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Abstract In this paper, we shall study the Dirichlet problem for the minimal surfaces equation. We
prove some results about the boundary behaviour of a solution of this problem. We describe the behaviour
of a non-converging sequence of solutions in term of lines of divergence in the domain. Using this second
result, we build some solutions of the Dirichlet problem on unbounded domain. We then give a new proof
of the result of Cośın and Ros concerning the Plateau problem at infinity for horizontal ends.
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0. Introduction

One classical way to construct minimal surfaces in R
3 is to see them as the graph of a

function u over a domain Ω ⊂ R
2 (see, for example, the paper of Karcher [8]). The graph

of a function u is a minimal surface if u satisfies the elliptic partial differential equation
called the minimal surfaces equation,

div
(

∇u√
1 + |∇u|2

)
= 0. (MSE)

The problem which is associated to this point of view is the Dirichlet problem for the
equation (MSE): for a domain Ω and a function f on ∂Ω, this problem consists in finding
a continuous function u on Ω̄ which is a solution of the minimal surfaces equation in Ω

and such that u = f on the boundary of Ω. One of the most general answers to the
Dirichlet problem for bounded domain has been given by Jenkins and Serrin in [7]. They
give a nice condition on the domain to solve for any function f ; moreover, their result
allows us to give infinite value for the boundary data f . For unbounded domain, the
Dirichlet problem is still an open problem. We know that, in the general case, we lose
the uniqueness of solution. In this paper, using a new approach, we develop some tools
for the study of this problem.
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398 L. Mazet

Another interesting and still open problem concerning minimal surfaces is the Plateau
problem at infinity, which is the following: finding a minimal surface for a given asymp-
totic behaviour. More precisely, we know that, if a complete minimal surface has finite
total curvature and embedded ends, each end of this minimal surface is asymptotic to
a plane or to a half-catenoid; besides, we can associate to each end a vector in R

3, this
vector is called the flux vector of the end. These vectors satisfy the following condition:
the sum of the flux vectors over all ends is zero. So the problem is given a finite number
of vectors such that their sum is zero, can we find a minimal surface which has these
vectors as flux vectors? Our answer comes from the following idea: seeing a solution of
the Plateau problem at infinity as the conjugate surface of a solution of the Dirichlet
problem on an unbounded domain.

In [2], Cośın and Ros give a description of the space of solutions of the Plateau problem
at infinity with an asymptotic behaviour which is symmetric with respect to an horizontal
plane (i.e. all the flux vectors are horizontal). They also restrict themselves to the case
of Alexandrov embedded minimal surfaces; this condition implies that no flux vector is
zero and that there is a natural order on the ends of the surface. Since the flux vectors
are horizontal and their sum is zero, these vectors draw a polygon in R

2. Cośın and Ros
give a necessary and sufficient condition on this polygon to have a solution (see § 4 for
more explanations about their work).

In this paper, we give a more constructive proof of the result of Cośın and Ros. Our
method is based on the Dirichlet problem on an unbounded ‘domain’ Ω. When the
polygon given by the flux vectors is convex, Ω can be defined as the polygonal domain
bounded by the flux polygon to which we glue a half-strip on each edge. We denote by
L+

i and L−
i+1 the two sides of each half-strip Si, alternating the sign + and − such that

each vertex of the polygon is common to some L−
i and L+

i . When the flux polygon is
non-convex and satisfies the condition of Cośın and Ros, we need to use the concept of
multi-domain for defining Ω (see Definition 1.1 for this concept).

Our main result for the Dirichlet problem for this kind of domain Ω is then (see
Theorem 5.1) as follows.

There exists a solution u of the minimal surfaces equation on Ω such that u tends to +∞
on L+

i and −∞ on L−
i . Besides, the solution is unique up to an additive constant.

This statement is a new result for the Dirichlet problem on unbounded domains that
are similar to the ones studied by Rosenberg and Sa-Earp in [12].

The function u in this result is built as the limit of solutions of the Dirichlet problem
on bounded domain. We describe the possible divergences that can occur for a sequence
of solutions of (MSE). In fact, we prove that if the sequence diverges at a point, it must
diverge along a line passing by this point. This result is a generalization of the results that
Jenkins and Serrin use in [7]. Our result allows us to do the same discussion that Jenkins
and Serrin made in the particular case of monotone sequences of solutions of (MSE); this
is our main tool to prove the existence part of Theorem 5.1.

The solution to the Plateau problem at infinity is then the conjugate surface to the
graph of u. In order to know the geometry of the conjugate surface along its boundary,
we need to understand the behaviour of the graph in the neighbourhood of the vertices
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of Ω, which are the vertices of the polygon. Some results are known for such a problem
concerning the Dirichlet problem in the convex case. For example, consider f a datum
on the boundary of a domain Ω. We suppose that f has a finite discontinuity at a point
P where the boundary is convex (i.e. we suppose that f(Q) has a limit if we tend to P

by the right-hand side or by the left-hand side and that the difference of these two limits
is finite). Then we know that the graph of a solution u over Ω of the Dirichlet problem
with f as boundary value has a vertical segment over P in its boundary (as was proved
in [10]). In our case, we can prove that the boundary of the graph is the vertical straight
line passing by the vertex; although the domain is locally an angular sector that does
not need to be convex and the boundary data takes the values +∞ on one side of the
sector and −∞ on the other side.

The paper is organized as follows. In the first section, we define multi-domains and
extend the result of Jenkins and Serrin to bounded multi-domains. The multi-domains
are necessary to express the condition of Cośın and Ros. This result will be our first tool
in the proof of our main theorem.

The second section is devoted to the proof of our result concerning the boundary
behaviour of solutions of the Dirichlet problem.

In § 3, we study the sequences of solutions of (MSE) and define the lines of divergence.
In § 4, we explain the result of Cośın and Ros, and recall some elements of their proof.

In the last section, we give the proof of our main result. We then use it to give a new
proof of the result of Cośın and Ros.

Let us fix some notation. In the following, when u is a function on a domain of R
2 we

shall write W =
√

1 + |∇u|2. We shall also use the classical following notation for partial
derivatives:

p =
∂u

∂x
, q =

∂u

∂y
, r =

∂2u

∂x2 , s =
∂2u

∂x∂y
and t =

∂2u

∂y2 .

Besides, for the graph of u, we shall always chose the downward pointing normal to give
an orientation to the graph.

In this paper, we shall call an extraction a strictly increasing function from N to N. If
an is a sequence and θ is an extraction, the sequence aθ(n) is a subsequence of an and
every subsequence of an can be written in this way. If θ1 is an extraction, we shall say
that θ2 is a sub-extraction of θ1 if there exists an extraction α such that θ2 = θ1 ◦ α.

1. The Dirichlet problem on multi-domains

In this section, we shall give a generalization of the results of Jenkins and Serrin [7]
for the Dirichlet problem on bounded domain. First we have to generalize the notion
of domain of R

2. Let us consider a pair (Ω, ϕ) where Ω is a simply connected two-
dimensional complete flat manifold with piecewise smooth boundary and ϕ : Ω → R

2

is a local isometry. The map ϕ is called the developing map and the points where the
boundary ∂Ω are not smooth are called vertices.
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Definition 1.1. A pair (Ω, ϕ), where Ω is a simply connected two-dimensional complete
flat manifold with piecewise smooth boundary and ϕ : Ω → R

2 is a local isometry, is a
multi-domain if each connected component of the smooth part of ∂Ω is a convex arc.

If (Ω, ϕ) is as above and a part of ∂Ω is linear then we add two vertices at the endpoints
of this linear part and we call this new part an edge.

Let (Ω, ϕ) be a multi-domain. If u is a smooth function on Ω we shall call the graph of
u the surface in R

3 given by {(ϕ(x), u(x))}x∈Ω . If u is a solution of the minimal surfaces
equation (MSE), the graph of u is a minimal surface of R

3. The Dirichlet problem on a
multi-domain consists in the determination of a function u satisfying the equation (MSE)
on Ω and taking on assigned values on the boundary of Ω.

As in the case of a domain in R
2, if u is a solution of (MSE) on Ω, we can define a

differential form dΨu on Ω which corresponds to the differential of the third coordinate
of the conjugate surface of the graph of u. Using the charts given by the developing map
ϕ, we have dΨu = (p/W ) dy − (q/W ) dx. dΨu is a closed form by (MSE) and, since Ω

is simply connected, we can define a function Ψu on Ω which is 1-Lipschitz continuous.
We call this function the conjugate function to u. One important result concerning dΨu

is the following lemma.

Lemma 1.2. Let Ω be a domain bounded in part by a straight segment T , oriented such
that the right-hand normal to T is the outer normal to Ω. Let u be a solution of (MSE)
in Ω which assumes the boundary value +∞ on T . Then∫

T

dΨu = |T |.

This is Lemma 4 of [7]. For other properties of Ψu and dΨu, we refer the reader to this
paper.

When Ω is compact there is a finite number of connected components of the smooth
part of ∂Ω; let us call them C1, . . . , Cn. When the data on the boundary is bounded, we
have the following result.

Theorem 1.3. Let (Ω, ϕ) be a compact multi-domain with boundary arcs C1, . . . , Cn

and let u1, . . . , un be bounded continuous functions respectively on C1, . . . , Cn. Then
there exists a unique solution u of the minimal surfaces equation on Ω such that u|Ci

= ui.

Proof. The proof of the uniqueness is a particular case of the proof of Theorem 1.5, so
we make it later.

The existence of the solution on multi-domain is due to a Perron process. Let us recall
some elements of this method. If v is a continuous function on Ω and D is a disc in Ω,
we denote by uv,D the solution of (MSE) in D which takes the value v on ∂D. We also
denote by MD[v] the continuous function which coincides with v on Ω \ D and uv,D on
D. Let u1, . . . , un be the data on the boundary of Ω. We say that v is a sub-solution of
the Dirichlet problem if v � ui on Ci and v � MD[v] for all discs D in Ω. Since the ui are
bounded by a constant M , the class F of all sub-solutions is non-empty, as it contains
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the constant function −M ; besides, each sub-solution v verifies v � M . So we can define
a function u by

u(P ) = sup
v∈F

v(P ) ∀P ∈ Ω. (1.1)

By standard argument, we can show that u is a solution of (MSE). Since in our defini-
tion of multi-domains we suppose that the boundary is locally convex, there exist barrier
functions on the boundary (they are constructed in using the Scherk surface). So we can
ensure that u takes the value ui on Ci. For more details on Perron processes, we refer the
reader to the book of Gilbarg and Trudinger [4] or the one of Courant and Hilbert [3],
which illustrate this method for the classical Laplacian Dirichlet problem; there is also
the book of Nitsche [10], which studies the case of the minimal surfaces equation. �

The work of Jenkins and Serrin allows infinite data on the boundary. By the Straight
Line Lemma [7], we know that infinite data can only be allowed on linear parts of the
boundary.

Definition 1.4. Let (Ω, ϕ) be a multi-domain. A polygonal domain P of Ω is a connected
compact subset of Ω such that (P, ϕ) is a multi-domain, the boundary of P is only
composed of edges and the vertices of P are drawn from the vertices of Ω.

We want to solve the Dirichlet problem with infinite data, so let us call A1, . . . , Ak and
B1, . . . , Bl the edges of Ω such that we assign the value +∞ on Aj and −∞ on Bj . We
call C1, . . . , Cn the remaining arcs on which we assign continuous data.

Let P be a polygonal domain of Ω. We denote by α and β, respectively, the total
length of the edges Aj and the one of the edges Bj which belong to the boundary of P
and we denote by γ the perimeter of P. We then have the following generalization of the
result of Jenkins and Serrin.

Theorem 1.5. Let (Ω, ϕ) be a compact multi-domain with the families {Aj}, {Bj} and
{Cj} as above.

If the family {Cj} is non-empty, then there exists a solution of the minimal surface
equation in Ω which assumes the value +∞ on each Aj , the value −∞ on each Bj and
arbitrarily assigned continuous data on each Cj , if and only if

2α < γ and 2β < γ (∗)

for each polygonal domain P of Ω. If a solution exists, it is unique.
If the family {Cj} is empty, then a solution exists, if and only if

α = β

when P coincides with Ω and (∗) holds for all other polygonal domains of Ω. In this
case, if a solution exists, it is unique up to an additive constant.

Proof. To prove the existence of a solution, we can use the same arguments as Jenkins
and Serrin, so we refer to [7].
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The proof of the uniqueness in [7] also works but we give another proof which we
can apply in other situations. Let u1 and u2 be different solutions of (MSE) with the
same data on the boundary. In the case where the family (Cj) is empty, we suppose that
u1 −u2 is not constant; besides, in considering ui −ui(P ) (where P ∈ Ω), we can assume
that {u1 < u2} and {u1 > u2} are non-empty. In choosing sufficiently small ε > 0, we
have Ωε = {u1 − u2 > ε} 	= ∅, besides the choice of ε is such that ∂Ωε is regular. We
write dΨ̃ = dΨu1 − dΨu2 . Since dΨ̃ is closed, we have

∫
∂Ωε

dΨ̃ = 0. Because u1 and u2

have the same data on the boundary, ∂Ωε does not intersect
⋃

j Cj , so ∂Ωε is composed
of three parts: one is included in

⋃
j Aj ∪

⋃
j Bj on which dΨ̃ = 0 (this is a consequence

of Lemma 1.2); one is included in Ω; and a last part which is composed of some vertices
of Ω but its contribution to the integral is zero. On the second part, let us call it ∂̃Ωε,
∇u1−∇u2 points in Ωε, this part is then oriented by the non-direct normal to ∇u1−∇u2

so, by Lemma 2 of Collin and Krust in [1],
∫

∂̃Ωε
dΨ̃ < 0; this gives us a contradiction. �

2. A result of regularity at the vertices

The aim of this section is to understand what geometrically happens at a vertex of a
multi-domain where two edges Aj and Bj converge.

For β1 < β2 and R > 0, we consider

Ωβ2
β1

(R) = {(r, θ) | 0 � r � R, β1 � θ � β2},

with the metric ds2 = dr2 + r2 dθ2 (we identify all the points (0, θ) and this point
will be called the vertex of Ωβ2

β1
(R)). We also define on Ωβ2

β1
(R) the map ϕ : (r, θ) �→

(r cos θ, r sin θ). Then (Ωβ2
β1

(R), ϕ) is a multi-domain, it is a description of a neighbour-
hood of a vertex where two edges converge. We call L(β) the set of points in Ωβ2

β1
(R) such

that θ = β. We are interested in the geometrical ‘configuration’ of the graph of a solution
u of (MSE) such that u tends to −∞ on L(β2) and +∞ on L(β1); such a solution u will
be called a solution of the problem P.

The first thing we have to do to understand a solution u of the problem P is being able
to bound the function u on each radius L(β). Our arguments are based on the comparison
with the Scherk surface.

Let us consider ABC an isosceles triangle (|AB| = |AC| = R). We consider the solution
w of the Dirichlet problem on ABC such that w = 0 on [A, B] and [A, C] and tends to
+∞ on [B, C]. This function exists by Theorem 1.5. When ABC is right-angled w is the
Scherk surface, after dilatation, w is given by

w(x, y) = h(x, y) = − ln cos x + ln cos y. (2.1)

In the general case, the solution w will be called a pseudo-Scherk surface.
We shall use the Scherk surface to control solutions of the problem P. We first consider

the case where ABC is right-angled. In fact, a neighbourhood of B in ABC can be
isometrically parametrized by Ω0

−π/4(R) and h is a solution of (MSE) on Ω0
−π/4(R) such

that h = 0 on L(0), +∞ on L(− 1
4π) and some positive function on the third part of the
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boundary. Since we have an expression for h, we can see that h is uniformly bounded on
Ω0

α(R) ⊂ Ω0
−π/4(R) for every − 1

4π < α < 0.
We do not suppose now that ABC is right-angled, but we suppose that the angle at

the vertex A is greater than 1
2π. In this case we can choose a point A′ such that A′BC

is isosceles and right-angled and A′BC contains ABC. We consider in ABC the pseudo-
Scherk surface w and h the Scherk surface on A′BC. Since h is positive in A′BC, we have
h > w. As above, a neighbourhood of B in ABC can be isometrically parametrized by
Ω0

β(R) with β < 0 and w can be seen as the solution of (MSE) on Ω0
β(R) such that w = 0

on L(0), +∞ on L(β) and some positive function on the third part of the boundary. Since
w < h, w is uniformly bounded on Ω0

α(R) for every β < α < 0.
By our expression for h, there exists m ∈ R such that h � m on [A, B] and [A, C].

This proves that h − m � w in ABC. Then in our parametrization of a neighbourhood
of B, for every M ∈ R there exist α such that w � M in Ωα

β (R).

Lemma 2.1. Let β1 < β2 and R > 0. We consider a solution u of the problem P on
Ωβ2

β1
(R). Then for every β1 < α < β2, there exist M and M ′ in R such that u � M in

Ωβ2
α ( 1

4R) and u � M ′ on Ωα
β1

( 1
4R). For every M ∈ R, there exist α and α′ in ]β1, β2[

such that u � M in Ωα
β1

( 1
4R) and u � M in Ωβ2

α′ ( 1
4R).

Proof. Let us consider α1 < α2 and R′ > 0. We consider v the solution of the problem
P on Ωα2

α1
(R′) such that v = 0 on the third part of the boundary. v exists because

the hypotheses of Theorem 1.5 are fulfilled. The isometry of Ωα2
α1

(R′) × R defined by
(r, θ, z) �→ (r, α1 + α2 − θ, −z) does not change the boundary data so v is invariant by
this isometry because of the uniqueness of such a solution. This proves that v = 0 on
L( 1

2 (α1 + α2)). Then, by the maximum principle, we have v > 0 between L(α1) and
L( 1

2 (α1 + α2)) and v < 0 between L( 1
2 (α1 + α2)) and L(α2).

Let us consider α1 < α < α2. Let us prove that there exists a constant M such that
v � M in Ωα2

α ( 1
2R′). If α � 1

2 (α1 + α2), M = 0 works. We write α̃ = 1
2 (α1 + α2). We

suppose that α � α̃ then we take a sufficiently big n such that (α̃ − α)/n � 1
4π and

(α̃ − α)/n � α − α1. We denote by B the vertex of Ωα2
α1

(R′). For k � 2n + 1 we write
α(k) = α̃ − k((α̃ − α)/2n) and for k � 2n − 1 we denote by Ak the points of coordinates
( 1
2R′, α(k)) and Ck the point of second coordinate α(k + 2) such that AkBCk is an

isosceles triangle at Ak (see Figure 1). We have v = 0 on [B, A0] and v is bounded on
[A0, C0]. Then, by adding a constant, we can put a pseudo-Scherk surface above v over
A0BC0. This proves that v is upper-bounded in Ωα2

α(1)(
1
2R′). Since v is upper-bounded on

[B, A1] and [A1, C1], we can put a pseudo-Scherk surface above v over A1BC1 then v is
bounded on Ωα2

α(2)(
1
2R′). We can do this for every k. Then we obtain that v is uniformly

upper-bounded on Ωα2
α ( 1

2R′).
With the same method, we can prove that there exists M ′ such that v � M ′ on

Ωα
α1

( 1
2R′).

Let us now consider our original problem. We have u and α and we want to prove the
existence of M . We consider β1 < α′ < α. Since u tends to −∞ along L(β2), there exists
m such that u � m at all the points of coordinates (1

2R, θ) with α′ � θ < β2. We consider
on Ωβ2

α′ ( 1
2R) the solution v that we have studied above. By the maximum principle, we
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L(α2)

L(α1)
C2n − 1

A2n − 1

L(α)

A2

A1

A0

C2

C1

C0

B

Figure 1.

have u � v+m on Ωβ2
α′ ( 1

2R). We then have the existence of M because of the result on v.
We construct M ′ in the same way.

Let us now consider u a solution of P and M ∈ R. We consider β1 < β < β2 such
that β − β1 � 1

4π, we consider the point A of coordinates (1
2R, β) and the point C on

L(β1) such that ABC is an isosceles triangle (where B is the vertex of Ωβ2
β1

). By what we
have just proved, u is lower-bounded on [B, A] and [A, C]. Then we can put a pseudo-
Scherk surface under u. The existence of α is due to the last remark that we made about
pseudo-Scherk surfaces. �

Using this result, we can prove the following geometrical result.

Theorem 2.2. Let (Ω, ϕ) be a multi-domain and P a vertex of Ω such that two edges L1

and L2 have P as endpoint (L1 and L2 are enumerated with respect to the orientation).
Let u be a solution of (MSE) on Ω such that u tends to −∞ on L1 and +∞ on L2. We
consider Ψu the conjugate function to u normalized such that Ψu(P ) = 0. Then, if Ψu is
non-negative in a neighbourhood of P , the vertical straight line passing through ϕ(P ) is
the boundary of the graph of u above a neighbourhood of P .

First, we remark that, if Q is a point on L1 or L2, then Ψu(Q) = |PQ| � 0 by
Lemma 1.2. This proves that, if the angle at P is strictly less than π, the hypothesis on
Ψu is always verified. So we have the result for a convex corner.

https://doi.org/10.1017/S1474748004000118 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748004000118


The Dirichlet problem for minimal surfaces 405

Proof. By a translation and a rotation, we can isometrically parametrize a neighbour-
hood of P by Ω0

β(R) for β < 0 and R small enough. Then u can be seen as a solution of
the problem P. We suppose that Ψu � 0 in Ω0

β(R).

Part 1. First, we prove that there exists M1 ∈ R such that ϕ(P )× ]−∞, M1[ is a part
of the boundary of the graph. We take − 1

2π < α < 0. We suppose that α > 1
2β. Then

Ω0
α(R) ⊂ Ω0

β(R) can be parametrized by Euclidean parameters (x, y). In fact, Ω0
α(R) is

embedded in R
2. The idea is to see the part of the graph which is over Ω0

α(R) as a
graph over the vertical plane given by the equation y = 0. Let R′ < 1

2R. Then for all
Q ∈ Ω0

α(R′) the nearest point from Q on ∂Ω is on L1. If we take R′ small enough and
α such that tanα > − 1

8 , then every point of Ω0
α(R′) verifies the hypothesis of Lemma 1

in [7]. This lemma implies that, at every point of Ω0
α(R′), q = ∂u/∂y < 0. Using our

Euclidean parameters, we write, for (x, y) ∈ Ω0
α(R′), Θ(x, y) = (x, u(x, y)). We have

dΘ =

(
1 0

∂u/∂x ∂u/∂y

)
.

Since q < 0, this proves that Θ is a local diffeomorphism. Since u strictly decreases when
y increases, Θ is injective. By Lemma 2.1, we know that there exists K ∈ R such that
u � K on L(α). We put x1 = R′ cos α. We then have ]0, x1[ × ]−∞, K[⊂ Θ(Ω0

α(R′)). We
note that χ = Θ−1 on ]0, x1[ × ]−∞, K[. We then have y = χ(2)(x, z) on the graph of u

(we denote by χ(2) the second coordinate function of χ). Then χ(2) verifies (MSE). When
x → 0, we have y = χ(2)(x, z) → 0, which is due to the shape of Ω0

α(R′). From Lemma 2.1,
there exist α < α′ < 0 and r such that Ω0

α′(r) ⊂ Im χ. By results of boundary regularity,
χ(2) is regular at the boundary. Actually, we can extend χ(2) by making a reflection with
respect to the axis {x = 0, y = 0}. We now show that a part of this axis is a part of
the boundary of the whole graph. By Lemma 2.1, there exists M ′ such that u � M ′ in
Ωα′

β (r). We note that M1 = M ′ − 1 < K. Then if a sequence of points of the graph of
u over Ω0

β(r) tends to a point of ϕ(P )× ]−∞, M1[, we have (x, y) in Im χ after a certain
rank. Then the graph of u over Im χ is a neighbourhood of ϕ(P )× ]−∞, M1[. As χ(2) is
regular through the boundary, ϕ(P )× ]−∞, M1[ is a part of the boundary.

With the same arguments, we can show that there exists M2 such that ϕ(P )× ]M2, +∞[
is a part of the boundary.

Part 2. The first part proves that outside a compact the graph of u has a good
behaviour above the point ϕ(P ). Now we prove that we can extend, by reflection, this
compact part through the vertical straight line passing by ϕ(P ).

From what we have just done, there exist β < α2 < α1 < 0 such that the graph above
Ωα2

β (R) and Ω0
α1

(R) is regular above P . We choose M1 and M2 as in the first part such
that

(ϕ(P ), M1) ∈ ∂ Graph(u|Ω0
α1

(R)) and (ϕ(P ), M2) ∈ ∂ Graph(u|Ωα2
β (R)).

We construct a curve Γ as follows. We start from the point A1 = (0, 0, M1) ((0, 0) =
ϕ(P )), we go down vertically to the point A2 = (0, 0, M1 − 1), then we go to some point
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B4

B2 B5

B1.5 B5.5

Figure 2.

A3 = (ε cos θ, ε sin θ, M1 − 1), following the level curve {u = M1 − 1} (we suppose that ε

is small and that θ > α1). We then follow the curve

t �→ (ε cos t, ε sin t, u(ε cos t, ε sin t)),

we let t decrease to some θ′ < α2 such that u(ε cos θ′, ε sin θ′) = M2 + 1 (we denote by
A4 the endpoint). Following the level curve {u = M2 + 1}, we go to the point A5 =
(0, 0, M2 + 1) and finally we go down to the point A6 = (0, 0, M2). We can smooth Γ at
the points A2, A3, A4 and A5 such that A2 and A5 are always in the smooth Γ and the
new Γ is embedded in the graph of u. The vertical projection of Γ on Ω0

β(R) bounds
a domain Ω̃. We denote by Σ the graph of u above Ω̃. Because of our choice of Γ , Σ

extends in a minimal surface Σ′ through Γ . (The only problem is through [A1, A2] and
[A5, A6], but the first part says that we can extend Σ through these two segments by
symmetry.) Because Σ is a graph, Σ is simply connected and its boundary is not empty;
the same is true for Σ′. This remark says us that we have conformal parametrization
h1 : D → Σ′ and h2 : D → Σ (D is the unit disc). We put D̃ = h−1

1 (Σ) and h̃ : D̃ → D

defined by h̃ = h−1
2 ◦ h1; h̃ is a biholomorphic map. As h−1

1 (Γ ) is embedded in D, the
property of Schönflies is verified at every point. By Carathéodory’s Theorem, h̃ extends
to an homeomorphism of D̃ ∪ h−1

1 (Γ ) into D ∪ V where V is part of the boundary of
D (for all of this argument we refer to Appendix A). This proves that we can extend
h2 in an homeomorphism of D ∪ V into Σ ∪ Γ . Let us consider f : D → D− (where
D− = {(x, y) ∈ D | y < 0}) a biholomorphic map. Then f extends to the boundary. Let
us consider the following points on Γ : A1.5 = (0, 0, M1 − 0.5) and A5.5 = (0, 0, M2 +0.5).
We write X = h2 ◦ H ◦ f−1, where H is a Möbius transformation of the unit disc. We
note that Bi = X−1(Ai) for every i. Then, for a suitable choice of H, we can have the
situation described by Figure 2.

Let us show that X extends to the whole disc. We shall denote by x1, x2 and x3 the
three coordinates of X. These three functions are harmonic since Σ is minimal. First we
observe that x1 and x2 tend to 0 when z ∈ D− tends to D0 = {z ∈ D | z ∈ R}; this is
due to the shape of Ω̃. Then, by the Schwarz reflection principle, x1 and x2 extend to
D in harmonic functions. Let us consider x∗

3 the harmonic conjugate to x3 on D−; we
normalized x∗

3 by x∗
3(B2) = 0. By our choice of normalization, for every z ∈ D−, we have

Ψu(X(z)) = x∗
3(z). This proves that x∗

3 tends to 0 when z tends to D0. We can extend
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x∗
3 by reflection to D. By taking the conjugate function, we have proved that x3 extends

to D. We then have constructed a minimal immersion X on D; then Σ extends through
[A1, A6]. This extension is given by the reflection with respect to [A1, A6].

Part 3. The last thing we have to show is that the minimal immersion X has no branch
point. If it has a branch point then it must be on D0, since, on the other part, the surface
is a graph and then there is no branch point. Let z0 be a branch point, then ∇x∗

3(z0) = 0.
Since x∗

3 is harmonic, its local behaviour is quite similar to the one of Re(z − z0)p with
p � 2 (in fact, in some holomorphic charts, we have x∗

3(z) = Re(z − z0)p). This implies
that there exists z in D− such that x∗

3(z) < 0, but this contradicts our hypothesis Ψu � 0.
We then have proved that there is no branch point, so the vertical straight line passing

by ϕ(P ) is the boundary of the graph. �

Remark 2.3. We can remark that in the first two parts we do not use the hypothesis
on Ψu. So in such a situation we can always extend the graph by making a reflection
with respect to the vertical axis. But what we obtain is a minimal surface with, maybe,
a finite number of branch points on the vertical axis.

Remark 2.4. We can make another remark. If we consider a vertex P , two edges L1

and L2 having P as endpoint and u such that u assumes the data +∞ (or −∞) on L1

and L2, the hypothesis on Ψu did not make any more sense and the angle at the vertex
P must be greater than π. But we can always apply the two first parts of the proof. The
only problem is that we need a result similar to Lemma 2.1; this is given by Theorem 10.3
in [11]. So we can affirm that on the boundary of the graph of u we have a half straight
line with a finite number of branch points. Obviously, we must have a branch point at
the endpoint of the half straight line.

3. Convergence and divergence of sequence of solutions of (MSE)

In this section we shall explain what we can say about the convergence of a sequence
(un) of solutions of (MSE): can we make converge a subsequence by some compactness
result? What are the different ways of divergence? In [7], it is shown that for a monotone
sequence, it appears lines which separate domains of convergence and domains of diver-
gence (this works only for subsequence). We shall show that such lines always appear
(Theorem 3.3).

First, we have to determine the domain on which we can make converge a sequence.
Since each surface is a graph, if we want the limit to be a graph, the normal to the surface
needs to stay close by the vertical unit vector and then Wn have to be bounded. We have
the following lemma.

Lemma 3.1. Let Ω be a domain and (un) a sequence of solutions of (MSE) on Ω. Let
P ∈ Ω. We suppose that Wn(P ) is bounded by a constant M . Then there exists R > 0
which depends only of M and the distance of P to ∂Ω such that Wn is bounded by 2M

on the disc of centre P and radius R.
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Proof. We fix an index n. We know (see [9]) that there exists a constant c such that if
u is a solution of (MSE) on the disc {(x, y) | x2 + y2 < R2} we have

r2(0) + 2s2(0) + t2(0) � c

R2 W 4(0). (3.1)

Let R be such that 2R = d(P, ∂Ω). Then, for all Q in D(P, R), the above equation gives
r2(Q) + 2s2(Q) + t2(Q) � (c/R2)W 4(Q). We have ∇W = ((rp + sq)/W, (sp + tq)/W ),
so, in D(P, R), we have ‖∇W‖ � C̃W 2 with C̃ which depends only of R. Let z be the
function such that z(0) = M and z′ = C̃z2, z is defined on [0, 1/(MC̃)[ by

1
M

− 1
z

= C̃r. (3.2)

Because of our estimate on ‖∇W‖, we have, in polar coordinates, W (r, θ) � z(r). Then
W is bounded by 2M on D(P, min(R, 1/(2MC̃))). �

Let (un) be a sequence of solutions of (MSE) on a domain Ω. We then define B(un) as
the set of the point Q ∈ Ω such that (Wn(Q)) is bounded. Lemma 3.1 says us that B(un)
is an open set and that Wn is uniformly bounded on each compact included in B(un).
Then if D is a connected component of B(un) and P ∈ D there exists an extraction θ

such that uθ(n) − uθ(n)(P ) converges uniformly on each compact of D to a solution u

of (MSE). Here, we use some classical compactness results (see [9]). This proves that the
divergence of the sequence is due to the behaviour of the sequence over Ω \ B(un).

If P ∈ Ω \ B(un), there exists a subsequence un′ such that Wn′(P ) → +∞. As the
normal Nn to the graph at (P, un(P )) is given by

Nn(P ) =
(

pn

Wn
(P ),

qn

Wn
(P ),− 1

Wn
(P )

)
, (3.3)

we can suppose that Nn′(P ) converges to an horizontal unit vector. The following theorem
describes what happens locally.

Theorem 3.2. Let r be positive. Let (un) be a sequence of solutions of (MSE) on the
disc D(0, r). We suppose that Nn(0) converges to (1, 0, 0). Let α ∈ ]0, 1[. Then there
exists an extraction θ such that Nθ(n) converges to (1, 0, 0) at almost every point of
{0} × [−αr, αr].

Proof. Let n ∈ N. We know (see [7, 11]) that there exists Φn : (x, y) �→ (ξ, η) with
Φn(0, 0) = (0, 0) and

dξ =
(

1 +
1 + p2

n

Wn

)
dx +

pnqn

Wn
dy, (3.4)

dη =
pnqn

Wn
dx +

(
1 +

1 + q2
n

Wm

)
dy. (3.5)

We know that Φn increases distance so it is bijective on its image. This image contains
the disc of centre (0, 0) and radius r. Besides, we know that (ξ, η) are conformal param-
eters for the graph of un. On the ξη disc D(0, r) we then have the Gauss map gn(ξ + iη)
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which corresponds to the stereographic projection of Nn; gn is holomorphic. We write
zn = gn(0). By hypothesis, we have zn → 1. We write z = ξ +iη. By our choice of normal
gn : D(0, r) → D(0, 1), there exists hn : D(0, r) → D(0, 1) holomorphic with hn(0) = 0
such that

gn(z) =
hn(z) + zn

1 + z̄nhn(z)
. (3.6)

Since zn → 1, the sequence of holomorphic functions z �→ (z + zn)/(1+ z̄nz) converges
simply to 1 on D(0, 1) and uniformly on the disc D(0, α) for all α < 1. But, by the
Schwarz Lemma, we have, for all n ∈ N, hn(D(0, αr)) ⊂ D(0, α). We then have uniform
convergence of gn to 1 on D(0, αr). Using (3.3), this proves that for every ε, if n is
big enough, we can say that pn/Wn � 1 − ε and |qn|/Wn � ε in Φ−1

n (D(0, αr)). So, to
conclude, we need to understand the shape of Φ−1

n (D(0, αr)). We shall see that these sets
are concentrating along the segment {0} × [−αr, αr].

For all n ∈ N, we consider, in the ξη disc, the path γn : ]−r, r[ → D(0, r) defined by
γn(0) = 0 and γ′

n = ∇yn/‖∇yn‖ where yn is the second coordinate of Φ−1
n . We have

(see [11])

∇yn =
(

− pnqn

JnWn
,
Wn + 1 + p2

n

JnWn

)
, (3.7)

where Jn = det(dΦn) = Wn +2+1/Wn. Because (3.3), ∇yn converges uniformly to (0, 1)
on the disc D(0, αr) for all α < 1.

Let α ∈ ]0, 1[. We denote by Aα and Bα the points in the xy disc D(0, r) of respective
coordinates (0,−αr) and (0, αr). In the following, we prove that

∫
[Aα,Bα] dΨun

→ 2αr.
Let α̃ > α. Then for n big enough, we have ‖∇yn‖ > α/α̃ in D(0, α̃r). Because, for t ∈

[−α̃r, α̃r], γn(t) ∈ D(0, α̃r), there exists α̃r � tn0 < tn1 � α̃r such that yn(γn(tn0 )) = −αr

and yn(γn(tn1 )) = αr. Along [tn0 , tn1 ], yn ◦ γn increases strictly from −αr to αr. Then the
path Γn = Φ−1

n ◦ γn on [tn0 , tn1 ] can be parametrized by y ∈ [−αr, αr]. We have a function
fn on [−αr, αr] such that, for t ∈ [tn0 , tn1 ], xn(γn(t)) = fn(yn(γn(t))). We have

|xn ◦ γn(t)| �
∣∣∣∣∫ t

0
|(xn ◦ γn)′(u)| du

∣∣∣∣
�

∣∣∣∣∫ t

0
‖∇xn‖(γn(u)) du

∣∣∣∣
=

∣∣∣∣∫ t

0

(
1 + q2

n

(1 + Wn)2

)1/2

(Γn(u)) du

∣∣∣∣ (3.8)

(for the last equality, see [11]). Then for n big enough |xn ◦γn| on [tn0 , tn1 ] can be bounded
by a constant uniformly small; this is due to the fact that |qn|/Wn � ε for big n. We
then have proved that the path Γn is close by the segment [Aα, Bα] for big n.

Let us now calculate
∫

Γn
dΨun

. We have∫
Γn

pn

Wn
dy − qn

Wn
dx =

∫ αr

−αr

(
pn

Wn
(fn(y), y) − qn

Wn
(fn(y), y)f ′

n(y)
)

dy. (3.9)

We have |f ′
n(yn(γn(t)))| � (‖∇xn‖/‖∇yn‖)(γn(t)) → 0, the convergence is uniform so f ′

n

tends uniformly to 0 on [−αr, αr]. This proves that
∫

Γn
dΨun

→ 2αr.
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Let us consider the path Γ̃n which consists of the segment [Aα, Bα], then the segment
[Bα, Γ (tn1 )], then −Γn, then, finally, the segment [Γn(tn0 ), Aα]. Let ε > 0. For n big
enough, we can suppose that

∫
Γn

dΨun � 2αr − ε and ((1 + q2
n)/((1 + Wn)2))1/2 � ε on

Φ−1
n (D(0, α̃r)). As dΨun is closed,

∫
Γ̃n

dΨun = 0. We then have

2αr �
∫

[Aα,Bα]
dΨun

= −
∫

[Bα,Γ (tn
1 )]

dΨun −
∫

−Γn

dΨun −
∫

[Γn(tn
0 ),Aα]

dΨun

�
∫

Γn

dΨun − |xn(γ(tn1 ))| − |xn(γ(tn0 ))|

� 2αr − ε − ε|tn1 | − ε|tn0 |
� 2αr − ε(1 + 2α̃r). (3.10)

This proves that
∫
[Aα,Bα] dΨun → 2αr. We have∫

[Aα,Bα]
dΨun =

∫
[Aα,Bα]

(pn/Wn) dy.

Because pn/Wn � 1, the preceding equalities prove that pn/Wn converges to 1 in
L

1([Aα, Bα]). Then there exists an extraction θ such that pθ(n)/Wθ(n) converges sim-
ply to 1 at almost every point in [Aα, Bα]. Thus the proposition is proved. �

This proposition gives us a local result and we have the following global result.

Theorem 3.3. Let (Ω, ϕ) be a multi-domain. Let (un) be a sequence of solutions
of (MSE) on Ω. Let P ∈ Ω and N a unit horizontal vector and D the geodesic of
Ω passing at P and normal to N . If the sequence (Nn(P )) converges to N , then Nn(Q)
converges to N at every point of D.

As Ω is locally isometric to R
2, we have allowed us to call N the parallel transport of

N along D.

Proof. We first get a parametrization of D by arclength with P as origin point. Then D

is parametrized by ]a, b[, ]−∞, b[, ]a,+∞[ or ]−∞, +∞[; we shall suppose that we are in
the case ]a,+∞[ (the other cases are similar). We then consider the set F of t ∈ R

∗
+ such

that, if θ1 is an extraction, there exists a sub-extraction θ2 such that Nθ2(n)(Q) converge
to N at almost every Q of the part of D parametrized by ]a + |a|/(t + 1), t[ (a < 0).
Let us prove that F = R

∗
+. First, we observe that, if t1 ∈ F and t2 < t1, then t2 ∈ F .

From Theorem 3.2, there exists t > 0 such that t ∈ F . Let t0 = supF and suppose that
t0 < +∞. We consider P1 and P2 the points on D parametrized by a + |a|/(1 + t0) and
t0. We choose R > 0 such that D(Pi, R) ⊂ Ω for i = 1, 2. Let θ1 be an extraction. Since
t0 = supF , there exist Q1 ∈ D(P1,

1
3R) ∩ D, Q2 ∈ D(P2,

1
3R) ∩ D and a sub-extraction

θ2 such that Nθ2(n) converges to N at Q1 and Q2. We have D(Qi,
2
3R) ⊂ Ω. We then
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apply Theorem 3.2 to points Q1 and Q2 with α = 3
4 . We then have a sub-extraction θ3

such that Nθ3 converges to N at almost every point of D(Qi,
1
2R) ∩ D for i = 1, 2. This

proves that t0 is not supF , because Nθ3 converges to N at almost every point of the part
of D parametrized by an open interval that contains the segment [a + |a|/(t0 + 1), t0].

By a standard diagonal process, we can then construct an extraction θ such that Nθ(n)

converges to N at almost every point of D. Let Q be in D and we consider N ′ a cluster
point of the sequence Nθ(n)(Q). If the third coordinate of N ′ is negative, then there
exists a sub-extraction θ′ such that Wθ′(n)(Q) is bounded, but this is impossible since,
by Lemma 3.1, Wθ′(n) would be bounded in a neighbourhood of Q and Wθ(n) diverges
at almost every point of D. Thus the third coordinate of N ′ is 0. If N ′ 	= N , applying
what we have already proved, it appears a second geodesic D′ passing by Q normal to
N ′ and an extraction θ′ such that Nθ′(n) converges to N ′ at almost every point of D′. We
parametrized D and D′ by arclength in using the orientation given by the direct normal
to N and N ′. We choose Q as the origin point. Let ε > 0. We denote by A the point on
D of coordinate −ε and by B the point on D′ of coordinate ε. For ε small enough, the
triangle AQB is in Ω and then

∫
AQB

dΨuθ′(n)
= 0. We let n tend to +∞ and then obtain

|AC|+ |BC| � |AB| which contradicts the triangle inequality. We then have proved that
Nθ(n) converges to N at every point of D. We then have proved that for every extraction
θ we can construct a sub-extraction θ′ such that Nθ′(n) converges to N at every point
of D.

To finish the proof, we take a point Q in D and suppose that Nα(n)(Q) converge to
N ′ with α an extraction. Since Nα(n)(P ) → N , there exists a sub-extraction α′ such that
Nα′(n) converges to N at every point of D, in particular at Q. Then N = N ′. �

Remark 3.4. We then understand the structure of the complementary of B(un); it is
a set of geodesics of Ω. One of these geodesics will be called a line of divergence. Then
when we have a sequence of solutions of (MSE), the problem of the convergence of the
sequence is linked to the understanding of what lines of divergence are possible? The
answer is, in general, given by the behaviour at the boundary. The existence of such lines
will permit us to use arguments that are similar to the ones used by Jenkins and Serrin
in [7].

The behaviour of the normal along a line of divergence says that the limit of
∫

T
dΨun ,

where T is a segment of a line of divergence with the orientation given by the limit
normal, is |T |. In the following, we shall draw this limit normal on the figures to explain
our arguments.

4. The Plateau problem at infinity

In this section, we explain the problem studied by Cośın and Ros in [2] and give the
main results of their paper with some elements of proofs.
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Let M be a complete minimal surface with finite total curvature in R
3. We know that

M is isometric to a compact Riemann surface minus a finite number of points (we can
refer to [11]). M then has a finite number of annular ends. When these ends are embedded
they are asymptotic either to a half-catenoid or to a plane. A properly immersed minimal
surface with r embedded ends will be called a r-noid. We can associate to each end a
vector which characterizes the direction and the growth of the asymptotic half-catenoid
(when the end is asymptotic to a plane this vector is zero). This vector is called the flux
of the end (for a precise definition of the flux, see [6]). If v1, . . . , vr are the fluxes at each
end, we have the following balancing condition:

v1 + · · · + vr = 0. (4.1)

This condition tells us that the total flux of the system vanishes. If v1, . . . , vr are vectors
in R

3 such that (4.1) is verified and g is a non-negative integer, the Plateau problem at
infinity for these data is to find an r-noid of genus g which has v1, . . . , vr as fluxes at its
ends.

Let ψ : M → R
3 be an r-noid. M is conformally equivalent to a compact surface M̄

minus a finite number of points p1, . . . , pr. We will say that M is Alexandrov-embedded if
M̄ bounds a compact 3-manifold Ω̄ and the immersion ψ extends to a proper local diffeo-
morphism f : Ω̄ \ {p1, . . . , pr} → R

3. An Alexandrov-embedded surface has a canonical
orientation; we choose the Gauss map to be the outward pointing normal. An Alexandrov-
embedded r-noid cannot have a planar end (see [2]). We call Mr the space of Alexandrov-
embedded r-noids of genus 0 and r horizontal catenoidal ends. We identify two elements
in Mr which differ by a translation. In [2], Cośın and Ros give a nice description of the
space Mr.

Let ψ : M → R
3 be a non-flat immersion of a connected orientable surface M and Π

be a plane in R
3, normalized to be {x3 = 0}. We denote by S the Euclidean symmetry

with respect to Π and consider the subsets

M+ = {p ∈ M | x3(p) > 0},

M− = {p ∈ M | x3(p) < 0},

M0 = {p ∈ M | x3(p) = 0}.

With this notation, we have the following definition.

Definition 4.1. We shall say that M is strongly symmetric with respect to Π if

(i) there exists an isometric involution s : M → M such that ψ ◦ s = S ◦ ψ;

(ii) {p ∈ M | s(p) = p} = M0;

(iii) the third coordinate N3 of the Gauss map of M takes positive (respectively, nega-
tive) values on M+ (respectively, M−).

In [2], Cośın and Ros prove the following result.
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Proposition 4.2. Let M be an r-noid with horizontal ends. Then M is strongly sym-
metric with respect to an horizontal plane if and only if M is Alexandrov-embedded.

We then use the notion of strong symmetry to study Mr. In the following, we always
suppose that the plane of strong symmetry is the plane {x3 = 0}. If M ∈ Mr, s extends
to M̄ = C̄, the involution s is z �→ 1/z̄ and the points p1, . . . , pr are in {z ∈ C | |z| = 1}.
We then have an order on {p1, . . . , pr}. Let us suppose that p1, . . . , pr are put in this
order. Let v1, . . . , vr be vectors in R

3 such that 2vi is the flux at the end pi. We have
v1 + · · ·+ vr = 0, so if we draw the vectors consecutively in the plane, we get a piecewise
linear closed curve; a polygon. We denote this polygon by F (M).

We say that a polygon V bounds an immersed polygonal disc if there exists a compact
multi-domain (P, ϕ) such that ∂P is only composed of edges and ϕ(∂P) = V .

Then the most important result in [2] is the following.

Theorem 4.3. Let v1, . . . , vr be horizontal vectors such that v1 + · · · + vr = 0 and V

the associated polygon. Then there exists M ∈ Mr such that F (M) = V if and only if V

bounds an immersed polygonal disc.

Besides, we have as much M ∈ Mr such that F (M) = V as immersed polygonal discs
bounded by V . Let V be a polygon and (P, ϕ) a compact multi-domain such that ϕ(P)
is an immersed polygonal disc bounded by V . Let P1, . . . , Pr be the vertices of P which
are identified with the ones of V . We put P1 = Pr+1. Let i ∈ {1, . . . , r}. We can glue
to P along [Pi, Pi+1] a half-strip Si isometric to [Pi, Pi+1] × R+. We get a multi-domain
which we call Ω(P). The boundary of Ω(P) is composed of 2r half straight lines, we call
L−

i (respectively, L+
i ) the half line in the boundary which has Pi as endpoint and is in

Si−1 (respectively, Si).
Let M be in Mr. We consider (M+)∗ the conjugate surface to M+ for the out-

ward pointing normal. In [2], the authors prove that there exists (P, ϕ), a multi-domain
bounded by F (M) such that (M+)∗ is a graph over the multi-domain Ω(P). The normal
to the graph is the upward pointing normal by Definition 4.1. If u is the function on Ω(P)
that gives (M+)∗, they prove that u tends to +∞ (respectively, −∞) on L+

i (respec-
tively, L−

i ). Cośın and Ros use these arguments to prove that if the Plateau problem at
infinity has a solution, the flux polygon F (M) bounds an immersed polygonal disc. For
the other implication, they prove that the map F : M �→ F (M) is a covering map. To
conclude, they use a compactness argument and prove that the space Mr has a smooth
structure.

In the next section, we shall solve on Ω(P) the Dirichlet problem for the boundary data
+∞ on L+

i and −∞ on L−
i . We shall then take the conjugate of the graph of the solution

for the downward pointing normal and so build the solution to the Plateau problem at
infinity. The change of orientation makes that we get the surface we want.

5. The construction of a solution of the Plateau problem at infinity

The first part of this section will be devoted to the proof of our main result.
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Theorem 5.1. Let V be a polygon which bounds an immersed polygonal disc (P, ϕ).
We define Ω(P) as in the preceding section. Then there exists a solution u of (MSE) on
Ω(P) such that u tends to +∞ on L+

i and −∞ on L−
i . Besides, the solution is unique

up to an additive constant.

Proof. Let us first consider u a solution of (MSE) on the half-strip [0, a]×R+ such that
u tends to −∞ on {a}×R

∗
+ and +∞ on {0}×R

∗
+. This situation describes the behaviour

in the r half-strips Si. Then by Lemma 1 in [7] we have

|q|
W

(x, y) � 1 − a2

x2 , (5.1)

|p|
W

(x, y) �
√

2
a

x
, (5.2)

when x � 4a. We consider now the general problem.
We begin in proving the uniqueness part of Theorem 5.1. Let u1 and u2 be two different

solutions of the problem (i.e. u1 − u2 is non-constant). As in the proof of Theorem 1.5,
we can suppose that {u1 > u2} and {u1 < u2} are non-empty. Let us call Ωl the subset
of Ω(P) which is the union of P and the set of points in each Si that are at a distance
less than l from [Pi, Pi+1]. We define Ω+

l = Ωl ∩ {u1 > u2}. Let us consider

I =
∫

∂Ω+
l

dΨ̃ , (5.3)

where dΨ̃ = dΨu1 − dΨu2 . Since dΨ̃ is closed, we have I = 0. ∂Ω+
l is composed of

a part which is included on (
⋃

i L+
i ) ∪ (

⋃
i L−

i ) where dΨ̃ = 0, a part included in the
interior of Ω(P), denoted by Γl, and a part in Ii,l which is the part in Si parametrized
by [Pi, Pi+1] × {l}. On the part included in Ii,l if l is big enough the integral of dΨ̃ is less
than 2

√
2(|PiPi+1|2/l) by (5.2). We then have

0 = I �
∫

Γl

dΨ̃ +
r∑

i=1

2
√

2
|PiPi+1|2

l
. (5.4)

By Lemma 2 in [1],
∫

Γl
dΨ̃ is negative and decreases as l increases. Because

r∑
i=1

√
2
|PiPi+1|2

l
−−−−→
l→+∞

0,

we get a contradiction. This proves that, if u1 and u2 are two solutions of our Dirichlet
problem, there exists c ∈ R such that u1 = u2 + c.

We now prove the existence of the solution. We fix a point P0 in P. Let us consider
in Si the point Qk

i which is the middle point of Ii,k. We then define Ωk to be the
compact subdomain of Ω(P) bounded by the segments [Pi, Q

k
i ] and [Qk

i , Pi+1]. Let Gk
i

be the set of the points Q in Ωk such that d(Q, Qk
i ) < d(Pi, Q

k
i ). If k is big enough

the sets Gk
i are disjoint, this proves that the conditions of Theorem 1.5 are fulfilled

for big k. Then by Theorem 1.5, we can build a function uk on Ωk such that uk tends
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to −∞ (respectively, +∞) on [Qk
i , Pi+1] (respectively, [Pi, Q

k
i ]) and uk(P0) = 0. Following

Remark 3.4 in § 3, we shall prove that this sequence (uk) of solutions of (MSE) has no line
of divergence. Then the limit u of (uk) will be our solution. We shall make discussions
that are similar to the ones made by Jenkins and Serrin. We write dΨuk

= dΨk. We recall
that, if T is a segment included in a line of divergence, |

∫
T

dΨk| converges to the length
of T for a subsequence.

Suppose there exists a line of divergence L. We first prove that L can not have an
endpoint in the interior of a L+

i or a L−
i . Suppose that L has an endpoint D in L−

i (the
same argument works for L+

i ). Let A be a point in L ∩ Si−1, we orient L by
−−→
AD, we

suppose that the limit normal along L points on the right-hand side of L. We chose a
point B of L−

i on the right-hand side of D. Because of the triangle inequality, there exists
a point C on [A, D] such that |AC| + |DB| > |CD| + |BA|. for k big enough we have
A and C in Ωk we then put Dk = [A, D] ∩ [Pi, Q

k
i−1] and Bk = [A, B] ∩ [Pi, Q

k
i−1] (see

Figure 3).
Let Tk be the triangle ADkBk with this orientation. We then have

0 =
∫

Tk

dΨk

�
∫

[A,C]
dΨk − |CDk| + |DkBk| − |BkA|

�
∫

[A,C]
dΨk − |CD| + |DkBk| − |BA|. (5.5)

But |DkBk| → |DB| and
∫
[A,C] dΨk → |AC| for the subsequence that makes L appear;

this gives us a contradiction.
We have now only a finite number of possibilities for a line of divergence. If it has

an endpoint, it must be one Pi. By construction, we have
∫
[Pi,Pi+1]

dΨk = 0 (because
the integral of dΨk along the triangle PiQ

k
i Pi+1 is zero and we know dΨk along [PiQ

k
i ]

and [Qk
i Pi+1] by Lemma 1.2) so if Γ is a curve joining Pi to Pj we have

∫
Γ

dΨk = 0.
Then, by passing to the limit, if Γ is a line of divergence, we obtain |PiPj | = 0 which
is not possible. This proves that a line of divergence has at most one endpoint. Suppose
that a line of divergence L has no endpoint, we are in the situation of Figure 4. Let
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Figure 4.

A and B be point on L as in Figure 4 such that |AB| > |PiPi+1|. We denote by D

(respectively, C) the projection of A (respectively, B) on L−
i+1. For k big enough we note

that Ck = [B, C] ∩ [Pi+1, Q
k
i ] and Dk = [A, D] ∩ [Pi+1, Q

k
i ]. We then have

0 =
∫

ABCkDk

dΨk

�
∫

[A,B]
dΨk − |BCk| +

∫
[Ck,Dk]

dΨk − |DkA|

�
∫

[A,B]
dΨk − 2|PiPi+1| + |CkDk|. (5.6)

We have |CkDk| → |CD| = |AB| and
∫
[A,B] dΨk → |AB| for a subsequence, so we get

a contradiction and a line of divergence must have one endpoint.
Let L be a line of divergence. We know that we are in the case where L has Pi

as endpoint and goes to infinity in one Sj . By what we have done just above, we
have only one possibility for the limit normal: we are in the same situation as in the
semi-strip Sj in Figure 4. Then, by changing L if necessary, we can suppose that the
part of L in Sj is parametrized by {A} × R+ with A ∈ ]Pj , Pj+1[ and the domain Ω̃

parametrized by [A, Pj+1] × R+ is in B(uk). Let θ be an extraction that makes L appear,
since Ω̃ ⊂ B(uk), there exists an extraction θ′ such that uθ′(k) is a subsequence of uθ(k)

and uθ′(k) − uθ′(k)(K) (where K ∈ Ω̃) converges to v a solution of (MSE) on Ω̃.
We shall now prove that v tends to −∞ on L−

j+1 and +∞ on L. Let B ∈ [A, Pj+1] and
C and D be the points which are respectively parametrized by (B, c) and (B, d) (c < d).
We make use of the following notation.

(i) E the projection of D on L−
j+1.

(ii) F the projection of C on L−
j+1.

(iii) G the projection of D on L.

(iv) H the projection of C on L.
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We also note that, when k is big enough, Ek = [D, E] ∩ [Pj+1, Q
k
j ] and Fk = [C, F ] ∩

[Pj+1, Q
k
j ]. Because dΨk is closed, we have∣∣∣∣∫

[C,D]
dΨθ′(k) − |Fθ′(k)Eθ′(k)|

∣∣∣∣ � 2|BPj+1|, (5.7)∣∣∣∣∫
[C,D]

dΨθ′(k) −
∫

[H,G]
dΨθ′(k)

∣∣∣∣ � 2|BA|. (5.8)

Thus, letting k tends to infinity, we obtain∣∣∣∣∫
[C,D]

dΨv − |CD|
∣∣∣∣ � 2|BPj+1|, (5.9)∣∣∣∣∫

[C,D]
dΨv − |CD|

∣∣∣∣ � 2|BA|. (5.10)

So we can calculate dΨv on L and L−
j+1. We remark that dΨv has the same behaviour

as if v assumes the boundary values +∞ on L and −∞ on L−
j+1. We prove that this is, in

fact, the case. We consider now two points A1 and A2 on L ∩ Ω̃ and two points A3 and
A4 on L−

j+1. There exists a solution v′ of (MSE) on the domain bounded by the polygon
A1A2A3A4 such that v′ = v on [A1, A4] and [A2, A3], v′ tends to +∞ on [A1, A2] and
tends to −∞ on [A3, A4]. Since we know the value of dΨv on [A1, A2] and [A3, A4], the
uniqueness part of the proof of Theorem 1.5 proves that v = v′. We have then proved
that v tends to +∞ on L and −∞ on L−

j+1.
We shall now get a contradiction to the existence of the line of divergence L. We have∫

[A,Pj+1]
dΨv =

∫
Ω̃∩Ij,l

dΨv.

Then, by (5.2) and letting l tend to infinity, we get
∫
[A,Pj+1]

dΨv = 0. If we follow L

between Pi and A and the segment [A, Pj+1], we get a path joining Pi to Pj+1. Then we
have

0 =
∫

[Pi,A]
dΨθ′(k) +

∫
[A,Pj+1]

dΨθ′(k). (5.11)

Let k tend to infinity, we get 0 = |PiA| +
∫
[A,Pj+1]

dΨv = |PiA|, but Pi /∈ [Pj , Pj+1].
This is our contradiction.

We then have to prove that B(uk) = Ω(P), as uk(P0) = 0 for all k there exists a subse-
quence uk′ which converges to a solution u of (MSE). The same arguments that we used
just above for v prove that u tends to +∞ (respectively, −∞) on L−

i (respectively, L+
i ).

We have then established Theorem 5.1. �

We are then able to build the solution to the Plateau problem at infinity. Let V be a
polygon and (P, ϕ) a polygonal disc bounded by V . We consider the solution u of the
Dirichlet problem given by Theorem 5.1. We denote by P1, . . . , Pr the vertices of V and
we consider Ψu normalized by Ψu(P1) = 0. From the proof above, we have Ψu(Pi) = 0 for
all i. Then on L+

i and L−
i we have Ψu(Q) = |QPi|. Since Ψu is 1-Lipschitz continuous,
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we have Ψu(Q) � 0 for all Q ∈ Si. Suppose that {Q ∈ Ω(P) | Ψu(Q) � 0} is not reduced
to {P1, . . . , Pr}. Then there exists a point in the interior of P such that Ψu is minimal at
this point. But Ψu corresponds to x∗

3, the third coordinate on M∗ the conjugate surface
to the graph of u. Since x∗

3 is harmonic on M∗, it can not have a minimum in the interior
of M∗. We then have proved that Ψu > 0 in the interior of Ω(P).

By Theorem 2.2, the boundary of the graph of u is composed of the r vertical lines
over the points ϕ(Pi). Let M be the graph of u with these r vertical lines. We consider
M∗ the conjugate surface to M . The boundary of M∗ is composed of r horizontal planar
geodesic curves, since Ψu(Pi) = 0 for all i the r curves are all in the plane {x3 = 0}.
Finally, we consider Σ the union of M∗ and of its symmetry by {x3 = 0}. The surface
Σ is a regular minimal surface, it is complete and its flux polygon is V by construction.
By construction, we know also that Σ is strongly symmetric with respect to {x3 = 0}.

The last thing we have to prove about Σ for being sure that it is the solution of the
Plateau problem at infinity is that it has finite total curvature.

We know (see [11]) that there exists a constant c such that if u is a solution of (MSE)
on a domain D and A ∈ D, M is the graph of u and d is the distance along M of the
point in M over A to the boundary of S then the curvature K of M at the point over A

is bounded by c/(d2W 2(A)).
Let us consider a half-strip S = [0, a] × R+ and u a solution of (MSE) on S such that

u takes the value +∞ (respectively, −∞) on {0} × R
∗
+ (respectively, {a} × R

∗
+). The

boundary of the graph of u is over [0, a] × {0}. We then have K(x, y) � c/(x2W 2(x, y)).
We consider the part S′ ⊂ S such that x � x0 > 0. For a domain D we denote by K(D)
the total curvature of the graph over D. We then have

K(S′) =
∫

S′
K(x, y)W (x, y) dxdy

�
∫

S′

c

x2W (x, y)
dxdy

�
∫ +∞

x0

ca

x2 dx

=
ca

x0

< +∞.

We now use arguments that are similar to the first part of the proof of Theorem 2.2.
We consider, for α ∈ ]0, 1

2π[, S(α) = {(x, y) ∈ S | a − y � x tanα}. Let us take α such
that tanα < 1

8 . Then Lemma 1 of [7] proves that for every (x, y) ∈ S(α), q(x, y) < 0.
We denote by L(α) the segment in S(α) such that a − y = x tanα. By Lemma 2.1, u

is lower-bounded by m1 on L(α) and upper-bounded by m2 on the part of L such that
x < x0 < a. We then define Θ : (x, y) �→ (x, u(x, y)). Θ is a diffeomorphism of S(α) into
its image Im Θ. We define χ = Θ−1. Then χ(2) is a solution of MSE on ImΘ. We observe
that χ extends smoothly to Θ(L). We have χ(2)(x, z) tends to a as x tends to 0 so we
can extend χ(2) by symmetry to Im Θ ∪ {(x, z) ∈ R

2 | (−x, z) ∈ Im Θ}. To compute the
total curvature of the graph of u over D(α) ∩ {x < x0}, we use its parametrization as a
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graph over ImΘ ∩ {0 � x � x0},

K(D(α) ∩ {x < x0}) = K(Im Θ ∩ {0 � x � x0})

=
∫

Im Θ∩{0�x�x0}∩{z�m1−1}
K(x, z)W (x, z) dxdz

+
∫

Im Θ∩{0�x�x0}∩{z�m1−1}
K(x, z)W (x, z) dxdz

�
∫

Im Θ∩{0�x�x0}∩{z�m1−1}

c

(z − m1)2W (x, z)
dxdz

+
∫

Im Θ∩{0�x�x0}∩{z�m1−1}
K(x, z)W (x, z) dxdz

�
∫ +∞

1

cx0

z2 dz + C

< +∞.

The last line is true because Im Θ ∩ {0 � x � x0} ∩ {z � m1 − 1} is compact.
We can do the same work for {(x, y) ∈ S | y � x tanα}.
We then control the curvature on each semi-strip Si. There is a last part in Ω(P).

This part is compact and by Lemma 2.1, u is bounded on this part; besides, the graph
is regular at the boundary. So the graph above this last part is a compact part of the
whole graph then it has finite total curvature. We then have proved that the graph M

has finite total curvature. Since M∗ is isometric to M , it has finite total curvature and
then Σ has finite total curvature because it is twice as many as the one of M∗.

Appendix A. Carathéodory’s Theorem

In this section, we give some explanations on an argument of the proof of Theorem 2.2.
The problem is when we have a biholomorphic map between two open sets of C: can we
extend it to the boundary?

We consider U an open set included in C and P a point of ∂U . We say that P has the
property of Schönflies if, for all radii R, there exists a radius r = r(R) such that for all
two points in U ∩ D(P, r) there exists a path in U ∩ D(P, R) joining these two points.

We then have the following theorem that we use in our proof.

Theorem A.1 (Carathéodory). Let U be a simply connected open set in C and V

an open set of the boundary of U . We consider f : U → D = {z ∈ C | |z| < 1} a
biholomorphic map. We suppose that every point of V has the property of Schönflies,
then f extends to an homeomorphism from U ∪ V into D ∪ C where C ⊂ ∂D.

A proof of this theorem can be found in [5]. In our proof, we have to verify the
property of Schönflies at the points of a part of the boundary. We know that this part
of the boundary is embedded in C so we can build neighbourhoods of every point of
the boundary in using ε-tubular neighbourhood of the boundary. These neighbourhoods
prove that we have the property of Schönflies.
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