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Abstract Given a 4-manifold, we build a non-empty C1-open set of vector fields having a (chain

transitive) attractor containing singularities of different indices. Then, we begin the study of the
hyperbolic properties of such a robust singular attractor.
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1. Introduction

1.1. Motivations

The dynamics of flows is much related to the dynamics of diffeomorphisms, and their
studies have followed almost parallel paths. From many points of view, the dynamics of
vector fields in dimension n looks like diffeomorphisms in dimension n−1. However, there
is a phenomenon which is really specific to vector fields: the existence of singularities
(zeros of the vector field). This specificity is especially important when the singularities
are not isolated from the rest of the dynamics, that is, when there are regular recurrent
orbits accumulating the singularities.

The first example with this behavior was presented by Lorenz, in [24], exhibiting a
simple family of algebraic vector fields in R3 with experimental evidence that the orbits
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tend to some compact set (called the Lorenz attractor) containing regular periodic orbits
and a singularity. In [1, 19, 20], the authors give a geometric construction of C1-open
sets of vector fields on 3-manifolds, having a topological transitive attractor containing
periodic orbits and one singularity.

Let us present one specific difficulty brought by the robust coexistence of singularities
and periodic orbits: a hyperbolic periodic point of a diffeomorphism on a compact
manifold persists by C1-small perturbation of the dynamics: it has a well-defined
continuation for the nearby diffeomorphisms. This periodic point may disappear under
a large perturbation; however, before disappearing, it must lose its hyperbolicity.
That is, the birth and death of periodic orbits are through non-hyperbolic periodic
orbits. A diffeomorphism f is a star diffeomorphism if every periodic point of every
diffeomorphism in a C1-neighborhood of f is hyperbolic. As an important step of the
structural stability conjecture, [2, 21, 23, 25, 26] show that every star diffeomorphism is
Axiom A and satisfies the no cycle condition. The equivalent statement for flows is
wrong: every periodic orbit of any vector field in the C1-open set of ‘geometric Lorenz
attractors’ is hyperbolic. So the geometric Lorenz attractors are star vector fields, but
are not Axiom A flows. The reason is that periodic orbits may die remaining hyperbolic
until the end, by going to the singularity: the periodic orbits are transformed in a
homoclinic orbit of the singularity (in fact [17] shows that non-singular star flows satisfy
Axiom A). The difficulties brought by the coexistence of singularities and periodic (or
recurrent) orbits explain why the stability conjecture for flows [22] was solved nine years
after the stability conjecture for diffeomorphisms [26].

The coexistence of singularities and regular recurrent orbits are mostly understood
in dimension 3, by a long sequence of papers by Morales, Pacifico, and/or Pujals (see
in particular [29, 30]). They defined the notion of singular hyperbolicity, which requires
some compatibility between the hyperbolicity of the singularity and the hyperbolicity of
the regular orbits. This allows them to define the notion of singular Axiom A flow, where
the global dynamics splits in the disjoint union of transitive invariant compact sets, each
of them being either hyperbolic or singular hyperbolic; furthermore, each of the singular
hyperbolic sets is either an attractor (and the singularities contained in that set have
index 2) or a repeller (and the singularities have index 1). In [28], Morales and Pacifico
prove that there is a residual set R⊂ X 1(M) such that, for any X ∈R,

• either X has infinitely many attractors or repellers (in that case, [3] shows that X
may be approached by homoclinic tangencies);

• or X is singular Axiom A without cycles; moreover, every non-trivial transitive set
with singularities is either an attractor or a repeller.

In higher dimensions, the problem of the robust coexistence of singularities and
periodic orbits is very far from being understood. There are easy examples obtained
by multiplying three-dimensional examples by a strong contraction. This kind of
example produces singular attractors whose singularities have only one expanding
Lyapunov exponent, and it has been an open question for a long time if ‘Lorenz-like’
attractors with more than one expanding Lyapunov exponent could exist. [13] built
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the first examples of robustly transitive singular attractors having singularities with
an arbitrary number of positive Lyapunov exponents. However, in the attractors of
[13], the singularities have the same index, and the periodic orbits are all hyperbolic
and with the same index. It was clear that these examples were far from covering all
the possibilities. Building new examples is important for building a global view of the
possibilities. Recently, [4] built the first examples (in dimension 5) of robustly transitive
attractors containing periodic orbits with different indices; however, all the singularities
in the attractor have the same index.

In this paper, we first give an example (Theorem A) of a robust attractor for
flows on a 4-manifold, containing two hyperbolic singularities of different indices.
Then Theorem B shows that, for every robust attractor with these properties, small
perturbations create homoclinic tangencies and heterodimensional cycles associated to
periodic orbits in the attractor. Finally, Theorem C proves that, if a robust singular
attractor contains an index 2 singularity, then it has a partially hyperbolic splitting with
a one-dimensional strong stable direction.

Our examples and those in [4, 13] open the door for the understanding of the dynamics
of robust singular attractors, in dimension larger than 3. We are far from having a global
overview of all the possibilities: it remains to understand the relationship between the
index of the singularities and the index of the periodic orbits, the compatibility between
the hyperbolicity of the singularity and the hyperbolicity of the regular orbits, the global
structure (dominated splittings of the flow or of the Linear Poincaré flow) carried by
such attractors, and so on; all these questions would need examples showing what is
possible and what is not.

In that spirit, in [11], we built a C1-open set O of vector fields on a 4-manifold such
that every generic X ∈ O has no topological transitive (nor chain recurrent) attractors,
but has a unique transitive quasi-attractor (i.e., intersection of (non-transitive)
attractors) containing a singularity and regular periodic orbits.

1.2. Precise statement of our main results

Let X denote a vector field on a closed manifold M, and let φX
t :M→M denote the time t

map of its flow φX = {φX
t }t∈R.

The index Ind(σ ) of a hyperbolic singular point σ ∈ Sing(X) is the dimension of
its stable manifold. The index Ind(γ ) of a regular hyperbolic periodic orbit γ is the
dimension of its strong stable manifold.

A φX-invariant compact set Λ is transitive if there is a point x ∈ Λ such that
its positive orbit {φX

t (x), t > 0} is dense in Λ. The transitivity is a notion of
indecomposability of the invariant set Λ. We will use here a weaker notion of
indecomposability called chain transitivity, based on the notion of pseudo-orbits
introduced by Conley.

For every ε > 0, a sequence {x0, x1, . . . , xn} is called an ε-pseudo-orbit, if there are
{ti}n−1

i=0 verifying ti > 1 for any 0 6 i 6 n − 1 such that d(φX
ti (xi), xi+1) < ε. Λ is called

chain transitive if, for any x, y ∈ Λ, and for any ε > 0, there is an ε-pseudo-orbit
{x= x0, x1, . . . , xn = y} with xi ∈Λ for any 06 i6 n.
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A topological attractor of a vector field X is an invariant compact set Λ admitting an
open neighborhood U such that

(1) U is an attracting region of X: the boundary ∂U is a codimension 1 submanifold of M
transverse to X and such that X is entering in U;

(2) Λ is the maximal invariant set in U; that is,

Λ=
⋂
t∈R

φX
t (U).

Notice that the maximal invariant set in any attracting region is a topological
attractor. One usually requires an attractor to verify some indecomposability condition
such as transitivity, or chain transitivity. Here, we will use both notions, so we will
specify transitive attractor or chain transitive attractor.

Theorem A. Given any closed manifold M with dim M > 4, there is a C1-open set
U 1 ⊂ X 1(M) and there is an open set U ⊂ M such that, for any X ∈ U 1, one has the
following properties.

• U is an attracting region of X; we denote by ΛX the maximal invariant set in U.

• ΛX is a chain transitive attractor.

• ΛX contains two singularities σ1, σ2 ∈ ΛX satisfying Indσ1 = dim M − 1 and
Indσ2 = dim M − 2.

Furthermore, for any r > 1, let U r = U 1 ∩ X r(M) denote the Cr-open set of Cr-vector
fields in U 1. There is a Cr-residual subset Rr of U r such that ΛX is transitive for
every X ∈Rr; moreover, the residual set Rr is the complement in U r of a codimension 1
submanifold of X r(M).

Remark 1.1. Here, the codimension 1 submanifold is an immersed submanifold; it is
not an embedded submanifold.

We do not know if the chain transitive attractor ΛX is in fact transitive for every X
in U . More generally, we ask the following question.

Problem. Does there exist a robustly chain transitive attractor which is not robustly
transitive?

1.2.1. Idea of our construction. Our example is a perturbation of a simple vector
field. We start with a vector field Y, on a 3-manifold M0, having a robustly transitive
singular attractor with a unique singular point p0. Then we consider the 4-manifold
M =M0 × S1 endowed with the vector field Z = Y × 0|S1 (that is, the vector field tangent
to the factors M0 × {s} which induces Y on each of these factors). Now, Theorem A
consists in performing a small perturbation of the vector field Z in order to get a robust
chain transitive attractor. The perturbation turns the circle {p0} × S1 in a normally
hyperbolic circle containing two singular points of different indices.
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For proving the chain transitivity of the attractor, we will use that the initial
three-dimensional attractor may have a very large expansion in the unstable direction.
For this reason, we will not choose the usual Lorenz attractor4 as our vector field Y. We
will choose for Y a geometric model built in [31] which is a very simple and beautiful
trick for allowing an arbitrarily large expansion in the unstable direction.

Remark 1.2. The vector field Y, the starting point of our construction, can be realized
in a 3-ball B3. Thus the vector field Z can be realized in B3 × S1, which can be embedded
in a 4-ball B4. In other words, the vector field stated by Theorem A in dimension 4 can
be realized in a ball B4 (see Remark 3.1). By multiplying our construction in B4 by a
transversal strong contraction, one gets a C1 vector field in a ball Bn (for any n> 4) with
an attractor contained in a normally hyperbolic (contracting) 4-ball. This explains why
Theorem A holds on any manifold with dim M > 4.

1.3. Hyperbolic properties

The notion of singular hyperbolicity, introduced in dimension 3 by Morales, Pacifico,
and Pujals, can be adapted easily in higher dimensions. The singular hyperbolicity
implies that all the periodic orbits are hyperbolic and have the same index.
Furthermore, this property is robust. Hence, the singular hyperbolicity implies the star
condition. Conversely, [16, 18, 27] prove that, under the star condition, every robustly
transitive attractor Λ is singular hyperbolic. This holds in particular for the examples of
robust singular attractors obtained by multiplying a Lorenz-like attractor in dimension
3 by a transverse strong contraction; it also holds for geometric Lorenz attractors with
singularities having arbitrarily large expanding directions built in [13].

However, in dimensions larger than 3, robust singular attractors do not need to satisfy
the star condition or the singular hyperbolicity: our examples and the examples built in
dimensions larger than 5 by [4] do not satisfy the star condition: they present periodic
orbits with different indices, which allows us to create heterodimensional cycles, and
therefore non-hyperbolic periodic orbits. This is a general phenomenon.

We say that X has a homoclinic tangency if X has a periodic point x and Ws(Orb(x))
intersects Wu(Orb(x)) non-transversely at some points.

Theorem B. If Λ is a robustly chain transitive attractor of X which contains
singularities of two different indices, then X can be accumulated in the C1-topology by
vector fields with a homoclinic tangency.

Remark 1.3. An argument in [18] proves that every robustly transitive (and not chain
transitive!) set (not necessarily attractor) which contains singularities of different indices
can be C1-perturbed in order to create a homoclinic tangency.

4 Recall that the geometric model of a Lorenz attractor uses a cross section which is a rectangle; this
rectangle is cut into two subrectangles by the local stable manifold of the singular point, and each of
the subrectangles has a first return in the cross section, which is expanded in the unstable direction;
this construction forbid the expansion rate of the first return map to be uniformly larger than 2.
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The homoclinic tangencies allow one to produce non-hyperbolic periodic orbits inside
the attractor. Hence, robust chain transitive attractors with singularities of different
indices are never singular hyperbolic. So it is natural to ask what kind of hyperbolicity
satisfies robust singular (chain) transitive attractors?

We need some definitions. We denote by ΦX the tangent flow (that is the derivative
of φX). Given a compact invariant set Λ of X ∈ X 1(M), we say that Λ has a T-dominated
splitting, for some constant T > 0, if there is a ΦX-invariant continuous splitting
TΛM = E1 ⊕ E2 such that, for any x ∈Λ, we have

‖ΦX
T |E1(x)‖‖ΦX−T |E2(φ

X
T (x))
‖6 1/2.

In this case, we say that E1 is dominated by E2. An invariant bundle E1 on Λ is called
contracting if there are constants C > 0 and λ < 0 such that, for any t > 0 and x ∈Λ, we
have ‖ΦX

t |E1(x)‖6 Ceλt.
For diffeomorphisms, [7, 15, 25] prove that every robustly transitive set Λ has a

dominated splitting; moreover, considering the finest dominated splitting on Λ, the
extremal bundles are volume contracting and volume expanding.

For vector fields, the situation is more difficult.

• On the one hand, the argument in [7] proves that every robustly transitive set has
some dominated splitting on the normal bundle with respect to the linear Poincaré
flow. However, the normal bundle is defined only out of the singularities.
• On the other hand, there are robustly transitive vector fields X without
ΦX-invariant dominated splitting (such examples can be obtained by considering
the suspension flow of the robustly transitive diffeomorphisms built in [12]).
However, robustly transitive vector fields have no singularities (see [14, 16, 35]).

In fact, the known examples of robust singular attractors are using both structures
(dominated splitting for the flow and for the Poincaré flow), but there is no formal proof
of the existence of a dominated splitting.

Problem. Do there exist robustly singular (chain) transitive attractors without
ΦX-invariant dominated splitting?

As a partial answer, we show that every robustly chain transitive attractor having an
index 2 singularity admits a partially hyperbolic splitting with a strong stable direction.

Theorem C. There is a dense open set O ⊂ X 1(M) such that, for any X ∈ O, if Λ is a
robustly chain transitive attractor of X containing a singularity of index 2, then Λ has a
partially hyperbolic splitting; i.e., there is a dominated splitting TΛM = Ess ⊕ F such that
Ess is uniformly contracted. Furthermore, dim Ess = 1.

2. Introduction to the Morales–Pujals example

2.1. Informal description

Let M0 be a compact three-dimensional C∞ Riemannian manifold without boundary.
In [31], Morales and Pujals describe a robustly transitive singular attractor Λ0 of
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Figure 1. The first return map.

a vector field Y ∈ X 1(M0) which is not equivalent to the classical geometric Lorenz
attractor [19]. Our interest in that example is that its first return map on a given global
cross section has an arbitrarily large expansion in the unstable direction.

More precisely, the usual geometric Lorenz attractor admits a cross section which
is a square [−1, 1] × [−1, 1] crossing the local stable manifold of the singularity along
[−1, 1]× {0}, and the first return maps [−1, 1]× [−1, 1] \ [−1, 1]× {0} → [−1, 1]× [−1, 1]
behave as in Figure 1(1).

In the Morales–Pujals example, there is a cross section which is an annulus [−1, 1]×S1

crossing the local stable manifold of the singularity along [−1, 1] × {0}, and the first
return maps [−1, 1] × S1 \ [−1, 1] × {0} → [−1, 1] × S1 behave as in Figure 1(2), allowing
an arbitrary expansion.

2.2. Construction of a Morales–Pujals attractor

The Morales–Pujals example was built in [31] as a strange singular attractor appearing
through a simple bifurcation from a Morse–Smale system. Here, we are interested in the
attractor itself, but not in how it appears. The aim of this section is to give a simple
construction of this attractor, focusing on the fact that it is contained in a 3-ball, and
that its basin contains a domain U0 bounded by a surface transverse to the flow (indeed,
that is a general feature of attractors, according to Conley theory).

Let us start with a usual Cherry flow Xc on the torus T2 = S1 × S1, that is, a flow
having two singularities, one repelling and one saddle, and transverse to the circle
S1 × {0}. By the definition of Cherry flow, every point of S1 × {0}, except one point s0

(belonging to the local stable manifold of the saddle), admits a (positive) first return on
S1×{0}. The image of this first return map is an open interval I×{0} in the circle S1×{0},
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whose extremities are points in both unstable separatrices of the saddle. One can choose
this Cherry flow Xc such that

• it is trivial (i.e., ∂
∂s2

, where s2 is the second coordinate of the torus) on the annulus

S1 × [−1/2, 0];
• the expanding eigenvalue of the saddle point is stronger than the stable one (that is,

the sum of the eigenvalues is positive).

We embed the 2-torus in the 3-ball (for instance as a revolution torus of R3). And we
extend the Cherry flow as a vector field Y0 in a tubular neighborhood of the torus just
by adding a normally contracting component to the flow. More precisely, let [−1, 1] × T2

denote this tubular neighborhood of the torus. Then, the expression, in the product
coordinates of the vector field at a point (w, s), is

Y0(w, s)= (0,Xc(s))− α · w ∂

∂w
,

where α > 0 is chosen large enough such that the torus is normally hyperbolic for Y0.
Notice that the tubular neighborhood [−1, 1] × T2 of the torus is now an attracting
region for Y0. We complete Y0 in the whole ball in any way.

By the construction, the local strong stable leaves are the segments [−1, 1] × {s}.
Remove from [−1, 1] × T2 a solid cylinder [−1, 1] × D, where D⊂ T2 is a disc contained
in the basin of the repeller of the Cherry flow such that ∂D is transversal to Xc and
disjoint from S1 × {0}. Now [−1, 1] × (T2 \ D) is an attracting region. Its boundary is
homeomorphic to a surface of genus 2. One can smooth this surface in order to get
a smooth surface transverse to the flow, and bounding a handlebody U0 which is an
attracting region (and contained in a 3-ball).

Consider now the annulus σ = [−1, 1] × S1 × {0}. The first return map on σ is well
defined out of [−1, 1] × {s0}. Its image is a region consisting of strong stable segments
through the points of the segment {0} × I × {0} (where I is the image of the first return
map of the Cherry flow) whose length tends to 0 at the extremities of I, so that this
region has two cusps at the extremities of I.

We now modify this flow on [−1, 1] × S1 × [−1/2, 0], in order to modify the return
map. For that, we consider the return map from σ to [−1, 1] × S1 × {−1/2}. The image is
also a region D−1/2 bounded by two segments tangent at the extremities of the interval
{0} × I × {−1/2}, forming a cusp at the extremities of this interval.

We will replace Y0 by a vector field Y which coincides with Y0 out of the interior
of [−1, 1] × S1 × [−1/2, 0], and which is transverse to the annuli [−1, 1] × S1 × {u}.
Notice that, up to smooth orbital equivalence, such a vector field is determined by the
holonomy map h : [−1, 1] × S1 × {−1/2} → σ = [−1, 1] × S1 × {0}, and h can be chosen as
an arbitrary diffeomorphisms of these annuli which is isotopic to the identity, and equal
to the identity in a neighborhood of the boundaries. As we are simply concerned with
the return map of Y on σ , we only need to define h on the region D−1/2. We require
that h preserves and contracts the restriction to D−1/2 of the strong stable foliation, and
that h induces an arbitrarily large expansion of the transverse direction to the stable
direction. (A more precise construction will be given in the next subsection.)
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p0

Figure 2. The Morales–Pujals example.

As a consequence, the first return map of Y on σ will be partially hyperbolic with an
arbitrary large expansion (as in Figure 2). Now, the fact that the vector field Y admits
on U0 a unique robustly transitive attractor can be proven exactly in the same way as
for the classical Lorenz attractor, the transitivity here being easier to get because the
expansion is arbitrarily large. (We will give a short idea of the proof at the end of this
section.)

2.3. Technical description

Now, we outline the topological construction, the hyperbolic properties of the flow, and
the first return map of the Morales–Pujals example [31]. For any a > 0 and λu > 2,
there exists a vector field Y on M0 having a transitive attractor Λ0 with the following
properties.

Topological conditions.

Y.1. Λ0 is a transitive attractor: there is a neighborhood U0 of Λ0 whose boundary is a
surface transverse to the vector field Y, the vector field Y enters in U0, and Λ0 is
the maximal invariant set

⋂
t>0 φ

Y
t (U0).

Y.2. Λ0 has only one singularity p0, which is an index 2 saddle point.
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Y.3. Λ0 admits a cross section which is an annulus σ := [−1, 1] × S1. Furthermore,
every orbit entirely contained in U0 \ {p0} crosses the interior of the section σ .

We choose the Riemannian metric on M0 such that the cross section σ is
orthogonal to Y.

Y.4. The local stable manifold Ws
loc(p0) cuts σ along a segment ` := [−1, 1] × {0}.

Y.5. The first return map on σ is well defined on σ \`, and we denote it by f : σ \`→ σ .
Moreover, the image of f is contained in the interior of σ .

Y.6. The lateral limits lims→0+ f ([−1, 1]×{s}) and lims→0− f ([−1, 1]×{s}) exist, and are
different points denoted respectively q+0 and q−0 . Furthermore, q+0 and q−0 are each
the first intersection point of one unstable separatrix of p0 (that is, a connected
component of Wu(p0) \ {p0}) with σ . Finally, q+0 and q−0 are not in the local stable
manifold ` of the singularity p0.

Hyperbolic properties of the flow.

Y.7. Partial hyperbolicity: Λ0 has a singular hyperbolic splitting, i.e., there is a
dominated splitting TΛ0M0 = Es ⊕ Ecu for the tangent flow ΦY , such that Es is
contracting and Ecu is volume expanding (see item (Y.10(b)) for the definition of
volume expanding).

Y.8. The strong stable foliation on U0: This implies that the stable bundle Es

admits a unique continuous invariant extension (already denoted by Es) on U0.
Furthermore, there exists a unique invariant foliation F ss tangent to Es in U0; the
foliation F ss is called the strong stable foliation.

Y.9. We assume that F ss is tangent5 to σ . Furthermore, the leaves of the restriction of
F ss to σ are the segments [−1, 1] × {s}.

Y.10. Center-unstable cone field: There is no uniqueness of the extensions of Ecu on U0.
By an abuse of notation, we denote by Ecu a (non-invariant) continuous extension
on U0 of the bundle Ecu (defined on Λ0) such that, for every x ∈ U0, the plane
Ecu(x) is transverse to the bundle Es(x) and contains RY(x).

For c> 0 and x ∈ U0, we denote

C cu
c (x)= {v ∈ TxM0 : v= vs + vcu, vs ∈ Es, vcu ∈ Ecu, and ‖vs‖6 c‖vcu‖}.

(a) (invariance of the center-unstable cone field) The cone field of size a (where
a > 0 is the constant fixed at the beginning of the section) is positively
invariant, and there is 0< µ0 < 1 such that, for any t > 1,

ΦY
t (C cu

a (x))⊂ C cu
µ0a(φ

Y
t (x));

(b) (volume expansivity) moreover, every plane P in the cone field C cu
a (x) (x ∈ U0)

is volume expanding; more precisely, there is λcu > 2 such that, for every t > 1

5 This hypothesis is not required by Morales and Pujals in [31]; however, it is not difficult to build a
Morales–Pujals example having this extra property.
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and every plane P ⊂ C cu
a (x), x ∈ U0, the determinant of the restriction to P of

the derivative ΦY
t satisfies

det(ΦY
t |P) > λcu > 2.

Hyperbolic properties of the first return map.

Y.11. Stable foliation of the first return map: By assumption, on σ , the leaves of F ss are
the segments [−1, 1] × {s} for s ∈ S1; we denote by F ss

σ the restriction of F ss to σ .
The foliation F ss

σ is invariant by the first return map f and is uniformly contracted:
there is λs > 1 such that, for every curve ω ⊂ F ss

σ (x) ∩ f (σ \ `), we have

Length(f−1(ω)) > λsLength(ω).

Y.12. Given any regular periodic orbit γ ⊂ Λ0, one has that Wu(γ ) ∩ σ intersects every
leaf of F ss

σ ; in particular, it intersects `.
Y.13. Center-unstable cone field for the first return map: For c> 0 and x ∈ σ , we denote

Ccu
c (x) = {v ∈ Txσ : v= vs + vcu, vs ∈ Tx F ss

σ , vcu ∈ Ecu ∩ Txσ, and ‖vs‖6 c‖vcu‖}
= C cu

c (x) ∩ Txσ (because Tx F ss
σ = Es(x)).

Then Ccu
c (x) is a cone tangent to σ and transverse to the strong stable leaf

through x.
We assume that there is 0< b< a such that

(a) the center unstable cone Ccu
b (x) of size b is positively invariant and uniformly

expanded; more precisely,
• for every x ∈ σ \ `, one has Df (Ccu

b (x)) ⊂ Ccu
µ0b(f (x)), where µ0 is the

constant defined in item (Y.10);
• for every v ∈ Ccu

b (x), we have ‖Df (v)‖ > λu‖v‖, where λu > 2 is the
constant fixed at the beginning of ğ 2.3;

(b) as 0 < b < a, for every x ∈ σ , one has Ccu
b (x) ⊂ C cu

b (x) ⊂ C cu
a (x); as we choose σ

orthogonal to Y and tangent to Es, this implies that, for every x ∈ σ , the sum
Ccu

b (x)+ RY(x) := {u+ v, u ∈ Ccu
b (x), v ∈ RY(x)} is contained in C cu

b (x) (hence in
C cu

a (x));
(c) the boundary of σ is tangent to the cone field Ccu

b ; by the previous item, this
implies that, at every point x ∈ ∂σ , the plane Tx∂σ + RY(x) is contained in
C cu

b (x).

In [31], Morales and Pujals built vector fields satisfying all the conditions above and
proved that Λ0 is a robustly transitive attractor. We now give a brief summary of their
argument.

Idea of the proof of the Morales–Pujals example. They prove that every vector
field Y ′ close enough to Y admits a well-defined return map on σ outside a segment
`′, the intersection of the local stable manifold of the singular point with σ . (`′ is some
kind of continuation of `.) Furthermore, the first return map preserves the cone field C cu

a
and expands the vectors by a factor larger than λu. As λu is strictly larger than 2, for any
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Figure 3. The first return map.

(non-trivial) segment ω in σ tangent to Ccu
b , there is n> 0 such that f ′n(ω) cuts `′ twice;

that is, it makes an entire turn around the annulus σ . This implies that f ′n(ω) cuts
every strong stable leaf on σ . As a consequence, any two periodic orbits in the maximal
invariant set Λ′0 =

⋂
t>0 φ

Y ′
t (U0) are homoclinically related, and their unstable manifolds

are dense in Λ′0. The same argument proves that the stable manifold of the singularity
and of every periodic orbit is dense in U0. They deduce that Λ′0 is a transitive attractor
containing the singularity; furthermore, Λ′0 is the homoclinic class of a periodic orbit: in
particular, the periodic orbits are dense in Λ′0. �

The proof of Theorem A follows the same framework as the argument above. In that
argument, the fact that a segment tangent to the cone field Ccu

b and cutting `′ twice
needs to cut every strong stable leaf will be easier to generalize in higher dimensions if
we consider a cyclic cover of the annulus σ . For this reason, we point out the following
property, satisfied by the Morales–Pujals example (see Figure 3).

Y.14. Lift of the return map f on a cyclic cover of σ : Let ρ0 : σ̃ := [−1, 1] × R→ σ be
the universal cover of σ . Let σ̃0 be a connected component of ρ−1

0 (σ \ `), and let
f̃ : σ̃0→ [−1, 1] × R be a lift of f .

Then the boundary ∂ f̃ (σ̃0) meets every segment [−1, 1] × {s}, s ∈ R, in at most
two points.
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Remark 2.1. Recall that the Morales–Pujals example can be realized as a vector field
on R3 or on a compact 3-ball; as a consequence, every compact 3-manifold carries an
open set of vector fields having a Morales–Pujals attractor.

3. The details of the construction

3.1. The vector field Z, the product of the Morales–Pujals example by S1

Let M0 be a closed 3-manifold endowed with a smooth vector field Y having a robustly
transitive attractor which is a Morales–Pujals attractor as described in ğ 2.

We consider the 4-manifold M = M0 × S1 endowed with the orthogonal product
Riemann metric of the metric on M0 by the canonical metric on S1 = R/Z. A point
x ∈M0 × S1 is of the form x = (x1, x2), where x1 ∈M0 and x2 ∈ S1. We denote by Z the
vector field defined on the 4-manifold M0 × S1 as Z = Y × 0|S1 , where 0|S1 is the zero
vector field on S1. The vector field Z is tangent to each of the factors M0 × {x2}, for
x2 ∈ S1, and its restriction to M0 × {x2} is the vector field Y.

Remark 3.1. As noticed in Remark 2.1, a Morales–Pujals attractor can be realized on
the 3-ball B3. The product B3× S1 can be embedded in any compact 4-manifold. For this
reason, the vector field Z defined above can be carried on any compact 4-manifold.

Let us recall some of the main properties that Z inherits directly from Y.

Topological properties.

Z.1. Recall that U0 is an attracting region for Y. Then the open subset U := U0 × S1 is
an attracting region for Z, and the maximal invariant set of Z in U is Λ=Λ0 × S1.
It is a (non-robustly) chain transitive attractor for Z.

Z.2. The product Σ := σ × S1 = [−1, 1] × S1× S1 is a cross section of the attractor, and
every orbit entirely contained in U and not contained in {p0} × S1 cuts the interior
of Σ .

Z.3. The circle S := {p0} × S1 is invariant and its local stable manifold Ws(S) cuts Σ
along an annulus L := [−1, 1] × {0} × S1 = `× S1.

Z.4. The first return map F of Z on the cross section Σ is well defined (and is a
diffeomorphism) on Σ \ L, and its image is contained in the interior of Σ .

Z.5. The image of the first return map F admits a compactification by the two circles
Q+ := {q+0 }×S1 and Q− := {q−0 }×S1 which are connected components of Wu(S)∩Σ .

Hyperbolic properties of the S1-fibration. One of the main difficulty of our
example comes from the fact that the one-dimensional lamination on Λ whose leaves
are the factors {x1} × S1 is not normally hyperbolic; and, in fact, it is easy to build
perturbations of Z breaking this lamination.

However one has the following.

Z.6. The circle S= {p0} × S1 is a normally hyperbolic circle.
Z.7. Given any regular periodic orbit γ ⊂Λ0 of Y, the torus Γ := γ × S1 is a normally

hyperbolic torus.
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Hyperbolic properties of the flow.

Z.8. Z admits a partially hyperbolic splitting on Λ:
(a) the (one-dimensional) strong stable direction Ess,Z is well defined on the whole

attracting region U, and Ess,Z(x1, x2), for (x1, x2) ∈ U = U0 × S1, is just the
strong stable direction Es at x1;

(b) the center-unstable direction Ecu,Z at (x1, x2) ∈ Λ is the product of the
center-unstable direction Ecu at x1 by the tangent lines to the factor {x1} × S1;

in the previous section, we have chosen a (non-ΦY -invariant) extension of Ecu

on U0 such that Y(x1) ∈ Ecu(x1), for every x1 ∈ U0; we denote by Ecu,Z the
corresponding extension on U of the center-unstable direction: Ecu,Z(x1, x2) is the
product of Ecu(x1) by the tangent lines to the factor {x1} × S1.

Z.9. The splitting Ess,Z ⊕ Ecu,Z on U allows us to define a cone field:

C cu,Z
a = {v ∈ TM × S1 : v= vs + vcu, vs ∈ Ess,Z, vcu ∈ Ecu,Z, and ‖vs‖6 a‖vcu‖}.

Recall that
• each factor M0 × {x2} is invariant by ΦZ and ΦZ induces ΦY on each factor;
• the cone field C cu

a is invariant by ΦY
t (t > 1);

• the vectors tangent to Ess,Z are uniformly contracted by ΦZ
t (t > 1), and ΦZ

t
preserves the norm of the vectors tangent to the S1 factor.

One deduces the following lemma.

Lemma 3.2. The cone field C cu,Z
a is invariant by ΦZ

t (t > 1); moreover, there is µ ∈
(0, 1) such that, for any t > 1,

ΦZ
t (C cu,Z

a (x))⊂ C cu,Z
µa (φZ

t (x)).

Finally, by item (Y.10(b)), one gets that every three-dimensional subspace B in the
cone field C cu,Z

a (x) (x ∈ U) is volume expanding. More precisely, we have the following.

Lemma 3.3. There is T > 0 such that, for every t > T, every x ∈ U, and every
three-dimensional subspace B⊂ C cu,Z

a (x), one has

det(ΦZ
t |B) > λcu > 2.

Proof. Simply notice that ΦZ
t (B) converges uniformly to Ecu,Z(φZ

t (x)) as t→+∞. Then
the claim follows from the uniform volume expansion on Ecu,Z . �

Hyperbolic properties of the first return map.

Z.10. Stable foliation of the first return map: We denote by F ss
Σ the one-dimensional

foliation on Σ = σ × S1 which is tangent to each factor σ × {x2} and coincides with
F ss,Y
σ on this factor. This foliation is invariant by the first return map F and is

uniformly contracted by F by the factor (λs)−1 < 1.
Z.11. Notice that, for any regular periodic orbit γ ⊂ Λ0 of Y, Wu(Γ ), the unstable

manifold of the normally hyperbolic torus Γ = γ × S1, is Wu(γ ) × S1. Thus
Wu(Γ ) ∩Σ intersects every leaf of F ss

Σ and L.
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Z.12. Center-unstable cone field for the first return map: For x ∈Σ , we denote

Ccu,Z
b (x) = {v ∈ TxΣ : v= vs + vcu, vs ∈ Tx F ss

Σ , vcu ∈ Ecu,Z ∩ TxΣ, and ‖vs‖6 b‖vcu‖}
= C cu,Z

b (x) ∩ TxΣ.

Then Ccu,Z
b (x) is a cone tangent to Σ and transverse to the strong stable leaf

through x. Moreover:
(a) notice that Ecu,Z ∩ TxΣ is the product by the S1 direction of the distribution

Ecu ∩ Tσ defined on the three-dimensional model; now, as in item (Z.9), we
deduce the DF-invariance of the cone field Ccu,Z

b from the Df -invariance of the
cone field Ccu

b ; more precisely, there is µ ∈ (0, 1) such that, for every x ∈Σ \ L,
one has

DF(Ccu,Z
b (x))⊂ Ccu,Z

µb (F(x));
(b) for every x ∈ Σ , the sum Ccu,Z

b (x) + RZ(x) is contained in C cu,Z
b (x) (hence in

C cu,Z
a (x));

(c) the boundary ∂Σ is tangent to the cone field Ccu,Z
b ; by the previous item, this

implies that, at every point x ∈ ∂Σ , the 3-space Tx∂Σ + RZ(x) is contained in
C cu,Z

b (x).
Z.13. Volume expansion in the center-unstable cone field: Recall that the vector field Y

has been defined for an arbitrary a> 0 and λu > 2, and uses a constant b ∈ (0, a).
Let P ⊂ Ccu,Z

b (x) be a plane contained in the center-unstable cone field at a
point x. If a has been chosen small enough, then b is also very small. Then, the
determinant det(DF|P) is almost equal to the determinant det(DF|Q), where Q is a
plane generated by a vector in the cone field Ccu

b and the vector tangent to the S1

factor; as the S1 direction is preserved by F, and the action of DF on this direction
is by isometry, det(DF|Q) is larger than λu (by definition of the vector field Y). One
deduces that for λu large enough and a small enough there is λ > 2 such that, for
any x ∈Σ and any plane P⊂ Ccu,Z

b (x), one has

det(DxF|P) > λ > 2.

3.2. Vector fields in a neighborhood of Z

Most of the properties of the vector field Z persist in a small neighborhood of Z,
sometimes needing to be a little bit changed. More precisely, given any hyperbolic
periodic orbits γ, γ ′ ⊂Λ0 of the vector field Y, there is a neighborhood U1 ⊂ X 1(M0×S1)

of Z such that, for any X ∈ U1, one has the following properties.

Topological properties.

X.1. The open subset U = U0 × S1 is an attracting region for X. We denote by ΛX

the maximal invariant set of X in U, that is, ΛX =
⋂

t>0 φ
X
t (U). It is a (possibly

non-chain transitive) attractor for X.
X.2. The circle S = {p0} × S1 is normally hyperbolic for Z; hence it has a unique

continuation SX for X. The circle SX is φX-invariant, normally hyperbolic, and X
has no singularities in U \ SX .
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X.3. The torus γ×S1(γ ′×S1) has a unique continuation ΓX(Γ
′

X) which is a φX-invariant,
normally hyperbolic torus.

X.4. The product Σ = σ × S1 = [−1, 1] × S1 × S1 is a cross section of X, and every orbit
of X entirely contained in U and not contained in SX cuts the interior of Σ .

X.5. The local stable manifold Ws(SX) cuts Σ along an annulus LX which varies
continuously with X, and whose boundary is contained in the boundary of Σ .
In particular, if the neighborhood U1 is small enough, then LX is C1-close to
L= [−1, 1] × {0} × S1.

X.6. The local stable manifold Ws(ΓX) cuts Σ along an annulus IX which varies
continuously with X, and whose boundary is contained in the boundary of Σ .

X.7. The first return map FX of X on the cross section Σ is well defined (and is a
diffeomorphism) on Σ \ LX , and its image is contained in the interior of Σ .

X.8. The image of the first return map FX admits a compactification by the two circles
Q+,X and Q−,X which are the connected components of Wu(SX)∩Σ obtained as the
unique continuation of Q+ and Q− (these intersections are transversal, and hence
vary continuously with X). For U1 small enough, Q+,X and Q−,X are C1-close to Q+
and Q−, respectively.

Hyperbolic properties of the flow.

X.9. X admits a partially hyperbolic splitting on ΛX .
(a) The strong stable direction Ess,X is well defined on the whole attracting region

U and varies continuously with X; the center-unstable direction Ecu,X is well
defined on ΛX ;

(b) the cone field C cu,Z
a defined on U is transverse to Ess,X , and is invariant by ΦX

t
for t > 1; furthermore, up to increase a little bit the constant µ < 1, one has
for t > 1,

ΦX
t (C cu,Z

a (x))⊂ C cu,Z
µa (φX

t (x));
(c) moreover, up to shrink a little bit λcu > 2, every three-dimensional subspace B

in the cone field C cu,Z
a (x) (x ∈ U) is volume expanding by ΦX

t ; that is, for t > T,
the determinant det(ΦX

t |B) satisfies

det(ΦX
t |B) > λcu.

Hyperbolic properties of the first return map.

X.10. Stable foliation of the first return map: Notice that the flow φX admits a strong
stable foliation F ss,X(x). The foliation F ss,X

Σ on Σ = σ × S1 whose leaves are the
projection along the orbits of X of F ss,X(x) is invariant by FX and uniformly
contracted by FX by the factor (λs)−1 < 1 (up to shrink a little bit λs > 1).

X.11. Notice that the unstable manifold Wu(ΓX) varies continuously with X on the
compact parts. One deduces that, for X close enough to Z, one has that Wu(ΓX)∩Σ
intersects every leaf of F ss,X

Σ and LX .
So we choose U1 such that these properties hold on U1.
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X.12. Center-unstable cone field for the first return map: Then Ccu,Z
b (x) is a cone

tangent to Σ and transverse to the strong stable leaf of F ss,X through x. Moreover,
one has the following proposition.

Proposition 3.4. For any 0 < µ < µ′ < 1 and any 2 < λ′ < λ, there is a
C1-neighborhood U3 ⊂ U1 of Z such that, for every X ∈ U3 and every x ∈ Σ \ LX, one
has

DFX(C
cu,Z
b (x))⊂ Ccu,Z

µ′b (FX(x)).

Furthermore, for every plane P contained in Ccu,Z
b (x), one has

det(DxFX|P) > λ′ > 2.

Proof. For X close to Z, the Poincaré return time associated to FX is uniformly bounded
out of a small neighborhood of L. Hence, up to increase a little bit µ < 1, for X close to Z
and x out of this small neighborhood of L, one has

DFX(C
cu,Z
b (x))⊂ Ccu,Z

µb (FX(x)).

Thus, we only need to consider the points in a small neighborhood of L.
Consider a′ such that 0 < a′ < µb. By the definition of the cone fields C cu,Z

c (x) and
Ccu,Z

c (x), for any point x ∈Σ , we have

C cu,Z
a′ (x) ∩ TxΣ ⊂ Ccu,Z

µb (x).

Recall that Ccu,Z
b (x) ⊕ RZ(x) ⊂ C cu,Z

b (x), and 0 < b < a. As a consequence, we get the
following.

Lemma 3.5. There exists a C1-neighborhood of Z such that, for any X in this
neighborhood and any x ∈Σ, we have

Ccu,Z
b (x)⊕ RX(x)⊂ C cu,Z

a (x).

Lemma 3.6. There are t0 > 0 and a C1-neighborhood of Z such that, for any t > t0 and
any X in that neighborhood, one has

ΦX
t (C cu,Z

a (x))⊂ C cu,Z
a′ (φX

t (x)).

Proof. Fix some a′′ < a′. Using the partial hyperbolicity of Z, one gets t0 > 0 such that,
for any t > t0, one has ΦZ

t (C cu,Z
a ) ⊂ C cu,Z

a′′ . Now, by continuity and compactness, one gets
ΦX

t (C cu,Z
a )⊂ C cu,Z

a′ , for XC1-close to Z. �

We now choose a C1-neighborhood Ũ3 of Z and a neighborhood Uδ of L in Σ such that

• Ũ3 is contained in the neighborhoods of Z stated in Lemmas 3.5 and 3.6;
• for any x ∈Σ \ Uδ and any X ∈ Ũ3, one has

DFX(C
cu,Z
b (x))⊂ Ccu,Z

µ′b (FX(x));
• for any x ∈ Uδ and any X ∈ Ũ3, the Poincaré return time τX(x) of x is greater than t0.
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Now, the main step of the proof is the following lemma.

Lemma 3.7. For any X ∈ Ũ3 and any x ∈Σ \ LX, one has

DFX(C
cu,Z
b (x))⊂ Ccu,Z

µ′b (FX(x)).

Proof. Suppose, to the contrary, that there exist x ∈ Uδ and v ∈ Ccu,Z
b (x) such that

DFX(v) 6∈ Ccu,Z
µb (FX(x)).

Hence DFX(v) 6∈ C cu,Z
a′ (FX(x)).

Notice that ΦX
τX(x)(v)− DFX(v) ∈ RX(FX(x)); thus there is v′ ∈ RX(x) such that

ΦX
τX(x)(v− v′)= DFX(v) 6∈ C cu,Z

a′ (FX(x)).

However, v ∈ Ccu,Z
b (x) and Ccu,Z

b (x) + RX(x) ⊂ C cu,Z
a (x), because X ∈ Ũ3. As a

consequence, one has v− v′ ∈ C cu,Z
a (x). As X ∈ Ũ3 and τX(x) > t0, this implies that

ΦX
τX(x)(v− v′) ∈ C cu,Z

a′ (FX(x)).

This contradiction proves that Ccu,Z
b is positively invariant. �

To end the proof of the proposition, it remains to prove the area expansiveness on
planes in the cone field Ccu,Z

b .
As before, by replacing λ by λ′ (with 2 < λ′ < λ), for x out of a small neighborhood of

L and X C1 close to Z, every plane in Ccu,Z
b (x) is area expanded by the first return map

FX by a factor larger than λ′.
For any plane P contained in Ccu,Z

b (x) and X ∈ Ũ3, we have

P⊕ RX(x)⊂ C cu,Z
a (x).

Thus ΦX
t is volume expanding on P⊕ RX(x); that is, for t > T, one has

det(ΦX
t |P⊕RX(x)) > λ

cu.

For a point x close to L and X close to Z, the Poincaré return time τX(x) is arbitrary
large. Hence, the expanding rate

det(ΦX
τX(x)|P⊕RX(x)) > (λ

cu)

[
τX (x)

T

]
is arbitrary large.

On the other hand, RX(x) is invariant by ΦX
t , and the angle between RX(x) and TΣ is

uniformly away from zero. This implies that det(DxFX|P) > λ′ as τX(x) is large enough. �

3.3. Performing a perturbation of Z

Recall that U1 is the C1-neighborhood of Z built in ğ 3.2.
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Lemma 3.8. There exists a non-empty open subset U2 ⊂ U1 containing Z in its closure
(i.e., Z ∈ U2) such that, for any X ∈ U2, we have

• the flow restricted on SX, denoted by φX
t |SX , is Morse–Smale: the chain recurrent set

of φX
t |SX is the set of two singularities pX

1 and pX
2 . The points pX

1 and pX
2 are singular

saddles of X, whose indices are Ind(pX
1 )= 3 and Ind(pX

2 )= 2;
• the flow restricted on ΓX, denoted by φX

t |ΓX , is Morse–Smale: the chain recurrent set
of φX

t |ΓX is the set of two periodic orbits γ X
1 and γ X

2 , whose indices (in the ambient
manifold M) are Ind(γ X

1 ) = 2 and Ind(γ X
2 ) = 1 (the index of a hyperbolic set is the

dimension of its contracting bundle);
• cl(Wu(ΓX))= cl(Wu(γ X

2 ))= cl(Wu(γ X
1 )), and cl(Ws(ΓX))= cl(Ws(γ X

1 ))= cl(Ws(γ X
2 )).

Remark 3.9. Note that Z 6∈ U2.

Lemma 3.8 is a direct consequence of the following result (be aware that the notation
in this proposition is not coherent with the notation in other parts of the paper).

Proposition 3.10. Let f : V0→ M be a diffeomorphism onto its image defined on an
open subset V0 of a manifold M. Assume that K ⊂ V0 is a f -invariant transitive compact
subset which is a uniformly hyperbolic non-trivial basic set for f (non-trivial means that it
is not reduced to a periodic orbit); let V ⊂ V0 be an isolating neighborhood of K. Let y ∈ K
denote a periodic point of f and π(y) its period.

Let F0 := (f , id
S1
) : V0 × S1→M × S1. For every neighborhood W0 of F0 in Diff1(V0 ×

S1,M×S1) for the classical compact open C1-topology, there is a diffeomorphism F1 ∈W0

and there is a neighborhood W1 ⊂W0 of F1 with the following properties.

• The diffeomorphism F1 is of the form F1(x, s) = (f (x), ϕx(s)), where {ϕx}x∈V0 is a
continuous family of circle diffeomorphisms such that ϕx = id

S1
for x 6∈ V;

• the normally hyperbolic (periodic) circle 6C = {y} × S1 contains precisely 2 periodic
points y1 = (y, 0) and y2 = (y, 1

2 ) for F1 which are hyperbolic;
• the circle C admits a well-defined continuation CF which is an Fπ(y)-invariant

normally hyperbolic circle, for every F ∈ W1; furthermore, CF contains exactly
two periodic points y1,F and y2,F which are hyperbolic and vary continuously with
F ∈W1;
• for every F ∈W1, one has

cl(Wu(CF))= cl(Wu(y1,F))= cl(Wu(y2,F)),

and

cl(Ws(CF))= cl(Ws(y1,F))= cl(Ws(y2,F)).

In order to apply Proposition 3.10 to Lemma 3.8, we will consider M = int(σ ) and
M × S1 = int(Σ).

6 In order to be completely rigorous, the orbit of C is a normally hyperbolic invariant manifold.
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Proof of Lemma 3.8. The first return map F of the vector field Z on Σ = σ × S1 is the
product (f , id

S1
), where f : σ \`→ int(σ ) is the first return map on σ of the vector field Y.

We consider y and y′ being intersection points of γ and γ ′ with σ . By item Y.12 on the
vector field Y, the periodic orbits γ and γ ′ are homoclinically related. As a consequence,
there is a hyperbolic non-trivial basic set7K ⊂ σ \(`∪∂σ) of f which contains y and y′. We
fix an open neighborhood V0 of K which is relatively compact in σ \ (` ∪ ∂σ). Hence the
first return map induces a diffeomorphism denoted by F0 := (f , id

S1
) : V0 × S1→ int(Σ).

We choose an isolating neighborhood V ⊂ V0 of K. We consider a diffeomorphism F1,
arbitrarily C1-close to F0, given by Proposition 3.10. Notice that F1 coincides with F0

out of V × S1. We write F1 = G ◦ F0, where G = F1 ◦ F−1
0 is a diffeomorphisms of Σ \ L

which is the identity map out of V × S1; notice that G extends by continuity as being the
identity map on L.

This allows us to realize F1 as the first return map of a vector field X1 which is
C1-close to Z, leaves invariant the S1-fibration, and coincides with Z out of φZ

[− 1
2 ,0]

(Σ);

for that, we choose X1 in φZ
[− 1

2 ,0]
(Σ) in such a way that, for every x ∈Σ , one has

φ
X1
1
2

(φZ
− 1

2
(x))= G(x).

In this construction, if G is C1-close to the identity map, then we can choose the
vector field X1 to be C1-close to Z; more precisely, given a neighborhood U of Z,
Proposition 3.10 ensures that we can choose F1 arbitrarily C1-close to F0 so that the
vector field X1 can be chosen in U . As stated by Proposition 3.10, F1 has exactly two
hyperbolic points, y1 and y2, on {y} × S1

Let W1 be the C1-neighborhood of F1 in Diff(V0 × S1, int(Σ)) stated by
Proposition 3.10. There is a C1 neighborhood U ′ of X1 such that the first return map FX

of every vector field X ∈ U ′ belongs to W1. Every vector field X ∈W1 has a well-defined
normally hyperbolic torus ΓX , a continuation of γ × S1, and ΓX contains exactly two
periodic orbits γ X

1 and γ X
2 with different indices, and one has

cl(Wu(ΓX))= cl(Wu(γ X
2 ))= cl(Wu(γ X

1 )). and cl(Ws(ΓX))= cl(Ws(γ X
1 ))= cl(Ws(γ X

2 )).

We have proved that the vector fields in U ′ satisfy items (2) and (3) of Lemma 3.8. To
end the proof of Lemma 3.8, it remains to build a smaller open set in which item (1) is
also satisfied.

For that, we fix a neighborhood O of the circle {p0} × S1 which is disjoint from the
Z-orbit segments joining the points in V0 × S1 to their image by the first return map F0.
Notice that O is also disjoint from the X1-orbit segments joining the points in V0 × S1

to their image by the first return map F1. Now we perform a C1 small perturbation X2

of X1 such that X2 ∈ U ′, X2 preserves the S1-fibration, and {p0} × S1 contains exactly

7 Indeed, as γ and γ ′ are hyperbolic periodic orbits, there is a hyperbolic basic set of Y containing γ

and γ ′; the intersection of this basic set and the cross section σ is the stated basic set K of the first
return map f .
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Figure 4. A Markov partition for a basic set K1 ⊂ K.

two hyperbolic singularities, p1 and p2. Now, every vector field X in a sufficiently small
C1-neighborhood U2 of X2 satisfies all the stated properties. �

3.4. Proof of Proposition 3.10

3.4.1. Sketch of the proof. Proposition 3.10 is essentially a particular case of
[6, Theorem B] which performs a perturbation of a product diffeomorphism (f , idN),
where idN is the identity map of an arbitrary compact manifold N (for us N = S1) and f
admits a hyperbolic attractor Λ; this perturbation turns Λ × N in a robustly transitive
attractor.

The proof of Proposition 3.10 follows very closely the one of [6, Theorem B], in
particular, by the use of [6, Theorem 3.5].

• We first choose a hyperbolic basic set K1 ⊂ K of f , having a Markov partition by
disjoint compact cubes with a prescribed incidence matrix (see Figure 4).

• This allows us to perform an explicit smooth 2-parameter family Fα,β of
perturbations of F0 = (f , id

S1
) with a prescribed effect on K1 × S1 (see Figure 5). In

particular, there is a periodic fiber C containing exactly 2 hyperbolic periodic points
y1 and y2.

• For every small α > 1, the map Fα,β has two disjoint hyperbolic basic sets, and [9]
proves that one of them is a cs-blender containing y1 and the other is a cu-blender
containing y2, according to the terminology of [6].

The cs-blenders are some kind of fat hyperbolic sets displaying an open region
(called here the characteristic region of the blender) such that any strong unstable
disc crossing this characteristic region cuts (in a C1-robust way) the strong stable
manifold of the blender.
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Figure 5. A two-parameter family Fα,β of perturbations of F0.

• Then, [6] proves that the stable manifold of every periodic orbit in the cs-blenders
contains in its closure the stable manifold of every periodic saddle whose unstable
manifold cuts the characteristic region of the blender.

• When the parameter β is irrational, we will prove that the unstable (respectively,
stable) manifold of any saddle in K1 × S1 crosses the characteristic region of the
cs-blender (respectively, cu-blender).

• We will apply this argument to the orbits of y1 and y2. We will obtain that, for
small α > 1 and for β 6∈ Q, the closure of the invariant manifolds of the orbits of y2

and of y2 coincide robustly with the closure of the invariant manifold of the fiber C,
concluding the proof.

3.4.2. Markov partition and basic set. As K is a non-trivial basic set, there is
another periodic point z ∈ K, homoclinically related with y. Let π(z) denote its period.
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Lemma 3.11. There exist

• a basic set K1 ⊂ K,

• rectangles ∆1 and ∆2, centered at y and z respectively, which in the local chart at y
and z are the products ∆i =∆s

i ×∆u
i , for i= 1, 2,

• disjoint horizontal subrectangles H1 = ∆s
1 × B1,H2 = ∆s

1 × B2,H3 = ∆s
1 × B3 of ∆1

and H4 =∆s
2 × B4,H5 =∆s

2 × B5 of ∆2,

• vertical subrectangles V1 = B′1 × ∆u
1,V2 = B′2 × ∆u

1,V3 = B′3 × ∆u
1 of ∆1 and

V4 = B′4 ×∆u
2,V5 = B′5 ×∆u

2 of ∆2,

• and strictly positive integers n1, . . . , n5,

such that

• n1 = π(y) and n4 = π(z),
• the f n(Hj), n ∈ {1, . . . , nj − 1} are pairwise disjoint and disjoint from ∆1 ∪∆2, and

• f n1(H1)= V1, f n2(H2)= V2, f n3(H3)= V5, f n4(H4)= V4, and f n5(H5)= V3.

Idea of the proof. As the points y and z are homoclinically related, they belong to
the same basic set K. This basic set K admits a Markov partition M0 = {Ri}i∈I . By
considering a refinement Mi = {f−n(Ri−n)∩f−n+1(Ri−n+1)∩· · ·∩f n(Rin)}, one gets Markov
partitions whose rectangles are arbitrarily small.

We fix a homoclinic orbit pyy of y, a heteroclinic orbit pyz going from y to z, and a
heteroclinic orbit pzy going from z to y. Then one gets the stated rectangles as follows.

• Let ∆1, ∆2, ∆yy, ∆yz, and ∆zy be the rectangles of Mn containing y, z, pyy, pyz and
pzy, respectively.

• We denote n1 = π(y) and n4 = π(z), and H1 = f−n1(∆1)∩∆1 and H4 = f−n4(∆2)∩∆2.
Now, we put V1 = f n1(∆1) ∩∆1 and V4 = f n4(∆2) ∩∆2.

• Consider the smallest number of T1 > 0 and T2 > 0 such that f−T1(∆yy) ∩ ∆1 6= ∅
and f T2(∆yy)∩∆1 6= ∅; then we denote H2 = f−T1(∆yy)∩∆1 and V2 = f T2(∆yy)∩∆1.
We denote n2 = T1 + T2.

• Consider the smallest number of T3 > 0 and T4 > 0 such that f−T3(∆yz) ∩ ∆1 6= ∅
and f T2(∆yz) ∩∆2 6= ∅; then we denote H3 = f−T3(∆yz) ∩∆1 and V3 = f T3(∆yz) ∩∆2.
We denote n3 = T3 + T4.

• Consider the smallest number of T5 > 0 and T6 > 0 such that f−T5(∆zy) ∩ ∆2 6= ∅
and f T6(∆zy) ∩∆1 6= ∅; then we denote H5 = f−T5(∆zy) ∩∆2 and V5 = f T6(∆zy) ∩∆1.
We denote n5 = T5 + T6.

The construction above depends on the Markov partition Mn we considered; however,
we have omitted the dependence on n for simplicity. When the rectangles of Mn are
small enough (i.e., for n large enough), the construction above satisfies all the stated
properties.

Finally,
⋃5

i=1{Hi, . . . , f ni−1Hi} is a Markov partition generating a basic set K1

contained in K, contained in the interior of
⋃5

i=1

⋃ni−1
j=0 f j(Hi), and containing y and z. �
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We denote by K0 ⊂ K1 the basic set which is the maximal invariant set in⋃2
i=1

⋃ni−1
j=0 f j(Hi). Notice that the map g : H1 ∪ H2→ ∆1 which is f ni on Hi is a usual

Smale horseshoe. We denote by y′ ∈ K0 the fixed point of f n2 contained in H2 ∩ V2 (hence
in ∆1).

3.4.3. Family of perturbations. Let ϕα : S1 → S1 be a diffeomorphisms varying
smoothly with α ∈ [1, 2] such that

• ϕ1 is the identity map of S1;

• ϕα(s)= αs for s ∈ [−1
8 ,

1
8 ];

• ϕα(s)= 1
2 + α−1(s− 1

2 ) for s ∈ [12 − α
8 ,

1
2 + α

8 ];
• for α > 1, the diffeomorphism ϕα has no other fixed points than 0 and 1

2 :

Fix(ϕα)=
{

0,
1
2

}
.

Given any α ∈ [1, 2] and β ∈ R, we choose a diffeomorphism Fα,β : V0 × S1→M × S1

such that Fα,β is of the form Fα,β(x, s) = (f (x), ϕα,β,x(s)), where {ϕα,β,x}α∈[1,2],β∈R,x∈V0 is
a continuous family of circle diffeomorphisms such that

• ϕα,β,x = id
S1

for x 6∈ V and for x ∈⋃5
i=1

⋃ni−1
j=0 f j(Hi) \ (H1 ∪ H2 ∪ H4);

• ϕα,β,x = ϕα for x ∈ H1;

• ϕα,β,x(s)= s+ β for x ∈ H4;

• ϕα,β,x(s)= ϕα(s)+ α−1
100 for x ∈ H2.

Notice that there is α0 ∈ (1, 2] and β0 > 0 such that, for every α ∈ [1, α0] and any
β ∈ [−β0, β0], the S1-bundle over K is normally hyperbolic.

Now, for every α ∈ (1, α0] and β ∈ [−β0, β0], the circle C = {y} × S1 is an invariant
normally hyperbolic circle of the diffeomorphism Fπ(y)α,β , and it contains exactly two fixed

points (for Fπ(y)α,β ): the point y1 = (y, 0) (of index equal to the index of y for f π(y)) and the
point y2 = (y, 1

2 ) (of index equal to the index of y for f π(y) plus 1).
As a consequence, for the diffeomorphism Fα,β , one has

cl(Wu(C))= cl(Wu(y1))⊃ cl(Wu(y2)), and cl(Ws(C))= cl(Ws(y2))⊃ cl(Ws(y1)).

Furthermore, these properties are robust: there is a C1-neighborhood W3 of Fα,β such
that the circle C has a normally hyperbolic continuation CF for F ∈W3, containing the
hyperbolic continuations y1,F and y2,F, and one has

cl(Wu(CF))= cl(Wu(y1,F))⊃ cl(Wu(y2,F)),

and

cl(Ws(CF))= cl(Ws(y2,F))⊃ cl(Ws(y1,F)).

3.4.4. Existence of the blender. Now, Proposition 3.10 is a straightforward
consequence of Lemma 3.12 below.
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Lemma 3.12. For every α ∈ (1, α0] and any irrational β ∈ [−β0, β0] \ Q, there is a
neighborhood Wα,β of Fα,β such that, for every F ∈Wα,β , one has

cl(Wu(y1,F))⊂ cl(Wu(y2,F)),

and

cl(Ws(y2,F))⊂ cl(Ws(y1,F)).

Proof. For any Fα,β , one can define the map Gα : (H1 ∪ H2) × S1→ ∆1 × S1, which is
Fni
α,β on Hi × S1. Notice that Gα coincides with the map (x, s) 7→ (f ni(x), ϕα,β,x(s)). (Thus

Gα does not depend on β, as ϕα,β,x does not depend on β on H1 ∪ H2.) One deduces the
following.

• The circle {y′} × S1 is invariant, normally hyperbolic, and contains two fixed points
y′1,α = (y′,− 1

100 ) and y′2,α = (y′, 1
2 + α

100 ).

• The restriction of Gα to the cubes H1 × [−1
8 ,

1
8 ] and H2 × [−1

8 ,
1
8 ] is a

hyperbolic basic set; as a consequence, the maximal invariant set of Fα,β in(⋃2
i=1

⋃ni−1
j=0 f j(Hi)

)
× [−1

8 ,
1
8 ] is a hyperbolic basic set denoted by K0

1,α, which

contains y1 and y′1,α. Furthermore, the hyperbolic set K0
1,α is also partially

hyperbolic, the tangent bundle to the S1 direction being the center direction, and
this direction is the weak unstable direction.
• The restriction of Gα to the cubes H1 × [12 − 1

8 ,
1
2 + 1

8 ] and H2 × [12 − 1
8 ,

1
2 + 1

8 ]
is a hyperbolic basic set; as a consequence, the maximal invariant set of Fα,β in(⋃2

i=1

⋃ni−1
j=0 f j(Hi)

)
× [12 − 1

8 ,
1
2 + 1

8 ] is a hyperbolic basic set denoted by K0
2,α,

which contains y2 and y′2,α. Furthermore, the hyperbolic set K0
2,α is also partially

hyperbolic, the tangent bundle to the S1 direction being the center direction, and
this direction is the weak stable direction.

According to the terminology of [6], it is proved in [9] that the hyperbolic set K0
1,α

is a cs-blender. Every disc8D tangent to a small cone field around the strong unstable
direction and crossing ∆1 × [−1

8 ,
1
8 ] between the local stable manifolds of the points y1

and y′1,α meets the local stable manifold of K0
1,α. Furthermore, this property is robust,

that is, it holds for the diffeomorphisms F in a small C1-neighborhood of Fα,β for the
continuations of K0

1,F, y1,F, y′1,F for F of K0
1,α, y1, y′1,α. As a consequence, [6] proved that,

if the unstable manifold Wu(y2) contains a disc tangent to the unstable cone field and
crossing ∆1 × [−1

8 ,
1
8 ] between the local stable manifolds of the points y1 and y′1,α, then

cl(Ws(y2,F))⊂ cl(Ws(y1,F)) for every F in a small C1-neighborhood of Fα,β .
In the same way, the hyperbolic set K0

2,α is a cu-blender. Every disc D tangent to a
small cone field around the strong stable direction and crossing ∆1 × [12 − 1

8 ,
1
2 + 1

8 ]
between the local stable manifolds of the points y2 and y′2,α meets the local
unstable manifold of K0

2,α. Furthermore, this property is robust, that is, it holds
for diffeomorphisms F in a small C1-neighborhood of Fα,β for the continuations

8 A curve is a one-dimensional disc here. So we use the word disc to express a curve sometimes.
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of K0
2,F, y2,F, and y′2,F for F of K0

2,α, y2, and y′2,α. Furthermore, if the stable manifold
Ws(y1) contains a disc tangent to the stable cone field and crossing ∆1 × [12 − 1

8 ,
1
2 + 1

8 ]
between Wu

loc(y2) and Wu
loc(y

′
2,α), then cl(Wu(y1,F)) ⊂ cl(Wu(y2,F)) for every F in a small

C1-neighborhood of Fα,β .
To end the proof, it only remains to prove claim 1 below.

Claim 1. For every irrational β ∈ [−β0, β0] \ Q, the unstable manifold Wu(y2) contains
a disc tangent to the unstable cone field and crossing ∆1 × [−1

8 ,
1
8 ] between Ws

loc(y1) and
Ws

loc(y
′
1,α), and the stable manifold Ws(y1) contains a disc tangent to the stable cone field

and crossing ∆1 × [12 − 1
8 ,

1
2 + 1

8 ] between Wu
loc(y2) and Wu

loc(y
′
2,α).

Proof. The circle {z} × S1 is a periodic normally hyperbolic circle of period π(z) = n4

on which Fn4
α,β induces a rotation Rβ , hence an irrational rotation. The local dynamics is

the product map of f n4 by the rotation Rβ . As f n3(H3)= V5 ⊂∆2, the unstable manifold
Wu(y2) contains an unstable disc crossing ∆2 × S1. Using iteration of Fn4

α,β , one gets
that every unstable disc contained in Wu({z} × S1) is a limit of unstable discs in Wu(y2).
Now, using the fact that f n5(H5) = V3, one gets that Wu({z} × S1) contains an unstable
disc crossing ∆1 × [−1

8 ,
1
8 ] between Ws

loc(y1) and Ws
loc(y

′
1,α); hence, the same happens for

Wu(y2).
One argues in the same way, using negative iterates of Fα,β for getting the property on

Ws(y1). �

�

In the next section, we will prove there is a C1 neighborhood U and a local generic set
R⊂ U such that, if X ⊂R, the attractor ΛX is transitive.

4. Proof of the transitivity

Lemma 3.8 built an open set U2 (containing Z in its closure). Vector fields in U2 have
exactly two singular points pX

1 and pX
2 contained in the circle SX , and two periodic orbits

in the torus ΓX .
In this section, we will prove that there exists a C1 neighborhood U0 such that, for

every vector field X ∈ U0 ∩U2, ΛX is a transitive attractor if the following two hypotheses
hold.

(H1) Wu(pX
1 ) ∩Ws(pX

2 )= ∅;
(H2) Wu(pX

1 ) ∩Ws(ΓX)= ∅.
In particular, the following is the main theorem of this paper.

Theorem 4.1. There exists a C1 neighborhood U0 of Z such that, for every X ∈ U0 ∩ U2

satisfying (H1) and (H2), ΛX is a transitive attractor.

To this end, we will prove of the density of the stable and unstable manifold of ΓX .

Proposition 4.2. There exists a C1 neighborhood U0 of Z such that, for every
X ∈ U0 ∩ U2 satisfying (H1) and (H2), Ws(ΓX) is dense in U.
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Figure 6. Covering.

Proposition 4.3. There exists a C1 neighborhood U0 of Z such that, for every X ∈ U0,
Wu(ΓX) is dense in ΛX.

We will give the proof of the above two propositions in ğğ 3.3 and 3.4. We first
introduce the covering of the cross section Σ .

4.1. The covering map

We consider the covering map of Σ ,

ρ : Σ̃ := [−1, 1] × R× S1→Σ.

An essential annulus of Σ̃ is an embedding of [−1, 1] × S1 in Σ̃ whose boundary is
contained in the boundary {−1, 1}×R×S1 of Σ̃ and which is isotopic to [−1, 1]×{0}×S1

(by an isotopy keeping the boundary on the boundary of Σ̃). Notice that every essential
annulus cuts Σ̃ into two components.

For any vector field X in U3 (where U3 is the open set built in Proposition 3.4), the
preimage ρ−1(LX) is a sequence of disjoint essential annuli Σ̃ , denoted by {L̃X

i }, where
{L̃X

i+1} is the image of {L̃X
i } by the cover automorphism T : (r, s, t) 7→ (r, s+ 1, t).

For any i, the successive annuli L̃X
i and L̃X

i+1 split Σ̃ into three (open) connected
components; one is bounded, and the other two are unbounded, and we denote by Σ̃X

i
the bounded component. Notice that ρ induces a diffeomorphism ρi from Σ̃X

i to Σ \ LX

which is the definition domain of the first return map.
We denote by H+,X and H−,X the open cylinders

H±,X := {±1} × S1 × S1 \ LX .

We denote H̃±,Xi = ρ−1
i (H±,X)⊂ Σ̃X

i . See Figure 6.
We choose a lift F̃X : Σ̃ \⋃i L̃X

i → Σ̃ of the first return map FX , so that

• its restriction F̃i,X : Σ̃X
i → Σ̃ is a diffeomorphism onto its image;

• F̃X commutes with the cover automorphism T ; that is, F̃i+1,X = T ◦ F̃i,X ◦ T −1.

For each i, the image F̃X(Σ̃
X
i ) is a connected subset of Σ̃ . Recall that the circles Q±,X

are the connected components of the intersection of Σ and Wu(SX).
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4.2. Geometric properties of the image F̃X(Σ̃
X
i )

The aim of the section is to show that F̃X(Σ̃
X
i ), for X close enough to Z, is bounded

by the union of two compact C1-annuli Ã+,Xi and Ã−,Xi which intersect exactly on their
boundary, and vary continuously with X. The difficulty here is that the first return map
FX does not vary continuously with X (more precisely, it varies continuously far from LX ,
but not in the neighborhood of LX).

Lemma 4.4. The boundary of F̃X(Σ̃
X
i ) in Σ̃ is the union

F̃X(H̃
+,X
i ) ∪ F̃X(H̃

−,X
i ) ∪ Q̃+,Xi ∪ Q̃−,Xi ,

where Q̃±,Xi is a lift of Q±,X.

Proof. This is a direct consequence of the fact that, for any sequence of regular points
which converges to LX ⊂ Ws(pX

1 ), its image by the first return map must converge to
Q+,X or Q−,X (because the positive orbit of a regular point which is close to the stable
manifold of SX follows the unstable manifold of SX). �

We denote by π : Σ̃ = [−1, 1]×R×S1→ R×S1 the natural projection (r, s, t) 7→ (s, t).
Notice that the projections π(Q̃+,Zi ) and π(Q̃−,Zi ) are disjoint embedded circles

bounding an essential annulus in R × S1 (recall that the circles Q+,Z and Q−,Z are
{q+} × S1 and {q−} × S1, respectively).

As a consequence, one gets the following.

Lemma 4.5. There is a C1-neighborhood U4 ⊂ U3 of Z such that, for every X ∈ U4,
the projections π(Q̃+,Xi ) and π(Q̃−,Xi ) are disjoint embedded circles bounding an essential
annulus in R× S1.

The cone field Ccu,Z
b is transverse to the foliation F ss,Z

Σ whose leaves are the segments
[−1, 1] × {(s, t)}. This cone field is invariant by the first return maps FX for every X ∈ U3.
Furthermore, the boundary of Σ is tangent to this cone field. One deduces that the
images FX(H+,X) and FX(H−,X) are open annulus tangent to Ccu,Z

b , and hence transverse
to the foliation F ss,Z

Σ . One deduces directly the following lemma.

Lemma 4.6. For any X ∈ U3, the projection π induces a local diffeomorphism from
F̃X(H̃

±,X
i ) to R× S1.

As a consequence, one gets the following corollary.

Corollary 4.7. There is a neighborhood U5 ⊂ U4 of Z such that, for any X ∈ U5, the
projection π induces a homeomorphism from F̃X(H̃

±,X
i ) to the open annulus bounded by

π(Q̃+,Xi ) ∪ π(Q̃−,Xi ) in R× S1.

Proof. F̃X(H̃
±,X
i ) is an open C1-annulus whose boundary is contained in Q̃+,Xi ∪ Q̃−,Xi .

The projection is a local diffeomorphism. This implies that the boundary of the
projection is contained in π(Q̃+,Xi ) ∪ π(Q̃−,Xi ). Hence the image π(F̃X(H̃

±,X
i )) is the

open annulus bounded by π(Q̃+,Xi ) ∪ π(Q̃−,Xi ).
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Figure 7. First return map.

One deduces that, for every X ∈ U4, the projection induces a cover from F̃X(H̃
±,X
i ) to

the open annulus bounded by π(Q̃+,Xi ) ∪ π(Q̃−,Xi ).
In order to finish the proof, we need to show that there is one point in the open

annulus bounded by π(Q̃+,Xi ) ∪ π(Q̃−,Xi ) having a unique preimage by π on F̃X(H̃
±,X
i ).

This property is satisfied by the vector field Z.
Furthermore, FX(H±,X) varies continuously on compact subsets, that is, far from LX ,

and LX varies continuously with X. Fix a small neighborhood UL of L = LZ and a small
neighborhood UQ of Q+,Z ∪ Q−,Z such that F(UL)⊂ UQ.

For X C1-close to Z, one has FX(UL) ⊂ UQ. Now, FX varies continuously out of UL.
Hence, for X C1-close to Z, a point in R× S1 \ π(ρ−1(UQ)) has at most one preimage on
F̃X(H̃

±,X
i ), ending the proof.

Lemma 4.8. The union Ã+,Xi = F̃X(H̃
+,X
i )∪Q̃+,Xi ∪Q̃−,Xi is a C1 embedding of the compact

cylinder [−1, 1] × S1. The same holds for Ã−,Xi = F̃X(H̃
−,X
i ) ∪ Q̃+,Xi ∪ Q̃−,Xi .

Proof. First, notice that Ã+,Xi = F̃X(H̃
+,X
i ) ∪ Q̃+,Xi ∪ Q̃−,Xi is compact. We just need to

proof that the tangent plane to F̃X(H̃
+,X
i ) at a point x converges to a plane when x tends

to a point of Q̃+,Xi , and that these limit planes form a continuous family.
Notice that Q±,X ⊂ Wu(SX) is contained in ΛX so that the center-unstable bundle is

well defined on Q±,X .
The tangent plane Tx(H+,X) is contained in the cone field Ccu,Z

b (x) (see Z.12(c) of the
properties of Z) and the sum Tx(H+,X) + RX is contained in C cu,Z

a (x)(by Lemma 3.5).
Furthermore, the cone field Ccu,Z

b (x) is invariant by FX (Proposition 3.4) so that the
tangent plane TFX(x)(FX(H+,X) is contained in Ccu,Z

b (FX(x)).
When x tends to LX , the return time τX(x) tends to infinity. The partial hyperbolicity

of the flow φX implies that ΦX
τX(x)(Tx(H+,X) + RX) tends to Ecu,X(y), where y is the limit

point of FX(x). �

Thus Ã+,Xi and Ã−,Xi are two compact C1-embeddings of the annulus, whose interiors
are disjoint and having the same boundary, which is the union of the two circles Q̃+,Xi
and Q̃−,Xi . Furthermore, ÃX

i := Ã+,Xi ∪ Ã−,Xi is the boundary of the image F̃X(Σ̃
X
i ).

Recall that FX(Σ \ LX) = ρ(F̃X(Σ̃
X
i )). Its boundary consists in the union AX of the

annuli A+,X = ρ(Ã+,Xi ) and A−,X = ρ(Ã−,Xi ).
See Figure 7.
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We end the section by proving the following.

Lemma 4.9. The annuli Ã+,Xi and Ã−,Xi vary C1-continuously with X ∈ U5.

Idea of the proof. The first return map varies continuously on compact sets in
its definition domain, that is, far from LX . Furthermore, the boundary of Ã±,Xi is
Q̃+,Xi ∪ Q̃−,Xi , which varies continuously with X. It just remains to control the tangent
plane to Ã±,Xi in the neighborhood of its boundary.

For that, we fix a constant T0 such that the cone field ΦX
T0
(C cu,Z

a ) is arbitrarily thin.
Notice that this cone field is strictly invariant by ΦX , and hence is invariant by ΦX′ for
X′C1-close enough to X.

Then we choose a small neighborhood ULX of LX on which the time return τX(x) is
larger than a very large constant T1� T0.

Now, for X′C1-close to X and x ∈ ULX ∩ H+,X′ , we get that the image by DFX′ of the
tangent plane TxH+,X′ is contained in the (arbitrarily thin) cone ΦX

T0
(C cu,Z

a )(FX′(x)) ∩
TFX′ (x)Σ (see the proof of Lemma 4.8).

This means that, in a neighborhood of the boundary of A+,X , the annuli A+,X′ are
tangent to the same arbitrarily thin cone field ΦX

T0
(C cu,Z

a ) ∩ TΣ , for X′ close to X. �

4.3. Quasi-connected transverse section to the strong stable cone

The aim of this section is to define a notion of sections of the strong stable foliation
F ss,X
Σ (that is, sets meeting each strong stable leaf in at most one point) having

a property of connexity which will be invariant by iteration under the first return
map FX . These will be the quasi-connected sections defined at the end of this
section.

For x ∈Σ , we denote

Css,Z
c (x)= {v ∈ TxΣ : v= vs + vcu, vs ∈ Tx F ss

Σ , vcu ∈ Ecu,Z ∩ TxΣ, and ‖vcu‖6 c‖vs‖}.
Taking c small enough, Css,Z

c is a cone field around F ss,Z
Σ transverse to Ccu,Z

a .
Furthermore, Css,Z

c is negatively invariant by FX for any X C1-close to Z; more
precisely, there exists a neighborhood Uc ⊂ U5 of Z such that, for any X ∈ Uc and
any x ∈ FX(Σ \ LX), we have

DF−1
X (Css,Z

c (x))⊂ Css,Z
c (F−1

X (x)).

Notice that, for c > 0 small enough, the length of any segment tangent to Css,Z
c is

uniformly bounded by a constant K > 0.
We denote by C̃ss,Z

c the lift of Css,Z
c on Σ̃ . Let F̃ ss denote the lift on Σ̃ of the strong

foliation F ss,Z
Σ of the first return map F of Z.

From item (Y.14), one deduces that, for every i ∈ Z, every leaf ω of F̃ ss cuts each
annulus Ã±,Zi in at most one point. In particular,

](ω ∩ ÃZ
i )6 2.
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One deduces the following lemma.

Lemma 4.10. There is c > 0 such that, for any curve ω tangent to C̃ss,Z
c and any i ∈ Z,

one has

](ω ∩ ÃZ
i )6 2.

Proof. The proof is by contradiction, assuming that there are segment ωn tangent to
C̃ss,Z

1
n

and cutting Ã±,Zi at xn and yn with xn 6= yn.

As the lengths of ωn are uniformly bounded, up to considering a subsequence, one may
assume that ωn converges to a segment ω in a leaf of F̃ ss, and xn and yn tend to points
x ∈ ω ∩ Ã±,Zi and y ∈ ω ∩ Ã±,Zi , respectively.

As ω cuts Ã±,Zi in at most one point, one gets x = y; that is, the distance d(xn, yn)

tends to 0. One deduces that x is a tangency point of Ã±,Zi with F̃ ss, contradicting the
fact that Ã±,Zi is tangent to Ccu,Z

b . �

We now fix the constant c > 0 small enough to satisfy the properties above, and we
denote Css = Css,Z

c and C̃ss = C̃ss,Z
c . We denote U6 = Uc for this value of c.

This property of Lemma 4.10 is satisfied for every X C1-close enough to Z, and this is
fundamental for our proof.

Lemma 4.11. There exists a C1 neighborhood U7 ⊂ U6 of Z such that, for any X ∈ U7

and any curve ω tangent to C̃ss, we have

](ω ∩ ÃX
i )6 2,

for each i ∈ Z.

Proof. We will prove that, for any curve ω tangent to C̃ss, ](ω ∩ Ã+,Xi ) 6 1 and
](ω ∩ Ã−,Xi )6 1. We only give the proof for Ã+,Xi . The proof for Ã−,Xi is analogous.

Suppose to the contrary that there exist Xn → Z with curves ωn tangent to C̃ss

such that ](ωn ∩ Ã+,Xn
i ) > 2. Denote xn, yn ∈ ωn ∩ Ã+,Xn

i , xn 6= yn. Taking converging
subsequences if necessary, we may assume that ωn→ ω, xn→ x, and yn→ y, as n→∞,
where x, y ∈ ω ∩ Ã+,Zi .

Note that ω is a curve tangent to C̃ss, so that ](ω ∩ Ã+,Zi )6 1. One deduces that x= y.
According to Lemma 4.9, the annuli Ã+,Xi vary C1-continuously with X. This implies
that ω is tangent to Ã+,Zi at x, contradicting the fact that Ã±,Zi is tangent to Ccu,Z

b . �

A curve tangent to C̃ss is maximal if it has one extremity on {−1} × R × S1 and the
other extremity on {1} × R × S1. Given any curve ω tangent to C̃ss, there are curves ω′
containing ω and which are maximal. We say that ω′ is a maximal extension of ω.

As a corollary of Lemma 4.11, we get the following corollary.

Corollary 4.12. If ω is a maximal curve tangent to C̃ss, and if the intersection
ω ∩ F̃X(Σ̃

X
i ) is not empty, then it is a compact segment having one extremity on Ã+,Xi

and another on Ã−,Xi .
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From the above lemma, we have the following result.

Lemma 4.13. For any X ∈ U7, let D⊂ Σ̃X
i be a subset (perhaps not connected) for some

i. If, for any curve ω tangent to C̃ss, we have ](ω ∩ D)6 1, then ](ω ∩ F̃X(D))6 1 for any
curve ω tangent to C̃ss.

Proof. Suppose to the contrary that there exists a curve ω tangent to C̃ss such that
there are x 6= y with x, y ∈ ω ∩ F̃X(D).

Up to considering a maximal extension of ω, we can assume that ω is maximal. Then
ω ∩ F̃X(Σ̃

X
i ) 6= ∅ is a compact segment ω0 having one extremity on Ã+,Xi and another on

Ã−,Xi . Notice that x and y belong to ω0.
Notice that F̃−1

X is defined on ω0 and that F̃−1
X (ω0) is a curve in Σ̃X

i tangent to C̃ss and
meeting D on F̃−1

X (x) and F̃−1
X (y), leading to a contradiction. �

We now consider vector fields X ∈ U2∩U7, where U2 is the open set built in Lemma 3.8.
Recall that vector fields in U2 have two singular points, pX

1 and pX
2 , whose indices are 3

and 2, respectively.
Notice that dim(Wu(pX

1 )) = 1, so that OX =Wu(pX
1 ) ∩ Σ is a countable set. We denote

ÕX = ρ−1(OX) the lift of OX on Σ̃ ; it is a countable set.
We call a quasi-connected C̃ss-section any (possibly not connected) two-dimensional

open surface D⊂ Σ̃ which satisfies the following three properties.

(i) There exists a connected set D′ such that

D⊂ D′ ⊂ D ∪ ÕX, and ](D′ \ D) <∞. (4.1)

(ii) D is tangent to the cone field C̃cu,Z
b .

(iii) For any curve ω tangent to C̃ss, we have ](ω ∩ D)6 1.

We say that the set D′ is a connected extension of D. Recall that D is a C1 open
surface embedded in a Riemannian manifold. Hence the area of D is well defined. We
denote by Area(D) ∈ R ∪ {∞} the area of D.

We denote by DX the set of quasi-connected C̃ss-sections.

4.4. Iterations of quasi-connected C̃ss-sections

The aim of this section is to show that the successive iterates F̃n
X(D) of a quasi-connected

C̃ss-section D ∈ DX either meet the (lift of) the stable manifold of the torus ΓX , or
contain a quasi-connected C̃ss-section Dn ∈ DX whose area increases exponentially by
a factor at least λ′

2 > 1. The difficulty is that, at each iteration, the quasi-connected
C̃ss-section can be cut in infinitely many connected components by the annuli L̃X

i (i.e.,
the local stable manifold of the singularities in SX , where the first return map FX is
not defined). We solve this difficulty by showing that our hypothesis (H1) allows us to
recover the connexity of the image, just adding some points in ÕX to the image.

For that, we first analyze the behavior of the first return map FX in the neighborhood
of the local stable manifold of SX , that is, in the neighborhood of LX .
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4.4.1. The first return map in the neighborhood of LX. Since Wu(pX
1 ) is one

dimensional, we denote by q±,X = Wu
loc(p

X
1 ) ∩ Σ the first intersection of Σ and each

component of Wu
loc(p

X
1 ). That is, q±,X is the point in Q±,X which belongs to Wu(pX

1 ). For
i ∈ Z and ± ∈ {+,−}, we denote by q̃±,Xi the lift of q±,X on Q̃±,Xi .

Since dim Ws(pX
2 ) = 2, we have that `X

2 :=Ws
loc(p

X
2 ) ∩ Σ is a one-dimensional segment

in LX , and it is a leaf of the strong stable foliation of FX . For i ∈ Z, we denote by ˜̀X2,i the
component of ρ−1(`X

2 ) such that ˜̀X2,i ⊂ L̃X
i . As `X

2 is a leaf of the strong stable foliation
F ss,X
Σ , we have that ˜̀X2,i is tangent to C̃ss.
Note that, for any sequence of regular points that converges to LX \ `X

2 ⊂Ws(pX
1 ), its

image of the first return map converges to q+,X or q−,X .
As a consequence, we get the following lemma.

Lemma 4.14. For the lift of the first return map, we have

lim
xn∈Σ̃X

i−1,xn→x∈L̃X
i \ ˜̀X2,i

F̃X(xn)= q̃−,Xi−1 and lim
xn∈Σ̃X

i ,xn→x∈L̃X
i \ ˜̀X2,i

F̃X(xn)= q̃+,Xi .

4.4.2. The image by F̃X of a quasi-connected C̃ss-section. Recall that λ′ > 2 has
been fixed in Proposition 3.4.

Lemma 4.15. For any X ∈ U7 ∩ U2 that satisfies (H1), and any quasi-connected
C̃ss-section D ∈DX, we have one of the following properties.

(a) There exists a connected extension D′ of D such that D′ ∩ L̃X
i = ∅ for any i ∈ Z. In

that case, F̃X(D) ∈DX and

Area(F̃X(D)) > λ
′Area(D).

(b) There exist a connected extension D′ and a unique integer i ∈ Z such that
D′ ∩ L̃X

i 6= ∅. In that case, there are D1,D2 ∈DX such that D1 ∪D2 = F̃X(D \ L̃X
i ), and

∃j ∈ {1, 2} such that

Area(Dj) >
λ′

2
Area(D).

(c) For any connected extension D′ of D, there is i ∈ Z such that D′ ∩ L̃X
i 6= ∅ and

D′ ∩ L̃X
i+1 6= ∅.

Proof. Assuming the hypothesis of item (a): First, we assume that there exists a
connected extension D′ of D such that D′ ∩ L̃X

i = ∅ for any i ∈ Z. To prove that
F̃X(D) ∈ DX , we just need to verify that F̃X(D) satisfies properties (i)–(iii) of the
definition.

Since D′ is connected, we know that D′ ⊂ Σ̃X
i for some i. Hence F̃X(D′) is connected.

Furthermore, as ÕX is invariant under F̃X , one gets F̃X(D) ⊂ F̃X(D′) ⊂ F̃X(D) ∪ ÕX . Now,
Lemma 4.13 implies that every curve ω tangent to C̃ss meets F̃X(D) in at most one point.

Finally, Proposition 3.4 ensures the stated area expansion.
Assuming the hypothesis of item (b): Now, we assume that there exist a connected

extension D′ and a unique integer i ∈ Z such that D′ ∩ L̃X
i 6= ∅.
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Figure 8. Surface D.

We denote

D′− = D′ ∩ Σ̃X
i−1 and D′+ = D′ ∩ Σ̃X

i .

D− = D ∩ Σ̃X
i−1 and D+ = D ∩ Σ̃X

i .

Thus D′− ∪ D′+ ⊂ D′ ⊂ D′− ∪ D′+ ∪ L̃X
i .

Lemma 4.13 implies that every curve ω tangent to C̃ss meets F̃X(D−) (respectively,
D+) in at most one point. Moreover, F̃X(D−) and F̃X(D+) are open surfaces tangent to
C̃cu,Z

b , and Proposition 3.4 ensures that there is ± ∈ {+,−} such that

Area(F̃X(D±)) >
λ′

2
Area(D).

Hence we get the conclusion if we show that the following claim holds.

Claim 2. Each of F̃X(D−) and F̃X(D+) admits a connected extension. More precisely,
F̃X(D+) ∪ {q̃+,Xi } and F̃X(D−) ∪ {q̃−,Xi−1 } are connected sets.

Proof. We write the proof for D+; the proof for D− is identical. We assume that D+ is
not empty; otherwise, there is nothing to do.

Note that D′+ may be not connected: D′+ may be split into some (maybe infinitely
many) connected components.

See Figure 8.
The main step for proving claim 2 is the following claim.

Claim 3. For any open and closed subset ∆ of D′+, the point q̃+,Xi is contained in the
closure of F̃X(∆).

Proof. According to Lemma 4.14, it is enough to prove that the closure ∆ meets L̃X
i in a

point out of ˜̀X2,i. That is,

∆ ∩ L̃X
i 6⊂ ˜̀X2,i.

Recall that D′ is a connected set and that L̃X
i is a compact set, so that D′+ is an open

subset of D′. Hence ∆ is an open subset of D′. As D′ is connected and D′+ $ D′, the open
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Figure 9. The image of D′±,α .

subset ∆ cannot be closed in D′. Consider a point x ∈ (D′ ∩ ∆) \ ∆, that is, x belongs to
the boundary of ∆ in D′. Then x belongs to L̃X

i ∩ D′. There are two possibilities.

• x ∈ ÕX . In this case, (H1) asserts that x 6∈ ˜̀X2,i, proving the claim. See Figure 9(1).

• x ∈ D. Let Dx be a disc in D centered at x so that L̃X
i cuts Dx into two half discs.

Using the fact that the strong stable leaves meet D in at most one point and that
∆ contains x in its closure, we deduce that ∆ contains one of the half discs. As a
consequence, ∆ ∩ L̃X

i contains at least one point out of ˜̀X2,i. See Figure 9(2). �

We can now finish the proof of claim 2. Consider an open and closed subset ∆′
of F̃X(D′+) ∪ {q̃+,Xi } and assume that it does not contain q+,Xi . Hence it is open and
closed in F̃X(D′+). Hence ∆ = F̃−1

X (∆′) is open and closed in D′+. Now claim 3 implies
that the closure of F̃X(∆) contains q̃+,Xi , leading to a contradiction. This proves that
F̃X(D′+) ∪ {q̃+,Xi } is connected, ending the proof. �

Assuming that the hypotheses of items (a) and (b) are not satisfied: In this case,
any connected extension D′ of D meets at least two lifts L̃X

i and L̃X
j with i < j. As D′ is

connected, one deduces that D′ meets L̃X
i+1. �

Remark 4.16. We point that hypothesis (H1) is necessary in our argument of the above
lemma. Otherwise, we cannot get the connectivity of F̃X(D′+)∪{q̃+,Xi } or F̃X(D′−)∪{q̃−,Xi−1 }.
See Figure 10.
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Figure 10. Hypothesis (H1).

4.4.3. Using hypothesis (H2). Recall that dim Ws(ΓX) = 3 and that Ws
loc(ΓX) cuts Σ

along an annulus IX = Σ ∩ Ws
loc(ΓX) (see the topological properties of the vector fields

X ∈ U1) which is clearly disjoint from LX (because LX is contained in Ws(SX)).
Thus ρ−1(IX) is a countable sequence of essential annuli in Σ̃ (and disjoint from the

annuli L̃X
i ), denoted by ĨX

i ∈ Σ̃i. For each i, ĨX
i splits Σ̃X

i into two connected components.
The next lemma shows that, under hypothesis (H2), if a quasi-connected C̃ss-section D

satisfies item (c) of Lemma 4.15, then D cuts the (lift of the) stable manifold of the torus
ΓX . However, hypothesis (H2) has no meaning out of U2: for this reason, the next lemma
holds on U7 ∩ U2.

Lemma 4.17. For every X ∈ U7 ∩ U2 satisfying (H2), and every quasi-connected
C̃ss-section D ∈ DX, if ρ(D) ∩Ws(ΓX)= ∅, then, for any connected extension D′, there is
at most one integer i ∈ Z such that D′ ∩ L̃X

i 6= ∅.
Proof. Suppose to the contrary that there is a connected extension D′ ⊂ D ∪ ÕX of D,
and that there are two integers i1 6= i2 such that D′ ∩ L̃X

i1 6= ∅ and D′ ∩ L̃X
i2 6= ∅. Thus the

connected set D′ must intersect some ĨX
k between L̃X

i1 and L̃X
i2 . Moreover, hypothesis (H2)

asserts that Wu(pX
1 ) ∩ Ws(ΓX) = ∅, so that ÕX ∩ ĨX

k = ∅. As a consequence, D ∩ ĨX
k 6= ∅,

ending the proof of the lemma. �

4.5. Area of the quasi-connected C̃ss-section in a fundamental domain Σ̃X
i

The aim of this section is to show that quasi-connected C̃ss-section D having a large area
cannot be contained in the union Σ̃X

i ∪ Σ̃X
i+1; that is, any connected extension D′ of D

meets at least two annuli L̃X
i and L̃X

i+1.

Lemma 4.18. For any X ∈ U7, there is a positive constant KX > 0 such that, for any
quasi-connected C̃ss-section D contained in the union Σ̃X

i ∪ Σ̃X
i+1, we have

Area(D) < KX .

Proof. Let F̃ denote the foliation F̃ ss,Z . Recall that F̃ is a smooth foliation on
Σ̃ = [−1, 1] × R × S1 such that, for any x = (r, s, t), the leaf F̃(x) is the segment
[−1, 1] × {(s, t)} and is tangent to the cone field Css,Z

c .
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Denote by PF̃ : Σ̃→ R× S1 the projection along the leaf of F̃ . Since F̃ is transverse to
the cone field Ccu,Z

b , there exists a constant C1 > 0 such that, for any surface D tangent
to Ccu,Z

b , we have

Jac(PF̃ |D)> C1,

where Jac(PF̃ |D) denotes the Jacobian of the restriction to D of the derivative of the
projection PF̃ .

Let C2,X denote the area of PF̃ (Σ̃
X
i ); this area is finite because the closure of Σ̃X

i

is compact9, and does not depends on i ∈ Z because the area and the foliation F̃ are
invariant by the translation (r, s, t) 7→ (r, s+ 1, t). We denote KX = C2,X

C1
.

Let D ∈ DX be a quasi-connected C̃ss-section contained in Σ̃X
i . By definition of the

quasi-connected C̃ss-section, each leaf of F̃ cuts D in at most one point; that is, the
projection PF̃ is injective on D. As a consequence, one gets

Area(D)=
∫

PF̃ (D)
(Jac(PF̃ |D))−1dm6

1
C1

∫
PF̃ (D)

dm= C2,X

C1
= KX,

where m is the area measure on R× S1. �

As a direct consequence of Lemmas 4.17 and 4.18 we get the following corollary.

Corollary 4.19. Given X ∈ U7 ∩ U2 satisfying hypothesis (H2). Let D be a quasi-
connected C̃ss-section. Then

Area(D)> KX H⇒ ρ(D) ∩Ws(ΓX) 6= ∅.
Proof. Lemma 4.18 implies that any connected extension of D meets at least two
annuli, L̃X

i and L̃X
j , for i 6= j. As X satisfies (H2), Lemma 4.17 implies that ρ(D) meets

Ws(ΓX). �

4.6. Density of the stable manifold Ws(ΓX)

Now we finish the proof of the density of Ws(ΓX).

Proof of Proposition 4.2 for U0 = U7. Consider a vector field X ∈ U7 ∩ U2 satisfying
hypotheses (H1) and (H2).

Suppose, arguing by contradiction, that there exists a non-empty open set V ⊂ U such
that V ∩Ws(ΓX)= ∅. This implies that φX

t (V) ∩Ws(ΓX)= ∅ for any t ∈ R.
The union of the orbits through the point in V cuts Σ along a (non-empty) open

subset VΣ ⊂ Σ , disjoint from Ws(ΓX). Thus we can choose a disc D ∈ DX in Σ̃ whose
projection ρ(D) is contained in VΣ .

Since ρ(D) ∩ Ws(ΓX) = ∅, by using Lemma 4.17, for any connected extension D′, we
have

• either D′ ∩ L̃X
i = ∅ for any i ∈ Z,

• or there exists a unique integer i ∈ Z such that D′ ∩ L̃X
i 6= ∅.

9 By shrinking U7 if necessary, we also could assume that C2,X is uniformly bounded, but we do not
need it.
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In any case, Lemma 4.15 implies that F̃X(D \ ⋃i L̃X
i ) contains a quasi-connected

C̃ss-section D1 with Area(D1) >
λ′
2 Area(D). Furthermore, ρ(D1) is disjoint from Ws(ΓX).

Repeating the above process, one builds a sequence of quasi-connected C̃ss-sections
Dn ⊂ F̃X(Dn−1\⋃i L̃X

i ) with Area(Dn) >
λ′
2 Area(Dn−1), and ρ(Dn) is disjoint from Ws(ΓX).

Hence Area(Dn)→∞ as n→∞. In particular, Area(Dn) > KX for n large enough.
Now, Corollary 4.19 implies that ρ(Dn) ∩Ws(ΓX) 6= ∅. This contradiction ends the proof
of the proposition. �

4.7. Density of Wu(ΓX)

Recall that, by definition of U6 = Uc, the length of the leaves of F ss,X
Σ is uniformly

bounded by a constant K > 0.

Proof of Proposition 4.3 for U0 = U7. As for the proof of Proposition 4.2, we only
need to prove that Wu(ΓX) is dense in ΛX ∩Σ .

Recall that, as X belongs to U1, the unstable manifold Wu(ΓX) cuts every leaf of the
strong stable foliation F ss,X

Σ (see item (X.11) in § 3.2).
Notice that ΛX∩Σ is contained in FX(Σ \LX)∪Q+,X∪Q−,X . In particular, the negative

iterates F−n
X , n> 0, of the first return map are defined on ΛX \ (Wu(SX) ∩Σ).

Consider first a point x ∈ ΛX \ (Wu(SX) ∩ Σ), an open neighborhood U′ of x, and a
segment of strong stable leaf ω ⊂ F ss,X

Σ (x) ∩ U′ containing x in its interior. For any n> 0,
consider the strong stable leaf Ln = F ss,X

Σ (F−n
X (x)). Notice that Ln is disjoint from LX , and

that Fn
X(Ln) is a segment of strong stable leaf centered at x and of length less than (λs)−n;

in particular, this length tends to 0. Hence, for n large enough, one has Fn
X(Ln) ⊂ ω. As

Ln cuts Wu(ΓX), one deduces that ω cuts Wu(ΓX). In particular, x belongs to the closure
of Wu(ΓX).

To conclude the proof, it is now enough to notice that Wu(SX) is contained in
the closure of Wu(ΓX). That is a direct consequence of the λ-lemma (also called
the inclination lemma) using the transverse intersection of Wu(ΓX) with Ws(pX

i ) for
i= 1, 2. �

4.8. Proof of Theorem 4.1

We fix U0 = U7.

Proof of Theorem 4.1. Consider a vector field X ∈ U7 ∩ U2 satisfying hypotheses (H1)

and (H2). We will prove that the homoclinic related points of γ X
1 are dense in ΛX .

Take any x ∈ ΛX and any open neighborhood V of x. By Lemma 3.8 and
Proposition 4.3, we have ΛX ⊂ cl(Wu(ΓX)) ⊂ cl(Wu(γ X

1 )). Thus V ∩ Wu(γ X
1 ) 6= ∅. And

since dim Wu(γ X
1 ) = 3, there exists a two-dimensional surface D ⊂ φX

t0(V ∩ Wu(γ X
1 )) ∩ Σ

for some t0 > 0. Note that D is tangent to Ccu,Z
b .

On the other hand, by Lemma 3.8 and Proposition 4.2, we have U ⊂ cl(Ws(ΓX)) ⊂
cl(Ws(γ X

1 )). One deduces that Ws(γ X
1 ) ∩Σ contains a dense subset of strong stable leaves

(of F ss,X
Σ ), and hence cuts D transversally.

In other words, we have proved that ΛX = cl(Ws(γ X
1 ) _| Wu(γ X

1 )); that is, that ΛX is the
homoclinic class of the periodic orbit γ X

1 . Hence ΛX is transitive. �

https://doi.org/10.1017/S1474748012000710 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748012000710


A robustly chain transitive attractor with singularities of different indices 487

Proof of Theorem A. We denote U 1 = U7 ∩ U2. It is a non empty C1-open set.
First, notice that hypotheses (H1) and (H2) hold on the complement of an immersed

codimension 1 submanifold in U 1 ∩ X r(M) for the Cr topology, and for every integer
r > 1.

Thus, considering U r = U 1 ∩ X r(M), there exists a residual set Rr ⊂ U r such that
any X ∈Rr satisfies hypotheses (H1) and (H2). Then Theorem 4.1 implies that ΛX is a
transitive attractor.

To end the proof of Theorem A, we need to prove that ΛX is chain recurrent for every
X ∈ U 1.

Suppose to the contrary that there is X ∈ U 1 such that ΛX = ∩t>0φ
X
t (U) is not chain

transitive. By Conley’s theory, there is an open set U1 ⊂ int(U) such that U1 is an
attracting region of X such that ΛX is not included in U1.

Thus, there is a compact invariant set Γ ⊂ U \ U1. Consider a minimal set in Γ . By
using Pugh’s C1 closing lemma [32], there is X′ ∈ U 1, C1 close to X, such that U1 is an
attracting region of X′ and there is a periodic orbit γ ⊂ U \ U1. By performing a C1

generic perturbation, there is X′′ ∈ R1 such that U1 is an attracting region of X′′, and
there is a periodic orbit γ ′′ ⊂ U \ U1. Then ΛX′′ is not transitive, and this contradicts
that X′′ ∈R1. �

5. Proof of Theorems B and C

In this section, we try to understand robustly chain transitive singular attractors, on
compact manifolds, in any number of dimensions. The first step is to understand how
the indices of the singularities and of the periodic orbits are related. For our results, the
Shilnikov theory of homoclinic bifurcations associated to hyperbolic singular points will
be enough, and we recall it in the next section.

5.1. Index of periodic orbits created by homoclinic bifurcation from a singular
point

From now on, we assume that M is a compact d-dimensional C∞ Riemannian manifold
without boundary. We recall some results about the Shilnikov bifurcation. Let p be a
hyperbolic saddle-type singularity of X. The eigenvalues of DX(p) are

Re(λm)6 · · ·6 Re(λ2)6 Re(λ1) < 0< Re(α1)6 Re(α2)6 · · ·6 Re(αn),

where m+ n= d. We denote

SV(p)= Re(λ1)+ Re(α1),

and we call SV(p) the saddle value of p.
The next statement is a simplified version of results in [34] (see [18] for an analogous

use of Shilnikov theory).

Theorem 5.1. Let p be a singular point of a vector field X on a compact manifold.
Assume that there is a homoclinic orbit Γ associated to p.
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Then there are vector fields Y arbitrarily C1-close to X having a periodic orbit γ
arbitrarily close to Γ and such that

• Ind(γ )= Ind(p), if SV(p)6 0,

• Ind(γ )= Ind(p)− 1, if SV(p)> 0.

5.2. Generic properties of flows

We also need some results on chain transitive and robustly chain transitive sets for
C1-generic vector fields, which we summarize in the following lemma.

An invariant compact set Λ of a vector field X is a robustly chain transitive set if there
are a C1-neighborhood U of X and a neighborhood V of Λ such that

• for every Y ∈ U , the maximal invariant set ΛY =
⋂

t∈R φY
t (V) is a chain transitive

compact set, and

• Λ=ΛX .

The neighborhood V is called an isolating neighborhood of Λ, and ΛY is the
continuation of Λ for Y. Notice that the map Y 7→ΛY is upper semi-continuous.

Lemma 5.2. There exists a residual set R1 ⊂ X 1(M) such that, for any X ∈R1 and any
chain transitive set Λ of X, the following three properties are satisfied.

• X is Kupka–Smale.

• If there exists a periodic orbit Orb(x) ⊂ Λ, then Λ is contained in the homoclinic
class of x. As a consequence, if Λ is robustly chain transitive and V an isolating
neighborhood of Λ, then Λ is the homoclinic class of x relative to V (i.e., the closure
of the homoclinic orbits of x which are contained in V).

• If there exist Xn→ X, xn ∈ Per(Xn) with Ind(xn)= I and xn→ x ∈Λ, then there exists
yn ∈ Per(X) with Ind(yn) = I such that yn→ y ∈ Λ. As a consequence, if Λ is an
attractor, then there exists a periodic orbit Orb(y0)⊂Λ of X with Ind(y0)= I.

(The first property is the classical Kupka–Smale theorem. The second and the third
properties are straightforward adaptations for flows of the results in [5, Corollaire 1.11]
and [38, Lemma 3.5], respectively.)

By using the connecting lemma for pseudo-orbits proved in [5], we have that, for
any X ∈ R1, any chain transitive attractor Λ of X is a homoclinic class and it varies
continuously in the vector field; i.e., for any Xn→ X, we have

lim
H
ΛXn =Λ,

where limH is the Hausdorff limit.

5.3. The linear Poincaré flow

Given a vector field X on a Riemannian manifold M, we denote by NX its normal bundle,
defined on M \ Sing(X): the fiber NX(x) is the orthogonal subspace of X(x) in TxM.
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The flow of X defines a natural flow on NX , denoted by ψX
t , as follows: the linear

map ψX
t : NX(x)→ NX(φX

t (x)) is the composition of the differential ΦX
t : NX(x)→ TφX

t (x)
M

followed by the linear projection TφX
t (x)

M→ NX(φX
t (x)) parallel to the direction of the

vector X(φX
t (x)).

Given an invariant set Λ of X and T > 0, we say that Λ has a T-dominated splitting
with respect to (shortly w.r.t.) the linear Poincaré flow if there is a ψX-invariant
continuous splitting NX|Λ′ = E1 ⊕ E2, where Λ′ denotes Λ \ Sing(X), such that, for
any x ∈Λ′, we have

‖ψX
T |E1(x)‖‖ψX−T |E2(φ

X
T (x))
‖6 1/2.

In this case, we say that E1 is dominated by E2, and we write E1⊕<E2.
An invariant bundle E1 on Λ′ is called contracting if there are constants C > 0 and

λ < 0 such that, for any t > 0 and x ∈Λ′, we have

‖ψX
t |E1(x)‖6 Ceλt.

The following remark summarizes some properties of dominated splittings that we will
use.

Remark 5.3. • The dominated splitting is unique (when it exists) if we fix the
dimension of the bundles: for every i ∈ {1, . . . , d − 2} and x ∈M \ Sing(X), there is at
most one T-dominated splitting NX = E⊕<F w.r.t. the linear Poincaré flow of X on
the orbit of x, with dim(E)= i.

• For every T > 0, the existence of a T-dominated splitting is a closed property in the
following sense.

Let xn be a sequence of regular points of vector fields Xn, and assume that the
sequence Xn converges to a vector field X for the C1-topology, and that xn converges
to a regular point x of X.

If there is a T-dominated splitting En⊕<Fn w.r.t. the linear Poincaré flow of Xn on
the orbit of xn and dim(En) = i, then there is a T-dominated splitting E⊕<F w.r.t.
the linear Poincaré flow of X on the orbit of x, with dim(E)= i.

Furthermore, E(x) and F(x) are the limits of the En(xn) and Fn(xn), respectively.

5.4. Hyperbolic properties of the linear Poincaré flow, far from tangencies

For the vector fields far away from tangency, we have the following lemma about the
uniform dominated splitting on the periodic orbits. One can read [10, 33, 37] for more
details.

Denote

HT(M)= {X ∈ X 1(M) : X has a homoclinic tangency}.

Lemma 5.4. Let X ∈ X 1(M) \ HT(M). Then there exist a C1 neighborhood U of X and
a constant T > 0 such that, for every Y ∈ U and x ∈ Per(Y), there exists a T-dominated
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splitting

NY
OrbY (x) = EY⊕<FY

w.r.t. the linear Poincaré flow ψY
t , where dimEY = Ind(x).

Thus we have the following lemma about the uniform dominated splitting on robustly
chain transitive sets.

Lemma 5.5. Let Λ be a singular robustly chain transitive set of X ∈ X 1(M) \HT(M), let
V be an isolating neighborhood of Λ, and let U0 be a C1-neighborhood of X, where the
continuation ΛY is defined for Y ∈ U0.

Let p ∈ Λ be a hyperbolic singularity with SV(p) 6= 0. Then there exist a C1

neighborhood U of X and a constant T > 0 such that, for every Y ∈ U and x ∈ Per(Y) with
OrbY(x)⊂ΛY , there exists a T-dominated splitting

NY
OrbY (x) = EY⊕<FY

w.r.t. the linear Poincaré flow ψY
t , where the dimension of EY is Ind(p) when SV(p) < 0,

or Ind(p)− 1 when SV(p) > 0.

Proof. Let U ⊂ U0 and T be given by Lemma 5.4. By decreasing U if necessary, we
may assume that the index of p and the sign of SV(p) are fixed in U . Take Y ∈ U and
x ∈ Per(Y) with OrbY(x)⊂ΛY .

Notice that x is the limit of hyperbolic periodic point xn of vector fields Yn converging
to Y in the C1-topology. So, by using Remark 5.3, we only need to consider the case
where the orbit OrbY(x) is hyperbolic. Moreover, once more using Remark 5.3 and the
fact that the hyperbolic periodic orbits vary continuously with the vector field, we also
can assume that Y is Kupka–Smale.

By using the connecting lemma for pseudo-orbits (see [5, Théorème 1.2]), we can
C1-approximate Y by a sequence of Xn ∈ U exhibiting a homoclinic orbit Γn ⊂ V of the
singularity pn (continuation of p). Notice that Γn is contained in ΛXn , because V is an
isolating neighborhood of Λ. We denote by xn the continuation of the periodic point x
for Xn.

Let i denote Ind(p) when SV(p) < 0, and Ind(p) − 1 when SV(p) > 0. Then, by
Theorem 5.1, there exists Yn ∈ U arbitrarily C1 close to Xn which has a hyperbolic
periodic orbit OrbYn(yn) arbitrarily close to Γn with index i. Notice that the orbit of yn is
contained in V and Yn ∈ U so that yn ∈ΛYn .

With another arbitrarily C1-small perturbation, we can get Zn ∈R1 ∩ U , where R1 is
the residual subset stated in Lemma 5.2. We denote by xZn and yZn

n the continuations of
or Zn of xn and yn, respectively.

Thus, by Lemma 5.2, ΛZn is the relative homoclinic class of yZn
n in V. This implies that

xZn is the limit of the periodic points contained in ΛZn and whose index is i.
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Then, by definition of U , and by using Remark 5.3, there exists a T-dominated
splitting

NZn
OrbZn (xZn )

= EZn⊕<FZn

on OrbZn(x
Zn) w.r.t. the linear Poincaré flow ψ

Zn
t , where the dimension of EZn is i.

As Zn converges to Y and xZn converges to x, we conclude, by Remark 5.3, that the
orbits of x for Y admit a T-dominated splitting EY⊕<FY with dim(EY) = i, concluding
the proof. �

5.5. Homoclinic tangencies for robust attractors with different indices of
singularities

The aim of this section is the proof of Theorem B. We argue by contradiction, assuming
that there exists a non-empty C1-open set U of vector fields far from tangencies, that is,
U ⊂ X 1(M) \ HT(M), and an open set V ⊂ M such that, for every X ∈ U , the following
hold.

• The maximal invariant set ΛX of X in V is a chain transitive attractor.;
• ΛX contains two hyperbolic singular points, pX

1 and pX
2 , whose indices satisfy

i1 := Ind(pX
1 ) > Ind(pX

2 )=: i2.
• The saddle value of pX

1 does not vanish for X ∈ U , and its sign does not depend on
X ∈ U .

We denote i= i1 if the saddle value of pX
1 is negative, and i= i1 − 1 if it is positive, for

X ∈ U . Notice that i2 6 i, by hypothesis.
For X ∈ U , we denote by λuu,X the upper bound of the real part of the eigenvalues of X

at pX
2 . We denote by Wuu(pX

2 ) the strong unstable manifold associated to the sum Euu(pX
2 )

of the generalized eigenspaces associated to eigenvalues with real part equal to λuu,X .
We denote by Es(pX

2 ) the stable space of pX
2 , that is, the subspace of TpX

2
M

corresponding to the eigenvalues with negative real part.
The next step is the following lemma.

Lemma 5.6. There is X ∈ U and there is a homoclinic orbit Γ associated to pX
2 such

that

• Γ is contained in Wuu(pX
2 ), and

• there are smooth local coordinates ϕ : O0→ Rd in a neighborhood O0 of pX
2 such that

ϕ∗(X) is a linear vector field.

Proof. First, notice the following claim.

Claim 4. For every X ∈ U , the stable manifold Ws(pX
2 ) contains a regular orbit in ΛX. In

other words,

Ws(pX
2 ) ∩ΛX 6= {pX

2 }.
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Proof. We notice that, as ΛX is chain recurrent, there are closed ε-pseudo orbits of ΛX ,
for ε > 0 arbitrarily small, having a point arbitrarily close to pX

2 . The upper limit for the
Hausdorff topology of these pseudo-orbits contains a regular point in Ws(pX

2 ) ∩ΛX . �

Consider a Kupka–Smale vector field Y ∈ U . The unstable manifold Wu(pY
2) (hence

a fortiori Wuu(pY
2)) is contained in the attractor ΛY .

As ΛY is chain transitive, contains points in Wuu(pY
2) and of Ws(pY

2), and Y is
Kupka–Smale, the connecting lemma for pseudo-orbits in [5] allows us to get a small
perturbation Z ∈ U of Y having a homoclinic orbit Γ contained in Wuu(pZ

2). Now,
an extra C1-small perturbation X of Z allows us to linearize the vector field in the
neighborhood of the singular point, preserving the homoclinic orbit. �

We fix a compact neighborhood O1 of pX
u , contained in the interior of O0. We denote

by P ⊂ Rd the vector subspace which is tangent to the image by ϕ∗ of Es(pX
2 )⊕ Euu(pX

2 ).
Notice that P is invariant by the linear vector field ϕ∗(X). We denote P = ϕ−1(P) ∩ O0:
it is a submanifold of M contained in O1, tangent at pX

2 to Es(pX
2 )⊕ Euu(pX

2 ), and tangent
to X.

Lemma 5.7. With the notation above, there is a sequence of vector fields Xn ∈ U
satisfying the following properties:

• the sequence Xn converges to X in the C1-topology;
• Xn(x)= X(x) for x ∈ O1;
• Xn has a periodic orbit γn such that γn ∩ P contains a point xn such that

limn→∞ xn = pX
2 .

Idea of the proof. The proof consists in performing a small perturbation of the
homoclinic orbit Γ , in a neighborhood of a point puu ∈ Γ ∩ P ∩Wuu

loc(p
X
2 ), and of a point

ps ∈ Γ ∩ P ∩Ws
loc(p

X
2 ) (where Wuu

loc(p
X
2 ) and Ws

loc(p
X
2 ) denote the connected components of

Wuu(pX
2 ) ∩ P and Ws(pX

2 ) ∩ P containing pX
2 ). The perturbation consists in pushing Γ in a

direction tangent to P, turning Γ in a periodic orbit.
More precisely, we denote Γ s

loc and Γ uu
loc the connected components of Γ ∩Ws

loc(p
X
2 ) and

Γ ∩Wuu
loc(p

X
2 ), and Γ0 = Γ \ (Γ s

loc ∪ Γ uu
loc). Then the periodic orbit γn of Xn consists in the

union of the segment Γ0 and a segment in P joining the extremities of Γ0. �

We denote by σn the segment of γn ∩ P ∩ O1 containing the point xn. Notice that σn is
an orbit segment of Xn but also an orbit segment of X, as X and Xn coincide on O1.

Lemma 5.5 provides a C1-neighborhood U1 ⊂ U of X and a constant T such that,
for every Y ∈ U1 and every periodic orbit γ ⊂ V of Y, there is a T-dominated splitting
NY |γ = EY⊕<FY w.r.t. the Poincaré flow of Y over γ , such that dim(EY)= i.

Hence, for n large enough, there is a T-dominated splitting NXn |γn = En⊕<Fn w.r.t. the
Poincaré flow of Xn over γn, such that dim(En)= i.

The next lemma concludes the proof of Theorem B.

Lemma 5.8. With the notation above, there is n0 such that, for any n > n0, if
NXn |γn = En⊕<Fn is a dominated splitting w.r.t. the Poincaré flow of Xn over γn, then
dim(En) < i2 6 i, where i2 is the index of pX

2 .
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Proof. This lemma is proved by the same argument as in [16, Lemma 4.3], which is also
very similar to that for [35, Proposition 4.1]. Let us just sketch this argument here.

We argue by contradiction, assuming that there is j > i2 such that (up to extract a
subsequence) all the splittings NXn |γn = En⊕<Fn satisfy dim(En)= j.

Notice that over σn the splittings are all invariant by the Poincaré flow of X, and are
T-dominated for the Poincaré flow of X, because Xn = X on O1. We denote by φt, Φt, and
ψt the flow, its derivative, and its Poincaré flow for X (and Xn) in restriction to O1.

Let yn and zn denote the first and last extremity of the orbit segments σn.
By considering a subsequence one may assume that yn and zn converge to points
y ∈Ws(pX

2 ) \ {pX
2 } and z ∈Wuu(pX

2 ) \ {pX
2 }. Furthermore, there is a sequence tn > 0 tending

to infinity such that

• the C1-distance between the orbit segments φ[0,2tn](yn) and φ[0,2tn](y) tends to 0, and

• the C1-distance between the orbit segments φ[−2tn,0](zn) and φ[−2tn,0](z) tends to 0.

We consider the points an = φtn(yn) and bn = φ−tn(zn).
We first want to understand ψtn(bn) : NX(bn)→ BX(zn).

Claim 5. The projection Ds
n(bn) of Es(pX

2 ) on NX(bn) parallel to X(bn) is contained in an
arbitrarily small cone around En(bn), for n large enough.

Ingredients of the proof. The orbit segment φ[0,tn](bn) is almost tangent to the
Euu(pX

2 ) direction. The derivative Φtn(bn) leaves invariant the stable direction Es(pX
2 ),

and it induces a uniform contraction. Finally, dim(Es(pX
2 ))= i2 6 dim(En(bn)). �

Let sn > 0 such that φsn(an)= bn. Consider

Ds
n(an)= ψ−sn(D

s
n(bn)) and Ds

n(yn)= ψ−sn−tn(D
s
n(bn)).

Because of the dominated splitting En⊕<Fn, negative iteration by ψ preserves a
small cone in NX around En. As a consequence, Ds

n(yn) and Ds
n(an) are contained in an

arbitrarily small cone around En(yn) and En(an), respectively.

Claim 6. Ds
n(yn) and Ds

n(an) are tangent to P.

Proof. Ds
n(bn) is tangent to P, the space P is invariant by Ψ−sn , and Ds

n(an) is the
projection of Ψ−sn(D

s
n(bn)) on NX(an) parallel to X(an) which is tangent to P. The case of

Ds
n(yn) is identical. �

Now, dim Ds
n(yn) = i2, and X(yn) is almost tangent to Es(pX

2 ). This implies that Ds
n(yn)

contains a unit vector vn which is almost orthogonal to Es(pX
2 ). This implies that vn has a

large component in the Euu(pX
2 ) direction.

One deduces that the rate of expansion on the vector vn of ψtn : Ds
n(yn)→ Ds

n(an) is
close to (λuu)tn , i.e., almost the largest possible. This contradicts the fact that ψt(vn)

remains in a small cone around En(φt(yn)) for t ∈ [0, tn]. This contradiction concludes the
proof. �
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5.6. Existence of a strong stable direction for a robust singular attractor

The aim of this section is the proof of Theorem C.
The proof uses many arguments in other papers, some of them expressed in other

context. For this reason, we will not always presents all the details.
Let R1 be the residual set in X 1(M) given in Lemma 5.2. Consider a vector field

X ∈R1, an attracting region V of X, and assume that the maximal invariant set Λ⊂ V is
a robustly chain transitive attractor of X which contains a singularity p of index 2 (and
possibly other singularities).

We fix an open neighborhood U of X such that V is an attracting region for
every Y ∈ U and the maximal invariant set of Y in V is a chain transitive attractor.
By shrinking U if necessary, one may assume that the singularities of Y ∈ U are all
hyperbolic and vary continuously with Y.

5.6.1. No index 1 singularities. First notice that, according to [16, 35], the attractor
Λ is not the whole manifold; that is, X is not robustly chain transitive. Hence Λ is not
Lyapunov stable for the negative times of the flow.

The first step is to show the following.

Lemma 5.9. For every Y ∈ U and any singularity p ∈ Sing(X), one has Ind(p)> 2.

Proof. This is a simple consequence of Hayashi’s connecting lemma, already used in
[30, Theorem E]: if p is a singularity of index 1 then its stable manifold consists in p
and two regular orbits. As the attractor is not Lyapunov stable for the negative times,
a small perturbation of the vector field make each of these regular orbits go out of V,
implying that Λ cannot accumulate on them. That is impossible, as we have shown in
the proof of Lemma 5.6. �

5.6.2. Dominated splitting for the Poincaré flow. By using the method in [7], one
can prove the following lemma.

Lemma 5.10. There exists a C1 neighborhood (already denoted by U ) of X in X 1(M)
and T > 0 such that, for any Y ∈R1 ∩ U , there exists a T-dominated splitting

NY
ΛY−Sing(Y) = EY⊕<FY (5.2)

w.r.t. the linear Poincaré flow ψY
t .

Consider the set I(Y) of integers i such that there is a T-dominated splitting EY⊕<FY

w.r.t. ψY with dim(EY) = i. This set varies semi-upper continuously with Y: if Y has no
T-dominated splitting with dim(EY)= i, then (by using Remark 5.3 and the fact that the
periodic orbits of Y ∈ R1 ∩ U are dense in ΛY) there is a periodic orbit γ of Y which
does not admit a dominated splitting E⊕<F with dim(E)= i; this property holds for the
continuation of γ in a small neighborhood of Y, proving the semi-continuity.

As a consequence, we get the following lemma.

Lemma 5.11. There are open subsets Ui ⊂ U , i ∈ {1, . . . , d − 2} such that

• ⋃i Ui is dense in U , and,
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• for any Y ∈ Ui ∩R1, there exists a T-dominated splitting

NY
ΛY−Sing(Y) = EY⊕<FY (5.3)

w.r.t. the linear Poincaré flow ψY
t , with dim(EY)= i.

Furthermore, the following lemma holds.

Lemma 5.12. For every (not necessarily generic) Y ∈ Ui, every periodic orbit γ ⊂ ΛY

admits a T-dominated splitting E⊕<F w.r.t. the linear Poincaré flow over γ , with
dim(EY)= i.

Proof. Just consider Yn ∈R1 ∩ Ui such that Yn tends to Y and each Yn has a periodic
orbit γn which tends to γ . Then the dominated splitting associated to Yn induces the
stated dominated splitting on γ , by Remark 5.3. �

5.6.3. The dimension of EY is 1.

Lemma 5.13. With the notation of the previous section, for every i > 1, the open set Ui

is empty.

Proof. The proof is very similar to the argument of the proof of Theorem B. Assuming
that Ui 6= ∅, we consider Y ∈ R1 ∩ Ui. Let p ∈ ΛY be a singularity of index 2. By a
small perturbation of Y ,we create a homoclinic orbit contained in the strong unstable
manifold of p. Keeping this homoclinic orbit, a new perturbation linearizes Y in the
neighborhood of the singularity (that is exactly Lemma 5.6).

Then small extra perturbations Y (keeping the linearization of Y in the neighborhood
of p) create a vector field Yn ∈ Ui having a periodic orbit γn which contains a segment in
the strong unstable plane passing arbitrarily close to the singularity (see Lemma 5.7).

Finally, Lemma 5.8 implies that the periodic orbits γn do not admit a T-dominated
splitting E⊕<F w.r.t. the linear Poincaré flow over γn, with dim(EY) = i > Ind(p). This
contradicts Lemma 5.12. �

Corollary 5.14. Every Y ∈R1 ∩ U admits a T-dominated splitting

NY
ΛY−Sing(Y) = EY⊕<FY (5.4)

w.r.t. the linear Poincaré flow ψY
t , with dim(EY)= 1.

Proof. Lemma 5.13 implies that Y can be approximated by Yn ∈ U1. However, Y ∈R1

is a continuity point of the map Z 7→ΛZ . Then ΛY inherits the T-dominated splitting of
the Yn. �

Corollary 5.14 means that U = U1.

5.6.4. Strong stable direction at the singular points. Given a hyperbolic
singularity q of non-zero index of a vector field X, we denote by λss(q) < 0 the infimum
of the real part of the eigenvalues of DqX. We denote by Ess(q) ⊂ TqM the sum of the
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(generalized) eigenspaces associated to the eigenvalues whose real part is λss, and we call
it the strong stable space of q.

We denote by Wss(q) the strong stable manifold of q tangent to Ess(q).
The aim of this section is to prove the following lemma.

Lemma 5.15. For every Y ∈ U , and for every singular point q ∈ Sing(X), the dimension
of Ess(q) is 1.

Proof. Assume, arguing by contradiction, that there is Y ∈ U with a singularity q such
that dim(Ess(q)) > 2. If some of the corresponding eigenvalues are complex, then this
property holds in a neighborhood of Y. Otherwise, there is real negative eigenvalue
with multiplicity at least 2. A small perturbation of Y creates a complex strong stable
eigenvalue. Hence in both cases, one may assume that Y ∈ R1 ∩ U and that q has a
complex strong stable eigenvalue.

As Y belongs to R1, there are periodic orbits passing arbitrarily close to q, and hence
close to some point z ∈Wu(q). Hence, there are periodic orbits γn containing segment σn

whose C1 distance to the segments φY[−n,0](z) tends to 0. Let zn be the extremity of σn.
As Y ∈ R1 ∩ U = U1, the attractor ΛY admits a dominated splitting E⊕<F on

ΛY \ Sing(Y) for the linear Poincaré flow, with dim(E)= 1.
Recall that Y admits a (non-unique) invariant strong stable foliation in a

neighborhood of q. We denote by Ess(z) the tangent space of this foliation at z, for z
in a neighborhood of q. Furthermore, there is a negatively invariant cone field around
the strong stable direction Ess.

As Y is almost tangent to the unstable space on the whole segment σn, one gets
that the strong stable space Euu(z) makes a bounded angle with NY(z) for every z ∈ σn.
Let Duu(z) denote the projection of Euu(s) on NY(z) parallel to Y(z). This projection is
injective, and its minimal norm (that is the inverse of the norm of its inverse) is larger
than an uniform constant. The dimension of Duu(z) is equal to the dimension of Euu(q),
and hence is, by assumption, at least 2.

Consider F(zn). It is a vectorial subspace of NY(zn) of dimension n− 2. Then

dim F(zn) ∩ Dss(zn)> 1.

Consider a vector v ∈ F(zn) ∩ Dss(zn), and let u ∈ Ess(zn) whose projection is v. Now,
ψY−t(v) is the projection on NY(φ−t(zn)) of ΦY−t(u), for t ∈ [0, n]. So the rates of expansion
of v for ψY−t and of u for ΦY−t are in a bounded ratio, on σn; as a consequence, this
expansion is the largest possible, corresponding to −λss. This contradicts the fact that
v ∈ F(zn) (the vectors of F(zn) are dominated by those of E(zn) for negative iterations). �

Lemma 5.16. Given any Y ∈ U and q ∈ Sing(Y), there is no homoclinic orbit in Wss(q);
in other words,

Wss(q) ∩Wu(q)= {q}.
Proof. The proof is by contradiction. Assuming that Y has an homoclinic orbit Γ in
Wss(q), we perform a perturbation preserving this homoclinic orbit, and linearizing Y
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in the neighborhood of q. Then the proof follows the same argument as the proof
of Theorem B and Lemma 5.13, but for negative times of the flow, leading to a
contradiction with the fact that dim(FY)= d − 2> dim(Eu(q)). �

As a direct corollary, one gets the following.

Corollary 5.17. For any vector field Y ∈R1 ∩ U and q ∈ Sing(Y), one has

Wss(q) ∩ΛY = {q}.
Proof. As Y is Kupka–Smale and ΛY is chain recurrent, if Wuu(q) ∩ ΛY contains
a regular orbit then the connecting lemma for pseudo-orbits allows us to create a
homoclinic orbit of q contained in Wss(q), contradicting Lemma 5.16. �

5.6.5. Extension of the bundles EY and FY ⊕ RY to the singularity. Consider
a vector field Y ∈ R1 ∩ U . Changing the Riemannian metric on M if necessary, one
may assume that, for every q ∈ Sing(Y), the strong stable space Ess(q) is orthogonal to
the sum G(q) of all the generalized eigenspaces corresponding to the other eigenvalues.
Notice that the splitting Ess(q)⊕ G(q) is dominated.

Corollary 5.17 implies that, for any singular point q of Y, and any small cone around
G(q), the vector Y(z) is contained in that cone for z close enough to q. This implies that
Ess(q) is almost orthogonal to Y(z) for z close to q. More precisely, Ess(q) is contained in
all the possible limits of NY(z) when z ∈ ΛY tends to q. As a consequence, one gets the
following lemma.

Lemma 5.18. The bundle EY defined on ΛY \ Sing(Y) extends continuously at every
singular point q ∈ΛY by

EY(q)= Ess(q).

Furthermore, the linear Poincaré flow ψY extends continuously on Ess(q) by

ψY |Ess(q) =ΦY |Ess(q).

Notice that the bundle GY = RY ⊕ FY , defined on ΛY \ Sing(Y), is invariant by the flow
ΦY . One gets the following.

Lemma 5.19. The bundle GY = RY ⊕ FY defined on ΛY \ Sing(Y) extends continuously
at every singular point q ∈ΛY by

GY(q)= G(q).

Furthermore, this bundle is ΦY -invariant.

5.6.6. The uniform contraction of the bundle EY for ψY. The aim of this section is
to prove the following lemma.

Lemma 5.20. For any Y ∈R1 ∩ U , the bundle EY is uniformly contracted by the linear
Poincaré flow ψY .
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Proof. The proof is an adaptation of the argument in [25] using his ergodic closing
lemma for proving that robustly transitive diffeomorphisms on surfaces are Anosov. The
same argument has been already used in [7] for getting the volume hyperbolicity of
robustly transitive diffeomorphisms in higher dimensions. The difficulty here is that we
deal with singular flows. This adaptation has already been used in [16] in the context of
star flows (see also [36]).

We argue by contradiction, assuming that the bundle EY is not uniformly contracted
by the linear Poincaré flow ψY .

We consider ψY as a continuous linear cocycle over the flow φY . For every z ∈ ΛY , we
denote v(z) to be a unit vector directing EY(z) and we denote α(z)= log(‖ψY

1 (v(z)‖).
As EY is not uniformly contracted, there is a φY -invariant probability measure µ

supported on ΛY and such that ∫
ΛY

α(z)dµ(z)> 0.

We consider a disintegration of µ in ergodic measure. As a consequence, we get that
there is an ergodic measure ν supported on ΛY satisfying∫

ΛY

α(z)dµ(z)> 0.

Notice that ν cannot be supported on a singular point q, because EY(q) = Ess(q) is
uniformly contracted, and hence it is supported on regular orbits. More precisely,
ν-almost every point spends an arbitrarily large fraction of time out of a small
neighborhood of the singularities.

Now, Mañé’s ergodic closing lemma asserts that ν-almost every point x is well
closable, i.e., there is Y ′ arbitrarily C1-close to Y, such that the orbit γ of x for Y ′ is
periodic; furthermore, φY ′

t (x) remains arbitrarily close to φY
t (x) for 0< t < π(x,Y ′), where

π(x,Y ′) is the period of x for Y ′.
Notice that, by Lemma 5.12 and the fact that U = U1, one has that γ has a splitting

EY ′⊕<FY ′ for ψY ′ .

Claim 7. The orbit γ above can be chosen such that the Lyapunov exponent of ψY ′ along
γ in EY ′ is arbitrarily close to

∫
ΛY
α(z)dµ(z).

Proof. For ν-almost every x and any t large enough, | ∫
ΛY
α(z)dµ(z) − 1

t log ‖DψY
t |EY (x)

‖|
is arbitrarily small. Furthermore, x is well closable.

Furthermore, by Remark 5.3, the bundle EY ′(φY ′
t (x)) is arbitrarily close to EY(φY

t (x)),
for t ∈ [0, π(x,Y ′)] such that EY(φY

t (x)) is out of a small neighborhood of the singularity.
As a consequence, EY ′(φY ′

t (x)) is arbitrarily close to EY(φY
t (x)) on an arbitrarily large

fraction of t ∈ [0, π(x,Y ′)]. For these times, the actions of the flow ψY ′ and ψY are also
arbitrarily close. The actions are bounded, and abelian (because the dimension of EY

is 1). Then one may neglect the effect of the few times t where φY
t (x) is very close to the

singularities, leading to the conclusion. �

Hence, for any ε > 0, there are Y ′ arbitrarily close to Y and a periodic orbit γ of
Y ′ having a Lyapunov exponent for ψY ′ in the EY ′ direction larger than −ε. An extra
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perturbation, using Franks’ lemma, creates a vector field Y ′′ arbitrarily close to Y having
a periodic orbit γ ∈ ΛY ′′ whose Lyapunov exponent in EY ′′ is positive (see [10] for an
adaptation of Frank’s lemma for flows). However, EY ′′ is dominated by FY ′′ , so that γ is a
source, contradicting the fact that ΛY ′′ is a chain transitive attractor. �

5.6.7. The partial hyperbolicity of the flow ΦY. Up to now we have that every
Y ∈R1 ∩ U admits a splitting

TM|ΛY = EY ⊕ GY ,

such that

• EY is one dimensional, continuous, invariant by ψY on ΛY \ Sing(Y), and uniformly
contracted by ψY ;
• GY is continuous and ΦY -invariant, and can be written GY = RY ⊕ FY on
ΛY \ Sing(Y);
• the sum EY ⊕ FY is the normal bundle NY and induces a T-dominated splitting of
ψY .

To end the proof, we need to get a ΦY -invariant stable bundle. We will briefly explain
the argument; details can be found in [16].

Choose a Riemannian metric on M such that EY and FY are orthogonal. One
writes the action of ΦY on TxM, for x ∈ ΛY , in an orthogonal basis whose first d − 1
vectors belong to GY and whose last vector belongs to EY . The expression of ΦY is a
block-trigonal matrix with two blocks on the diagonal, the second block being the action
of ψY on EY :

ΦY
t |TxM =

(
At(x) Ct(x)

0 Bt(x)

)
.

We first prove that, for negative times, Bt(x) dominates At(x). That is,
lim supt→+∞

‖A−t(x)‖
‖B−t(x)‖ < 0, and this limit is uniform in x. That is an easy consequence of

the facts that

• far from the singularity, the splitting EY ⊕ FY is L-dominated, and the action on the
Y direction is almost an isometry, and,
• on a singularity q, EY = Ess(q).

One deduces that the ratio ‖C−t(x)‖
‖B−t(x)‖ remains uniformly bounded on ΛY for large t > 0.

This means that the iterates by ΦY−t of the bundle EY keep an angle bounded from zero
with GY , leading to a ΦY -invariant bundle Es,Y . This bundle is uniformly contracted and
dominated by GY .

Hence we get the following lemma.

Lemma 5.21. For every Y ∈ R1 ∩ U , the attractor ΛY admits a partially hyperbolic
splitting Es,Y⊕<GY , where Es,Y is one dimensional and uniformly contracted.

Note that the map Z 7→ ΛZ is upper semi-continuous. Hence the attractor ΛZ are
contained in an arbitrarily small neighborhood of ΛY for Z close enough to Y. Hence
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the partially hyperbolic splitting w.r.t. the tangent flow ΦY
t on ΛY can be continuously

extended on ΛZ for the nearby vector fields Z. Hence we can get the open and dense
set O ⊂ U of vector fields Z for which ΛZ is partially hyperbolic, ending the proof of
Theorem C.
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