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Given an irreducible surface germ (X, 0) ⊂ (C3, 0) with a one-dimensional singular
set Σ, we denote by δ1(X, 0) the delta invariant of a transverse slice. We show that
δ1(X, 0) � m0(Σ, 0), with equality if and only if (X, 0) admits a corank 1
parametrization f : (C2, 0) → (C3, 0) whose only singularities outside the origin are
transverse double points and semi-cubic cuspidal edges. We then use the local Euler
obstruction Eu(X, 0) in order to characterize those surfaces that have finite
codimension with respect to A-equivalence or as a frontal-type singularity.

1. Introduction

Any irreducible complex plane curve singularity (Y, 0) can be parametrized, that
is, it can be seen as the image of a finite and generically one-to-one map germ
γ : (C, 0) → (C2, 0). We can then look at it either as a finitely determined map
germ with respect to the A-equivalence or as a frontal-type singularity (using the
terminology of Kurbatskĭı and Zakalyukin [16]) of finite codimension in some sense.
This phenomenon becomes explicit when we consider a suitable deformation Yt,
parametrized by a stable map γt. In the first case, Yt is a morsification of Y , since
the degenerated singularity splits into a finite number of nodes, that is, transverse
double points A1. In the second case, besides the nodes, we also allow the birth
of simple cusps A2, which are stable singularities in this context. As an example,
we see in figure 1 the two deformations of the E6 singularity, parametrized by
γ(v) = (v3, v4).

The total space of the deformation (X, 0) is an irreducible surface in (C3, 0)
with one-dimensional singular locus Σ, which has special properties. It can be
parametrized as the image of a map germ f : (C2, 0) → (C3, 0) given by f(u, v) =
(u, γu(v)). If γu is a morsification, then f is A-finite, that is, it has finite codimension
with respect to the A-equivalence. Otherwise, if γu is a deformation as a frontal,
then f is itself a frontal-type surface of finite codimension as a frontal (see § 3). In
figure 2 we show the two surfaces constructed with the two deformations of E6. On
the left-hand side we have the P3(c) singularity of Mond [12], and on the right-hand
side we have the swallowtail.

Another interesting property of (X, 0) is the equality δ1(X, 0) = m0(Σ, 0), where
δ1(X, 0) is the transverse delta invariant (i.e. the delta invariant of a generic plane
section) and m0(Σ, 0) is the multiplicity of its singular locus. Since this is the min-
imal possible value for δ1(X, 0), we say that (X, 0) is a δ1-minimal surface. In fact,
we show in theorem 2.1 that, for any irreducible surface (X, 0) with non-isolated
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Figure 1. Two deformations of the E6 singularity.

Figure 2. The total spaces of the deformations.

singularity, we have δ1(X, 0) � m0(Σ, 0), with equality if and only if (X, 0) admits a
corank 1 parametrization f : (C2, 0) → (C3, 0), and such that the only singularities
outside the origin are transverse double points or semi-cubic cuspidal edges.

In the last part of the paper, we use the local Euler obstruction Eu(X, 0) in order
to characterize those surfaces among the δ1-minimal ones that are stable unfoldings
of plane curves or frontals. We show that if (X, 0) is δ1-minimal, then

1 � Eu(X, 0) � m0(X, 0).

Moreover, we deduce the following (see corollary 4.3).

(1) (X, 0) is the image of a corank 1 A-finite map germ if and only if it is
δ1-minimal and Eu(X, 0) = 1.

(2) (X, 0) is the image of a corank 1 frontal of finite codimension if and only if it
is δ1-minimal and Eu(X, 0) = m0(X, 0).

Note that Jorge-Pérez and Saia proved in [6] that if (X, 0) is the image of a corank 1
A-finite map germ, then Eu(X, 0) = 1. The results presented here are also related
to those of [10], where we consider the classification and the invariants of corank 1
A-finite map germs f : (C2, 0) → (C3, 0) by looking at the transverse slice.

2. δ1-minimal surfaces

Let (X, 0) ⊂ (C3, 0) be a singular surface. Given 0 ∈ H ⊂ C
3 a generic plane we

consider the plane curve Y = X ∩ H and we call it a transverse slice of X. The
delta invariant of Y at 0 is an invariant of (X, 0) that is independent of the choice
of H. We define δ1(X, 0) := δ(Y, 0) and call it the transverse delta invariant.

Given an analytic set germ (V, 0) ⊂ (Cn, 0), we denote by m0(V, 0) its multiplic-
ity. We recall that this can be computed by means of a generic linear projection
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� : C
n → C

d, where d = dim(V, 0). Then, m0(V, 0) = #V ∩ Ht, where Ht = �−1(t)
and t ∈ C

d is a generic value.

Theorem 2.1. Let (X, 0) ⊂ (C3, 0) be an irreducible surface with singular locus
(Σ, 0) of dimension 1; then

δ1(X, 0) � m0(Σ, 0).

Moreover, the equality holds if and only if (X, 0) admits a corank 1 parametrization
f : (C2, 0) → (C3, 0) such that the only singularities outside the origin are transverse
double points and semi-cubic cuspidal edges.

Proof. We consider a linear projection � : C
3 → C such that H = �−1(0) is a generic

plane and Y = X ∩ H is a transverse slice of X. Moreover, for each t ∈ C we can
take Ht = �−1(t) in such a way that Yt = X∩Ht defines a flat deformation of (Y, 0).

Since (X, 0) is irreducible, it has a normalization n : (X̃, 0) → (X, 0), where
(X̃, 0) is a normal surface and n is finite and generically one-to-one. By taking
the composition p̃ = p ◦ n : (X̃, 0) → (C, 0) we also have a flat deformation of
Ỹ = n−1(Y ).

We now use a result of Lejeune et al . [8] (see also [3, § 4.1.14]): for any t �= 0
small enough,

δ(Y, 0) = δ(Ỹ , 0) +
∑

p∈S(Yt)

δ(Yt, p), (2.1)

where S(Yt) denotes the singular set of Yt. Obviously, S(Yt) = Yt ∩ Σ = Ht ∩ Σ
and, for each p ∈ S(Yt), δ(Yt, p) � 1. Therefore,

δ(Y, 0) � #Ht ∩ Σ = m0(Σ, 0).

We prove the equality in the case when (X, 0) admits a corank 1 parametrization
f : (C2, 0) → (C3, 0) and the only singularities of (X, 0) outside the origin are
transverse double points and semi-cubic cuspidal edges. In fact, after making a
linear coordinate change in C

3, and after reparametrization, we can assume that f
is given in the form

f(u, v) = (u, p(u, v), q(u, v))

for some function germs p, q and such that generic plane is x = 0 (here, we denote
by (x, y, z) the coordinates in C

3). Then, Ỹ is the curve u = 0, which is smooth,
and thus δ(Ỹ , 0) = 0.

On the other hand, for each t �= 0, the deformation Yt is given by x = t. The
only singularities of Yt are cusps and nodes, both having delta invariant equal to 1.
By (2.1), δ(Y, 0) = m0(Σ, 0).

We now prove the converse. If δ(Y, 0) = m0(Σ, 0), we deduce from (2.1) that
δ(Ỹ , 0) = 0 and δ(Yt, p) = 1 for each t �= 0 and p ∈ S(Yt). In other words, Ỹ is
smooth at 0, and the only singularities of Yt are cusps and nodes when t �= 0.

Since δ(Ỹ , 0) = 0, we have from (2.1) that Yt is a delta-constant family of curves
in the sense of Teissier. By [3, § 7.1.3], Yt admits a normalization in family. This
means that there exists a normalization of the form ϕ : (Ỹ ×C, 0) → (X, 0). But the
uniqueness of the normalization implies that X̃ is smooth at 0 and we can assume
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Figure 3. A double-fold corank 2 singularity.

that X̃ = C
2. Thus, (X, 0) is the image of f = i ◦ n : (C2, 0) → (C3, 0), where i

denotes the inclusion map.
Because Ỹ is smooth at 0, f must have corank 1. Moreover, the only singularities

of f outside the origin will be semi-cubic cuspidal edges and transverse double
points (having as transverse slice cusps and nodes, respectively).

Definition 2.2. We say that a surface (X, 0) ⊂ (C3, 0) is δ1-minimal if it is irre-
ducible with one-dimensional singular locus Σ and δ1(X, 0) = m0(Σ, 0).

It follows from theorem 2.1 that (X, 0) is δ1-minimal if and only if it admits
a corank 1 parametrization f : (C2, 0) → (C3, 0) such that the only singularities
outside the origin are semi-cubic cuspidal edges and transverse double points. We
see in the following example that the corank 1 condition is necessary.

Example 2.3. Let (X, 0) be the surface parametrized by the double-fold map germ
f : (C2, 0) → (C3, 0) given by f(u, v) = (u2, v2, u5 + v5 + 2u3v3) (see [9]). Then,
(X, 0) is irreducible, its singular set Σ has dimension 1, and all the singularities
outside the origin are semi-cubic cuspidal edges and transverse double points (see
figure 3). But, since f has corank 2, we expect to get δ1(X, 0) > m0(Σ, 0).

In fact, according to [9], Σ is the curve in (C3, 0) given by the zeros of the
3 × 3 minors of the matrix⎛

⎜⎜⎝
−z x2 y2 2xy

x3 −z 2x2y y2

y3 2xy2 −z x2

2x2y2 y3 x3 −z

⎞
⎟⎟⎠ .

Using the computer algebra system Singular [4], we compute m0(Σ, 0) = 13. On
the other hand, (X, 0) is given by the determinant of the above matrix:

x10 − 8x8y3 + 16x6y6 − 2x5y5 − 2x5z2 − 16x4y4z

− 8x3y8 − 8x3y3z2 + y10 − 2y5z2 + z4 = 0.
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In order to compute the transverse slice, we just substitute z = ax + by for some
generic coefficients a, b ∈ C. Again with the aid of Singular, we get δ1(X, 0) = 14.

We can associate two invariants with each δ1-minimal surface (X, 0). Let � : C
3 →

C be a generic linear projection and set Ht = �−1(t) and Yt = X ∩ Ht. Since (X, 0)
is δ1-minimal, the only singularities of Yt for t �= 0 small enough are cusps and
nodes.

Definition 2.4. We define the numbers of transverse cusps and transverse nodes
of (X, 0), respectively, as the following:

• κ is the number of cusps (A2) of Yt,

• ν is the number of nodes (A1) of Yt.

The numbers κ, ν are well defined and do not depend on the choice of the generic
linear projection � nor the parameter t. In fact, we can split the singular locus into
Σ = Σ1 ∪ Σ2, where Σ1 contains the transverse double points and Σ2 contains the
points of semi-cubic cuspidal edge type. Then, κ = m0(Σ2, 0) and ν = m0(Σ1, 0).
Moreover, we also deduce from the additivity of the multiplicity that

κ + ν = m0(Σ2, 0) + m0(Σ1, 0) = m0(Σ, 0) = δ1(X, 0).

Another consequence of theorem 2.1 is that a surface (X, 0) is δ1-minimal if and
only if it is the image of an unfolding of a plane curve with only cusps and nodes. If
(X, 0) admits a corank 1 parametrization f : (C2, 0) → (C3, 0), then, after making
a linear coordinate change in C

3, and after reparametrization, we can assume that
f is given in the form

f(u, v) = (u, γu(v)),

where γu(v) is the parametrization of the plane curve Yu = X ∩ {x = u}.

Proposition 2.5. Let (X, 0) be a δ1-minimal surface, parametrized by f(u, v) =
(u, γu(v)), where x = 0 is a generic plane. The following statements are equivalent:

(1) κ = 0,

(2) f is A-finite,

(3) for each t �= 0, γt is A-stable.

Proof. The equivalence between (1) and (3) follows from the fact that the only
A-stable singularities of plane curves are nodes. The equivalence between (1) and
(2) is a consequence of the Mather–Gaffney determinacy criterion: the map germ
f : (C2, 0) → (C3, 0) is A-finite if and only if there is a proper representative
f : U → V such that f−1(0) = {0} and the restriction to U \ {0} is A-stable. But
since the cross-caps and the transverse triple points are isolated, by shrinking
U if necessary, this is equivalent to that f has only transverse double points
on U \ {0}.
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Example 2.6. Let (X, 0) be an irreducible surface with one-dimensional singular
set whose transverse slice has type E6. We parametrize the curve by γ(v) = (v3, v4)
and take the miniversal deformation

Γ (v; a, b, c) = (v3 + av, v4 + bv2 + cv).

Then, after a linear coordinate change, (X, 0) admits a parametrization of the form

f(u, v) = (u, v3 + a(u)v, v4 + b(u)v2 + c(u)v)

for some a, b, c ∈ C{u}, with a(0) = b(0) = c(0) = 0.
The discriminant of the deformation Δ is the set of points (a, b, c) ∈ C

3 such
that the curve γa,b,c(v) = (v3 +av, v4 + bv2 + cv) is not A-stable. According to [10],
Δ has the equation P1P2P3 = 0, where

P1 = 16a3 − 48a2b + 36ab2 + 27c2,

P2 = 32a3 − 48a2b + 24ab2 − 4b3 + 27c2,

P3 = a − b.

The three factors P1, P2, P3 correspond to the strata of singular points, self-
tangencies and triple points, respectively.

If we also define Pi = Pi(a(u), b(u), c(u)), we have the following three types of
δ1-minimal surfaces.

(1) (X, 0) is δ1-minimal with κ = 0 and ν = 3 if and only if P1P2P3 �= 0.

(2) (X, 0) is δ1-minimal with κ = 1 and ν = 2 if and only if P1 = 0 but (c, 2a −
3b) �= (0, 0) and P2P3 �= 0.

(3) (X, 0) is δ1-minimal with κ = 2 and ν = 1 if and only if (c, 2a − 3b) = (0, 0)
but P2P3 �= 0.

The condition (c, 2a − 3b) �= (0, 0) to distinguish between (2) and (3) follows from
the analysis of the number of solutions of the system

γ′
a,b,c(v) = (3v2 + a, 4v3 + 2bv + c) = 0.

There are two solutions if and only if 3v2+a divides 4v3+2bv+c, which is equivalent
to c = 0, 2a − 3b = 0.

3. Frontals

In this section, we consider frontal-type singularities. This concept was introduced
by Zakalyukin and Kurbatskĭı in [16] and it is the generalization of a front. Roughly
speaking, a frontal is the projection of a Legendrian submanifold with singularities.
We also refer the reader to Ishikawa’s paper [5] for basic definitions and notation
about Legendre singularities. Although we only consider the complex case here,
many of the results are also valid in the real case.

Let PT ∗
C

n+1 be the projectivized cotangent bundle of C
n+1 with the canon-

ical contact structure defined by the contact form α, and denote the projection
by π : PT ∗

C
n+1 → C

n+1. By definition, a holomorphic map germ L : (Cn, 0) →
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PT ∗
C

n+1 is said to be integral if L∗α ≡ 0. This means that L = (f, [ν]), where
f : (Cn, 0) → C

n+1 is a holomorphic map germ and ν : (Cn, 0) → T ∗
C

n+1 is a
holomorphic, everywhere non-zero 1-form along f such that ν(df ◦ ξ) = 0, for any
ξ ∈ Vn, the space of all germs of vector fields in (Cn, 0). If ν is given in coordinates
by ν =

∑n+1
j=1 νj dxj , this is also equivalent to

n+1∑
j=1

νj
∂fj

∂ui
= 0 ∀i = 1, . . . , n

for all u in a neighbourhood of the origin in C
n.

Definition 3.1. We say that a map germ f : (Cn, 0) → (Cn+1, 0) is a frontal
map germ if there exists an integral map germ L : (Cn, 0) → PT ∗

C
n+1 such that

π ◦ L = f . If, in addition, L is an embedding, then we say that f is a front.

When L is an integral embedding, then its image in PT ∗
C

n+1 is called a Leg-
endrian submanifold. If it is not an embedding, then it is usual to call the image
a Legendrian submanifold with singularities. A hypersurface singularity (X, 0) in
(Cn+1, 0) is called a frontal (respectively, front) if there exists a frontal (respectively,
front) map germ f : (Cn, 0) → (Cn+1, 0) whose image is (X, 0).

Remark 3.2. If the map germ f is itself an embedding, then it is always a frontal
and the class [ν] is determined uniquely by the components of the cross product

∂f

∂u1
∧ · · · ∧ ∂f

∂un
.

If f is not an embedding, but it is generically immersive (for instance, when it is
finite and generically one-to-one), then the class [ν] is also uniquely determined, if
it exists.

Example 3.3. We consider some examples.

(1) Any irreducible plane curve singularity is always a frontal. Assume that (Y, 0)
is parametrized in (C2, 0) by γ(v) = (p(v), q(v)), where

p(v) = anvn + an+1v
n+1 + · · · ,

q(v) = bmvm + bm+1v
m+1 + · · · ,

with an, bm �= 0 and n � m. We then take the 1-form:

ν =
1

vn−1 (−q′(v) dx + p′(v) dy).

Note that (Y, 0) is a front if and only if m = n + 1.

(2) The double-fold surface (X, 0) of example 2.3 is a corank 2 frontal surface in
(C3, 0). In fact, since

∂f

∂u
∧ ∂f

∂v
= uv(−2u(5u2 + 6v3),−2v(6u3 + 5v2), 4),
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we may take

ν = −2u(5u2 + 6v3) dx − 2v(6u3 + 5v2) dy + 4 dz.

(3) Not every parametrized surface (X, 0) ⊂ (C3, 0) is a frontal. For instance,
given the cross-cap f(u, v) = (u, v2, uv) we have

∂f

∂u
∧ ∂f

∂v
= (−2v2,−u, 2v).

Assume that there exists an everywhere non-zero 1-form ν such that L =
(f, [ν]). We could then write

−2v2 = αν1, −u = αν2, 2v = αν3

for some function α. Since α divides u and v, α should be a unit. But then

ν =
1
α

(−2v2 dx − u dy + 2v dz),

and ν(0) = 0, in contradiction with the hypothesis.

In general, we have the following criterion for corank 1 hypersurfaces.

Proposition 3.4. Consider a hypersurface (X, 0) ⊂ (Cn+1, 0) parametrized by a
corank 1 map germ f(u, v) = (u, p(u, v), q(u, v)), with u ∈ C

n−1, v ∈ C. Then,
(X, 0) is a frontal if and only if either ∂p/∂v divides ∂q/∂v or ∂q/∂v divides ∂p/∂v.

Proof. We have that

∂f

∂u1
∧ · · · ∧ ∂f

∂un−1
∧ ∂f

∂v
=

(
Δ1, . . . ,Δn−1,−

∂q

∂v
,
∂p

∂v

)
,

where
Δi =

∂q

∂v

∂p

∂ui
− ∂q

∂ui

∂p

∂v
.

Assume, for instance, that ∂q/∂v = λ(∂p/∂v) for some function λ. Then, Δi =
μi(∂p/∂v), with μi = λ(∂p/∂ui) − ∂q/∂ui, and thus we can take

ν = μ1 dx1 + · · · + μn−1 dxn−1 − λ dxn + dxn+1.

Conversely, suppose that there exists a non-zero 1-form ν such that L = (f, [ν])
is integral. There then exists a function α such that

Δi = ανi, i = 1, . . . , n − 1, −∂q

∂v
= ανn,

∂p

∂v
= ανn+1,

and hence

ανi = −α

(
νn

∂p

∂ui
+ νn+1

∂q

∂ui

)
, i = 1, . . . , n − 1.

If α = 0, we have that ∂p/∂v = ∂p/∂v = 0 and the result is obvious. Otherwise, if
α �= 0, we have that

νi = −νn
∂p

∂ui
− νn+1

∂q

∂ui
, i = 1, . . . , n − 1.
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Figure 4. Stable frontal surfaces.

Since ν(0) �= 0, necessarily either νn(0) �= 0 or νn+1(0) �= 0, so either ∂p/∂v | ∂q/∂v
or ∂q/∂v | ∂p/∂v.

Example 3.5. We apply this criterion to see some examples of frontal surfaces.

(1) The swallowtail (X, 0) is a frontal surface (see the right-hand side of figure 2).
In fact, it is parametrized by f(u, v) = (u, v3 + uv, v4 + 2

3uv2), and we have
that ∂p/∂v = 3v2 + u and ∂q/∂v = 4

3v(3v2 + u).

(2) The folded Whitney umbrella is the surface (X, 0) in (C3, 0) parametrized by
f(u, v) = (u, v2, uv3+v5) (see figure 4). This is also a frontal, since ∂p/∂v = 2v
and ∂q/∂v = v(3uv + 5v3).

We now define the codimension of a frontal as the codimension of the Legendrian
singularity whose projection is the frontal, with respect to Legendre equivalence. We
define W = PT ∗

C
n+1 for simplicity and let L : (Cn, 0) → (W, w0) be the integral

map germ given by L = (f, [ν]). We recall the following notation from [5].

(1) V IL is the space of all integral infinitesimal deformations of L, that is, germs
of vector fields along L that preserve the contact structure.

(2) V LW,w0 is the space of all germs of Legendre vector fields in (W, w0).
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Definition 3.6. We define the Fe-codimension of f as

Fe − codim(f) = dimC

V IL
{dL ◦ ξ + η̃ ◦ L : ξ ∈ Vn, η̃ ∈ V LW,w0}

.

If the Fe-codimension is finite, we say that f is F-finite, and if the Fe-codimension
is 0, we say that f is F-stable.

According to [5], the space V IL can be interpreted as the space of all infinitesimal
integral deformations of L, and the subspace

{dL ◦ ξ + η̃ ◦ L : ξ ∈ Vn, η̃ ∈ V LW,w0}

should be understood as the extended tangent space to the orbit of L under the
action of Legendre equivalences. It follows from the definition that f is F-stable if
and only if L is infinitesimally Legendre stable in the sense of [5]. By [5, 4.1], any
corank 1 F-stable frontal is the projection of an open Whitney umbrella.

All the above definitions are also valid if instead of germs we consider multigerms
f : (Cn, S) → (Cn+1, y), where S ⊂ C

n is any finite set and y ∈ C
n+1. We use this

remark to classify the F-stable singularities of curves and surfaces. Note that all
the F-stable singularities of frontal surfaces except folded Whitney umbrellas are
generic fronts, and their classification is well known (see, for instance, [1]).

Proposition 3.7.

(1) The F-stable singularities of a frontal curve are cusps and nodes.

(2) The F-stable singularities of a frontal surface are either semi-cubic cuspidal
edges, swallowtails, folded Whitney umbrellas or their transverse self-inter-
sections (see figure 4).

The following property is an adapted version of the Mather–Gaffney finite deter-
minacy criterion for frontals (see [15]).

Proposition 3.8. A frontal f : (Cn, 0) → (Cn+1, 0) is F-finite if and only if there
exists a proper and finite-to-one representative f : U → V such that f−1(0) = {0}
and the multigerm at any point y ∈ V \ {0} is F-stable.

By shrinking the neighbourhoods U , V if necessary, all the isolated F-stable
singularities can be avoided. We then have the following direct consequence of
propositions 3.7 and 3.8.

Corollary 3.9.

(1) A frontal curve is F-finite if and only if it has an isolated singularity.

(2) A frontal surface of corank 1 is F-finite if and only if the only singularities
outside the origin are transverse double points and semi-cubic cuspidal edges.

Recall that if (X, 0) is δ1-minimal, then 0 � κ � m0(X, 0) − 1, where κ is the
number of cusps. We then have the following property, which is, in some sense, dual
to proposition 2.5.
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Proposition 3.10. Let (X, 0) be a δ1-minimal surface parametrized by f(u, v) =
(u, γu(v)), where x = 0 is a generic plane. The following statements are equivalent:

(1) κ = m0(X, 0) − 1,

(2) f is an F-finite frontal,

(3) f is a frontal unfolding of γ0 and, for each t �= 0, γt is F-stable.

Proof. Since (X, 0) is δ1-minimal, the only singularities outside the origin are trans-
verse double points and semi-cubic cuspidal edges. Moreover, for each t, the trans-
verse slice Yt is parametrized by γt(v) = (p(t, v), q(t, v)) and it has only cusps and
nodes if t �= 0. By proposition 3.7 and corollary 3.9, in order to show the equivalence
between the three statements, we need only show that κ = m0(X, 0)−1 if and only
if f is a frontal.

Given h ∈ O2, we denote by ov(h) the order of h in v, that is, the order of
h(0, v) ∈ O1. Assume that ov(p) = m and ov(q) = k with m � k. Then, because of
the genericity assumption, we have that m0(X, 0) = m.

For a fixed small enough t �= 0, κ is equal to the number of solutions of pv(t, v) =
qv(t, v) = 0 in v. If h = gcd(pv, qv), then κ is less than or equal to the number of
solutions of h(t, v) = 0 in v. In particular,

κ � ov(h) � ov(pv) = m − 1 = m0(X, 0) − 1.

Thus, we have the following equivalences:

κ = m0(X, 0) − 1 ⇐⇒ ov(h) = ov(pv) ⇐⇒ pv | qv ⇐⇒ f is a frontal.

4. Local Euler obstruction

The local Euler obstruction was first introduced by McPherson [11] as an ingredi-
ent in the construction of characteristic classes of singular algebraic varieties. Here,
we prefer to use the approach of Lê and Teissier [7] in terms of polar multiplic-
ities. Given an analytic set germ (V, 0) ⊂ (Cn, 0) of dimension d, its local Euler
obstruction is computed as an alternate sum

Eu(V, 0) =
d−1∑
i=0

(−1)imi(V, 0),

where mi(V, 0) denotes the ith-polar multiplicity (see [7] for definitions and details).
In particular, for a surface (X, 0),

Eu(X, 0) = m0(X, 0) − m1(X, 0),

and hence Eu(X, 0) � m0(X, 0).
In the next theorem, we compute the local Euler obstruction of a δ1-minimal

surface in terms of the number of transverse cusps κ. To do this, we first characterize
the number ν of transverse nodes in terms of the number of vanishing cycles of the
transverse slice Yt.
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Lemma 4.1. Let (X, 0) be a δ1-minimal surface. Then, for each t �= 0 small enough,
the Euler characteristic of Yt is

χ(Yt) = 1 − ν.

Proof. We define δ = δ1(X, 0) = δ(Y, 0). Since (X, 0) is δ1-minimal, we have seen
in the proof of theorem 2.1 that (Y, 0) is irreducible, and hence its Milnor number
is μ(Y, 0) = 2δ (by Milnor’s formula).

On the other hand, χ(Yt) is related to the Milnor number by the following for-
mula [3]:

μ(Y, 0) −
∑

p∈S(Yt)

μ(Yt, p) = dimC H1(Yt; C) = 1 − χ(Yt).

For each t �= 0 small enough, the only singularities of Yt are simple cusps, with
Milnor number 2, and nodes, with Milnor number 1. Hence, we obtain

μ(Y, 0) −
∑

p∈S(Yt)

μ(Yt, p) = 2δ − (2κ + ν) = ν.

Theorem 4.2. Let (X, 0) be a δ1-minimal surface. Then,

Eu(X, 0) = 1 + κ.

In particular, 1 � Eu(X, 0) � m0(X, 0).

Proof. We use a formula of Brasselet et al . [2] that is valid whenever (X, 0) is
equidimensional and has one-dimensional singular locus Σ. We take t �= 0 small
enough, and assume that Yt ∩ Σ = {x1, . . . , xm}. Then,

Eu(X, 0) = χ(Yt) − m +
m∑

i=1

Eu(X, xi).

Note that Yt ∩Σ is the singular locus of Yt, and, since each singular point has delta
invariant 1, we have that m = δ1(X, 0) = κ + ν. By lemma 4.1, χ(Yt) = 1 − ν.
For each i = 1, . . . , m, Eu(X, xi) = 2 if X is either a semi-cubic cuspidal edge or a
transverse double point at xi. Thus,

Eu(X, 0) = 1 − ν − (κ + ν) + 2κ + 2ν = 1 + κ.

As a consequence, we arrive at the following result, which characterizes those
surfaces that are stable unfoldings of plane curves or frontals.

Corollary 4.3. Let (X, 0) ⊂ (C3, 0) be an irreducible surface with singular locus
of dimension 1. The following then hold.

(1) (X, 0) is the image of a corank 1 A-finite germ if and only if it is δ1-minimal
and Eu(X, 0) = 1.
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(2) (X, 0) is the image of a corank 1 F-finite front if and only if it is δ1-minimal
and Eu(X, 0) = m0(X, 0).

Proof. It follows directly from theorem 2.1, propositions 2.5, 3.10 and theorem 4.2.

We finish with a result where we consider irreducible surfaces with one-dimen-
sional locus in any ambient space and without any finiteness assumption. Given
a space curve (Y, 0) ⊂ (CN , 0), the first polar multiplicity was introduced by the
author and Tomazella in [14] as

m1(Y, 0) := μ(�|(Y,0)),

where � : C
N → C is a generic linear form and μ(�|(Y,0)) is the Milnor number in

the sense of Mond and van Straten [13]. It is then shown that

m1(Y, 0) = μ(Y, 0) + m0(Y, 0) − 1, (4.1)

where μ(Y, 0) is now the Milnor number of a space curve as defined by Buchweitz
and Greuel [3].

Proposition 4.4. Let (X, 0) ⊂ (CN+1, 0) be an equidimensional surface with one-
dimensional singular set Σ. Then, for t �= 0,

m1(X, 0) = m1(Y, 0) −
∑

x∈S(Yt)

m1(Yt, x),

where Yt is the transverse slice of (X, 0).

Proof. This is again a consequence of the Brasselet–Lê–Seade formula together
with (4.1):

m1(X, 0) = m0(X, 0) − Eu(X, 0)

= m0(X, 0) − χ(Yt) +
∑

x∈S(Yt)

(Eu(X, x) − 1)

= m0(Y0, 0) − 1 + (1 − χ(Yt)) +
∑

x∈S(Yt)

(m0(Yt, x) − 1)

= m0(Y0, 0) − 1 + μ(Y0, 0) −
∑

x∈S(Yt)

(μ(Yt, x) − m0(Yt, x) + 1)

= m1(Y0, 0) +
∑

x∈S(Yt)

m1(Yt, x).

Corollary 4.5. With the above hypothesis, the following statements are equiva-
lent:

(1) m1(X, 0) = 0,

(2) (X, 0) defines a m1-constant deformation of (Y, 0).
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Moreover, if N = 2 and (X, 0) admits a parametrization, then any of the two above
statements is also equivalent to the following one:

(3) (X, 0) is a frontal.

Proof. The equivalence between the first two statements follows directly from prop-
osition 4.4. According to Lê and Teissier [7], the condition m1(X, 0) = 0 is also
equivalent to the fact that (X, 0) has a finite number of limiting tangent planes
at the origin. But, in the particular case that (X, 0) admits a parametrization
f : (C2, 0) → (C3, 0), this condition is equivalent to the fact that (X, 0) is a frontal.
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