

FDR2 (Roscoe 2005), NuSMV (Biere et al. 1999), ProB (Leuschel and Butler 2003), and

Spin (Holzmann 2004). The system was specified in terms of ten possible events, and

the specification checked against fifteen correctness requirements. Modelled events include

members joining and leaving; the acquisition and discarding of books; and the borrowing,

renewing and returning of books by members. The specification was checked to ensure

that it satisfies liveness properties such as ‘The library can always acquire a book that it

does not already have’, as well as safety properties such as ‘Only members are allowed to

borrow books from the library’.

The study evaluated each of the modelling tools according to three criteria:

— the ease of specifying the system;

— the ease of specifying the properties to be checked; and

— the scalability of the analysis.

The key limitation of Alloy was found to be its lack of built-in support for the modelling

of dynamic behaviours – expressing dynamic behaviours was possible, but not convenient.

The B language (Abrial 1996) supported by ProB turned out to be the best match for

specifying information systems. Alloy’s analysis, however, scaled significantly better than

that of any other tool. The Analyzer was able to check all fifteen properties in a universe

with 8 books and 8 members in less than 5 minutes. For comparison, Spin scaled up to 5

books and 5 members, checking fourteen of the properties in over 2 hours. The remaining

tools scaled up to 3 books and members, taking between a minute and an hour to check

(most of) the properties.

Like Frappier et al., Kang and Jackson (2008, 2009) found the support for dynamic

modelling to be lacking in Alloy. Their case study focused on the modelling and analysis of

a flash-based filesystem, including the modelling of flash hardware (Hynix Semiconductor

et al. 2006) and of techniques (Gal and Toledo 2005) for dealing with its limitations.

The authors note that the absence of control constructs in Alloy made it cumbersome to

specify multi-step operations, such as the write to flash memory.

The flash filesystem study made extensive use of Alloy’s analysis capabilities. The

correctness of the flash filesystem design was analysed against the POSIX standard (The

https://doi.org/10.1017/S0960129512000291 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000291

E. Torlak, M. Taghdiri, G. Dennis and J. P. Near 922

Open Group 2003), by checking that the traces of a POSIX-compliant abstract filesystem

subsumed the traces of the flash filesystem. While the analysis could not scale up to the

size of a real file system, it nonetheless uncovered over 20 non-trivial bugs over the course

of the design process. The final version of the design was checked in a universe with

24 data elements, which took approximately 8 hours to complete. The authors propose

compiling the final design to code as a promising direction for future work.

Ramananandro (2008) also discovered subtle bugs with the help of Alloy in a case

study of the Mondex electronic purse system (Ives and Earl 1997). The Mondex purse

had been previously formalised in Z (Spivey 1992) and proved correct by hand (Stepney

et al. 2000). The Alloy specification of Mondex (Ramananandro 2008) was derived from

the Z specification, and checking it with the Analyzer against the hand-proved properties

revealed three subtle bugs. Two of these were previously unknown errors in the proof of

the properties, and one was a known bug in the Z specification itself. All three bugs were

fixed in the Alloy formalisation, but proving the correctness of the amended specification

had to be performed outside the Alloy framework using an external theorem prover.

3.2. Bounded verification

Multiple efforts have been undertaken to apply Alloy directly to the analysis of code.

These efforts share the same common approach: use relational logic to encode the claim

that a procedure in a high-level programming language satisfies a specification, and

then use Alloy (or its underlying engine) to search for counterexamples to that claim.

A counterexample, if one exists, corresponds to a trace of the source code that violates

the specification. Compared with testing, such an analysis could provide far greater

code coverage and, therefore, a higher degree of confidence in the code’s correctness.

Unlike theorem proving, this approach is fully automated, but cannot provide a proof of

correctness.

As with Alloy, in order to perform the analysis, the user must bound the problem. The

bound consists of a limit on the size of each type in the procedure, and to ensure that

traces are finite, the user must fix the maximum number of iterations around each loop

and the maximum number of recursive invocations of a procedure. The soundness and

completeness guarantees are the same as for Alloy: if a counterexample exists within the

bound, one will be found; but if no counterexample exists within the bound, one may still

lurk in a larger bound. For this reason, such a style of code analysis has sometimes been

called bounded verification (Dennis 2009).

The first bounded verification effort was Vaziri’s JAlloy tool (Vaziri 2004). JAlloy could

check a method in Java against a specification of its behaviour by translating the method

to Alloy and invoking an early prototype of the Alloy Analyzer on the resulting constraints.

In contrast to later approaches, JAlloy inlined the bodies of all called procedures directly

into the procedure under analysis. Vaziri demonstrated the feasibility of this approach on

individual methods of isolated data structures, but the approach could not yet be scaled

to real programs consisting of multiple interacting components.

Building on Vaziri’s work on JAlloy, Dennis built a tool called Forge (Dennis 2009). At

the time Forge was developed, the new Kodkod relational logic engine (Torlak 2009) was

https://doi.org/10.1017/S0960129512000291 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000291

Applications and extensions of Alloy: past, present and future 923

already available, and Forge exploited its advantages over the previous Alloy Analyzer to

great benefit. In particular, Forge employed a new translation from procedural code to

relational logic involving symbolic execution, which was infeasible prior to the existence

of the Kodkod APIs.

With Forge, Dennis introduced the Forge Intermediate Representation (FIR), which is

a new interemediate representation language to support bounded verification. To analyse

a method in a high-level programming language, Forge requires that it first be translated

to FIR. The Forge tool was bundled with a translation for Java, and Toshiba research

worked independently on a similar tool for C (Sakai and Imai 2009). The introduction of

FIR benefitted Forge developers by providing a separation of concerns that helped avoid

complexity in the tool’s development, and it benefitted Forge users by lowering the bar to

build bounded verification tools for other high-level languages.

Forge also provides a coverage metric based on the Alloy/Kodkod unsatisfiable core

technology. When Forge fails to find a trace of the procedure that violates the specification,

it is because Kodkod determined there were no solutions to the provided relational formula

within the bounds provided. When this happens, Forge can ask Kodkod to provide an

unsatisfiable core of the formula – a subset of the top-level clauses that are themselves

unsatisfiable – which Forge can in turn translate back into statements in the code that

were not ‘covered’ by the analysis. Such statements could be effectively removed from

the procedure, and the resulting procedure would still satisfy the specification. This could

happen, for example, if the bound on the analysis is too small, or if the specification

against which the procedure is being checked is under-constrained.

In parallel with Dennis’s work on Forge, Dolby, Vaziri and Tip were exploring an

alternative bounded verification approach based on Kodkod (Dolby et al. 2007). Their

tool, called Miniatur, translates Java directly to Kodkod using an algorithm that slices

the input program with respect to the property being checked. Miniatur also employs

efficient encodings for integer values and large sparse arrays, enabling the analysis of code

that manipulates both (for example, hash maps). The integer encoding is designed to take

advantage of Kodkod’s support for bitvector arithmetic, which is handled by bit-blasting.

Applying Miniatur to a variety of open-source programs revealed several violations of

the Java equality contract. With its specialised encoding of integers, the tool was able

to perform all checks using 16-bit integer arithmetic, which is a significant improvement

over other Alloy-based tools (which generally cannot scale beyond 4-bit arithmetic), but

still limited by the bit-blasting approach of the underlying constraint solver.

Related to JForge and Miniatur, Galeotti’s approach to bounded verification (Ga-

leotti 2010) is based on DynAlloy (Frias et al. 2005), which is an extension to the Alloy

modelling language that includes actions from dynamic logic. Their tool translates Java

code to DynAlloy, which is in turn translated to Alloy and analysed with the Alloy

Analyzer. Their results demonstrate significant performance gains over JForge by adding

symmetry-breaking predicates on Java fields.

Taghdiri’s specification inference technique (Taghdiri 2007) complements bounded

verification approaches. The technique, embodied in a tool called Karun, allows a method

to be analysed using a translation to relational logic without requiring either specifications

to be written for the called methods, or the full body of those methods to be inlined.

https://doi.org/10.1017/S0960129512000291 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000291

E. Torlak, M. Taghdiri, G. Dennis and J. P. Near 924

Instead, Karun automatically infers partial specifications of the called methods from their

implementations. Karun was built on top of Forge, but, in principle, it could be used in

conjunction with any of the bounded verification techniques described above.

Karun begins by performing an abstract interpretation of each called method to

obtain an initial, conservative abstraction of its behaviour (Taghdiri et al. 2006). It

then replaces each method call with its abstraction to give an abstracted version of the

original method. From there, it follows a standard CEGAR (Counter-Example Guided

Abstraction Refinement) approach. It checks the method against its specification using

Forge’s bounded verification. If the abstracted method satisfies the specification, the

original method will necessarily satisfy it, so Karun terminates. If, on the other hand,

bounded verification finds a counterexample, the counterexample witnesses a pre-/post-

state pair for each method call. For each of these method calls, Karun invokes the bounded

verification again to search for an execution of the called method that conforms to the

pre-/post-state pair previously witnessed. If there is such an execution, the counterexample

is valid. If no such execution exists, the counterexample is invalid and the abstraction is

refined.

To refine the abstraction, Karun queries the underlying Kodkod model finder for an

unsatisfiable core of the analysis, which includes formulas generated from the called

method’s implementation that prohibit the existence of the execution. The formulas in

the core are then conjoined to the abstraction of the method, and the analysis of the

method is performed anew. This process continues until no counterexamples are found

(the method is correct) or a valid counterexample is found (the method is incorrect). In

the worst case, the method calls are eventually refined to the entire behaviour of the

called methods – the equivalent of inlining the method call. Taghdiri found Karun to

scale better than inlining when the specification being checked was a partial property of

the method’s behaviour, in which case only a limited specification for each called method

needs to be inferred.

While most Alloy-based approaches to bounded verification have focused on sequential

code, Torlak et al. (2010) presents an approach for checking concurrent programs against

memory models specified in relational logic. A memory model is a set of axioms that

describe which writes to a shared memory location any read of that location may

observe. Specifications of memory models are usually supplemented with small multi-

threaded programs, called litmus tests, which illustrate behaviours that the model allows

or prohibits. Because a litmus test is intended to elucidate the formal specification of

a memory model, it is critical that each test correctly allows or prohibits its prescribed

behaviour. MemSAT is a fully automated tool, based on Kodkod, for checking litmus

tests against memory model specifications. Given a specification of a memory model and

a litmus program containing assertions about its expected behaviour, MemSAT outputs a

trace of the program in which both the assertions and the memory model are satisfied, if

one can be found. Otherwise, the tool outputs a minimal unsatisfiable core of the memory

model and program constraints. MemSAT was used to find discrepancies between several

existing memory models and their published test cases, including the current Java Memory

Model (Manson et al. 2005) and a revised version of it (Ševčı́k and Aspinall 2008). It was

the first tool to handle the full specification of the Java Memory Model, which eluded

https://doi.org/10.1017/S0960129512000291 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000291

Applications and extensions of Alloy: past, present and future 925

several earlier analysis attempts due to the large state space induced by the model’s

committing semantics.

3.3. Test case generation

In addition to static code checking, a number of tools have used the Alloy framework

to generate test cases for programs. A key strength of such approaches is their ability to

produce structurally complex test data (such as balanced binary search trees). For example,

TestEra (Marinov and Khurshid 2001) employs Alloy in a specification-based, black-box

framework for testing of Java programs. It uses a method’s pre-condition to generate all

non-isomorphic inputs up to a bounded size. The method is then executed on each test

input, and the output is checked for correctness using the method’s post-condition. TestEra

expects pre- and post-conditions in the Alloy language, and relies on the Alloy Analyzer’s

instance enumeration capability to generate test inputs. It incorporates symmetry breaking

formulas into the Alloy specification to generate efficiently only non-isomorphic inputs.

Whispec (Shao et al. 2007) builds on TestEra, but focuses on maximising code coverage.

In other words, it is an approach for specification-based, white-box testing. Using Kodkod,

Whispec solves a method’s preconditions to generate an initial test input. It then executes

the method on that input and builds the symbolic path condition of the executed trace.

Negating some of the taken branch conditions yields a new path condition, which is

then conjoined with the pre-condition, and solved again using Kodkod. This process is

repeated until all feasible branches of execution are covered, up to a given length.

Unlike TestEra, which expects a complete specification of program inputs and then

generates test cases using a single execution of the Analyzer, Kesit (Uzuncaova and

Khurshid 2008) performs incremental test generation using Alloy. Kesit focuses on

generating tests for products in a software product line, where each product is defined

as a unique combination of features. It specifies features as Alloy constraints and solves

them incrementally. That is, each call to the Analyzer solves only a partial specification.

Generated test cases are refined using Kodkod’s support for partial instance definition.

The Alloy Analyzer has also been used for testing database management systems

(DBMS). Since Alloy’s logic is relational, it provides a natural fit for modelling relational

databases. For example, ADUSA (Khalek et al. 2008) applies Alloy in the context of

query-aware database generation. It takes as inputs a database schema and an SQL

query and translates them to Alloy. It then uses the Analyzer to generate all bounded,

non-isomorphic test databases. Since the query information is taken into account, the

generated databases will cover non-trivial, meaningful scenarios for query execution. The

Analyzer also produces the expected result of executing the given query on each database.

This information is then used as a test oracle by ADUSA.

Another approach is taken in de la Riva et al. (2010), which uses Alloy to generate query-

aware test databases with respect to an SQL test coverage criterion, called SQLFpc (Tuya

et al. 2010). Given a query and a database schema, the technique transforms SQLFpc

coverage rules to test requirements, and then models them as an Alloy specification.

Consequently, any instance found by the Analyzer represents a test database that satisfies

both the schema and the coverage rules for the target query. However, reports to date

https://doi.org/10.1017/S0960129512000291 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000291

E. Torlak, M. Taghdiri, G. Dennis and J. P. Near 926

indicate that the Analyzer’s limited support for arithmetic and string-based expressions

hinders its applicability to database generation, since many queries contain aggregate

functions and string operations.

To automate DBMS testing further, Abdul-Khalek and Khurshid (2010) presents a

technique for generating valid SQL queries using Alloy. Given a database schema and the

SQL grammar, the technique automatically generates an Alloy specification that captures

the syntax of SQL queries over that database. This guarantees that any queries generated

from the specification (using the Analyzer) are syntactically correct. Additional constraints

are included to prune out queries that are not semantically correct.

4. Extensions and future directions

As the previous section has shown, the efforts to apply Alloy have brought up a number

of challenges and directions for future development. The key challenges include:

— a lack of built-in support for modelling dynamic systems (Frappier et al. 2010; Kang

and Jackson 2009);

— a lack of an automated way to turn Alloy specifications into executable prototypes

(Kang and Jackson 2009);

— a lack of an automated tool for verifying specifications (Ramananandro 2008); and

— limited support for numerical constraints (de la Riva et al. 2010).

We believe that addressing these challenges, while staying true to the lightweight nature

of the language and its analysis, will both facilitate current applications of Alloy and

inspire future ones. In Sections 4.1– 4.3, we describe recent efforts to overcome all four of

these limitations, and thus make progress towards the future of Alloy as a comprehensive

framework for the lightweight design, analysis and construction of systems.

4.1. Adding imperative constructs to Alloy

The Alloy language contains no built-in support for specifying dynamic systems. As

Alloy’s logic is powerful enough to support many encodings of dynamic behaviour,

there is no need for the language to prescribe any one in particular. The two most

popular idioms for specifying dynamic systems are based on events and traces. The

event-based idiom prescribes the definition of atomic event signatures, each of which

encapsulates its own semantics; the trace-based idiom calls for the addition of time-stamps

to dynamic information and defines the semantics of the system using logical predicates

that reason about these time-stamps. Specifications that are primarily concerned with

the selection and ordering of events are naturally suited to the first idiom; those that

are primarily concerned with the ways in which data change over time are suited to the

second.

Both idioms produce similar results in terms of scalability, and both can be used to write

concise specifications. However, neither idiom provides good support for the composition

of dynamic behaviours, and, since both idioms represent ad hoc solutions, specifications

written by different authors may differ sufficiently to reduce readability. The ad hoc nature

https://doi.org/10.1017/S0960129512000291 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000291

Applications and extensions of Alloy: past, present and future 927

of these idioms also means that the Alloy Analyzer cannot take advantage of information

about the dynamic elements of the specification to improve the scalability or provide

additional capabilities.

Imperative Alloy (Near and Jackson 2010) is a syntactic extension to the Alloy language

for specifying dynamic systems. The extension provides a set of operators taken from

imperative programming for defining dynamic actions, and gives these operators the

standard operational semantics. Mutable signature fields are annotated as such; updates

to these fields are performed using the familiar ‘:=’ operator, and actions may be sequenced

using the standard ‘;’, thereby providing the compositionality that is difficult to express

in existing Alloy idioms. The extension also provides loops, pre- and post-conditions, and

temporal quantifiers to bound the extent of action execution. Specifications in Imperative

Alloy can be translated through symbolic execution to specifications in standard Alloy

that use the trace-based idiom for their dynamic elements. Analyses of the resulting

specifications scale similarly to the analyses of hand-written specifications.

DynAlloy (Frias et al. 2005) also extends Alloy with constructs for specifying dynamic

systems. Like Imperative Alloy, DynAlloy allows the user to specify systems in terms of

imperative commands or declarative specifications. However, it differs from Imperative

Alloy in that its semantics is based on dynamic logic, and the extension is not designed

to produce human-readable translations in standard Alloy.

4.2. From specifications to code: compiling imperative Alloy

In addition to providing syntactic support for dynamic modelling, one of the goals of

Imperative Alloy was to explore the possibility of flexible automated support for refining

specifications into executable programs. The use of concepts from programming languages

makes it simple to translate non-declarative Imperative Alloy specifications into imperative

programs. The compiler from Imperative Alloy to Prolog (Near 2010) automates the

translation process and extends it to specifications that contain some declarative features,

with the intention of allowing the user to refine the original specification until the compiler

produces a Prolog program with sufficient performance. This approach to synthesising

programs from relational specifications stands in contrast to prior work (Krishnamurthi

et al. 2008; Dougherty 2009), which translates a stylised subset of pure Alloy into a

functional program backed by a persistent database – an approach that is complicated

by the need to define imperative semantics for Alloy’s declarative constructs.

The Imperative Alloy compiler takes a more direct route to code. The key to its

success is the fact that Imperative Alloy makes non-declarative control flow explicit,

allowing the compiler to translate non-declarative parts of the specification directly into

efficient programs. Since, with the exception of universal quantification and negation,

Prolog supports the same declarative constructs as Alloy, the compiler uses this support

to execute the remaining declarative parts of the specification. In general, this strategy

produces programs whose performance is directly related to the declarativeness of the

source specification.

The combination of analysis using the Alloy Analyzer and execution using the compiler

from Imperative Alloy to Prolog leads to a new style of programming. The programmer

https://doi.org/10.1017/S0960129512000291 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000291

E. Torlak, M. Taghdiri, G. Dennis and J. P. Near 928

begins by writing a declarative specification and then refines the specification into a

program by replacing declarative elements with non-declarative ones. Each refinement step

can be checked for correctness using the Analyzer, and at each step the specification can

be compiled into Prolog and tested against the programmer’s performance requirements.

As soon as the compiled program runs quickly enough, the programmer is finished.

Experience has shown that even specifications with significant declarative elements can

perform fairly well, meaning that this style of programming could save programmers time,

while producing more readable programs with fewer bugs.

4.3. Verifying properties of Alloy specifications

The Alloy Analyzer provides a fully automatic and easy-to-use engine for checking and

simulating Alloy specifications. In checking mode, the Analyzer looks for an instance that

satisfies the specification, but violates a property of interest. Since the Analyzer translates

Alloy constraints to propositional logic and solves them using a SAT solver, it can perform

the analysis only with respect to a finite scope, which is given by an upper bound on the

number of elements of each signature.

Consequently, although the Analyzer can produce counterexamples efficiently, it cannot

automatically prove the correctness of a property. Under certain circumstances, a minimum

scope can be computed so that correctness for that scope implies a general proof of

correctness for any scope (Momtahan 2005). However, establishing the existence of a

minimum scope must be done outside Alloy. As a result, proving the correctness of

an Alloy specification requires an additional round of analysis in which the user either

rewrites the specification in the input language of a theorem prover for an interactive

proof process (see, for example, Ramananandro (2008)), or establishes that the bound

searched by the Analyzer was sufficient for a general proof. Such a two-phase analysis

process requires significant effort by the user.

In order to overcome these limitations, some attempts have been made to verify Alloy

specifications using interactive theorem provers. Dynamite (Frias et al. 2007) proves

properties of Alloy specifications using the PVS theorem prover (Owre et al. 1992) using

a translation to fork algebra. It introduces a PVS pretty-printer that shows proof steps in

Alloy, reducing the burden of guiding the prover. Prioni (Arkoudas et al. 2003) integrates

the Alloy Analyzer with the Athena theorem prover (Arkoudas 2000). To overcome the

challenge of finding proofs, Prioni provides a lemma library that captures commonly used

Alloy patterns.

More recently, SMT (SAT Modulo Theories) solvers have been used to prove properties

of Alloy specifications (El-Ghazi and Taghdiri 2011). SMT solvers are particularly attract-

ive because they can efficiently prove a rich combination of background theories without

sacrificing full automation. Compared with theorem provers that perform a complete

analysis but require user interaction, SMT solvers are fully automatic, but may fail to

prove quantified formulas. However, recent SMT solvers have shown significant advances

in handling quantifiers (Ge and Moura 2009; Bonacina et al. 2009; Ge et al. 2009).

Furthermore, their ability to produce satisfying instances as well as unsatisfiable cores

supports Alloy’s lightweight and easy-to-use philosophy.

https://doi.org/10.1017/S0960129512000291 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000291

Applications and extensions of Alloy: past, present and future 929

The SMT-based analysis mitigates the finite-analysis problem of the Alloy Analyzer by

specifying all relational operators of Alloy as first-order SMT axioms; scope finitisation

is avoided altogether. However, since Alloy’s logic is undecidable, the resulting SMT

formulas can be undecidable, so the SMT solver may return an instance that is marked as

‘unknown’. This indicates that the instance may be spurious, and must be double-checked.

But if the SMT solver outputs ‘unsat’, the input formula is guaranteed to be unsatisfiable,

and the property it encodes is guaranteed to be correct. As a result, this approach

complements the Alloy Analyzer: when the Analyzer fails to find a counterexample, the

SMT-based analyser can then translate the constraints to an SMT logic, with the aim of

proving the correctness of the property of interest. The user thus has the benefit of both

sound counterexamples, provided by the Analyzer, and sound proofs, provided by SMT

solvers.

5. Conclusion

We have presented an overview of Alloy as a language and a tool for the application of

lightweight formal methods. The simplicity and expressiveness of Alloy’s logic, and the

automation of its analysis, have motivated its use in a variety of domains, ranging from

classic formal modelling applications to bounded code verification, test-case generation,

counterexample generation and declarative configuration. The applications of Alloy have

in turn influenced its development, inspiring a number of language extensions and

alternative analyses. We have reviewed some of these applications and discussed the

strengths and limitations of the Alloy approach. We have also described recent efforts to

address the key challenges in using Alloy as a comprehensive framework for lightweight

design, analysis and construction of systems. We believe these efforts provide a roadmap

to the future of Alloy: adding imperative constructs to the language while preserving its

declarative nature; enabling verification of properties while keeping the analysis automatic;

and adding tool support for turning Alloy specifications into implementation prototypes.

References

Abdul Khalek, S. and Khurshid, S. (2010) Automated SQL query generation for systematic testing

of database engines. In: ASE 10, Proceedings of the IEEE/ACM International Conference on

Automated Software Engineering, ACM 329–332.

Abrial, J.-R. (1996) The B-Book: Assigning Programs to Meanings, Cambridge University Press.

Arkoudas, K. (2000) Denotational Proof Languages, Ph.D. thesis, Massachusetts Institute of

Technology.

Arkoudas, K., Khurshid, S., Marinov, D. and Rinard, M. (2003) Integrating model checking and

theorem proving for relational reasoning. In: Berghammer, R., Möller, B. and Struth, G. (eds.)

Relational and Kleene-Algebraic Methods in Computer Science. Springer-Verlag Lecture Notes

in Computer Science 3051 21–33.

Biere, A., Cimatti, A., Clarke, E.M. and Zhu, Y. (1999) Symbolic model checking without BDDs. In:

Cleaveland, R. (ed.) TACAS’99. International Journal on Software Tools for Technology Transfer

3 (3) 193–207.

https://doi.org/10.1017/S0960129512000291 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000291

E. Torlak, M. Taghdiri, G. Dennis and J. P. Near 930

Blanchette, J. and Nipkow, T. (2009) Nitpick: A counterexample generator for higher-order logic

based on a relational model finder. In: TAP 2009: short papers. Technical report tr630, ETH

Zurich.

Bonacina, M. P., Lynch, C. and Moura, L. (2009) On deciding satisfiability by DPLL and unsound

theorem proving. In: Schmidt, R. (ed.) Automated Deduction – CADE-22. Springer-Verlag Lecture

Notes in Computer Science 5663 35–50.

Chang, F. (2007) Alloy analyzer 4.0. (Available at http://Alloy.mit.edu/Alloy4/.)

Chen, P. P.-S. (1976) The entity-relationship model – toward a unified view of data. ACM Transactions

on Database Systems 1 (1) 9–36.

Dennis, G. (2009) A relational framework for bounded program verification, Ph.D. thesis,

Massachusetts Institute of Technology.

Dennis, G., Chang, F. and Jackson, D. (2006) Modular verification of code. In: ISSTA ’06:

Proceedings of the 2006 International Symposium on Software Testing and Analysis, ACM 109–

120.

Dennis, G., Seater, R., Rayside, D. and Jackson, D. (2004) Automating commutativity analysis at

the design level. In: ISSTA ’04 – Proceedings of the 2004 ACM SIGSOFT International Symposium

on Software Testing and Analysis, ACM 165–174.

Dolby, J., Vaziri, M. and Tip, F. (2007) Finding bugs efficiently with a SAT solver. In: ESEC-FSE ’07:

Proceedings of the the 6th joint meeting of the European Software Engineering Conference and the

ACM SIGSOFT symposium on the Foundations of Software Engineering, ACM 195–204.

Dougherty, D. J. (2009) An improved algorithm for generating database transactions from

relational algebra specifications. In: Mackie, I. and Martins Moreira, A. (eds.) Proceedings

Tenth International Workshop on Rule-Based Programming: Rule ’09. Electronic Proceedings in

Theoretical Computer Science 21 77–89.

El-Ghazi, A.A. and Taghdiri, M. (2011) Relational reasoning via SMT solving. In: Butler, M. and

Schulte, W. (eds.) Proceedings of the 17th International Conference on Formal Methods: FM ’11.

Springer-Verlag Lecture Notes in Computer Science 6664 133–148.

Frappier, M., Fraikin, B., Chossart, R., Chane-Yack-Fa, R. and Ouenzar, M. (2010) Comparison of

model checking tools for information systems. In: Dong, J. and Zhu, H. (eds.) Formal Methods

and Software Engineering: Proceedings ICFEM ’10. Springer-Verlag Lecture Notes in Computer

Science 6447 581–596.

Frias, M. F., Galeotti, J. P., López Pombo, C.G. and Aguirre, N.M. (2005) DynAlloy: upgrading

Alloy with actions. In: Proceedings of the 27th International Conference on Software Engineering

– ICSE ’05, ACM 442–451.

Frias, M. F., Pombo, C.G. L. and Moscato, M.M. (2007) Alloy Analyzer+PVS in the analysis and

verification of Alloy specifications. In: Grumberg, O. and Huth, M. (eds.) Tools and Algorithms

for the Construction and Analysis of Systems: Proceedings TACAS 2007. Springer-Verlag Lecture

Notes in Computer Science 4424 587–601.

Gal, E. and Toledo, S. (2005) Algorithms and data structures for flash memories. ACM Computing

Surveys 37 138–163.

Galeotti, J., Rosner, N., Pombo, C. and Frias, M. (2010) Analysis of invariants for efficient bounded

verification. In: Proceedings of the 19th International Symposium on Software Testing and Analysis

– ISSTA ’10 25–36.

Galeotti, J. P. (2010) Software Verification using Alloy, Ph.D. thesis, University of Buenos Aires.

Garavel, H., Mateescu, R., Lang, F. and Serwe, W. (2007) CADP 2006: A toolbox for the construction

and analysis of distributed processes. In: Damm. W. and Hermanns, H. (eds.) Computer Aided

Verification: Proceedings 19th International Conference, CAV 2007. Springer-Verlag Lecture Notes

in Computer Science 4590 158–163.

https://doi.org/10.1017/S0960129512000291 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000291

Applications and extensions of Alloy: past, present and future 931

Gassend, B., Dijk, M.V., Clarke, D., Torlak, E., Devadas, S. and Tuyls, P. (2008) Controlled physical

random functions and applications. ACM Transactions on Information and System Security 10 (3)

1–22.

Ge, Y., Barrett, C. and Tinelli, C. (2009) Solving quantified verification conditions using satisfiability

modulo theories. Annals of Mathematics and Artificial Intelligence 55 (1) 101–122.

Ge, Y. and Moura, L. (2009) Complete instantiation for quantified formulas in satisfiabiliby modulo

theories. In: Bouajjani, A. and Maler, O. (eds.) Computer Aided Verification – Proceedings 21st

International Conference, CAV 2009. Springer-Verlag Lecture Notes in Computer Science 5643

306–320.

Hammer, M. and McLeod, D. (1978) The semantic data model: a modelling mechanism for

data base applications. In: Proceedings of the 1978 ACM SIGMOD International Conference on

Management of Data, ACM 26–36.

Holzmann, G. J. (2004) The Spin model checker, Addison-Wesley.

Hynix Semiconductor et al. (2006) Open NAND flash interface specification. Technical report,

ONFi Workgroup.

Ives, B. and Earl, M. (1997) Mondex international: Reengineering money. Technical Report CRIM

CS97/2, London Business School.

Jackson, D. (2006) Software Abstractions: logic, language, and analysis, MIT Press.

Kang, E. and Jackson, D. (2008) Formal modeling and analysis of a flash filesystem in Alloy.

In: Börger, E., Butler, M. Bowen, J. P. and Boca, P. (eds.) Abstract State Machines, B and

Z – Proceedings First International Conference, ABZ 2008. Springer-Verlag Lecture Notes in

Computer Science 5238 294–308.

Kang, E. and Jackson, D. (2009) Designing and analyzing a flash file system with Alloy. International

Journal of Software and Informatics 3 (2) 129–148.

Khalek, S., Elkarablieh, B., Laleye, Y. and Khurshid, S. (2008) Query-aware test generation using a

relational constraint solver. In: Proceedings of the 23rd IEEE/ACM International Conference on

Automated Software Engineering: ASE ’08, IEEE Computer Society 238–247.

Krishnamurthi, S., Fisler, K., Dougherty, D. J. and Yoo, D. (2008) Alchemy: transmuting base Alloy

specifications into implementations. In: SIGSOFT ’08/FSE-16: Proceedings of the 16th ACM

SIGSOFT International Symposium on Foundations of software engineering, ACM 158–169.

Leuschel, M. and Butler, M. J. (2003) ProB: A model checker for B. In: Araki, K., Gnesi, S. and

Mandrioli, D. (eds.) Proceedings FME 2003: Formal Methods. Springer-Verlag Lecture Notes in

Computer Science 2805 855–874.

Manson, J., Pugh, W. and Adve, S. V. (2005) The Java memory model. In: Proceedings of the 32nd

ACM SIGPLAN-SIGACT symposium on Principles of Programming Languages: POPL ’05, ACM

378–391.

Marinov, D. and Khurshid, S. (2001) Testera: A novel framework for automated testing of Java

programs. In: Proceedings of the 16th IEEE International Conference on Automated Software

Engineering: ASE ’01, IEEE Computer Society 22.

Momtahan, L. (2005) Towards a small model theorem for data independent systems in Alloy.

Electronic Notes in Theoretical Computer Science 128 (6) 37–52.

Narain, S., Levin, G., Kaul, V. and Malik, S. (2008) Declarative infrastructure configuration synthesis

and debugging. Journal of Network and Systems Management 16 (3) 235–258.

Near, J. P. (2010) From relational specifications to logic programs. In: Hermenegildo, M. and

Schaub, T. (eds.) Technical Communications of the 26th International Conference on Logic

Programming: ICLP ’10. Leibniz International Proceedings in Informatics 7 144–153.

Near, J. P. and Jackson, D. (2010) An imperative extension to Alloy. In: Frappier, M., Glässer, U.,

Khurshid, S., Laleau, R. and Reeves, S. (eds.) Abstract State Machines, Alloy, B and Z Second

https://doi.org/10.1017/S0960129512000291 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000291

E. Torlak, M. Taghdiri, G. Dennis and J. P. Near 932

International Conference, ABZ 2010. Springer-Verlag Lecture Notes in Computer Science 5977

118–131.

Owre, S., Shankar, N. and Rushby, J. (1992) PVS: A prototype verification system. In: Kapur, D. (ed.)

Automated Deduction – CADE-11: Proceedings 11th International Conference on Automated

Deduction. Springer-Verlag Lecture Notes in Computer Science 607 748–752.

Ramananandro, T. (2008) Mondex, an electronic purse: specification and refinement checks with

the Alloy model-finding method. Formal Aspects of Computing 20 (1) 21–39.

de la Riva, C., Suárez-Cabal, M. J. and Tuya, J. (2010) Constraint-based test database generation

for SQL queries. In: Proceedings of the 5th Workshop on Automation of Software Test: AST ’10,

ACM 67–74.

Roscoe, B. (2005) The Theory and Practice of Concurrency, Prentice Hall, 3rd edition.

Sakai, M. and Imai, T. (2009) CForge: A bounded verifier for the C language. In: The 11th

Programming and Programming Language workshop (PPL ’09).

Seater, R., Jackson, D. and Gheyi, R. (2007) Requirement progression in problem frames: deriving

specifications from requirements. Requirements Engineering Journal 12 (2) 77–102.

Ševčı́k, J. and Aspinall, D. (2008) On validity of program transformations in the Java memory model.

In: Vitek, J. (ed.) ECOOP 2008 – Object-Oriented Programming: Proceedings 22nd European

Conference. Springer-Verlag Lecture Notes in Computer Science 5142 27–51.

Shao, D., Khurshid, S. and Perry, D. (2007) Whispec: White-box testing of libraries using

declarative specifications. In: Proceedings of the 2007 Symposium on Library-Centric Software

Design – LCSD ’07, ACM 11–20.

Spiridonov, A. and Khurshid, S. (2007) Pythia: Automatic generation of counterexamples for ACL2

using Alloy. In: Proceedings of the 7th International Workshop on the ACL2 Theorem Prover and

its Applications.

Spivey, J.M. (1992) The Z Notation: A Reference Manual, International Series in Computer Science,

Prentice Hall.

Stepney, S., Cooper, D. and Woodcock, J. (2000) An electronic purse: Specification, refinement

and proof. Technical report, Oxford University Computing Laboratory, Programming Research

Group.

Taghdiri, M. (2007) Automating Modular Program Verification by Refining Specifications, Ph.D. thesis,

Massachusetts Institute of Technology.

Taghdiri, M. and Jackson, D. (2003) A lightweight formal analysis of a multicast key management

scheme. In: König, H., Heiner, H. and Wolisz, A. (eds.) Formal Techniques for Networked and

Distributed Systems – FORTE 2003: Proceedings 23rd IFIP WG 6.1 International Conference.

Springer-Verlag Lecture Notes in Computer Science 2767 240–256.

Taghdiri, M. and Jackson, D. (2007) Inferring specifications to detect errors in code. Journal of

Automated Software Engineering 14 (1) 87–121.

Taghdiri, M., Seater, R. and Jackson, D. (2006) Lightweight extraction of syntactic specifications.

In: SIGSOFT ’06/FSE-14: Proceedings of the 14th ACM SIGSOFT International Symposium on

Foundations of Software Engineering 276–286.

The Open Group (2003) The POSIX 1003.1, 2003 edition specification. (Available at:

http://www.opengroup.org/certification/idx/posix.html.)

Torlak, E. (2009) A constraint solver for software engineering: finding models and cores of large

relational specifications, Ph.D. thesis, MIT.

Torlak, E., Chang, F. and Jackson, D. (2008) Finding minimal unsatisfiable cores of declarative

specifications. In: Cuellar, J., Maibaum, T. and Sere, K. (eds.) FM 2008: Formal Methods –

Proceedings 15th International Symposium on Formal Methods. Springer-Verlag Lecture Notes

in Computer Science 5014 326–341.

https://doi.org/10.1017/S0960129512000291 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000291

Applications and extensions of Alloy: past, present and future 933

Torlak, E. and Jackson, D. (2007) Kodkod: A relational model finder. In: Grumberg, O. and

Huth, M. (eds.) Tools and Algorithms for the Construction and Analysis of Systems: Proceedings

TACAS 2007. Springer-Verlag Lecture Notes in Computer Science 4424 632–647.

Torlak, E., Vaziri, M. and Dolby, J. (2010) Memsat: checking axiomatic specifications of memory

models. In: PLDI ’10 – Proceedings of the 2010 ACM SIGPLAN conference on Programming

Language Design and Implementation. ACM SIGPLAN Notices 45 (6) 341–350.

Tuya, J., Suárez-Cabal, M. J. and de la Riva, C. (2010) Full predicate coverage for testing SQL

database queries. Software Testing, Verification and Reliability 20 (3) 237–288.

Uzuncaova, E., Garcia, D., Khurshid, S. and Batory, D. (2008) Testing software product lines using

incremental test generation. In: ISSRE ’08 Proceedings of the 2008 19th International Symposium

on Software Reliability Engineering, IEEE Computer Society 249–258.

Uzuncaova, E. and Khurshid, S. (2008) Constraint prioritization for efficient analysis of declarative

models. In: Cuellar, J., Maibaum, T. and Sere, K. (eds.) FM 2008: Formal Methods, Proceedings

15th International Symposium on Formal Methods. Springer-Verlag Lecture Notes in Computer

Science 5014 310–325.

Vaziri, M. (2004) Finding Bugs in Software with a Constraint Solver, Ph.D. thesis, Massachusetts

Institute of Technology, Cambridge, MA.

Wang, H.H., Dong, J. S., Sun, J. and Sun, J. S. (2006) Reasoning support for semantic web ontology

family languages using Alloy. Multiagent and Grid Systems 2 (4) 455–471.

Yeung, V. (2006) Declarative configuration applied to course scheduling. Master’s thesis,

Massachusetts Institute of Technology, Cambridge, MA.

https://doi.org/10.1017/S0960129512000291 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000291

