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We use bifurcation and topological methods to investigate the
existence/nonexistence and the multiplicity of positive solutions of the following
quasilinear Schrödinger equation

{
−Δu − κΔ

(
u2

)
u = βu − λΦ

(
u2

)
u in Ω,

u = 0 on ∂Ω

involving sublinear/linear/superlinear nonlinearities at zero or infinity with/without
signum condition. In particular, we study the changes in the structure of positive
solution with κ as the varying parameter.
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1. Introduction

The following time-dependent quasilinear Schrödinger equation{
i ∂
∂tz = −Δz + V (x)z − κΔ

(
z2

)
z + λΦ

(
z2

)
z in Ω,

Φ(x, t) = 0 on ∂Ω
(1.1)

has been derived as models of several physical phenomena, where Ω is a bounded
domain of R

N with smooth boundary ∂Ω and N > 2, λ > 0 is a real parameter,
κ �= 0 is a real constant, V (x) (x ∈ Ω) is a given potential and Φ is a real func-
tion. For example, the superfluid film equation in plasma physics [35,36,38] and
the selfchanneling of a high-power ultra short laser in matter, see [10–12,20,55]
and the reference therein. Equation (1.1) also appears in plasma physics and fluid
mechanics [41,45,49], in the theory of Heisenberg ferromagnets and magnons
[7,34,37,51,60], in dissipative quantum mechanics [30] and in condensed matter
theory [44].

To obtain standing wave solutions of problem (1.1), we set z(x, t) := e−iλtu(x)
with λ > 0. Then problem (1.1) with V (x) ≡ 0 is reduced to the following elliptic
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equation {
−Δu− κΔ(u2)u = λ(u− Φ(u2)u) in Ω,
u = 0 on ∂Ω.

(1.2)

In the mathematical literature, very few results are known about the existence of
standing wave solutions for equations of the form of problem (1.1). The authors
of [15,42,43,48] studied the existence of standing wave solutions for this kind
of problems by variational method. Following the idea of [14,15,42], we make a
change of variables for any κ > 0:

dv =
√

1 + 2κu2du, v = lκ(u) =
1

2
√

2κ
(
√

2κu
√

1 + 2κu2 + ln(
√

2κu+
√

1 + 2κu2)).

Clearly, lκ is strictly monotone since l′κ(u) =
√

1 + 2κu2 and has an inverse function:
u = hκ(v). Then we can transform (see lemma 2.2) problem (1.2) into the following
semilinear elliptic problem by the change of u = hκ(v){−Δv = λ√

1+2κh2
κ(v)

g(hκ(v)) in Ω,

v = 0 on ∂Ω,
(1.3)

where g(s) = s− Φ(s2)s. Mainly by variational method, the authors of [15,42]
obtained the existence of positive solutions of problem (1.3) with κ = 1/2 and
κ = 1, respectively. Note that this strategy may be invalid for κ < 0 because lκ
may not be strictly monotone.

Putting z(x, t) := e−iβtu(x), β > 0, V (x) ≡ 0 and κ = 0, we get the following
elliptic problem with two parameters{

−Δu = βu− λF (u) in Ω,
u = 0 on ∂Ω,

(1.4)

where F (s) = Φ(s2)s. Clearly, to find standing wave solutions of the form z(x, t) :=
e−iβtu(x) of problem (1.1) with V (x) ≡ 0 and κ = 0 is equivalent to find solutions
of problem (1.4).

The main aim of this paper is to investigate the existence/nonexistence
and the multiplicity of positive solutions of problem (1.3) involving a sublin-
ear/linear/superlinear growth nonlinearity at zero or infinity by using bifurcation
and topological methods. We shall also study the existence of positive solution
of problem (1.4) with asymptotic nonlinearity via several-parameter bifurcation
theorem due to Fitzpztrick, Massabò and Pejsachowicz [26]. By a solution of prob-
lem (1.3). we understand that it is a C2 function which satisfies problem (1.3)
point-wise, that is, it is a classical solution.

Now, we are in the position to state the following hypotheses on the nonlinear-
ity g.

(G1) The function g : R+ := [0,+∞) → R+ is continuous.

(G2) g(s)s > 0 for s > 0.
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(G3) There exist g0, g∞ ∈ [0,+∞] such that

g0 = lim
s→0+

g(s)
s
, g∞ = lim

s→+∞
g(s)
s3

.

(G4) There exists one positive constant α such that g(α) = 0, g(s)s > 0 for s ∈
(0, α) ∪ (α,+∞).

(G5) There exists a constant δ > 0 such that

lim
s→α−

g(s)
lκ(α) − lκ(s)

= δ.

(G6)

lim
s→+∞

g(s)
s2l+1

= C,

for some l ∈ (1, (N + 2)/(N − 2)), where C is a positive constant.

Let

f(t) =
1√

1 + 2κh2
κ(t)

g(hκ(t)).

We call f is linear growth at infinity if g∞ ∈ (0,+∞) because it implies (see
lemma 2.3) that

lim
t→+∞

f(t)
t

=
g∞
κ

∈ (0,+∞).

Similarly, we call f is sublinear growth at infinity if g∞ = 0 and superlinear growth
at infinity if g∞ = +∞. The meaning of growth at zero is understood as usual
because of

lim
t→0+

f(t)
t

= g0.

Let λ1 denote the first eigenvalue of −Δ with 0-Dirichlet boundary condition. It
is well known that λ1 is simple, isolated and the associated eigenfunction has one
sign in Ω.

If κ is a fixed positive constant, we can establish the following two theorems.

Theorem 1.1. Assume that κ is a positive constant, and (G1)–(G3) and (G6)
hold.

(a) If g0, g∞ ∈ (0,+∞) satisfying κg0 �= g∞, then there exist four positive con-
stants μ1, μ′

1, μ2 and μ′
2 with μ′

1 � μ1 and μ′
2 � μ2 such that problem (1.3)

has at least one positive solution for all λ ∈ (μ1, μ2) and has no positive
solution for all λ ∈ (0, μ′

1) ∪ (μ′
2,+∞).

(b) If g0 ∈ (0,+∞) and g∞ = 0, then there exist two positive constants μ3 and
μ′

3 with μ′
3 � μ3 such that problem (1.3) has at least one positive solution for

all λ ∈ (μ3,+∞) and has no positive solution for all λ ∈ (0, μ′
3).
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(c) If g0 ∈ (0,+∞) and g∞ = +∞, then there exist two positive constants μ4 and
μ′

4 with μ′
4 � μ4 such that problem (1.3) has at least one positive solution for

all λ ∈ (0, μ4) and has no positive solution for all λ ∈ (μ′
4,+∞).

(d) If g0 = 0 and g∞ ∈ (0,+∞), then there exist two positive constants μ5 and
μ′

5 with μ′
5 � μ5 such that problem (1.3) has at least one positive solution for

all λ ∈ (μ5,+∞) and has no positive solution for all λ ∈ (0, μ′
5).

(e) If g0 = 0 and g∞ = 0, then there exist three positive constants μ6, μ′
6 and μ7

with μ′
6 � μ6 � μ7 such that problem (1.3) has at least two positive solutions

for all λ ∈ (μ7,+∞), one positive solution for all λ ∈ [μ6, μ7] and has no
positive solution for all λ ∈ (0, μ′

6).

(f) If g0 = 0 (or +∞) and g∞ = +∞ (or 0), then for any λ ∈ (0,+∞), problem
(1.3) has at least one positive solution.

(g) If g0 = +∞ and g∞ ∈ (0,∞), then there exist two positive constants μ8 and
μ′

8 with μ′
8 � μ8 such that problem (1.3) has at least one positive solution for

all λ ∈ (0, μ8) and has no positive solution for all λ ∈ (μ′
8,+∞).

(h) If g0 = +∞ and g∞ = +∞, then there exist three positive constants μ9, μ10

and μ′
10 with μ9 � μ10 � μ′

10 such that problem (1.3) has at least two positive
solutions for all λ ∈ (0, μ9), has at least one positive solution for all λ ∈
[μ9, μ10] and has no positive solution for all λ ∈ (μ′

10,+∞).

Theorem 1.2. Let κ be a positive constant, and (G1), (G3)–(G6) hold.

(i) If g0, g∞ ∈ (0,+∞) with κg0 �= g∞, then there exists μ11 > 0 such
that problem (1.3) has at least two positive solutions for all λ ∈
(max{(λ1κ)/g∞, λ1/g0},+∞), has at least one positive solution for all λ ∈
(min{(λ1κ)/g∞, λ1/g0},max{(λ1κ)/g∞, λ1/g0}] and has no positive solution
for all λ ∈ (0, μ11).

(ii) If g0, g∞ ∈ (0,+∞) with κg0 = g∞, then there exists μ12 > 0 such that prob-
lem (1.3) has at least two positive solutions for all λ ∈ (λ1/g0,+∞), and has
no positive solution for all λ ∈ (0, μ12).

(iii) If g0 ∈ (0,+∞) and g∞ = +∞, then problem (1.3) has at least two positive
solutions for all λ ∈ (λ1/g0,+∞), has at least one positive solution for all
λ ∈ (0, λ1/g0].

(iv) If g0 = +∞ and g∞ ∈ (0,+∞), then problem (1.3) has at least two positive
solutions for all λ ∈ ((λ1κ)/g∞,+∞), has at least one positive solution for
all λ ∈ (0, (λ1κ)/g∞].

(v) If g0 = +∞ and g∞ = +∞, then problem (1.3) has at least two positive
solutions for all λ ∈ (0,+∞).

To study the effect of the second term in problem (1.2), we now consider κ as
the varying parameter and λ is fixed positive constant, which is less conventional.
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Without loss of generality, we can assume that λ = 1. The next two theorems
present the changes in the structure of positive solution if κ is a varying parameter.

Theorem 1.3. Assume that λ = 1, and (G1)–(G3) and (G6) hold.

(a) If g0, g∞ ∈ (0,+∞) satisfying λ1 < g0, then problem (1.3) has at least one
positive solution for all κ ∈ (g∞/λ1,+∞).

(b) If g0, g∞ ∈ (0,+∞) satisfying λ1 > g0, then problem (1.3) has at least one
positive solution for all κ ∈ (0, g∞/λ1).

(c) If g0 = 0 and g∞ ∈ (0,+∞), then problem (1.3) has at least one positive
solution for all κ ∈ (0, g∞/λ1).

(d) If g0 = +∞ and g∞ ∈ (0,∞), then problem (1.3) has at least one positive
solution for all κ ∈ (g∞/λ1,+∞).

Theorem 1.4. Let λ = 1 and (G1), (G3)–(G6) hold.

(i) If g0, g∞ ∈ (0,+∞) with λ1 < g0, then problem (1.3) has at least two positive
solutions for all κ ∈ (0, g∞/λ1), has at least one positive solution for all κ ∈
(g∞/λ1,+∞).

(ii) If g0, g∞ ∈ (0,+∞) with λ1 > g0, then problem (1.3) has at least one positive
solution for all κ ∈ (0, g∞/λ1).

(iii) If g0 = +∞ and g∞ ∈ (0,+∞), then problem (1.3) has at least two positive
solutions for all κ ∈ (0, g∞/λ1), has at least one positive solution for all κ ∈
[g∞/λ1,+∞).

To prove theorems 1.1–1.4, we consider the following semilinear elliptic problem{
−Δu = λf(u) in Ω,
u = 0 on ∂Ω,

(1.5)

where f : R+ → R+ is some given continuous nonlinearity. Such problems arise in
a variety of fields. For example, in the theory of thermal ignition of gases [27,31],
in quantum field theory and mechanics [9,13,59] and in the theory of gravita-
tional equilibrium of stars [31,39]. We refer to the books [3,25,29] and their
references for the classical results of problem (1.5). Problem (1.5) with sublin-
ear/linear/superlinear nonlinearities at zero or infinity has been extensively studied.
See for example [1,2,4,6,21,22,40,52]. Amann [1] and Rabinowitz [52,53] stud-
ied the global bifurcation phenomena from the trivial solution or infinity. In [2],
by using of Rabinowitz’s bifurcation theorem, Ambrosetti and Hess studied the
global behaviour of the component of positive solutions of problem (1.5) involv-
ing an asymptotically nonlinearity with/without signum condition. In [40], Lions
established the existence and the multiplicity results of problem (1.5) by topolog-
ical degree arguments and variational techniques. In [5], Ambrosetti et al. studied
the existence of branch of positive solutions for the asymptotically equidiffusive
problem, which extends the corresponding ones of [2].
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Here, we will use bifurcation and topological methods to study the exis-
tence/nonexistence and the multiplicity of positive solutions of problem (1.5) involv-
ing sublinear/linear/superlinear nonlinearities at zero or infinity with/without
signum condition. Furthermore, we can prove theorems 1.1 and 1.2 via the relation
of f and g. In addition, we can get theorems 1.3 and theorem 1.4 from theorem 1.1
and theorem 1.2.

As for problem (1.4), we assume that F : R+ → R is continuous, and there exist
F0, F∞ ∈ (0,+∞) such that F0 �= F∞ and

F0 = lim
s→0+

F (s)
s

, F∞ = lim
s→+∞

F (s)
s

.

Without loss of generality, we assume that F0 > F∞. Moreover, we also require the
signum condition: 0 < F (s)/s < β/λ for any s > 0 and any given β, λ > 0. Let

D =
{
(λ, β) ∈ R

2 : λ > 0, λ1 + λF∞ � β � λ1 + λF0

}
.

By an abstract several-parameter bifurcation theorem of [26], we shall establish the
following result, which is also one of our main results.

Theorem 1.5. For any (λ, β) ∈ D, problem (1.4) has at least one positive solution.

Analogous to theorems 1.1 and 1.2, we also can consider the various cases of
F0 �∈ (0,+∞) or F∞ �∈ (0,+∞) with/without signum condition. We leave them to
the interested readers.

The rest of this paper is arranged as follows. Some preliminaries are proved
in § 2. In § 3, we first study the existence/nonexistence and the multiplicity of
positive solutions of problem (1.5) involving a sublinear/linear/superlinear growth
nonlinearity at zero or infinity with the signum condition (G2); then we give the
proof of Theorem 1.1 and 1.3. The proof of Theorem 1.2 and theorem 1.4 is given
in § 4. In the last Section, we give the proof of Theorem 1.5 and some corollaries
involving the existence/nonexistence and the multiplicity of positive solutions of
problem (1.2).

2. Preliminaries

Let lκ and hκ be defined as in the introduction. Then we have

h′κ(v) =
1

l′κ(u)
=

1√
1 + 2κu2

.

From the definition of lκ, we can easily see that hκ is odd, C∞, hκ(0) = 0 and
|h′κ(t)| � 1 for all t ∈ R.

Lemma 2.1. hκ(t)/t→ 1 as t→ 0 and hκ(t)/
√
t→ (2/κ)1/4 as t→ +∞.
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Proof. We observe that

lim
t→0+

lκ(t)
t

= lim
t→+0

1
2
√

2κ

(√
2κt

√
1 + 2κt2 + ln

(√
2κt+

√
1 + 2κt2

))
t

= 1

and

lim
|t|→+∞

lκ(t)
t|t| = lim

|t|→+∞

1
2
√

2κ

(√
2κt

√
1 + 2κt2 + ln

(√
2κt+

√
1 + 2κt2

))
t|t| =

√
κ

2
.

It follows the desired conclusions immediately. �

Lemma 2.2. v is a classical solution of problem (1.3) if and only if u = hκ(v) is a
classical solution of problem (1.2).

Proof. Let v be a classical solution of problem (1.3). Then one has that ∇u =
h′κ(v)∇v and

Δu = h′′κ(v)|∇v|2 + h′κ(v)Δv.

It follows that

Δv = l′′κ(u)|∇u|2 + l′κ(u)Δu.

Since l′κ(t) =
√

1 + 2κt2, one has that

−Δu− κ
(
2u|∇u|2 + u2Δu

)
= λg(u).

The fact of Δ(u2)u = 2u|∇u|2 + u2Δu shows that u satisfies problem (1.2). �

Lemma 2.3. One has that

f0 = g0, f∞ =
g∞
κ

for any κ > 0.

Proof. Note that

lim
t→0+

f(t)
t

= lim
t→0+

1√
1+2κh2

κ(t)
g (hκ(t))

t
= lim

t→0+

g (hκ(t))
hκ(t)

hκ(t)
t

1√
1 + 2κh2

κ(t)
.

Clearly, one has that limt→0+ hκ(t) = 0. This fact combining lemma 2.1 implies
that

lim
t→0+

f(t)
t

= g0.

To show f∞ = g∞/κ, we claim that

lim
t→+∞

1
h2

κ(t)
= 0. (2.1)
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Indeed, lemma 2.1 shows that

lim
t→+∞

1
h2

κ(t)
= lim

t→+∞
t

h2
κ(t)

1
t

=
√
κ

2
lim

t→+∞
1
t

= 0.

Thus, we have that

lim
t→+∞

f(t)
t

= lim
t→+∞

1√
1+2κh2

κ(t)
g (hκ(t))

t
= lim

t→+∞
g (hκ(t))
h3

κ(t)
h2

κ(t)
t

hκ(t)√
1 + 2κh2

κ(t)
.

(2.2)
From lemma 2.1, we can obtain that

lim
t→+∞hκ(t) = lim

t→+∞
hκ(t)√

t

√
t =

(
2
κ

)1/4

lim
t→+∞

√
t = +∞. (2.3)

It follows from (2.1)–(2.3) and lemma 2.1 that

lim
t→+∞

f(t)
t

= lim
t→+∞

g (hκ(t))
h3

κ(t)
h2

κ(t)
t

hκ(t)√
1 + 2κh2

κ(t)

= g∞

√
2
κ

lim
t→+∞

1√
1

h2
κ(t) + 2κ

=
g∞
κ
.

This completes the proof. �

Under the assumptions of (G1)–(G3) and (G6), if κ = 0 and g0, g∞ ∈ (0,+∞),
it follows from theorem 3.6 of the next section that problem (1.3) has at least
one positive solution for all λ ∈ (τ3,+∞). However, if κ �= 0 and g0, g∞ ∈ (0,+∞)
satisfying κg0 �= g∞, theorem 1.1 (a) shows that there is no positive solution of
problem (1.3) for all λ ∈ (μ′

2,+∞). This almost the opposite difference is mainly
due to the fact of f∞ = g∞/κ. Similarly, we can derive many differences of our
results with the Laplace equation, which all illustrate the effect of the second term
problem (1.3).

3. Positive solutions with the signum condition

In this section, we always assume that f satisfies the signum condition: f(s) > 0
for s > 0; and there exist f0, f∞ ∈ [0,+∞] such that

f0 = lim
s→0+

f(s)
s
, f∞ = lim

s→+∞
f(s)
s
.

Moreover, we also assume that f satisfies the growth restriction:

(G)

lim
s→+∞

f(s)
sl

= C

for some l ∈ (1, (N + 2)/(N − 2)), where C is a positive constant.
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We first have the following nonexistence results.

Lemma 3.1. Assume that there exists a positive constant ρ > 0 such that

f(s)
s

� ρ

for any s > 0. Then there exists ζ∗ > 0 such that problem (1.5) has no positive
solution for any λ ∈ (ζ∗,+∞).

Proof. Let ϕ1 be a positive eigenfunction associated with λ1. If u is a positive
solution of problem (1.5), multiply the first equation of problem (1.5) by ϕ1, and
obtain after integrations by parts

λ1

∫
Ω

uϕ1 dx = λ

∫
Ω

f(u)
u

uϕ1 dx � λρ

∫
Ω

uϕ1 dx.

It follows that λ � λ1/ρ. � �

Lemma 3.2. Assume that there exists a positive constant � > 0 such that

f(s)
s

� �

for any s > 0. Then there exists η∗ > 0 such that problem (1.5) has no positive
solution for any λ ∈ (0, η∗).

Proof. If u is a positive solution of problem (1.5), similar to that of lemma 3.1, we
can obtain λ � λ1/�. �

Let

E =
{
u ∈ C1

(
Ω

)
: u = 0 on ∂Ω

}
with the usual norm

‖u‖ = max
Ω

|u| + max
Ω

|∇u| .

Set

P :=
{
u ∈ E : u > 0 in Ω and

∂u

∂ω
< 0 on ∂Ω

}
,

where ω is the outward pointing normal to ∂Ω.
By standard elliptic regularity theory (see [29, theorem 8.16, theorem 8.34]),

we know that any solution in E of problem (1.5) belongs to C1,α(Ω) with some
α ∈ (0, 1) under the condition of (G). Furthermore, by the Lagrange mean theorem,
we can easily verify that it is also a classical solution of problem (1.5).

The following theorem is the result of the existence of positive solutions of
problem (1.5) with linear nonlinearities at zero and infinity.
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Theorem 3.3. If f0, f∞ ∈ (0,+∞) with f∞ �= f0, then problem (1.5) has at least
one positive solution for every λ ∈ (min{λ1/f0, λ1/f∞},max{λ1/f∞, λ1/f0}).

Proof. Let ξ : R+ → R+ be such that

f(s) = f0s+ ξ(s)

with

lim
s→0+

ξ(s)
s

= 0.

Let us consider {−Δu = λf0u+ λξ(u) in Ω,
u = 0 on ∂Ω (3.1)

as a bifurcation problem from the trivial solution axis.
Applying theorem 2.12 of [52] to problem (3.1), there exists a continuum C

of nontrivial solutions of problem (3.1) emanating from (λ1/f0, 0) such that C ⊂
((R × P) ∪ {(λ1/f0, 0)}), meets ∞ in R × E.

It is sufficient to show that C joins (λ1/f0, 0) to (λ1/f∞,+∞). Let (λn, un) ∈ C
where un �≡ 0 satisfies λn + ‖un‖ → +∞. Lemma 3.2 implies that λn > 0 for all n ∈
N. It follows from lemma 3.1 that there exists a constant M such that λn ∈ (0,M ]
for any n ∈ N. Therefore, we get that

‖un‖ → +∞ as n→ +∞.

Set un = un/‖un‖. Since un is bounded in E, after taking a subsequence if necessary,
we have that un ⇀ u for some u ∈ E. Then by an argument similar to that of [19,
theorem 5.1], we obtain that

− Δu = μf∞u,

where μ = lim
n→+∞λn, choosing a subsequence and relabelling it if necessary. It is

clear that ‖u‖ = 1 and u ∈ C ⊆ C since C is closed in R ×E. So one has that
μ = λ1/f∞. Therefore, C joins (λ1/f0, 0) to (λ1/f∞,+∞). �

Remark 3.4. It is easy to verify that (λ1/f0, 0) is the unique bifurcation point of
positive solutions of problem (1.5) from the trivial solution axis. Moreover, note that
the conclusion of theorem 3.3 also obtained in [2] with the more strong condition
on f and more complicated argument.

Remark 3.5. In view of theorem 3.3, we can see that if f0, f∞ ∈ (0,+∞) then
there exist four positive constants τ1, τ ′1, τ2 and τ ′2 with τ1 � τ ′1 and τ2 � τ ′2 such
that problem (1.5) has at least one positive solution for all λ ∈ (τ1, τ2) and has no
positive solution for all λ ∈ (0, τ ′1) ∪ (τ ′2,+∞).
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Figure 1. Bifurcation diagrams of theorems 3.3–3.20.(a) f0, f∞ ∈ (0, +∞), (b) f0 ∈
(0, +∞), f∞ = 0, (c) f0 ∈ (0, +∞), f∞ = +∞, (d) f0 = 0, f∞ ∈ (0, +∞), (e) f0 = 0,
f∞ = 0, (f) f0 = 0, f∞ = +∞, (g) f0 = +∞, f∞ ∈ (0, +∞), (h) f0 = +∞, f∞ = 0, (i)
f0 = +∞, f∞ = +∞.

Proof. Clearly, f0, f∞ ∈ (0,+∞) implies that there exist two positive constants M1

and M2 such that

M1 � f(s)
s

� M2 for any s > 0.

If (λ, u) is a positive solution pair of problem (1.5), it follows from lemmas 3.1 and
3.2 that λ � λ1/M2 := τ ′1 and λ � λ1/M1 := τ ′2. So, problem (1.5) has no positive
solution for all λ ∈ (0, τ ′1) ∪ (τ ′2,+∞). The existence of τ1 and τ2 can be seen from
the global structure of C , see (a) of figure 1. �

Theorem 3.6. If f0 ∈ (0,+∞) and f∞ = 0, then problem (1.5) has at least one
positive solutions for every λ ∈ (λ1/f0,+∞).
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Proof. Considering the proof of Theorem 3.3, we only need to show that C joins
(λ1/f0, 0) to (+∞,+∞). Lemma 3.2 implies that λ = 0 does not the blow-up point
of C .

Firstly, we show that C is unbounded in the direction of E. Suppose on the
contrary that C is bounded in the direction of E. So C is unbounded in the direction
of λ, that is to say there exist (λn, un) ∈ C and a positive constant M such that
λn → +∞ as n→ +∞ and ‖un‖ � M for any n ∈ N. It follows that f(un)/un � δ
for some positive constant δ and all n ∈ N. Lemma 3.1 implies that un ≡ 0 for n
large enough, which is absurd.

To complete the proof, it suffices to show that the unique blow-up point of C
is (+∞, 0). Suppose, by contradiction, that there exists λ̂ > 0 such that (λ̂, 0) is a
blow-up point of C . Then there exists a sequence {(λn, un)} such that lim

n→+∞λn = λ̂

and lim
n→+∞ ‖un‖ = +∞.

To deduce a contradiction, we consider the following auxiliary problem{−Δu = ψ in Ω,
u = 0 on ∂Ω (3.2)

for a given ψ ∈ Lr/(r−1)(Ω), where r ∈ (1, 2∗) with 2∗ = (2N)/(N − 2). We have
known that for every given ψ ∈ Lr/(r−1)(Ω) there is a unique solution u to problem
(3.2) (see [24]), which is denoted by Ψ(ψ). It is well known that Ψ : L∞(Ω) → E
is completely continuous and linear (see [29]). The definition of f implies that
u ∈ C1+δ(Ω) with some constant δ ∈ (0, 1) for every weak solution u of problem
(1.5). Now problem (1.5) can be equivalently written as

u = Ψ(λf(u(x))). (3.3)

Now, let

f̃(u) = max
0�|s|�u

|f(s)|,

then f̃ is nondecreasing with respect to u. Define

f(u) = max
u/2�|s|�u

|f(s)|.

Then we can see that

lim
u→+∞

f(u)
u

= 0 and f̃(u) � f̃
(u

2

)
+ f(u).

It follows that

lim sup
u→+∞

f̃(u)
u

� lim sup
u→+∞

f̃(u/2)
u

= lim sup
u/2→+∞

f̃(u/2)
2(u/2)

.

So we have that

lim
u→+∞

f̃(u)
u

= 0. (3.4)
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Further, it follows from (3.4) that

f(u)
‖u‖ � f̃ (|u|)

‖u‖ � f̃ (‖u‖∞)
‖u‖ � f̃ (‖u‖)

‖u‖ → 0 as ‖u‖ → +∞. (3.5)

Let wn = un/‖un‖. It follows from (3.3) that wn → 0 in E. This contradicts the
fact of ‖wn‖ = 1. �

Remark 3.7. Clearly, theorem 3.6 and lemma 3.2 imply that if f0 ∈ (0,+∞) and
f∞ = 0 then there exist two positive constants τ3 and τ ′3 with τ ′3 � τ3 such that
problem (1.5) has at least one positive solution for all λ ∈ (τ3,+∞) and has no
positive solution for all λ ∈ (0, τ ′3), see (b) of figure 1.

By the conclusion of theorem 3.9 and the similar argument of theorem 1.4 of [40],
we can immediately get the following corollary.

Corollary 3.8. Besides the assumptions of theorem 3.6, we also assume that f
is local Lipschitz continuous. If τ3 < λ1/f0, then for λ ∈ (τ3, λ1/f0), there exist at
least two positive solutions of problem (1.5) which are ordered. In addition, there
exists at least one solution of problem (1.5) with λ = τ3.

Theorem 3.9. If f0 ∈ (0,+∞) and f∞ = +∞, then problem (1.5) has at least one
positive solution for every λ ∈ (0, λ1/f0).

Proof. In view of theorem 3.3, we only need to show that C joins (λ1/f0, 0) to
(0,+∞). Lemma 3.1 implies that C is bounded in the direction of λ. For any
(λ, u) ∈ C with λ > 0, by virtue of [28, theorem 1.1], [29, theorem 8.33] and the
condition of (G), we have that ‖u‖ � M for some positive constant M depending
on f , N , λ and Ω. So (0,+∞) is the unique blow-up point of C . �

Remark 3.10. Under the assumptions of theorem 3.9, in view of lemma 3.1, we can
see that there exist two positive constants τ4 and τ ′4 with τ4 � τ ′4 such that problem
(1.5) has at least one positive solution for all λ ∈ (0, τ4) and has no positive solution
for all λ ∈ (τ ′4,+∞), see (c) of figure 1.

By using the conclusion of theorem 3.9 and the similar argument of theorem 1.2
of [40], we can get the following corollary.

Corollary 3.11. Besides the assumptions of theorem 3.9, we also assume that f
is local Lipschitz continuous. If τ4 > λ1/f0, then for λ ∈ (λ1/f0, τ4), there exist at
least two positive solutions of problem (1.5) which are ordered. In addition, there
exists at least one solution of problem (1.5) with λ = τ4.

In [40], Lions conjectured that the convexity of the domain and the assump-
tion (7′) are not needed in theorem 1.2. Theorem 3.9 and corollary 3.11 give the
confirmation answer to this conjecture.

Theorem 3.12. If f0 = 0 and f∞ ∈ (0,+∞), then problem (1.5) has at least one
positive solution for every λ ∈ (λ1/f∞,+∞).
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Proof. If (λ, u) is any solution of problem (1.5) with ‖u‖ �≡ 0, dividing problem
(1.5) by ‖u‖2 and setting w = u/‖u‖2 yield

{
−Δw = λ f∞u+η(u)

‖u‖2 in Ω,

w = 0 on ∂Ω,
(3.6)

where η(s) = f(s) − f∞s. Since f∞ ∈ (0,+∞), one has that

lim
s→+∞

η(s)
s

= 0.

Define

η̃(w) =

{
‖w‖2η

(
w

‖w‖2

)
if w �= 0,

0 if w = 0.

Clearly, problem (3.6) is equivalent to

{
−Δw = λ (f∞w + η̃(w)) in Ω,
w = 0 on ∂Ω.

(3.7)

It is obvious that (λ, 0) is always the solution of problem (3.7). Similar to (3.5), we
can show that

η̃(w)
‖w‖ → 0 as ‖w‖ → 0.

By theorem 2.12 of [52], we obtain a continuum D of nontrivial solutions of problem
(3.7) emanating from (λ1/f∞, 0) such that D ⊂ ((R × P) ∪ {(λ1/f∞, 0)}), meets ∞
in R × E.

Now applying the inversion w → w/‖w‖2 = u, we obtain a continuum C of non-
trivial solutions of problem (1.5) emanating from (λ1/f∞,+∞) such that either
it is unbounded in the direction of λ or meets {(λ, 0) : λ ∈ R+}. By an argument
similar as in theorem 3.6, we can show that the latter case is impossible. �

Remark 3.13. Under the assumptions of theorem 3.12, we note that there exist
two positive constant τ5 and τ ′5 with τ ′5 � τ5 such that problem (1.5) has at least one
positive solution for all λ ∈ (τ5,+∞) and has no positive solution for all λ ∈ (0, τ ′5),
see (d) of figure 1.

Theorem 3.14. If f0 = 0 and f∞ = 0, then there exists λ∗ > 0 such that for any
λ ∈ (λ∗,+∞), problem (1.5) has at least two positive solutions.
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Proof. Define

fn(s) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
ns, s ∈ [

0, 1
n

]
,(

f
(

2
n

) − 1
n2

)
n

(
s− 1

n

)
+ 2

n2 , s ∈ (
1
n ,

2
n

)
,

f(s), s ∈ [
2
n ,+∞)

.

Now, consider the following problem{
−Δu = λfn(u) in Ω,
u = 0 on ∂Ω.

(3.8)

Clearly, we can see that limn→+∞ fn(s) = f(s), fn
0 = 1/n and fn

∞ = f∞ = 0.
Theorem 3.6 implies that there exists a sequence unbounded continua Cn ema-
nating from (nλ1, 0) and joining to (+∞,+∞) := z∗, and (+∞, 0) is the unique
blow-up point of Cn.

Let C = lim supn→+∞ Cn. For any (λ, u) ∈ C , the definition of superior limit (see
[61]) shows that there exists a sequence (λn, un) ∈ Cn such that (λn, un) → (λ, u)
as n→ +∞. Then a continuity argument shows that u is a solution of problem
(1.5).

By proposition 2 of [16], for each ε > 0 there exists anN0 such that for all n > N0,
Cn ⊂ Vε(C ) with Vε(C ) denoting the ε-neighbourhood of C . It follows that

(nλ1,+∞) ⊆ Proj (Cn) ⊆ Proj (Vε (C )) ,

where Proj(Cn) denotes the projection of Cn on R. So, we have that (nλ1 +
ε,+∞) ⊆ Proj(C ). Therefore, we have C \ {∞} �= ∅.

Let

S = {(+∞, u) : 0 < ‖u‖ < +∞} .
For any fixed n ∈ N, we claim that Cn ∩ S = ∅. Otherwise, there exists a sequence
(λm, um) ∈ Cn such that (λm, um) → (+∞, u∗) ∈ S with 0 < ‖u∗‖ < +∞. It follows
that ‖um‖ � Mn for some constant Mn > 0. It implies that fn(um)/um � δn for
some positive constant δn and all m ∈ N. Lemma 3.1 implies that um ≡ 0 for m
large enough, which contradicts the fact of ‖u∗‖ > 0. It follows that (∪+∞

n=1Cn) ∩ S =
∪+∞

n=1(Cn ∩ S) = ∅. Since C ⊆ (∪+∞
n=1Cn), one has that C ∩ S = ∅. Furthermore, set

S′ := {(λ,+∞) : 0 � λ < +∞} .

Since (+∞, 0) is the unique blow-up point of Cn, we have that Cn ∩ S′ = ∅. Then
reasoning as the above, we have that C ∩ S′ = ∅. Hence, C ∩ (S ∪ S′) = ∅. Tak-
ing z∗ = (+∞, 0), clearly z∗ ∈ lim infn→+∞ Cn with ‖z∗‖R×E = +∞. Therefore, we
obtain that C ∩ {∞} = {z∗, z∗}.

The compactness of Ψ implies that (∪+∞
n=1Cn) ∩BR is pre-compact. Lemma 3.1 of

[18] implies that C = lim supn→+∞ Cn is connected. We claim that C ∩ ([0,+∞) ×
{0}) = ∅. Otherwise, there exists a sequence {(μn, un)} such that lim

n→+∞μn = μM
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and lim
n→+∞ ‖un‖ = 0 as n→ +∞. Let wn = un/ ‖un‖ and wn should be the solutions

to the following problem

w = μnΨ
(
f (un)
un

w

)
.

By the compactness of Ψ, we obtain that for some convenient subsequence wn → w0

as n→ +∞. Letting n→ +∞, we obtain that w0 ≡ 0. This contradicts ‖w0‖ = 1.
See (e) of figure 1 for the global structure of C . Since C is connected with

C \ {∞} �= ∅, C ∩ ([0,+∞) × {0}) = ∅ and C ∩ {∞} = {z∗, z∗}, there exist at least
two positive solutions on C when λ is sufficiently large. �

Remark 3.15. From theorem 3.14 and lemma 3.2, we can also see that there exist
two positive constants τ6 and τ ′6 with τ6 � τ ′6 such that problem (1.5) has at least
one positive solution for all λ ∈ [τ6, λ∗] and has no positive solution for all λ ∈
(0, τ ′6).

In [8,40,54], the authors got some existence results with lims→0f(s)/s � 0 and
f∞ = 0. Note that we do not need Ω that is star shaped, which is essential in [8].

Theorem 3.16. If f0 = 0 and f∞ = +∞, then problem (1.5) has at least one
positive solutions for any λ ∈ (0,+∞).

Proof. Using an argument similar to that of theorem 3.14, in view of theorem 3.9,
we can easily get the results of this theorem. See (f) of figure 1 for the global
bifurcation diagram. �

Theorem 3.17. If f0 = +∞ and f∞ ∈ (0,+∞), then for any λ ∈ (0, λ1/f∞),
problem (1.5) has at least one positive solution.

Proof. From the proof of Theorem 3.12, we know that there exists a continuum
D of nontrivial solutions of problem (1.5) emanating from (λ1/f∞,+∞) such that
either it is unbounded in the direction of λ or meets {(λ, 0) : λ ∈ R+}. Lemma 3.1
implies that the former case is impossible. So there exists (λn, un) ∈ D such that
(λn, un) → (λ∗, 0) as n→ +∞ with un �= 0. In view of f0 = +∞, if λ∗ > 0, we
obtain

λn
f(un)
un

> ρλ1

for some ρ > 1 and n large enough. Multiply the first equation of problem (1.5) by
ϕ1, after integrations by parts, we obtain

λ1

∫
Ω

unϕ1 dx = λn

∫
Ω

f (un)
un

unϕ1 dx > λ1ρ

∫
Ω

unϕ1 dx,

which is a contradiction. So we conclude that λ∗ = 0. �

Remark 3.18. Similarly to remark 3.10, if f0 = +∞ and f∞ ∈ (0,+∞), there exist
two positive constant τ7 and τ ′7 with τ7 � τ ′7 such that problem (1.5) has at least one
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positive solution for all λ ∈ (0, τ7) and has no positive solution for all λ ∈ (τ ′7,+∞),
see (g) of figure 1.

Theorem 3.19. If f0 = +∞ and f∞ = 0, then for any λ ∈ (0,+∞), problem (1.5)
has at least one positive solution.

Proof. Define

fn(s) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ns, s ∈ [

0, 1
n

]
,

n
(
f

(
2
n

) − 1
) (
s− 1

n

)
+ 1, s ∈ (

1
n ,

2
n

)
,

f(s), s ∈ [
2
n ,+∞)

and consider problem (3.8) again. Clearly, we can see that limn→+∞ fn(s) = f(s),
fn
0 = n and fn

∞ = f∞ = 0. From the proof of Theorem 3.6, we know that there
exists a sequence unbounded continua Cn emanating from (λ1/n, 0) and joining to
(+∞,+∞).

Taking z∗ = (0, 0), clearly z∗ ∈ lim infn→+∞ Cn. Lemma 2.5 of [16] implies
that C = lim supn→+∞ Cn is unbounded and connected such that z∗ ∈ C and
(+∞,+∞) ∈ C . Likely to theorem 3.17, we can show that C ∩ ((0,+∞) × {0}) = ∅.
See (h) of figure 1 for the global structure of C . �

Theorem 3.20. If f0 = +∞ and f∞ = +∞, then there exists λ∗ > 0 such that for
any λ ∈ (0, λ∗), problem (1.5) has at least two positive solutions.

Proof. By an argument similar to that of theorem 3.19 and the conclusions of
theorem 3.9, we can obtain the desired conclusion, see (i) of figure 1. �

Remark 3.21. By theorem 3.20 and lemma 3.1, we can see that there exist two
positive constants τ8 and τ ′8 with τ8 � τ ′8 such that problem (1.5) has at least one
positive solution for all λ ∈ [λ∗, τ8] and has no positive solution for all λ ∈ (τ ′8,+∞).

Remark 3.22. In some particular case, theorems 3.3– 3.20 can be optimal, see
[32,33,46,47,56–58] and their references.

Proof of Theorem 1.1. The definition of h implies that hκ(t) > 0 for t > 0. This fact
combining with the assumption of (G2) shows that f satisfies the signum condition.
Lemma 2.3 shows that

f0 = g0, f∞ =
g∞
κ
.

It is not difficult to show that (G6) implies f satisfying the subcritical growth
condition (G). Then the desired conclusions can be deduced from theorems 3.3– 3.20
and remarks 3.5–3.21 immediately. �
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Proof of Theorem 1.3. (a) For any κ ∈ (g∞/λ1,+∞), since λ1 < g0, it is easy to
verify that

λ1

g0
< 1 <

λ1κ

g∞
.

From theorem 3.3 we can easily see that μ1 � λ1/g0 and μ2 � λ1κ/g∞. Then
the desired existence can be derived from theorem 1.1 (a) immediately.

(b) The proof is similar to that of (a).

(c) For any κ ∈ (0, g∞/λ1), we get that

1 >
λ1κ

g∞
.

Theorem 3.12 shows that μ5 � λ1κ/g∞. So theorem 1.1 (d) implies the desired
conclusion.

(d) For any κ ∈ (g∞/λ1,+∞), we have that

1 <
λ1κ

g∞
.

Theorem 3.19 shows that μ8 � λ1κ/g∞. Hence theorem 1.1 (g) implies that
problem (1.3) has at least one positive solution.

�

4. Positive solutions without the signum condition

In this section, we study the problem (1.5) without the signum condition and give
the proof of Theorems 1.2 and 1.4. From now on, we assume that there exists
one positive constant β such that f(β) = 0, f(s)s > 0 for s ∈ (0, β) ∪ (β,+∞) and
there exists a constant γ > 0 such that

lim
s→β−

f(s)
β − s

= γ.

Theorem 4.1. Assume that f0, f∞ ∈ (0,+∞) with f0 �= f∞. Then

(i) if λ ∈ (min{λ1/f∞, λ1/f0},max{λ1/f∞, λ1/f0}], problem (1.5) has at least
one positive solution;

(ii) if λ ∈ (max{λ1/f∞, λ1/f0},+∞), problem (1.5) has at least two positive
solutions.

Proof. Firstly, we define

f̃(s) =

{
f(s) if 0 � s � β,

0 otherwise

https://doi.org/10.1017/prm.2018.59 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2018.59


Standing wave solutions for a quasilinear Schrödinger equation 957

and consider the following problem{
−Δu = λf̃(u) in Ω,
u = 0 on ∂Ω.

(4.1)

Applying theorem 2.12 of [52] to problem (4.1), there exists a continuum C of non-
trivial solutions of problem (4.1) emanating from (λ1/f0, 0) such that C ⊂ ((R × P)
∪ {(λ1/f0, 0)}), meets ∞ in R × E.

The strong maximum principle implies that u � β for any (λ, u) ∈ C . It follows
that u is also a solution of problem (1.5) for any (λ, u) ∈ C . Next, we show that the
projection of C on R is unbounded. It is sufficient to show that the set {(λ, u) ∈
C : λ ∈ (0, d]} is bounded for any fixed d ∈ (0,+∞). Arguing by contradiction, if
there exists (λn, un) ∈ C , n ∈ N, such that λn → μ � d, un → +∞ as n→ +∞.
Let wn = un/ ‖un‖. Then we have that

wn = Ψ
(
λn
f (un(x))
‖un‖

)
.

Clearly, we have that

f(un) � max
[0,β]

|f(s)|.

It means that

λn
f(un)
‖un‖ → 0

as n→ +∞. By the compactness of Ψ, we obtain that for some convenient subse-
quence wn → 0 as n→ +∞, which contradicts the fact of ‖w0‖ = 1. This together
with the fact that C joins (λ1/f0, 0) to infinity yields that

(λ1/f0,+∞) ⊆ Proj (C ) .

Next we study the bifurcation phenomenon of problem (1.5) from infinity.
Consider {

−Δu = λf∞u+ λη(u) in Ω,
u = 0 on ∂Ω

(4.2)

as a bifurcation problem from infinity. Applying theorem 2.28 of [53] to problem
(4.2), there exists a continuum D of solutions of problem (1.5) meeting (λ1/f∞,∞)
and satisfying at least one of the alternatives of theorem 1.6 of [53]. The strong
maximum principle implies that D ⊂ ((R × P) ∪ {(λ1/f∞,+∞)}). In addition, it is
not difficult to verify that (λ1/f∞,∞) is the unique bifurcation point of positive
solutions of problem (1.5) from ∞.
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Next, we shall show that these two components are disjoint. Let

Y =
{
u ∈ C

(
Ω

)
: u = 0 on ∂Ω

}
with the usual norm

‖u‖∞ = max
Ω

|u|.

It is enough to show that C and D are disjoint in R × Y . We first claim that D is
unbounded in the direction of Y . It suffices to show that (λ1/f∞, 0) is a blow-up
point of D in R × Y . Otherwise, there exists M > 0 such that ‖un‖∞ � M for any
(λn, un) ∈ D with λn → λ1/f∞ as n→ +∞. Applying [29, theorem 8.33], we get
that ‖un‖ � M ′ for some positive constant M ′ depending on f , N , M , λ1 and ∂Ω,
which contradicts the fact of D meeting (λ1/f∞,∞).

Suppose, by contradiction, that C ∩ D �= ∅ in R × Y . Since D is unbounded in the
direction of Y and meets C , there exists (λ, u) ∈ (C ∪ D) such that maxΩ u = β.
Clearly, there exists 0 < m < +∞ such that f(s) � m(β − s) for any s ∈ [0, β].
Now, let us consider the following problem{

−Δ(β − u) + λm (β − u) = λm (β − u) − λf(u) in Ω,
β − u > 0 on ∂Ω.

The strong maximum principle of [29] implies that β > u in Ω. This is a
contradiction.

Thus 1o of theorem 1.6 of [53] does not occur. So 2o of theorem 1.6 of [53] occurs.
We claim that D − M has an unbounded projection on R. Now we show that the
case of D − M meeting λj × {∞} for some j > 1 is impossible, where λj denotes
the jth of −Δ with 0-Dirichlet boundary condition. Assume on the contrary that
D − M meets λj × {∞} for some j > 1. So there exists a neighbourhood Ñ ⊂ M̃

of λj × {∞} such that u must change sign for any (λ, u) ∈ (D − M ) ∩ (Ñ \ (λj ×
{∞})), where M̃ is a neighbourhood of λj × {∞} which satisfies the assumptions of
theorem 1.6 of [53]. This contradicts the fact of D ⊂ ((R × P) ∪ {(λ1/f∞,+∞)}).
Now the desired conclusions can be seen. �

See (a) of figure 2 for the global structures of C and D . Since we are not requiring
continuously differentiable property of f , these results of theorem 4.1 improve the
corresponding ones of [2].

Remark 4.2. From the argument of theorem 4.1, we can easily see that problem
(1.5) has at least two positive solutions for λ ∈ (max{λ1/f∞, λ1/f0},+∞) if f0,
f∞ ∈ (0,+∞) with f0 = f∞. Moreover, the assumptions of theorem 4.1 implies
that there exists a positive constant � > 0 such that

f(s)
s

� �

for any s > 0. So it follows from lemma 3.2 that there exists τ9 > 0 such that
problem (1.5) has no positive solution for any λ ∈ (0, τ9).
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Figure 2. Bifurcation diagrams of Theorems 4.1– 4.4 and corollary 4.5.(a) f0, f∞ ∈
(0, +∞), (b) f0 ∈ (0, +∞), f∞ = +∞, (c) f0 = +∞, f∞ ∈ (0, +∞), (d) f0 = +∞, f∞ =
+∞.

Next, we consider the case of superlinear growth of f at infinity.

Theorem 4.3. Let (G) hold. Assume that f0 ∈ (0,+∞) and f∞ = +∞. Then

(i) if λ ∈ (0, λ1/f0], problem (1.5) has at least one positive solution;

(ii) if λ ∈ (λ1/f0,+∞), problem (1.5) has at least two positive solutions.

Proof. Consider the following problem{
−Δu = λfn(u) in Ω,
u = 0 on ∂Ω,

(4.3)

where fn is defined by

fn(s) =

⎧⎪⎨⎪⎩
f(s), s ∈ [0, n] ,(
2n2 − f (n)

)
(s− n) 1

n + f (n) , s ∈ (n, 2n) ,
ns, s ∈ [2n,+∞) .
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Clearly, we can see that limn→+∞ fn(s) = f(s) and

lim
s→+∞

fn(s)
s

= n.

If (λ, u) is any solution of problem (4.3) with ‖u‖ �≡ 0, dividing problem (4.3) by
‖u‖2 and setting w = u/‖u‖2 yield{

−Δw = λ fn(u)
‖u‖2 in Ω,

w = 0 on ∂Ω,
(4.4)

Let ηn(s) = fn(s) − ns and

η̃n(w) =

{
‖w‖2ηn

(
w

‖w‖2

)
ifw �= 0,

0 if w = 0.

Then problem (4.4) is equivalent to{
−Δw = λ (nw + η̃n(w)) in Ω,
w = 0 on ∂Ω.

(4.5)

By a similar argument as in theorem 3.12, we get a sequence unbounded continua
Cn emanating from (λ1/n, 0) such that Cn ⊂ ((R × P) ∪ {(λ1/0, 0)}), meets ∞ in
R × E. As theorem 3.19, we obtain that C = lim supn→+∞ Cn is unbounded and
connected such that (0, 0) ∈ C .

We claim that C ∩ ((0,+∞) × {0}) = ∅. Otherwise, there exists a sequence of
positive solution {(λn, un)} of problem (1.5) such that (λn, wn) → (μ, 0) as n→
+∞ with some μ > 0. So ‖un‖ = 1/‖wn‖2 → +∞ as n→ +∞. Theorem 1.1 of
[28] and theorem 8.33 of [29] implies that ‖un‖ is uniformly bounded. So we get a
contradiction.

Now applying the inversion w → w/‖w‖2 = u, we obtain a continuum D of non-
trivial solutions of problem (1.5) emanating from (0,+∞) and satisfying at least
one of the following two alternatives:

(i) is unbounded in the direction of λ,

(ii) meets {(λ, 0) : λ ∈ R+}.
Similarly as theorem 4.1, we can show that the second alternative is impossible
and D ⊆ ({(0,∞)} ∪ (R × P)). So we obtain the desired conclusions, see (b) of
figure 2. �

Theorem 4.3 can be optimal under the more strong condition, see [23]. Now, we
consider the case of sublinear growth of f at zero.

Theorem 4.4. Assume that f0 = +∞ and f∞ ∈ (0,+∞). Then

(i) if λ ∈ (0, λ1/f∞], problem (1.5) has at least one positive solution;

(ii) if λ ∈ (λ1/f∞,+∞), problem (1.5) has at least two positive solutions.
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Proof. Consider the following problem{
−Δu = λfn(u) in Ω,
u = 0 on ∂Ω,

(4.6)

where fn is defined as the proof of Theorem 3.19. Clearly, we can see that
limn→+∞ fn(s) = f(s), fn

0 = n and fn
∞ = f∞. The argument of theorem 4.1 implies

that there exists one sequence unbounded continua Cn of solution set of problem
(4.6) emanating from (λ1/n, 0). Taking z∗ = (0, 0), clearly z∗ ∈ lim infn→+∞ Cn.
Lemma 2.5 of [16] implies that C = lim supn→+∞ Cn is unbounded and connected
such that z∗ ∈ C . The rest of the proof is the same as that of theorem 4.1. �

See (c) of figure 2 for the global bifurcation diagram of theorem 4.4. Combing
the arguments of theorems 4.3–4.4, we can easily get the following corollary, see (d)
of figure 2.

Corollary 4.5. Let (G) hold. Assume that f0 = +∞ and f∞ = +∞. Then
problem (1.5) has at least two positive solutions for any λ ∈ (0,+∞).

Proof of Theorem 1.2. Let β = lκ(α) and

f(t) =
1√

1 + 2κh2
κ(t)

g (hκ(t))).

Then the assumptions of (G4)–(G5) imply that f satisfies f(β) = 0, f(s)s > 0 for
s ∈ (0, β) ∪ (β,+∞) and there exists a constant γ > 0 such that

lim
s→β−

f(s)
β − s

= γ.

From the argument of theorem 1.1, we know that f satisfies the subcritical growth
condition (G) and

f0 = g0, f∞ =
g∞
κ
.

Using theorems 4.1–4.3, remark 4.2 and corollary 4.5, we can obtain the desired
conclusions. �

Proof of Theorem 1.4. (i) If κ ∈ (g∞/g0, g∞/λ1), then we obtain

λ1

g0
<
λ1κ

g∞
and 1 >

λ1κ

g∞
.

Theorem 1.2 (i) shows that problem (1.3) has at least two positive solutions.
For any κ ∈ (g∞/λ1,+∞), it follows from λ1 < g0 that

λ1

g0
< 1 <

λ1κ

g∞
.

Then theorem 1.2 (i) shows that problem (1.3) has at least one positive
solution.

https://doi.org/10.1017/prm.2018.59 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2018.59


962 G. Dai

For any κ < g∞/g0, one has that

λ1κ

g∞
<
λ1

g0
< 1.

From theorem 1.2 (i), we get that problem (1.3) has at least two positive
solutions.
For κ = g∞/g0, it is easy to see that

λ1κ

g∞
=
λ1

g0
< 1.

So the existence of two positive solutions of problem (1.3) can be deduced
from theorem 1.2 (ii).

(ii) For any κ ∈ (0, g∞/λ1), it follows from λ1 > g0 that

λ1κ

g∞
< 1 <

λ1

g0
.

Thus, theorem 1.2 (i) follows the desired conclusion.

(iii) For any κ ∈ (0, g∞/λ1), we have that

λ1κ

g∞
< 1.

Hence theorem 1.2 (iv) shows that problem (1.3) has at least two positive
solutions.
For any κ ∈ [g∞/λ1,+∞), we get

1 � λ1κ

g∞
.

Therefore, theorem 1.2 (iv) implies that problem (1.3) has at least one positive
solution.

�

5. Proof of Theorem 1.5 and some corollaries

Let ξ : R+ → R be such that

F (s) = F0s+ ξ(s)

with

lim
s→0+

ξ(s)
s

= 0.

Let us consider {
−Δu = (β − λF0)u− λξ(u) in Ω,
u = 0 on ∂Ω

(5.1)

as a bifurcation problem from the trivial solution axis. For any fixed μ0 := (λ∗, β∗)
such that β∗ − λ∗F0 = λ1, we may apply theorem 2.4 of [26] with O = R

2
+ × E and
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Γ = {(λ, β∗) : λ > 0} and obtain a connected set C ⊂ R
2 × E of nontrivial solutions

of problem (5.1) emanating from (μ0, 0) with topological dimension at least 2 at
every point. Clearly, the signum condition of 0 < F (s) < β/λ for any s > 0 and any
given β, λ > 0 implies C ⊂ ((R2 × P) ∪ {(μ0, 0)}). It follows that C is unbounded
in R

2 × E.

Proof of Theorem 1.5. Let μ∞ = (λ∗, β∗) such that β∗ − λ∗F∞ = λ1. From
remark 2.3 of [26], we know that there exists an unbounded component CΓ of
the section of C over Γ. It is sufficient to show that CΓ joins (μ0, 0) to (μ∞,+∞).
Let (β∗, λn, un) ∈ CΓ where un �≡ 0 satisfies

√
β2∗ + λ2

n + ‖un‖ → +∞.
We claim that there exists a constant M such that λn ∈ (0,M ] for any n ∈ N.

Our assumptions imply that there exists a positive constant ρ > 0 such that

F (s)
s

� ρ

for any s > 0. Let ϕ1 be a positive eigenfunction associated with λ1. We multiply
the first equation of problem (1.4) by ϕ1, and obtain after integrations by parts

λ1

∫
Ω

unϕ1 dx =
∫

Ω

(
β∗ − λnF (un)

un

)
unϕ1 dx � (β∗ − λnρ)

∫
Ω

unϕ1 dx.

It follows that λn � (β∗ − λ1)/ρ. Then by an argument similar to that of
theorem 3.3, we obtain

−Δu =
(
β∗ − λF∞

)
u

for some u ∈ E, where λ = lim
n→+∞λn. It follows that λ = λ∗. Therefore, CΓ joins

(μ0, 0) to (μ∞,+∞). �

Since F (s) = Φ(s2)s, from theorem 1.5, we can easily derive the following
corollary.

Corollary 5.1. Assume that Φ : R+ → R is continuous such that Φ(0),Φ(+∞) ∈
(0,+∞) with Φ(0) > Φ(+∞), and 0 < Φ(t) < β/λ for any t > 0 and any given β,
λ > 0. Then for any

(λ, β) ∈ {
(λ, β) ∈ R

2 : λ > 0, λ1 + λΦ(+∞) � β � λ1 + λΦ(0)
}
,

problem (1.4) has at least one positive solution, where Φ(+∞) = limt→+∞ Φ(t).

Now, we consider the problem (1.2). We present the following hypotheses on Φ.

(H1) The function Φ : R+ → R is continuous.

(H2) Φ(s) < 1 for s > 0.

(H3) There exists Φ∞ ∈ [−∞, 0] such that

Φ∞ = lim
s→+∞

Φ(s)
s

.
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(H4) There exists one constant α such that Φ(α2) = 1, Φ(s) < 1 for s ∈ (0, α2) ∪
(α2,+∞).

(H5) There exists a constant δ > 0 such that

lim
s→α−

s− Φ
(
s2

)
s

lκ(α) − lκ(s)
= δ.

(H6)

lim
s→+∞

Φ(s)
sl

= C

for some l ∈ (1, (N + 2)/(N − 2)), where C is a positive constant.

Then it is easy to verify that the hypotheses (H1)–(H6) is equivalent to (G1)–
(G6) with g0 = 1 − Φ(0) and g∞ = −Φ∞. So from theorems 1.1–1.4, we can easily
get the following four corollaries.

Corollary 5.2. Assume that (H1)–(H3) and (H6) hold and κ is a positive
constant.

(a) If Φ(0) ∈ (−∞, 1), Φ∞ ∈ (−∞, 0) satisfying κ(1 − Φ(0)) �= −Φ∞, then there
exist four positive constants μ1, μ′

1, μ2 and μ′
2 with μ′

1 � μ1 and μ′
2 � μ2 such

that problem (1.2) has at least one positive solution for all λ ∈ (μ1, μ2) and
has no positive solution for all λ ∈ (0, μ′

1) ∪ (μ′
2,+∞).

(b) If Φ(0) ∈ (−∞, 1) and Φ∞ = 0, then there exist two positive constants μ3 and
μ′

3 with μ′
3 � μ3 such that problem (1.2) has at least one positive solution for

all λ ∈ (μ3,+∞) and has no positive solution for all λ ∈ (0, μ′
3).

(c) If Φ(0) ∈ (−∞, 1) and Φ∞ = −∞, then there exist two positive constants μ4

and μ′
4 with μ′

4 � μ4 such that problem (1.2) has at least one positive solution
for all λ ∈ (0, μ4) and has no positive solution for all λ ∈ (μ′

4,+∞).

(d) If Φ(0) = 1 and Φ∞ ∈ (−∞, 0), then there exist two positive constants μ5 and
μ′

5 with μ′
5 � μ5 such that problem (1.2) has at least one positive solution for

all λ ∈ (μ5,+∞) and has no positive solution for all λ ∈ (0, μ′
5).

(e) If Φ(0) = 1 and Φ∞ = 0, then there exist three positive constants μ6, μ′
6 and

μ7 with μ′
6 � μ6 � μ7 such that problem (1.2) has at least two positive solu-

tions for all λ ∈ (μ7,+∞), one positive solution for all λ ∈ [μ6, μ7] and has
no positive solution for all λ ∈ (0, μ′

6).

(f) If Φ(0) = 1 (or −∞) and Φ∞ = −∞ (or 0), then for any λ ∈ (0,+∞),
problem (1.2) has atleast one positive solution.

(g) If Φ(0) = −∞ and Φ∞ ∈ (−∞, 0), then there exist two positive constants μ8

and μ′
8 with μ′

8 � μ8 such that problem (1.2) has at least one positive solution
for all λ ∈ (0, μ8) and has no positive solution for all λ ∈ (μ′

8,+∞).

https://doi.org/10.1017/prm.2018.59 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2018.59


Standing wave solutions for a quasilinear Schrödinger equation 965

(h) If Φ(0) = −∞ and Φ∞ = −∞, then there exist tree positive constants μ9,
μ10 and μ′

10 with μ9 � μ10 � μ′
10 such that problem (1.2) has at least two

positive solutions for all λ ∈ (0, μ9), has at least one positive solution for all
λ ∈ [μ9, μ10] and has no positive solution for all λ ∈ (μ′

10,+∞).

Corollary 5.3. Let (H1), (H3)–(H6) hold and κ be a positive constant.

(i) If Φ(0) ∈ (−∞, 1), Φ∞ ∈ (−∞, 0) with κ(1 − Φ(0)) �= −Φ∞, then there exists
μ11 > 0 such that problem (1.2) has at least two positive solutions for all

λ ∈
(

max
{
λ1κ

−Φ∞
,

λ1

1 − Φ(0)

}
,+∞

)
,

has at least one positive solution for all

λ ∈
(

min
{
λ1κ

−Φ∞
,

λ1

1 − Φ(0)

}
,max

{
λ1κ

−Φ∞
,

λ1

1 − Φ(0)

}]
and has no positive solution for all λ ∈ (0, μ11).

(ii) If Φ(0) ∈ (−∞, 1), Φ∞ ∈ (−∞, 0) with κ(1 − Φ(0)) = −Φ∞, then there exists
μ12 > 0 such that problem (1.2) has at least two positive solutions for all

λ ∈
(

λ1

1 − Φ(0)
,+∞

)
and has no positive solution for all λ ∈ (0, μ12).

(iii) If Φ(0) ∈ (−∞, 1) and Φ∞ = −∞, then problem (1.2) has at least two positive
solutions for all λ ∈ (λ1/(1 − Φ(0)),+∞), has at least one positive solution
for all λ ∈ (0, λ1/(1 − Φ(0))].

(iv) If Φ(0) = −∞ and Φ∞ ∈ (−∞, 0), then problem (1.2) has at least two positive
solutions for all λ ∈ ((λ1κ)/(−Φ∞),+∞), has at least one positive solution
for all λ ∈ (0, (λ1κ)/(−Φ∞)].

(v) If Φ(0) = −∞ and Φ∞ = −∞, then problem (1.2) has at least two positive
solutions for all λ ∈ (0,+∞).

Corollary 5.4. Assume that λ = 1, (H1)–(H3) and (H6) hold.

(a) If Φ(0) ∈ (−∞, 1), Φ∞ ∈ (−∞, 0) satisfying 1 − Φ(0) > λ1, then problem
(1.2) has at least one positive solution for all κ ∈ (−Φ∞/λ1,+∞).

(b) If Φ(0) ∈ (−∞, 1), Φ∞ ∈ (−∞, 0) satisfying 1 − Φ(0) < λ1, then problem
(1.2) has at least one positive solution for all κ ∈ (0,−Φ∞/λ1).

(c) If Φ(0) = 1 and Φ∞ ∈ (−∞, 0), then problem (1.2) has at least one positive
solution for all κ ∈ (0,−Φ∞/λ1).

(d) If Φ(0) = −∞ and Φ∞ ∈ (−∞, 0), then problem (1.2) has at least one positive
solution for all κ ∈ (−Φ∞/λ1,+∞).
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Corollary 5.5. Let (H1), (H3)–(H6) hold and λ = 1.

(i) If Φ(0) ∈ (−∞, 1), Φ∞ ∈ (−∞, 0) with 1 − Φ(0) > λ1, then problem (1.2)
has at least two positive solutions for all κ ∈ (0,−Φ∞/λ1), has at least one
positive solution for all κ ∈ (−Φ∞/λ1,+∞).

(ii) If Φ(0) ∈ (−∞, 1), Φ∞ ∈ (−∞, 0) with 1 − Φ(0) < λ1, then problem (1.2) has
at least one positive solution for all κ ∈ (0,−Φ∞/λ1).

(iii) If Φ(0) = −∞ and Φ∞ ∈ (−∞, 0), then problem (1.2) has at least two positive
solutions for all κ ∈ (0,−Φ∞/λ1), has at least one positive solution for all
κ ∈ [−Φ∞/λ1,+∞).
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