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Abstract

Spatial random graphs capture several important properties of real-world networks. We
prove quenched results for the continuous-space version of scale-free percolation intro-
duced in [14]. This is an undirected inhomogeneous random graph whose vertices are
given by a Poisson point process in R

d . Each vertex is equipped with a random weight,
and the probability that two vertices are connected by an edge depends on their weights
and on their distance. Under suitable conditions on the parameters of the model, we
show that, for almost all realizations of the point process, the degree distributions of all
the nodes of the graph follow a power law with the same tail at infinity. We also show
that the averaged clustering coefficient of the graph is self-averaging. In particular, it is
almost surely equal to the annealed clustering coefficient of one point, which is a strictly
positive quantity.

keywords: Random graph; scale-free percolation; degree distribution; clustering coeffi-
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1. Introduction

Random graphs are a powerful tool for modeling real-world large networks such as the
internet [1], telecommunication networks [21], social networks [33], neural networks [28],
transportation networks [25], financial systems [10], and many more (see e.g. [32] and [39] for
overviews). The idea is to overcome the intractability of a given network, for example because
of its size, by mimicking its most interesting features with a probabilistic model. In particular,
three main characteristics have been highlighted in the recent literature that are often observed
in real life (see e.g. [8], [22], and [23]).

• Scale-free property. A graph is said to exhibit the scale-free property if the degree (i.e.
the number of neighbors) of its vertices follows a power law. This results in the presence
of hubs, i.e. nodes with a very high degree.
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Continuum scale-free percolation: degree and clustering coefficient 107

• Small-world property. When sampling two vertices at random, their graph distance (the
minimum number of edges to cross to go from one vertex to the other) is typically of
logarithmic order on the total number of nodes. If the nodes of the graph are embedded in
a metric space, for example in R

d, this translates into saying that two nodes at Euclidean
distance D are with high probability at graph distance O(log D).

• High clustering coefficient. When two vertices share a common neighbor, there is a
‘high’ probability that they are linked, too.

These properties are of great importance when studying, for example, the spread of informa-
tion or infections (see e.g. [35], [31], [11], and [36]) or other related random processes on the
network (such as first passage percolation [27], the Ising model [3], or random walks [22]).
Unfortunately, classical models of random graphs do not exhibit these three properties at once.
Just to give a few examples, the Erdős–Rényi model has only the small-world property, the
Chung–Lu [9], Norros–Reittu [34], and preferential attachment [2] models are scale-free and
small-world, but all have vanishing clustering coefficient as the number of nodes tends to infin-
ity. As a rule of thumb, one can think that regular, nearest-neighbor lattices have high clustering
but long distances, while classic random graphs have low clustering and small distances. The
Watts–Strogatz network [40] was one of the first attempts to ‘artificially’ build a random graph
that boasts high clustering and the small-world property, but it lacks the scale-free property.

Spatial random graphs, i.e. graphs whose vertices are embedded in some metric space, offer
a possible solution to the shortcomings of classical models. While in the physics literature they
have been quite extensively studied (see [4] for a broad review of the topic), very few models
have been analyzed in a fully rigorous mathematical fashion. Among those which exhibit or
are conjectured to exhibit the three properties mentioned above, we mention the hyperbolic
random graph [20], the spatial preferential attachment model [23], the geometric inhomoge-
neous random graph [7], the age-dependent random connection model [19], and scale-free
percolation.

Scale-free percolation was introduced by Deijfen, van der Hofstad, and Hooghiemstra [13],
and can be considered a combination of long-range percolation (see e.g. [5] and [6]) and inho-
mogeneous random graphs such as the Norros–Reittu model. The vertices of the graph lie on
the Z

d lattice and random weights {Wx}x∈Zd are assigned independently to each of them. The
distribution of the weights follows a power law: we have P(W > w) = w−(τ−1)L(w) for some
τ > 1 and an L function slowly varying at infinity. Finally, any two vertices x, y ∈Z

d are linked
by an unoriented edge with probability

px,y = 1 − e−λWxWy/‖x−y‖α

,

where λ, α > 0 are two parameters of the model and ‖ · ‖ is the Euclidean distance. Deprez,
Hazra, and Wüthrich [15] argued that scale-free percolation is a suitable model, for exam-
ple, for the interbank network presented in [37]. Deprez and Wüthrich [14] introduced the
continuous-space counterpart of scale-free percolation, where the vertices of the graph are
sampled according to a homogeneous Poisson point process of intensity ν > 0 in R

d. On the
one hand, this additional source of randomness makes the model more flexible and possibly
more suitable for applications to real-world networks. On the other hand, technical difficulties
emerge, especially when dealing with fixed configurations of the point process. The probabil-
ity of linking two vertices is the same as in [13], but Deprez and Wüthrich prefer to restrict
to a Pareto distribution for the weight distribution: P(W > w) = w−(τ−1) for w ≥ 1 (note that
in the present paper we have chosen to stick to the notation of [13]). We point out that the

https://doi.org/10.1017/jpr.2020.76 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2020.76


108 J. DALMAU AND M. SALVI

results appearing in [14] are annealed, that is, obtained after integration against the underlying
Poisson point process.

Both the original scale-free percolation model of [13] and the continuum scale-free percola-
tion of [14] share the following features. If α ≤ d or γ := α(τ − 1)/d ≤ 1, then the nodes of the
graph have almost surely infinite degree. If instead min{α, (τ − 1)α} > d, then the degree of the
vertices follows a power law of index γ (hence the graph has the scale-free property). Now let
λc be the percolation threshold of the graph, that is, the value such that for λ < λc all the con-
nected components of the graph are finite and for λ > λc there exists almost surely a (unique)
infinite connected component. Assume min{α, (τ − 1)α} > d. Then, again for both models, the
following holds: for d ≥ 2, if γ ∈ (1, 2) then λc = 0, while if γ > 2 then λc ∈ (0, ∞); for d = 1,
if γ ∈ (1, 2) then λc = 0, if γ > 2 and α ∈ (1, 2] then λc ∈ (0, ∞), and if min{α, (τ − 1)α} > 2
then λc = ∞. Once the percolation properties have been established, one can talk about graph
distances (for the discrete-space model the results on percolation and distances of [13] have
been complemented in [15]). The graph distance between two nodes x and y belonging to the
same connected component of the graph is the minimum number of edges that one has to cross
to go from x to y. Assume again min{α, (τ − 1)α} > d. Again for both models, when the ver-
tex degrees have infinite variance (corresponding to γ ∈ (1, 2)), the graph distance between
two points belonging to the infinite component of the graph grows like the log log of their
Euclidean distance (in this case the graph is said to exhibit the ultra-small-world property).
When the vertex degrees have finite variance (γ > 2) and λ > λc, two cases are possible: if
α ∈ (d, 2d), then the graph distance of two points at Euclidean distance D grows roughly as
(log D)� for some constant � > 0 still not precisely known (small-world property); if α > 2d
the graph distance is bounded from below by a constant times the Euclidean distance. We point
out that the regime where the degrees have infinite variance (γ ∈ (1, 2) in our case) is usually
the relevant one for applications (see e.g. [1] and [24]).

1.1. Our contribution

In the present paper we aim to prove quenched results for scale-free percolation in con-
tinuous space, that is, statements that hold for almost every realization η of the underlying
Poisson point process. This is one of the main differences from [14]: taking the annealed mea-
sure therein allows the authors to calculate relevant quantities explicitly. Unfortunately, in most
cases, annealed properties give little information about a given configuration η. Say, for exam-
ple, that the degree distribution has an exponentially decaying tail for half of the realizations
of the Poisson point process, and a heavy tail for the other half. The annealed result would
still state that the degree distribution is heavy-tailed, yet half of the simulations would behave
otherwise! Besides their mathematical interest, quenched results are therefore also important
because they guarantee that a simulation of the graph will always exhibit a given feature.
Another difference from [14] is that we assume more general distributions for the weights, not
restricting to Pareto.

We start by analyzing the tail of the degree distribution. The regime of parameters that
ensures infinite degree for all the vertices slightly improves those of [13] and [14]; see Theorem
2.1 and Remark 2.2. More interesting is the case of finite degrees. In [14], under the condition
of weights that follow a Pareto distribution, it was possible to calculate the whole distribution
of the annealed degree of a vertex just by integrating over the Poisson measure. While there
is clearly no chance that this works for all the vertices of the graph for a fixed configuration
η, we show that the behavior of the tail of the degree of all vertices is the same (hence the
graph is scale-free). More precisely, we show (see Theorem 2.2) that for almost every η the
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following holds: for all x ∈ η there exists a slowly varying function 	(·) = 	(·, η, x) such that
the probability that Dx, the degree of x, is bigger than some s > 0 is equal to 	(s)s−γ , where
γ := α(τ − 1)/d. Our proof follows the strategy of [13] rather than that of [14], but a major
difference emerges already when calculating the expectation of the degree of a vertex given the
value w > 0 of its weight. While in [13] it is shown by direct computation that the expectation
is equal up to a constant to ξwd/α for an explicit ξ > 0, in our case there is a correction of the
order wd/(2α) that accounts for the fluctuations of the Poisson point process (see Proposition
3.3). We apply concentration inequalities in combination with the so-called Campbell theorem
to achieve this result. With some further effort we prove that the result holds for all the points
of η at once.

We then move to the clustering coefficient of the graph, which was not studied in either [13]
or [14]. For a given graph, the local clustering coefficient CC(x) of a node x is given by �x,
the number of triangles with a vertex in x (i.e. triplets of edges of the form (x, y), (y, z), (z, x)),
divided by Dx(Dx − 1)/2. This second quantity represents the number of ‘possible’ triangles
with a vertex in x, also called open triangles. The averaged clustering coefficient of a finite
graph is the average of CC(x) over all its vertices (there is also a notion of global clustering
coefficient that we do not analyze here). For an infinite graph like ours, we define the averaged
clustering coefficient as the limit (if it exists) for n → ∞ of CCn, where CCn is the average
of the local clustering coefficients of the vertices inside the d-dimensional box of side-length
n centered at the origin. We show that CCn is self-averaging (a similar property has been
recently proved in [38] for the hyperbolic random graph when the number of nodes goes to
infinity; see also [18]), so that its limit exists and is almost surely equal to the expectation
of the local clustering coefficient of the origin 0 obtained under the Palm measure associated
with the Poisson point process with a point added at 0 (see Theorem 2.3). We also show that
this quantity is strictly positive (high clustering coefficient). The proof consists in dividing the
box of size n into mesoscopic boxes of side-length m < n. We then approximate the clustering
coefficient of each m-box by a truncated clustering coefficient that does not take into account
either vertices that are close to the border of the boxes or vertices touched by edges that con-
nect different m-boxes. In so doing, we obtain independent truncated clustering coefficients in
each mesoscopic box and we can use the law of large numbers as n → ∞. In decorrelating
the clustering coefficient of each m-box, we must control the correlation of the local clustering
coefficient of vertices lying in different m-boxes. To do so, we use a second moment approach
in combination with the Slivnyak–Mecke theorem. It is interesting to note that the positiv-
ity of the clustering coefficient does not depend on the local connectivity properties of the
graph or on ν; see Remark 2.4. We believe that the mesoscopic boxes approach might also be
applied to the original scale-free percolation model of [13] to prove positivity of the clustering
coefficient.

Positivity of the clustering coefficient was proved for a related model, the geometric
inhomogeneous random graph (GIRG), in [7]; see [27] for a comparison with scale-free perco-
lation. We briefly stress the differences from our work. First of all, the GIRG is a finite-volume
model, so the clustering coefficient is always well-defined and no limiting procedure is needed.
Secondly, the methods of proof used in [7] (namely, Le Cam’s theorem and an Azuma-type
inequality with error event) do not apply in our setting, since the problem of dealing with an
infinite number of random variables cannot be overcome. Furthermore, these techniques guar-
antee only results that hold with high probability, and not almost surely. Finally, in addition to
showing that the clustering coefficient is positive, we also show a self-averaging property and
an exact formula for the clustering coefficient.
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We point out that, at least under the hypothesis of Pareto weights, the results on percolation
and graph distances presented in the Introduction have annealed probability equal to 1; see
[14, Theorems 3.2 and 3.6]. Hence they also hold in the quenched sense (see Remark 2.1 for a
comparison between our parameters and those of [14]). It follows that under the right range of
parameters, scale-free percolation in continuous space fulfills, for almost every realization of
the Poisson point process η, all the three properties presented in the Introduction (scale-free,
small-world, and positive clustering coefficient), almost surely. This suggests that the model is
a good candidate for modeling real spatial networks. We believe, for example, that it encloses
the main features of the cattle trading network in France (see [16]), which was the original
motivation for our work. The nodes of the graph are given by farms, assembling centers and
cattle markets in the country (for a total of about 200 000 holdings), so that the hypothesis of
vertices placed according to a Poisson point process reflects the geographic irregularities in a
more realistic way than Z

d. An undirected edge is placed between two holdings if there has
been at least a transaction between the two during a given time window. It has been observed
that the degree of the nodes on yearly aggregated data follows a power law of index γ 	
1.3 which is quite stable over different years (±0.1). Note that this falls into the interesting
regime of infinite variance of the degrees. Likewise, the network exhibits a high clustering
coefficient and a small diameter (about 15, which is close to the logarithm of the total number
of nodes). Comprehension of the topology of this network might be of paramount importance
when studying the possible outbreak of an infection in the cattle population.

1.2. Structure of the paper

We will introduce the model and some notation in Section 2.1. We will present the main
results on the degree distribution (Theorem 2.1 and Theorem 2.2) and on the clustering coef-
ficient (Theorem 2.3) in Sections 2.2 and 2.3. We deal with the proof of the infinite-degree
case in Section 3.1 and of the finite-degree case in Section 3.2. Section 4 is dedicated to the
proof of the positivity of the clustering coefficient. In Appendix A we recall the Campbell and
Slivnyak–Mecke theorems.

2. Model and main results

2.1. The model

Scale-free percolation in continuous space is a random variable on the space of all simple
spatial undirected random graphs with vertices in R

d. To construct an instance of the graph
G = (V, E) we proceed in three steps.

• We sample the nodes V of the graph according to a homogeneous Poisson point process
in R

d of intensity ν > 0. We let P denote its law and let E denote the expectation with
respect to P. A configuration of the point process will be denoted by η ∈ (Rd)N.

• We assign to each vertex x ∈ η a random weight Wx > 0. The weights are independent
and identically distributed (i.i.d.) with law P. The distribution function F associated with
P is regularly varying at infinity with exponent τ − 1, that is,

1 − F(w) = P(W > w) = w−(τ−1)L(w),

where L(·) is a function that is slowly varying at +∞.
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• We finally draw the edges E of the random graph via a percolation process. For every
pair of points x, y ∈ η with weights Wx, Wy, the undirected edge (x, y) is present with
probability

1 − e−WxWy/‖x−y‖α

, (1)

where ‖ · ‖ denotes the Euclidean norm in R
d and α > 0 is a parameter. When two

vertices x, y are connected by an edge we write x ↔ y (if they are not connected we
write x �↔ y). For the event that a vertex x is connected to some other point in a region
A ⊆R

d, we write x ↔ A.

Remark 2.1. In [14] an additional parameter λ > 0 appears in the definition of the linking
probabilities: px,y = 1 − exp{−λWxWy‖x − y‖−α}. In this paper we prefer to fix λ = 1 without
loss of generality. Indeed, having parameters λ = λ̃ and ν = ν̃ in the model presented in [14] is
completely equivalent to choosing ν = ν̃λ̃d/α in our case.

For a given realization η of the Poisson point process we will often perform the last two
steps at once under the quenched law Pη, with Eη denoting the associated expectation. This
is the law of the graph once we have fixed η. We write P for the annealed law of the graph,
i.e. P= P × Pη, and E for the corresponding expectation. For x ∈R

d, we let Px indicate the
law of the Poisson point process conditioned on having a point in x; analogously, for x, y ∈R

d,
the measure Px,y is obtained by conditioning on having one point in x and one in y. We will
not enter into the details of (n-fold) Palm measures, but we point out that in both cases the
conditioning does not influence the rest of the Poisson point process; see e.g. [12, Chapter
13]. Consequently we will let Px = Px × Pη = P × Pη∪{x} be the law of the graph conditioned
on having a point at x ∈R

d and Ex the associated expectation. Analogously we will write
Px,y = Px,y × Pη = P × Pη∪{x}∪{y} and Ex,y for the expectation with respect to Px,y.

We let 0 denote the origin of Rd. We let Bn be the d-dimensional box of side-length n > 0
centered at 0. We let Vn = Vn(η) be the set of points of η that are in Bn and let Nn = Nn(η) be
their number. Finally, Br(x) denotes the Euclidean ball of radius r > 0 centered at x ∈R

d.

2.2. Results on the degree

For each x ∈ η we let Dx := #{y ∈ η : y ↔ x} be the degree of a vertex x in the random graph,
i.e. the random variable counting the number of neighbors of x. We start by showing that for
certain values of the parameters the graph is almost surely degenerate, in the sense that all of
its vertices have infinite degree.

Theorem 2.1. Suppose one of the following conditions is satisfied:

(a) α ≤ d,

(b) E[Wd/α] = ∞.

Then, for P-almost every η, Pη-almost surely all points in η have infinite degree.

Remark 2.2. Note that condition (b) in Theorem 2.1 is implied in particular by

(b′) the weight distribution satisfies

1 − F(w) ≥ c w−(τ−1)

for some c > 0 and τ > 1 such that γ := α(τ − 1)/d ≤ 1.

This stronger condition is the one appearing in [13].
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We point out that the proof of Theorem 2.1 follows immediately from the analogous result
of [14] when the weights have a Pareto distribution. We will provide an alternative proof that,
besides covering more general distribution functions F, serves as a warm-up for the kind of
techniques we will use more intensively later on, based on Campbell’s theorem.

We move to the analysis of the regime where the degree of the nodes is almost surely finite.
In this case, we show that for almost all η the graph is scale-free and the degree of all points
follows a power law with the same exponent.

Theorem 2.2. Suppose that α > d and γ := α(τ − 1)/d > 1. Then, for P-almost every η, we
have that sγ Pη(Dx > s) is slowly varying for each x ∈ η. That is, there exists a slowly varying
function 	(·) = 	(·, η, x) such that

Pη(Dx > s) = s−γ 	(s). (2)

Remark 2.3. The slowly varying function in (2) clearly has to depend on x and η. However, it
is not clear whether all the 	 have the same asymptotic behavior. That is, with our proof it is
not possible to say whether, for P-almost every η and η′, and for all x ∈ η and x′ ∈ η′, we have
	(s, η, x)/	(s, η′, x′) → 1 as s → ∞.

2.3. Results on the clustering coefficient

The average clustering coefficient is usually defined for finite graphs as the average of the
local clustering coefficients. More precisely, for a finite undirected graph G = (V, E) and a
node x ∈ V , we define the local clustering coefficient at x as

CC(x) := 2�x

Dx(Dx − 1)
,

where �x is the number of closed triangles in the graph that have x as one of their vertices (a
closed triangle is a triplet of edges in E of the type {(y, z), (z, w), (w, y)}), with the convention
that CC(x) is 0 if Dx is equal to 0 or 1. The quantity Dx(Dx − 1)/2 can be interpreted as the
number of open triangles in x (an open triangle in a vertex z is a pair of edges of the kind
{(y, z), (z, w)}, without any requirement for the presence of the third edge that would close the
triangle), so CC(x) takes values in [0,1]. The averaged clustering coefficient of the graph G is

CCav(G) := 1

|V|
∑
x∈V

CC(x).

Clearly also CCav(G) takes values in [0,1]. It is not completely obvious what the definition of
averaged clustering coefficient should be for an infinite graph. We say that an infinite spatial
graph G = (V, E) embedded in R

d with all vertices having finite degree has averaged clustering
coefficient CCav(G) if the following limit exists:

lim
n→∞

1

|V ∩ Bn|
∑

x∈V∩Bn

CC(x) =: CCav(G)

(we work with integers for simplicity). It is possible to construct infinite graphs for which this
limit does not exist. We also note that this definition is in principle different from considering
the limit of the clustering coefficients of the subgraphs of G obtained by considering only
vertices in Bn, since CC(x) also takes into account the edges connecting points that lie out of Bn.
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Going back to our model, we will let

CCn := 1

Nn

∑
x∈Vn

CC(x)

be the random variable describing the averaged clustering coefficient inside the box of side n.
Note that under the assumptions α > d and γ > 1, for P-almost every η, all the nodes x ∈ η have
finite degree, Pη-almost surely (see Theorem 2.2). Thus, the CC(x) are well-defined and finite,
except perhaps on a set of measure 0. Our main result of this section states that the averaged
clustering coefficient of the scale-free percolation in continuous space exists, is self-averaging,
and is strictly positive.

Theorem 2.3. Suppose that α > d and γ := α(τ − 1)/d > 1. For P-almost all configurations
η, the average clustering coefficient exists Pη-almost surely and does not depend on η. It is
given by

CCav(G) := lim
n→∞ CCn =E0[CC(0)] > 0.

Remark 2.4. Going through the proof of Theorem 2.3, it is plausible that the positivity of the
clustering coefficient does not depend on the local properties of the graph or on ν, as one might
have thought. For example, we can set to 0 the probability of connecting two points that are at
distance smaller than some R > 0 and leave (1) for points at distance larger than R. Then we
would still have that the associated n-truncated clustering coefficient C̃Cn converges almost
surely to E0[C̃C(0)], with C̃C(0) the corresponding local clustering coefficient. At the same
time, E0[C̃C(0)] would still be strictly positive for any R > 0 by arguments similar to those in
the proof of Theorem 2.3.

3. Degree

In both the infinite- and finite-degree cases, for convenience we will first prove the prop-
erties of the degree of the vertices via an auxiliary random variable under Pη. We call it D0
with a slight abuse of notation, since P-almost surely the origin 0 does not belong to η. It is
convenient, though, to imagine having a further point in the origin and treating it like all the
other points of the graph, so that when we talk about D0 we can think of Pη as being replaced
by Pη∪{0}. In a second moment we will transpose the properties of D0 to the degree of the other
vertices.

3.1. Infinite degree

In this section we prove Theorem 2.1. We start with the following proposition about D0.

Proposition 3.1. If conditions (a) or (b) in Theorem 2.1 are satisfied, then for P-almost all η

we have Pη(D0 = ∞) = 1.

Proof of Proposition 3.1. The statement will be proved by showing that, for each value
w > 0 of the weight in 0 and for P-almost every η, the following sum is infinite:∑

x∈η

Pη(0 ↔ x | W0 = w) =
∑
x∈η

E[1 − e−wW‖x‖−α

],

where the expectation on the right-hand side is taken with respect to W. Indeed, if we condition
on the value of W0, the presence of each edge (0,x) becomes independent from the others. We
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can therefore use the second Borel–Cantelli lemma to imply that there are infinitely many
points in the configuration η connected to 0. By Campbell’s theorem (see Theorem A.1), the
above sum is infinite for almost every η if the following integral is∫

Rd
E[1 − e−wW‖y‖−α

] dy.

However, in view of the inequality 1 − e−u ≥ (u ∧ 1)/2 for u ≥ 0, it is enough to show the
divergence of the integral∫

Rd
E[wW‖y‖−α ∧ 1] dy ≥

∫
Rd

E[1{‖y‖α>wW}wW‖y‖−α] dy. (3)

By first applying Tonelli’s theorem and then passing to polar coordinates, we can rewrite
the right-hand side of (3) as

E

[
wW

∫
y : ‖y‖>(wW)1/α

‖y‖−α dy

]
= E

[
wWσ (Sd−1)

∫ ∞

(wW)1/α

r−α+d−1 dr

]
,

where σ (Sd−1) denotes the surface area of the (d − 1)-sphere of radius 1. The last integral is
divergent for α ≤ d, so case (a) is proved.

When instead α > d, we note that the integral inside the expectation is finite and we can
continue the manipulation, obtaining

E

[
wWσ (Sd−1)

(wW)(d−α)/α

α − d

]
= cwd/αE[Wd/α]

for some constant c > 0. The last expression is again infinite under the assumptions of
case (b). �

Proof of Theorem 2.1. In view of the Proposition 3.1 we know that the set of η for which∑
x∈η Pη(0 ↔ x | W0 = w) = ∞ has P-measure 1. Take an η in this set and any point y ∈ η. We

have ∑
x∈η\{y}

Pη(y ↔ x | Wy = w) =
∑

x∈η\{y}
Pη(0 ↔ x | W0 = w)

E[1 − e−wW‖x−y‖−α
]

E[1 − e−wW‖x‖−α ]
= ∞,

since the fraction goes to 1 as ‖x‖ goes to infinity. By Borel–Cantelli this shows that y also
has infinite degree Pη-almost surely. Since there is a countable number of points in η, we
are done. �

3.2. Polynomial degree

As in the previous section we will first prove a statement about the random variable D0. The
proof of Theorem 2.2 will be inferred as a consequence.

Proposition 3.2. Suppose that α > d and γ := α(τ − 1)/d > 1. Then, for P-almost every η,
there exists a slowly varying function 	(·) = 	(·, η) such that

Pη(D0 > s) = s−γ 	(s). (4)

The strategy for demonstrating Proposition 3.2 follows the lines of the proof of Theorem 2.2
in [13], which in turn follows [41]. Analogously to Proposition 2.3 of [13], we first analyze
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the properties of the expectation of the degree of a point conditional to its weight w > 0. One
of the main problems when dealing with vertices that are randomly distributed in space is the
following: while in scale-free percolation on the lattice one can show by direct computations
that the expectation of the degree is equal to a constant times wd/α , in the continuous-space
case one has to finely control the fluctuations of the degree due to the irregularity of the point
process. We show that these fluctuations are of order smaller than wd/2α log w.

Proposition 3.3. Suppose that α > d and γ := α(τ − 1)/d > 1. Then, for P-almost every
realization η, we have

Eη[D0 | W0 = w] = νc0 wd/α + O(wd/(2α) log w), (5)

with c0 := vd�(1 − d/α)E[Wd/α]. Here vd indicates the volume of the d-dimensional unitary
ball, �(·) is the gamma function, and the constant in O(·) is uniformly bounded in η from below
and above.

Proof of Proposition 3.3. We let Zw = Zw(η) := Eη[D0 | W0 = w] and note that Zw is a
random variable that depends only on the Poisson process. Since D0 = ∑

x∈η 1{0↔x}, we
can use Campbell’s theorem (see (27) in Theorem A.1) applied to the function f (x) :=
E[1 − e−wW/‖x‖α

], to explicitly compute

E[Zw] = ν

∫
Rd

E[1 − e−wW‖x‖−α

] dx = wd/αE[Wd/α]ν
∫
Rd

(1 − e−‖y‖−α

) dy = νc0wd/α . (6)

For the second equality we used Fubini and then made the change of variables y = x(wW)−1/α .
The constant c0 is the one appearing in the statement of the theorem; it is obtained by passing
to polar coordinates and then using integration by parts. We can instead use (28) in order to
calculate the variance V:

V(Zw) = ν

∫
Rd

E[1 − e−wW‖x‖−α

]2 dx = νc1wd/α . (7)

To see the last equality it is sufficient to make the change of variables y = xw−1/α . We also
note that c1 ≤ c0 because the expectation inside the integral is smaller than 1, so the variance
has to be smaller than the expectation.

We will show that for P-almost every η we have

−1 ≤ lim inf
w→∞

Zw − E[Zw]√
V(Zw) log w

≤ lim sup
w→∞

Zw − E[Zw]√
V(Zw) log w

≤ 1,

which implies (5). We will only show the upper bound, the lower bound being very similar.
Let θ > 0. We use the exponential Chebyshev inequality to bound

P(Zw − E[Zw] ≥ √
V(Zw) log w) = P(eθZw ≥ eθ(

√
V(Zw) log w+E[Zw]))

≤ exp{−θ (
√

V(Zw) log w + E[Zw]) + log E[eθZw ]}. (8)

Campbell’s theorem in its exponential form (see (26)) applied to the function f (x) := θE[1 −
e−wW‖x‖−α

] gives

log E[eθZw] = ν

∫
Rd

(exp{θE[1 − e−wW‖x‖−α

]} − 1) dx.
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If we restrict to values of θ smaller than 1, a third-order Taylor expansion shows that

exp{θE[1 − e−wW‖x‖−α

]} − 1

≤ θE[1 − e−wW‖x‖−α

] + θ2

2
E[1 − e−wW‖x‖−α

]2 + O(θ3E[1 − e−wW‖x‖−α

]),

where we used the trivial bound E[1 − e−wW‖x‖−α
] ≤ 1 for the last term. Integrating over x in

the above inequality and in view of the expressions for the expectation (6) and the variance (7)
of Zw, we obtain

log E[eθZw ] ≤ θE[Zw] + θ2

2
V(Zw) + O(θ3E[Zw]).

Inserting this estimate back into (8) yields, for all θ ∈ [0, 1],

P(Zw − E[Zw] ≥ √
V(Zw) log w) ≤ exp

{
−θ

√
V(Zw) log w + θ2

2
V(Zw) + O(θ3E[Zw])

}
.

In particular, by choosing θ = log w/
√

V(Zw), we obtain for w large enough

P(Zw − E[Zw] ≥ √
V(Zw) log w) ≤ e− log2 w/4. (9)

If we consider the sequence wn = n, we see that the quantity on the right-hand side of (9) is
summable in n and Borel–Cantelli tells us that

lim sup
n→∞

Zn − E[Zn]√
V(Zn) log n

≤ 1.

The random variable Zw is increasing in w, so that Z�w� ≤ Zw ≤ Z�w�+1. Moreover, in view of
(6) and (7), we see that the sequences E(Zn),

√
V(Zn) and log n all satisfy

lim
n→∞

an+1

an
= 1.

We can thus conclude that

lim sup
n→∞

Zw − E(Zw)√
V(Zw) log w

≤ lim sup
n→∞

Z�w�+1 − E(Z�w�)√
V(Z�w�) log�w�

= lim sup
n→∞

Z�w�+1 − E(Z�w�+1)√
V(Z�w�+1) log (�w� + 1)

≤ 1. �
Proof of Proposition 3.2. We let Yw be the random variable describing the value of D0

conditioned on the event {W0 = w}:
Yw ∼ (D0 | W0 = w).

We split the integral

Pη(D0 > s) =
∫ m(s)

0
Pη(Yw > s) dF(w) +

∫ ∞

m(s)
Pη(Yw > s) dF(w) =: A1(s) + A2(s), (10)
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where

m(s) :=
(

s − √
s log2 s

νc0

)α/d

, (11)

c0 being the same constant appearing in (5). We point out that this definition is slightly different
from the equivalent appearing in [13, eq. (2.11)] in order to control the fluctuations of the
expected degree of 0. Since Pη(D0 > s) is a monotone function, (4) follows if we can prove that

lim
t→∞

Pη(D0 > st)

Pη(D0 > t)
= s−γ (12)

on a dense set of points (see [17, Section VIII.8]). We claim that A1(s) = A1(η, s) does not
contribute to the regular variation of Pη(D0 > s) for P-almost all η, that is,

lim
s→∞ saA1(s) = 0 for all a > 0, P-almost surely. (13)

We will show how to get (13) at the end of the proof. Thanks to (13), we see that in order to
prove (12) it is enough to verify that, for s ∈ (0, ∞),

lim
t→∞

A2(st)

A2(t)
= s−γ . (14)

On the one hand, for all t > 0 we clearly have

A2(t) ≤ 1 − F(m(t)).

On the other hand, for all ε > 0 we have

A2(t) ≥ 1 − F((1 + ε)m(t)) −
∫ ∞

(1+ε)m(t)
Pη(Yw ≤ t) dF(w)

≥ (1 − F((1 + ε)m(t))(1 + ot(1)).

For the last line, we used the following fact. By (5), Eη[Yw] > t(1 + εd/2α) for all w ≥
(1 + ε)m(t) when t is sufficiently large (depending on η); this allows us to use the Chebyshev
inequality and bound, uniformly in w > (1 + ε)m(t),

Pη(Yw ≤ t) ≤ Vη(Yw)

(Eη[Yw] − t)2
≤ Eη[Yw]

(Eη[Yw] − t)2
≤ C

ε2t
= ot(1),

where Vη represents the variance with respect to Pη and the second inequality follows from
the fact that Yw is a sum of independent indicator functions.

Putting it all together and using the fact that limt→∞ m(st)/m(t) = sα/d, we obtain

lim
t→∞

A2(st)

A2(t)
= lim

t→∞
1 − F(m(st))

1 − F(m(t))
= s−α(τ−1)/d

as we wanted to prove.
We now only need to show (13). We start by upper-bounding A1(s) by

Pη(Ym(s) > s)

= Pη

(∑
y∈η

1{y↔0} − Eη[1{y↔0} | W0 = m(s)] > s − Eη[Ym(s)] | W0 = m(s)

)
. (15)
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Taking s sufficiently large and thanks to Proposition 3.3, we can make s − Eη[Ym(s)] positive,
allowing us to apply Bernstein’s inequality. We obtain

A1(s) ≤ exp

{
−1

2

(s − Eη[Ym(s)])2

Eη[Ym(s)] + (s − Eη[Ym(s)])/3

}
,

where for the first term in the denominator of the exponent we used the inequality

Eη[(1{y↔0} − Eη[1{y↔0} | W0 = m(s)])2 | W0 = m(s)] ≤ Eη[1{y↔0} | W0 = m(s)].

Since
Eη[Ym(s)] = s − √

s log2 s + O(
√

s log s),

we get A1(s) ≤ e− log4 s/4 and (13) is proved. �
Proof of Theorem 2.2. Take any x ∈ η. We first prove a lower bound on Pη(Dx > s). First of

all we claim that

Pη(Dx > s | Wx = w) ≥ Pη(D0 > s + 1 | W0 = c(x, η) · w),

where c(x, η) := (1 + ‖x‖/‖y‖)−α and y ∈ η is the closest point to the origin in η. In order to
prove the claim we write

Dx =
∑

z∈η, z�=x

1{x↔z} and D0 ≤
∑

z∈η, z�=x

1{0↔z} + 1.

Since the indicator functions in the first sum are mutually independent under Pη(· | Wx = w)
and those in the second sum are mutually independent under Pη(· | W0 = c(x, η) · w), it will be
sufficient to show that, for all z ∈ η \ {x},

Pη(1{x↔z} = 1 | Wx = w) ≥ Pη(1{0↔z} = 1 | W0 = c(x, η) · w),

since this ensures that Dx ≥ D0 − 1 stochastically. We calculate

Pη(1{x↔z} = 1 | Wx = w) = E[1 − e−wWz‖z−x‖−α

]

≥ E[1 − e−c(x,η)·wWz‖z‖−α

]

= Pη(1{0↔z} = 1 | W0 = c(x, η) · w),

where for the inequality we used the fact that ‖z − x‖/‖z‖ ≤ (‖y‖ + ‖x‖)/‖y‖.
Thanks to the claim we can now bound

Pη(Dx > s) =
∫ ∞

0
Pη(Dx > s | Wx = w) dF(w)

≥
∫ ∞

0
Pη(D0 > s + 1 | W0 = c(x, η) · w) dF(w).

If the weights simply follow a Pareto distribution with exponent τ , then with a change of vari-
ables u = c(x, η) · w we would obtain Pη(Dx > s) ≥ c(x, η)τ−1Pη(D0 > s + 1), and we would
be done thanks to Proposition 3.2. In the general case we have to proceed as in the proof
of Proposition 3.2 by splitting the integral on the right-hand side of the last display into the

https://doi.org/10.1017/jpr.2020.76 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2020.76


Continuum scale-free percolation: degree and clustering coefficient 119

integral between 0 and m(s)/c(x, η) plus the integral between m(s)/c(x, η) and +∞, where
m(s) is defined in (11). We call the first part Ã1(s) and the second part Ã2(s) similarly to (10).
Following step by step what we did in the proof of Proposition 3.2 (see (15) and below), we
note that

Ã1(s) ≤ Pη(D0 > s + 1 | W0 = m(s)) ≤ e−(log s)4/4,

which does not contribute to the regular variation of the sum. Finally (see (14) and the
argument below) we have that limt→∞ Ã2(st)/Ã2(t) = s−γ , since Ã2(t) is upper-bounded by
1 − F(m(t)/c(x, η)) and lower-bounded by 1 − F((1 + ε)m(t)/c(x, η)) minus a negligible term.
We therefore conclude that there exists a slowly varying function 	1(·) = 	1(·, x, η) such that

Pη(Dx > s) ≥ 	1(s)s−γ .

An upper bound Pη(Dx > s) ≤ 	2(s)s−γ for some other slowly varying function 	2 = 	2(x, η)
can be obtained in a completely similar way. These two bounds yield the desired result. �

4. Clustering coefficient

The idea for the proof of Theorem 2.3 consists in approximating CCn with the sum of
independent random variables in order to use the standard law of large numbers.

First of all we divide R
d into disjoint mesoscopic boxes of side-length m > 0, one of which

is centered at the origin (the superposition of the sides of the boxes is of no importance). For a
point x ∈R

d we let Qm(x) be the unique m-box containing x. We also fix δ > 0 small and divide
each of the boxes Qm as Qm = Qm ∪ ∂Qm, where

Qm = Qm,δ := {x ∈ Qm : ‖x − y‖ > δm, for all y ∈ Qc
m}

are the interior points of the box and ∂Qm = ∂Qm,δ := Qm \ Qm is the δ-frame of the box. For
a realization of our graph G = (V, E) and a point x ∈ V , we define

ĈC
m

(x) = ĈC
m,δ

(x) :=

⎧⎪⎨⎪⎩
0 if x ∈ ∂Qm(x),

0 if x ↔ Qc
m(x),

CC(x) otherwise.

For n ≥ m we finally define the (m, δ)-truncated clustering coefficient as

ĈC
m
n = ĈC

m,δ

n := 1

νnd

∑
x∈Vn

ĈC
m

(x).

The idea is now to approximate CCn by ĈC
m
n , to show that ĈC

m
n converges thanks to the

law of large numbers to E[ĈC
m
m] and that this value is close to the desired E0[CC(0)]. This is

formalized in the next three statements, which are valid under the hypothesis of Theorem 2.3.

Proposition 4.1. P-almost surely we have

lim sup
n→∞

|CCn − ĈC
m
n | ≤ c1δ + c2(δm)d−α,

for some constants c1, c2 > 0 that may depend on d, α, E[W], and ν, but that do not depend
on either m or δ.
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Lemma 4.1. P-almost surely we have

lim
n→∞ ĈC

m
n =E[ĈC

m
m].

Lemma 4.2. There exist constants c1, c2 > 0 that may depend on d, α, E[W], and ν, but that
do not depend on either m or δ, such that

|E[ĈC
m
m] −E0[CC(0)]| ≤ c1δ + c2(δm)d−α .

The proofs of Lemmas 4.1 and 4.2 are pretty straightforward and are collected in Section
4.1. The proof of Proposition 4.1 is much more involved and is the object of Section 4.2. We
are now able to prove Theorem 2.3.

Proof of Theorem 2.3. The convergence of CCn to E0[CC(0)] can be obtained by putting
together the results of Proposition 4.1 and Lemmas 4.1 and 4.2, and letting first m → ∞ and
then δ → 0.

We now need only prove that E0[CC(0)] > 0 . Write B for B1(0) and consider the following
events:

E1 = {#(η ∩B) = 2},
E2 = {the points in (η ∪ {0}) ∩B form a clique},
E3 = {0 has no neighbors outside B}.

Under the event E1 ∩ E2 ∩ E3, the local clustering coefficient of the origin is 1. Therefore

E0[CC(0)] ≥ P0(CC(0) = 1) ≥ P0(E1 ∩ E2 ∩ E3).

Given the value of W0, the events E1 ∩ E2 and E3 are independent. Hence

P0(E1 ∩ E2 ∩ E3) ≥
∫ ∞

1
P0(E1 ∩ E2 | W0 = w)P0(E3 | W0 = w) dF(w).

In order to bound from below the second of the probabilities in the integral, we note that

1{0 �↔Bc} =
∏

x∈η∩Bc

1{0 �↔x}

and we subsequently apply Jensen’s inequality and Campbell’s theorem, thus obtaining

P0(E3 | W0 = w) = E0

[ ∏
x∈η∩Bc

E[e−wWx/‖x‖α

]

]

≥ exp

{
−E0

[ ∑
x∈η∩Bc

wE[Wy]

‖y‖α

]}
= e−cE[W]wν

for some c > 0 that does not depend on w, where E0 is the expectation with respect to P0. Since
P0(E1 ∩ E2 | W0 = w) is uniformly bounded from below by a constant when w ≥ 1, and since
P(W ≥ 1) > 0, we obtain E0[CC(0)] > 0 . �
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4.1. Proofs of the lemmas

Proof of Lemma 4.1. We write n = mq + r, with q ∈N and 0 ≤ r < m. We let Q(1), . . . ,

Q(qd) be the qd-boxes of side-length m fully contained in Bn and H = (⋃
j Q(j)

)c. We also
define

X(j) := (1/νmd)
∑

x∈Q(j)∩η

ĈC
m

(x) for j = 1, . . . , qd.

Then

ĈC
m
n =

(
mq

n

)d 1

qd

qd∑
j=1

X(j) + 1

νnd

∑
x∈H∩Vn

ĈC
m

(x).

Since the X(j) are i.i.d. random variables (note that the overlap of the Q-boxes does not
represent a problem: as their intersection is a set of Lebesgue measure 0, with probabil-
ity 1 there will not be any point lying in their intersection) with finite P-expectation, as
n goes to infinity, the first summand on the right-hand side converges P-almost surely to
E[X(1)] =E[ĈC

m
m] by translation invariance. The second summand converges almost surely

to 0 since ĈC
m

(x) ≤ 1 and the number of points in H ∩ Vn follows a Poisson distribution with
parameter nd − (mq)d = O(nd−1). �

Proof of Lemma 4.2. By the Slivnyak–Mecke theorem (see Theorem A.2) with n = 1 we
have

E

[
1

νmd

∑
x∈Vm

CC(x)

]
= 1

νmd

∫
Bm

Ex[CC(x)]ν dx =E0[CC(0)],

where we used translation invariance for the last equality. On the other hand,∣∣∣∣E[ĈC
m
m] −E

[
1

νmd

∑
x∈Vm

CC(x)

]∣∣∣∣ = E[Wm + Um]

νmd
,

where

Wm := #{x ∈ ∂Bm(x) ∩ η} and Um := #{x ∈ Bm(x) ∩ η : x ↔ (Bm(x))c}.

Since Wm follows a Poisson law of parameter (1 − (1 − 2δ)d)νmd, E[Wm]/(νmd) is smaller
than 2dδ. The fact that E[Um]/(νmd) is bounded from above by c(δm)d−α will be proved in
Proposition 4.2. Putting it all together we obtain

|E[ĈC
m
m −E0[CC(0)]]| ≤ c1δ + c2(δm)d−α . �

4.2 Proof of Proposition 4.1

We begin with an elementary lemma.

Lemma 4.3. For P-almost all η there exists n̄ ∈N such that, for all n ≥ n̄,

Nn(η) ∈ [νnd −
√

νnd log n, νnd +
√

νnd log n].

Proof. For a Poisson random variable X of parameter μ > 0, the bound P(|X − μ| > ε) <

2 exp{−ε2/(4μ)} holds for all 0 < ε < μ; see e.g. [29, Theorem 5.4]. Since under P the number
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of points falling in Bn follows a Poisson distribution of parameter νnd, the conclusion follows
by a simple Borel–Cantelli argument (in fact it is possible to improve the statement further). �

Proof of Proposition 4.1. For simplicity we will consider a sequence of n of the form n = qm,
where q ∈N. It is in fact highly plausible that for all other n of the form n = qm + r with
r ∈ [0, m), what happens in the area Bn \ Bqm is negligible in the limit n → ∞. We bound

|CCn − ĈC
m
n | =

∣∣∣∣ 1

Nn
− 1

νnd

∣∣∣∣ ∑
x∈Vn

CC(x) + 1

νnd

(∑
x∈Vn

CC(x) − ĈC
m

(x)

)

≤
∣∣∣∣1 − Nn

νnd

∣∣∣∣ + 1

νnd
(Wn + Un), (16)

where
Wn = Wn(m) := #{x ∈ Vn : x ∈ ∂Qm(x)}

and
Un = Un(m) := #{x ∈ Vn : x ∈ Qm(x), x ↔ (Qm(x))c}.

The first summand in (16) tends P-almost surely to 0 as n → ∞ by Lemma 4.3. We
then note that under P the random variable Wn has a Poisson distribution of parameter (1 −
(1 − 2δ)d)νnd, which can be dominated by a Poisson distribution of parameter 2dδνnd.
Reasoning as in the the proof of Lemma 4.3, it is possible to show that, for all n large enough,
Wn is smaller than 4dδνnd, for example, so lim supn→∞ n−dWn ≤ c1δ.

It remains to show that P-almost surely.

lim sup
n→∞

1

νnd
Un ≤ c2(δm)d−α . (17)

Assume for now that there exists a constant c > 0 such that the following estimates hold:

E[Un] ≤ c nd(δm)d−α, V(Un) ≤ c n3d−α,

where V denotes the variance with respect to P. The proof of these two bounds will be
postponed to Proposition 4.2 below. By the Chebyshev inequality,

P(Un > 2c nd(δm)d−α) ≤ V(Un)

c2n2d(δm)2(d−α)
≤ c̃ (δm)2(α−d)nd−α,

for some c̃ > 0. We would like to finish the proof via Borel–Cantelli, but the right-hand side
of the last display is not summable in n. Nevertheless Un is an increasing sequence, so we can
proceed as follows. Recall that n = qm. By taking the sequence nk := 2km, we have

P(Unk > 2c nk
d(δm)d−α) ≤ c̃ (δm)2(α−d)(m2k)d−α,

which is summable in k. Hence there exists almost surely a k̄ such that Unk ≤ 2c nk
d(δm)d−α

for all k ≥ k̄. Now take any n > 2k̄m and let K be the integer such that 2Km ≤ n < 2K+1m. By
monotonicity we get

Un ≤ U2K+1m ≤ 2c(2K+1m)d(δm)d−α ≤ 2d+1c (δm)d−αnd,

and (17) follows. �
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Proposition 4.2. There exists a constant c > 0 such that

E[Un] ≤ c nd(δm)d−α, (18)

V(Un) ≤ c n3d−α, (19)

where V denotes the variance with respect to P.

Proof of Proposition 4.2. Let Q(1), . . . , Q(qd) be the boxes of side-length m contained in
Bn. For the expectation we have

E[Un] =E

[ qd∑
j=1

∑
x∈Q(j)∩η

1{x↔(Qm(x))c}

]

= qd
E

[
E

[ ∑
x∈Vm(1−2δ)

1{x↔Bc
m}

∣∣∣∣ Vm

]]
≤ qd

E[Nm(1−2δ)P0(0 ↔ Bc
δm)]. (20)

In the second equality we used the translation invariance of the model and then the tower
property of expectation by conditioning on the position of the points of the Poisson process
inside Bm. For the inequality we upper-bounded the probability that a point x ∈ Vm(1−2δ) is
connected to the exterior of Bm by the probability that, under the Palm measure, the origin is
connected to some point in Bc

δm (since for each x ∈ Vm(1−2δ) all the points in Bc
m are outside a

box of side δm centered at x). We estimate this probability as follows:

P0(0 ↔ Bc
δm) = 1 −E0

[ ∏
y∈V\Vδm

E[e−W0Wy/‖y‖α | W0]

]

≤ 1 − exp

{
−E0

[ ∑
y∈V\Vδm

W0E[Wy]

‖y‖α

]}

≤
∫

y∈Bc
δm

E[W]2

‖y‖α
dy

= c′(δm)d−α (21)

for some c′ > 0 that does not depend on either m or δ. In the first line we used the fact that, con-
ditioned on the weight of point 0, the presence of connections between 0 and the other points
of the Poisson point process becomes independent. For the second line we applied Jensen’s
inequality twice. For the third line we first used the inequality 1 − e−x ≤ x for x > 0, then we
applied Campbell’s theorem (see Theorem A). Finally we used polar coordinates in order to
evaluate the integral. Plugging this back into (20), we obtain (18).

We move to the variance of Un. For x ∈ η we set

A(x) := 1{x∈Qm(x), x↔(Qm(x))c}

so that Un = ∑
x∈Vn

A(x). Note that by the Slivnyak–Mecke theorem (see Theorem A.2)
we have

E[Un] = ν

∫
Bn

Ex[A(x)] dx.
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On the other hand we can write

V(Un) =E[U2
n] −E[Un]2 =E[Un] +E

[ ∑
x �=y∈Vn

A(x)A(y)

]
−E[Un]2. (22)

Now applying Theorem A.2 to the function

f (x, y, η) := 1{x,y∈Bn}Eη∪{x}∪{y}[A(x)A(y)],

we can evaluate the second summand on the right-hand side:

E

[ ∑
x �=y∈Vn

A(x)A(y)

]
= ν2

∫
Bn

∫
Bn

Ex,y[A(x)A(y)] dx dy

= ν2
∫

Bn

∫
Bn

C(x, y) dx dy +E[Un]2 + ν2R, (23)

where
C(x, y) =Ex,y[A(x)A(y)] −Ex,y[A(x)]Ex,y[A(y)]

and R is the rest given by

R =
∫

Bn

∫
Bn

Ex,y[A(x)]Ex,y[A(y)] −Ex[A(x)]Ey[A(y)] dx dy.

Note that for y ∈ Qm(x) we have Ex,y[A(x)] =Ex[A(x)]. For y �∈ Qm(x),

Ex,y[A(x)] ≤Ex[A(x)] + E[1 − exp{−WxWy‖x − y‖−α}] ≤Ex[A(x)] + c̃1‖x − y‖−α

for some c̃1 > 0. For the first inequality we used the fact that for A(x) = 1, the point x has to be
connected to y (which gives the second addendum) or to any other point outside Qm(x) (first
addendum), and in this second case the presence of y in the point process plays no role. This,
together with the bound∫

Bn\Qm(x)
‖x − y‖−α dy ≤ c̃2(δm)d−α for some c̃2 > 0,

yields
R ≤ c̃3(E[Un](δm)d−α + nd(δm)−2α+d) ≤ c̃4nd(δm)2(d−α).

We now only need to bound the correlation C(x, y). We introduce the event

E(x, y) := {neither x nor y have neighbors at distance larger than ‖x − y‖/2}.
The random variables A(x) and A(y) are independent under the event E(x, y). Therefore

C(x, y) ≤Ex,y[A(x)|E(x, y)]Ex,y[A(y)|E(x, y)]P(E(x, y))

+ Px,y(E(x, y)c) −Ex,y[A(x)]Ex,y[A(y)]

≤Ex,y[A(x)]Ex,y[A(y)]

(
1

Px,y(E(x, y))
− 1

)
+ Px,y(E(x, y)c)

≤ Px,y(E(x, y)c)

(
1

Px,y(E(x, y))
+ 1

)
, (24)
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where in the second line we used the inequality Ex,y[W|Z] ≤Ex,y[W]/Px,y(Z) and in the last
line we just bounded Ex,y[A(x)] and Ex,y[A(y)] by 1. We also observe that

Px,y(E(x, y)c) ≤ Px,y(x ↔B‖x−y‖/2(x)) + Px,y(y ↔B‖x−y‖/2(y))

≤ Px,y(x ↔ y) + 2P0(0 ↔B‖x−y‖/2(0))

≤ c̃5 ‖x − y‖d−α (25)

for some c̃5 > 0, where the last inequality can be obtained as in (21). From (24) and (25) it
follows that whenever we consider x, y ∈R

d such that, for example, c̃5 ‖x − y‖d−α ≤ 1/2, we
get C(x, y) ≤ c̃6 ‖x − y‖d−α . Hence, setting r := (2c̃5)1/(α−d), we can bound∫

Bn

∫
Bn

C(x, y) dx dy ≤
∫

Bn

[
c̃6rd +

∫
y �∈Br(x)

c̃5‖x − y‖d−α dy

]
dx ≤ c n3d−α

for some constant c > 0. The proof is finished by putting together (22), (18), (23), and this last
estimate. �

Appendix A. Campbell and Slivnyak–Mecke theorems

In this section we present versions of Campbell’s theorem and of the so-called extended
Slivnyak–Mecke theorem in the simple case of a homogeneous Poisson point process. For a
version of Theorem A.1 similar to the one presented here, see [26, Section 3.2]. For a simple
proof of Theorem A.2, see [30, Theorem 13.3]. More complete and general versions of these
theorems in the framework of Palm theory can be found in [12, Chapter 13].

Theorem A.1. (Campbell theorem, homogeneous case.) Let η be a homogeneous Poisson
point process on R

d with intensity ν under measure P, with E the associated expectation. Let
f : Rd →R be a measurable function. The random sum S = ∑

x∈η f (x) is absolutely convergent
with probability one if and only if ∫

Rd
|f (y)| ∧ 1 dy < ∞.

If the previous integral is finite, then we have

E[eθS] = exp

(
ν

∫
Rd

(eθ f (y) − 1) dy

)
(26)

for any complex θ such that the integral on the right-hand side converges. Moreover,

E[S] = ν

∫
Rd

f (y) dy, (27)

and if the last integral is finite, then

V(S) = ν

∫
Rd

f (y)2 dy, (28)

where V is the (possibly infinite) variance with respect to P.

Theorem A.2. (Extended Slivnyak–Mecke theorem.) Let η be a homogeneous Poisson point
process on R

d with intensity ν under measure P, with E the associated expectation. For n ∈N
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and for any positive function f : (Rd)n × (Rd)N → [0, ∞),

E

[ �=∑
x1,...,xn∈η

f (x1, . . . , xn; η \ {x1, . . . , xn})
]

= νn
∫
Rd

. . .

∫
Rd

E[f (x1, . . . , xn; η)] dx1 . . . dxn,

where the �= sign over the sum means that x1, . . . , xn are pairwise distinct.

Acknowledgements

We thank three anonymous referees for helping us to improve the original manuscript. The
second author would like to thank Quentin Berger for useful discussions. This work was carried
out with financial support of the French Research Agency (ANR), project ANR-16-CE32-
0007-01 (CADENCE).

References

[1] ALBERT, R., JEONG, H. AND BARABÁSI, A.-L. (1999). Internet: diameter of the world-wide web. Nature 401,
130.

[2] BARABÁSI, A.-L. AND ALBERT, R. (1999). Emergence of scaling in random networks. Science 286, 509–512.
[3] BARRAT, A. AND WEIGT, M. (2000). On the properties of small-world network models. Eur. Phys. J. B 13,

547–560.
[4] BARTHÉLEMY, M. (2011). Spatial networks. Phys. Rep. 499, 1–101.
[5] BERGER, N. (2002). Transience, recurrence and critical behavior for long-range percolation. Commun. Math.

Phys. 226, 531–558.
[6] BISKUP, M. (2004). On the scaling of the chemical distance in long-range percolation models. Ann. Prob. 32,

2938–2977.
[7] BRINGMANN, K., KEUSCH, R. AND LENGLER, J. (2019). Geometric inhomogeneous random graphs. Theoret.

Comput. Sci. 760, 35–54.
[8] CANDELLERO, E. AND FOUNTOULAKIS, N. (2016). Clustering and the hyperbolic geometry of complex

networks. Internet Math. 12, 2–53.
[9] CHUNG, F. AND LU, L. (2002). The average distances in random graphs with given expected degrees. Proc.

Nat. Acad. Sci. USA 99, 15879–15882.
[10] CONT, R., MOUSSA, A. AND BASTOS E SANTOS, E. (2010). Network structure and systemic risk in banking

systems. SSRN Electron. J. http://dx.doi.org/10.2139/ssrn.1733528.
[11] COUPECHOUX, E. AND LELARGE, M. (2014). How clustering affects epidemics in random networks. Adv.

Appl. Prob. 46, 985–1008.
[12] DALEY, D. J. AND VERE-JONES, D. (2008). An Introduction to the Theory of Point Processes, vol. II: General

Theory and Structure, 2nd edn (Probability and its Applications). Springer, New York.
[13] DEIJFEN, M., VAN DER HOFSTAD, R. AND HOOGHIEMSTRA, G. (2013). Scale-free percolation. Ann. Inst. H.

Poincaré Prob. Statist. 49, 817–838.
[14] DEPREZ, P. AND WÜTHRICH, M. V. (2019). Scale-free percolation in continuum space. Commun. Math. Statist.

7, 269–308.
[15] DEPREZ, P., HAZRA, R. S. AND WÜTHRICH, M. V. (2015). Inhomogeneous long-range percolation for real-

life network modeling. Risks 3, 1–23.
[16] DUTTA, B. L., EZANNO, P. AND VERGU, E. (2014). Characteristics of the spatio-temporal network of cattle

movements in France over a 5-year period. Preventive Veterinary Medicine 117, 79–94.
[17] FELLER, W. (1971). An Introduction to Probability Theory and its Applications, vol. 2, 2nd edn. John Wiley,

New York.
[18] FOUNTOULAKIS, N., VAN DER HOORN, P., MÜLLER, T. AND SCHEPERS, M. (2020). Clustering in a

hyperbolic model of complex networks. Available at arXiv:2003.05525.
[19] GRACAR, P., GRAUER, A., LÜCHTRATH, L. AND MÖRTERS, P. (2019). The age-dependent random connection

model. Queueing Systems 93, 309–331.
[20] GUGELMANN, L., PANAGIOTOU, K. AND PETER, U. (2012). Random hyperbolic graphs: degree sequence and

clustering. In International Colloquium on Automata, Languages, and Programming (Lecture Notes Comput.
Sci. 7392), pp. 573–585. Springer.

[21] HAENGGI, M., ANDREWS, J. G., BACCELLI, F., DOUSSE, O. AND FRANCESCHETTI, M. (2009). Stochastic
geometry and random graphs for the analysis and design of wireless networks. IEEE J. Sel. Areas Commun. 27,
1029–1046.

https://doi.org/10.1017/jpr.2020.76 Published online by Cambridge University Press

http://dx.doi.org/10.2139/ssrn.1733528
https://arxiv.org/abs/2003.05525
https://doi.org/10.1017/jpr.2020.76


Continuum scale-free percolation: degree and clustering coefficient 127

[22] HEYDENREICH, M., HULSHOF, T. AND JORRITSMA, J. (2017). Structures in supercritical scale-free percola-
tion. Ann. Appl. Prob. 27, 2569–2604.

[23] JACOB, E. AND MÖRTERS, P. (2015). Spatial preferential attachment networks: power laws and clustering
coefficients. Ann. Appl. Prob. 25, 632–662.

[24] JEONG, H., TOMBOR, B., ALBERT, R., OLTVAI, Z. N. AND BARABÁSI, A.-L. (2000). The large-scale
organization of metabolic networks. Nature 407, 651.

[25] KALUZA, P., KÖLZSCH, A., GASTNER, M. T. AND BLASIUS, B. (2010). The complex network of global cargo
ship movements. J. R. Soc. Interface 7, 1093–1103.

[26] KINGMAN, J. F. C. (1992). Poisson Processes, vol. 3. Clarendon Press.
[27] KOMJÁTHY, J. AND LODEWIJKS, B. (2020). Explosion in weighted hyperbolic random graphs and geometric

inhomogeneous random graphs. Stochastic Process. Appl. 130, 1309–1367.
[28] LAGO-FERNÁNDEZ, L. F., HUERTA, R., CORBACHO, F. AND SIGÜENZA, J. A. (2000). Fast response and

temporal coherent oscillations in small-world networks. Phys. Rev. Lett. 84, 2758.
[29] MITZENMACHER, M. AND UPFAL, E. (2017). Probability and Computing: Randomization and Probabilistic

Techniques in Algorithms and Data Analysis. Cambridge University Press.
[30] MOLLER, J. AND WAAGEPETERSEN, R. P. (2003). Statistical Inference and Simulation for Spatial Point

Processes. Chapman & Hall/CRC.
[31] MOORE, C. AND NEWMAN, M. E. (2000). Epidemics and percolation in small-world networks. Phys. Rev. E

61, 5678.
[32] NEWMAN, M. E. (2003). The structure and function of complex networks. SIAM Rev. 45, 167–256.
[33] NEWMAN, M. E., WATTS, D. J. AND STROGATZ, S. H. (2002). Random graph models of social networks.

Proc. Nat. Acad. Sci. USA 99, 2566–2572.
[34] NORROS, I. AND REITTU, H. (2006). On a conditionally Poissonian graph process. Adv. Appl. Prob. 38, 59–75.
[35] PASTOR-SATORRAS, R. AND VESPIGNANI, A. (2001). Epidemic spreading in scale-free networks. Phys. Rev.

Lett. 86, 3200.
[36] RILEY, S., EAMES, K., ISHAM, V., MOLLISON, D. AND TRAPMAN, P. (2015). Five challenges for spatial

epidemic models. Epidemics 10, 68–71.
[37] SORAMÄKI, K., BECH, M. L., ARNOLD, J., GLASS, R. J. AND BEYELER, W. E. (2007). The topology of

interbank payment flows. Physica A 379, 317–333.
[38] STEGEHUIS, C., VAN DER HOFSTAD, R. AND VAN LEEUWAARDEN, J. S. (2019). Scale-free network

clustering in hyperbolic and other random graphs. J. Phys. A 52, 295101.
[39] VAN DER HOFSTAD, R. (2016). Random Graphs and Complex Networks, vol. 1. Cambridge University Press.
[40] WATTS, D. J. AND STROGATZ, S. H. (1998). Collective dynamics of ‘small-world’ networks. Nature 393, 440.
[41] YUKICH, J. (2006). Ultra-small scale-free geometric networks. J. Appl. Prob. 43, 665–677.

https://doi.org/10.1017/jpr.2020.76 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2020.76

	Introduction
	Our contribution
	Structure of the paper

	Model and main results
	The model
	Results on the degree
	Results on the clustering coefficient

	Degree
	Infinite degree
	Polynomial degree

	Clustering coefficient
	Proofs of the lemmas
	Proof of Proposition 4.1

	Campbell and Slivnyak"2013`Mecke theorems
	Acknowledgements
	References

