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Given an irreducible surface germ (X,0) C (C2,0) with a one-dimensional singular
set X, we denote by 01(X,0) the delta invariant of a transverse slice. We show that
01(X,0) > mo(X,0), with equality if and only if (X, 0) admits a corank 1
parametrization f: (C2,0) — (C3,0) whose only singularities outside the origin are
transverse double points and semi-cubic cuspidal edges. We then use the local Euler
obstruction Eu(X,0) in order to characterize those surfaces that have finite
codimension with respect to A-equivalence or as a frontal-type singularity.

1. Introduction

Any irreducible complex plane curve singularity (Y,0) can be parametrized, that
is, it can be seen as the image of a finite and generically one-to-one map germ
v: (C,0) — (C?%,0). We can then look at it either as a finitely determined map
germ with respect to the A-equivalence or as a frontal-type singularity (using the
terminology of Kurbatskil and Zakalyukin [16]) of finite codimension in some sense.
This phenomenon becomes explicit when we consider a suitable deformation Y;,
parametrized by a stable map ;. In the first case, Y; is a morsification of Y, since
the degenerated singularity splits into a finite number of nodes, that is, transverse
double points A;. In the second case, besides the nodes, we also allow the birth
of simple cusps A, which are stable singularities in this context. As an example,
we see in figure 1 the two deformations of the Fjg singularity, parametrized by
Y(v) = (0%, 0h).

The total space of the deformation (X,0) is an irreducible surface in (C3,0)
with one-dimensional singular locus Y, which has special properties. It can be
parametrized as the image of a map germ f: (C%,0) — (C3,0) given by f(u,v) =
(u, Y2, (v)). If 7, is a morsification, then f is A-finite, that is, it has finite codimension
with respect to the A-equivalence. Otherwise, if -, is a deformation as a frontal,
then f is itself a frontal-type surface of finite codimension as a frontal (see §3). In
figure 2 we show the two surfaces constructed with the two deformations of Eg. On
the left-hand side we have the P3(c) singularity of Mond [12], and on the right-hand
side we have the swallowtail.

Another interesting property of (X, 0) is the equality d;1(X,0) = mo(X,0), where
01(X,0) is the transverse delta invariant (i.e. the delta invariant of a generic plane
section) and mg(X, 0) is the multiplicity of its singular locus. Since this is the min-
imal possible value for d1(X,0), we say that (X,0) is a 6;-minimal surface. In fact,
we show in theorem 2.1 that, for any irreducible surface (X,0) with non-isolated
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Figure 1. Two deformations of the Eg singularity.

Figure 2. The total spaces of the deformations.

singularity, we have d1 (X, 0) > mo(X,0), with equality if and only if (X, 0) admits a
corank 1 parametrization f: (C2,0) — (C3,0), and such that the only singularities
outside the origin are transverse double points or semi-cubic cuspidal edges.

In the last part of the paper, we use the local Euler obstruction Eu(X, 0) in order
to characterize those surfaces among the §;-minimal ones that are stable unfoldings
of plane curves or frontals. We show that if (X, 0) is d;-minimal, then

1 < Eu(X,0) < mo(X,0).
Moreover, we deduce the following (see corollary 4.3).

(1) (X,0) is the image of a corank 1 A-finite map germ if and only if it is
d1-minimal and Eu(X,0) = 1.

(2) (X,0) is the image of a corank 1 frontal of finite codimension if and only if it
is 0;-minimal and Eu(X,0) = m (X, 0).

Note that Jorge-Pérez and Saia proved in [6] that if (X, 0) is the image of a corank 1
A-finite map germ, then Eu(X,0) = 1. The results presented here are also related
to those of [10], where we consider the classification and the invariants of corank 1
A-finite map germs f: (C%,0) — (C3,0) by looking at the transverse slice.

2. 61-minimal surfaces

Let (X,0) C (C?,0) be a singular surface. Given 0 € H C C? a generic plane we
consider the plane curve Y = X N H and we call it a transverse slice of X. The
delta invariant of Y at 0 is an invariant of (X, 0) that is independent of the choice
of H. We define 01(X,0) := §(Y,0) and call it the transverse delta invariant.
Given an analytic set germ (V,0) C (C™,0), we denote by mg(V,0) its multiplic-
ity. We recall that this can be computed by means of a generic linear projection
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0: C" — C4, where d = dim(V,0). Then, mo(V,0) = #V N Hy, where H, = ¢~1(t)
and t € C? is a generic value.

THEOREM 2.1. Let (X,0) C (C3,0) be an irreducible surface with singular locus
(X,0) of dimension 1; then

(51(X, O) 2 mo(E,O).

Moreover, the equality holds if and only if (X,0) admits a corank 1 parametrization
f:(C2,0) — (C3,0) such that the only singularities outside the origin are transverse
double points and semi-cubic cuspidal edges.

Proof. We consider a linear projection £: C3 — C such that H = £~1(0) is a generic
plane and Y = X N H is a transverse slice of X. Moreover, for each ¢t € C we can
take H; = £71(t) in such a way that Y; = X N H; defines a flat deformation of (Y, 0).
Since (X,0) is irreducible, it has a normalization n: (X,0) — (X,0), where
(f( ,0) is a normal surface and n is finite and generically one-to-one. By taking
the composition p = pon: (X',O) — (C,0) we also have a flat deformation of
Y =n 1(Y).
We now use a result of Lejeune et al. [8] (see also [3, §4.1.14]): for any ¢ # 0
small enough,
5(Y,0) =36(Y,0)+ > 8(Yi,p), (2.1)
peS(Y:)

where S(Y;) denotes the singular set of Y;. Obviously, S(V;) =YV, NX = H, NX
and, for each p € S(V3), 6(Y:,p) > 1. Therefore,

We prove the equality in the case when (X, 0) admits a corank 1 parametrization
f:(C%,0) — (C3,0) and the only singularities of (X,0) outside the origin are
transverse double points and semi-cubic cuspidal edges. In fact, after making a
linear coordinate change in C3, and after reparametrization, we can assume that f
is given in the form

f(u,v) = (u, p(u, v), q(u, v))

for some function germs p, ¢ and such that generic plane is « = 0 (here, we denote
by (z,y,2) the coordinates in C3). Then, Y is the curve u = 0, which is smooth,
and thus §(Y,0) = 0.

On the other hand, for each t # 0, the deformation Y; is given by & = t. The
only singularities of Y; are cusps and nodes, both having delta invariant equal to 1.
By (2.1), 6(Y,0) = mo(X,0).

We now prove the converse. If §(Y,0) = mo(X,0), we deduce from (2.1) that
6(Y,0) = 0 and 6(Y;,p) = 1 for each t # 0 and p € S(Y;). In other words, Y is
smooth at 0, and the only singularities of Y; are cusps and nodes when ¢ # 0.

Since 6(Y,0) = 0, we have from (2.1) that Y; is a delta-constant family of curves
in the sense of Teissier. By [3, §7.1.3], ¥; admits a normalization in family. This
means that there exists a normalization of the form ¢: (Y x C,0) — (X,0). But the
uniqueness of the normalization implies that X is smooth at 0 and we can assume
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Figure 3. A double-fold corank 2 singularity.

that X = C2. Thus, (X,0) is the image of f = ion: (C?,0) — (C3,0), where i
denotes the inclusion map.

Because Y is smooth at 0, f must have corank 1. Moreover, the only singularities
of f outside the origin will be semi-cubic cuspidal edges and transverse double
points (having as transverse slice cusps and nodes, respectively). O

DEFINITION 2.2. We say that a surface (X,0) C (C3,0) is 61-minimal if it is irre-
ducible with one-dimensional singular locus X' and 4, (X, 0) = mo(X,0).

It follows from theorem 2.1 that (X,0) is d;-minimal if and only if it admits
a corank 1 parametrization f: (C?,0) — (C3,0) such that the only singularities
outside the origin are semi-cubic cuspidal edges and transverse double points. We
see in the following example that the corank 1 condition is necessary.

ExaMPLE 2.3. Let (X, 0) be the surface parametrized by the double-fold map germ
f:(C%,0) — (C3,0) given by f(u,v) = (u?,v%u® + v® + 2u3v3) (see [9]). Then,
(X,0) is irreducible, its singular set X has dimension 1, and all the singularities
outside the origin are semi-cubic cuspidal edges and transverse double points (see
figure 3). But, since f has corank 2, we expect to get d1(X,0) > mo(X,0).

In fact, according to [9], ¥ is the curve in (C3,0) given by the zeros of the
3 x 3 minors of the matrix

—z x2 y>  2zy

z3 —z 2%y 4P

Y3 2y -z a?
202y o3 x> —z

Using the computer algebra system SINGULAR [4], we compute mo(X,0) = 13. On
the other hand, (X,0) is given by the determinant of the above matrix:

210 — 828y3 + 162%y° — 22°y® — 22522 — 162%y%2
— 83:3y8 — 8x3y3z2 + ylo - 2y5z2 +24=0.
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In order to compute the transverse slice, we just substitute z = azx + by for some
generic coefficients a,b € C. Again with the aid of SINGULAR, we get 61 (X,0) = 14.

We can associate two invariants with each ¢§;-minimal surface (X, 0). Let £: C3 —
C be a generic linear projection and set H; = ¢~1(t) and Y; = X N H;. Since (X, 0)
is d1-minimal, the only singularities of Y; for ¢ # 0 small enough are cusps and
nodes.

DEFINITION 2.4. We define the numbers of transverse cusps and transverse nodes
of (X,0), respectively, as the following:

e x is the number of cusps (Az) of Y3,

e v is the number of nodes (A;) of Y;.

The numbers &, v are well defined and do not depend on the choice of the generic
linear projection ¢ nor the parameter ¢. In fact, we can split the singular locus into
Y = X1 UJs, where Yy contains the transverse double points and X'» contains the
points of semi-cubic cuspidal edge type. Then, k = my(Xs,0) and v = mo (X1, 0).
Moreover, we also deduce from the additivity of the multiplicity that

K+ v =mo(X2,0) +mo(X1,0) = mo(X,0) = 6,(X,0).

Another consequence of theorem 2.1 is that a surface (X, 0) is d;-minimal if and
only if it is the image of an unfolding of a plane curve with only cusps and nodes. If
(X,0) admits a corank 1 parametrization f: (C?,0) — (C?,0), then, after making
a linear coordinate change in C3, and after reparametrization, we can assume that
f is given in the form

fu,v) = (u,7u(v)),

where 7, (v) is the parametrization of the plane curve Y, = X N {x = u}.

PROPOSITION 2.5. Let (X,0) be a §1-minimal surface, parametrized by f(u,v) =
(u,yu(v)), where x = 0 is a generic plane. The following statements are equivalent:

(1) k=0,
(2) f is A-finite,
(3) for each t # 0, v is A-stable.

Proof. The equivalence between (1) and (3) follows from the fact that the only
A-stable singularities of plane curves are nodes. The equivalence between (1) and
(2) is a consequence of the Mather-Gaffney determinacy criterion: the map germ
f:(C%0) — (C3,0) is A-finite if and only if there is a proper representative
f: U — V such that f=1(0) = {0} and the restriction to U \ {0} is A-stable. But
since the cross-caps and the transverse triple points are isolated, by shrinking
U if necessary, this is equivalent to that f has only transverse double points
on U\ {0}. O
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EXAMPLE 2.6. Let (X,0) be an irreducible surface with one-dimensional singular
set whose transverse slice has type Es. We parametrize the curve by v(v) = (v3, v?)

and take the miniversal deformation
I'(v;a,b,c) = (V3 + av,v* + bv? + cv).
Then, after a linear coordinate change, (X, 0) admits a parametrization of the form
fu,v) = (u,v® + a(u)v, v* + b(u)v? + c(u)v)

for some a, b, c € C{u}, with a(0) = b(0) = ¢(0) = 0.

The discriminant of the deformation A is the set of points (a,b,c¢) € C3 such
that the curve v, 4.(v) = (v® + av,v* +bv? + cv) is not A-stable. According to [10],
A has the equation P} P, P; = 0, where

P, = 16a® — 48a%b + 36ab® + 27¢2,
Py = 3203 — 48a%b + 24ab® — 403 + 2762,
P3 =a—b.

The three factors Py, P>, P3 correspond to the strata of singular points, self-
tangencies and triple points, respectively.

If we also define P; = P;(a(u),b(u),c(u)), we have the following three types of
01-minimal surfaces.

(1) (X,0) is 6;-minimal with k = 0 and v = 3 if and only if P; P,Ps # 0.

(2) (X,0) is 6;-minimal with xk =1 and v = 2 if and only if P, = 0 but (¢,2a —
3b) 75 (0,0) and P2P3 7é 0.

(3) (X,0) is §;-minimal with k = 2 and v = 1 if and only if (¢, 2a — 3b) = (0,0)
but P2P3 75 0.

The condition (c¢,2a — 3b) # (0,0) to distinguish between (2) and (3) follows from
the analysis of the number of solutions of the system

Yape(v) = (30* + a,4v° + 2bv + ¢) = 0.

There are two solutions if and only if 3v%+4a divides 4v3+2bv+c, which is equivalent
toc=0, 2a — 3b=0.

3. Frontals

In this section, we consider frontal-type singularities. This concept was introduced
by Zakalyukin and Kurbatskil in [16] and it is the generalization of a front. Roughly
speaking, a frontal is the projection of a Legendrian submanifold with singularities.
We also refer the reader to Ishikawa’s paper [5] for basic definitions and notation
about Legendre singularities. Although we only consider the complex case here,
many of the results are also valid in the real case.

Let PT*C"™*! be the projectivized cotangent bundle of C"*! with the canon-
ical contact structure defined by the contact form «, and denote the projection
by m: PT*C"*! — C"*!. By definition, a holomorphic map germ £: (C",0) —
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PT*C™*! is said to be integral if L*a = 0. This means that £ = (f,[v]), where
f:(C*0) — C™! is a holomorphic map germ and v: (C*,0) — T*C"*! is a
holomorphic, everywhere non-zero 1-form along f such that v(df o ) = 0, for any
¢ €V, the space of all germs of vector fields in (C™,0). If v is given in coordinates

by v = E;Lill v; dz;, this is also equivalent to

n+1
Zuja—f{:o Vi=1,...,n

for all 4 in a neighbourhood of the origin in C".

DEFINITION 3.1. We say that a map germ f: (C",0) — (C"*10) is a frontal
map germ if there exists an integral map germ L£: (C",0) — PT*C"*! such that
mo L = f.If, in addition, £ is an embedding, then we say that f is a front.

When £ is an integral embedding, then its image in PT*C"*! is called a Leg-
endrian submanifold. If it is not an embedding, then it is usual to call the image
a Legendrian submanifold with singularities. A hypersurface singularity (X,0) in
(C"+1,0) is called a frontal (respectively, front) if there exists a frontal (respectively,
front) map germ f: (C",0) — (C™*1,0) whose image is (X, 0).

REMARK 3.2. If the map germ f is itself an embedding, then it is always a frontal
and the class [v] is determined uniquely by the components of the cross product

of of

— A N ——.
6’&1 8un

If f is not an embedding, but it is generically immersive (for instance, when it is
finite and generically one-to-one), then the class [v] is also uniquely determined, if
it exists.

ExXAMPLE 3.3. We consider some examples.

(1) Any irreducible plane curve singularity is always a frontal. Assume that (Y, 0)
is parametrized in (C2,0) by v(v) = (p(v), ¢(v)), where

p(v) = apv™ + app "t -

q(v) = bpv™ + bm+1/0m+1 + e

)

with a,, by, # 0 and n < m. We then take the 1-form:

P (—¢'(v)dz + p'(v) dy).

pn—1
Note that (Y,0) is a front if and only if m =n + 1.

(2) The double-fold surface (X, 0) of example 2.3 is a corank 2 frontal surface in
(C3,0). In fact, since

of of 2 3y _ 3 2
au/\ 5 = wv(—2u(bu’ + 6v°), —2v(6u” + 5v°), 4),
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we may take
v = —2u(5u® + 6v%) dz — 2v(6u® + 5v?) dy + 4dz.

(3) Not every parametrized surface (X,0) C (C3,0) is a frontal. For instance,

given the cross-cap f(u,v) = (u,v? uv) we have

of of
o e

Assume that there exists an everywhere non-zero 1-form v such that £ =
(f,[v]). We could then write

(=202, —u, 2v).

—20% = avy, —u = avs, 20 = avy

for some function «. Since « divides u and v, a should be a unit. But then

1
v= E(—ZUQ dz —udy + 2vdz),

and v(0) = 0, in contradiction with the hypothesis.
In general, we have the following criterion for corank 1 hypersurfaces.

PROPOSITION 3.4. Consider a hypersurface (X,0) C (C"*t1,0) parametrized by a
corank 1 map germ f(u,v) = (u,p(u,v),q(u,v)), with u € C*~1, v € C. Then,
(X,0) is a frontal if and only if either Op/dv divides Oq/Ov or dq/dv divides Op/dv.

Proof. We have that

of af  of dq Op
—_— —_— = A ...An_7_7,7 )
Ouy ANA Op_1 4 Ov Lreees Y00 ow
where
_0qg0p  0Oq Op

i Ov Ou;  Ou; Ov’
Assume, for instance, that dg/0v = A\(Op/0v) for some function A. Then, A; =
1;(0Op/Ov), with p; = AM(Op/Ou;) — Oq/du;, and thus we can take
v=ypde; +- + pp_1de,—1 — Adx, +de, 4.

Conversely, suppose that there exists a non-zero 1-form v such that £ = (f, [v])
is integral. There then exists a function « such that

0q Op

Ai=ay;, i=1,...,n—1, —%:ayn, — = QUp+1,

and hence

If o = 0, we have that dp/dv = dp/Jv = 0 and the result is obvious. Otherwise, if
a # 0, we have that
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Figure 4. Stable frontal surfaces.

Since v(0) # 0, necessarily either v,,(0) # 0 or v,,41(0) # 0, so either dp/dv | q/v
or Oq/0v | Op/dv. O

EXAMPLE 3.5. We apply this criterion to see some examples of frontal surfaces.

(1) The swallowtail (X, 0) is a frontal surface (see the right hand side of figure 2).
In fact, it is parametrlzed by f(u,v) = (u,v® + uv,v* + 2uv?), and we have
that 8p/8v = 3v% + u and Jq/0v = Fv(3v% + u).

(2) The folded Whitney umbrella is the surface (X, 0) in (C?,0) parametrized by
flu,v) = (u,v?, uv3+0v°) (see figure 4). This is also a frontal, since Op/dv = 2v
and dq/0v = v(3uv + 50v°).

We now define the codimension of a frontal as the codimension of the Legendrian
singularity whose projection is the frontal, with respect to Legendre equivalence. We
define W = PT*C"*! for simplicity and let £: (C*,0) — (W, wp) be the integral
map germ given by £ = (f,[v]). We recall the following notation from [5].

(1) V1 is the space of all integral infinitesimal deformations of £, that is, germs
of vector fields along £ that preserve the contact structure.

(2) V Ly, is the space of all germs of Legendre vector fields in (W, wy).
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DEFINITION 3.6. We define the F,-codimension of f as

Vig
{dLot+noL: €V, TEVLww,}

Fe — codim(f) = dim¢

If the F.-codimension is finite, we say that f is F-finite, and if the F.-codimension
is 0, we say that f is F-stable.

According to [5], the space VI can be interpreted as the space of all infinitesimal
integral deformations of £, and the subspace

{dLo&+noL: €V, 1€ VLway,}

should be understood as the extended tangent space to the orbit of £ under the
action of Legendre equivalences. It follows from the definition that f is F-stable if
and only if £ is infinitesimally Legendre stable in the sense of [5]. By [5, 4.1], any
corank 1 F-stable frontal is the projection of an open Whitney umbrella.

All the above definitions are also valid if instead of germs we consider multigerms
f:(C" 8) — (C*Ly), where S C C" is any finite set and y € C"*1. We use this
remark to classify the F-stable singularities of curves and surfaces. Note that all
the F-stable singularities of frontal surfaces except folded Whitney umbrellas are
generic fronts, and their classification is well known (see, for instance, [1]).

PROPOSITION 3.7.
(1) The F-stable singularities of a frontal curve are cusps and nodes.

(2) The F-stable singularities of a frontal surface are either semi-cubic cuspidal
edges, swallowtails, folded Whitney umbrellas or their transverse self-inter-
sections (see figure 4).

The following property is an adapted version of the Mather—Gaffney finite deter-
minacy criterion for frontals (see [15]).

PROPOSITION 3.8. A frontal f: (C",0) — (C"*1,0) is F-finite if and only if there
exists a proper and finite-to-one representative f: U — V such that f~(0) = {0}
and the multigerm at any point y € V' \ {0} is F-stable.

By shrinking the neighbourhoods U, V if necessary, all the isolated F-stable
singularities can be avoided. We then have the following direct consequence of
propositions 3.7 and 3.8.

COROLLARY 3.9.
(1) A frontal curve is F-finite if and only if it has an isolated singularity.

(2) A frontal surface of corank 1 is F-finite if and only if the only singularities
outside the origin are transverse double points and semi-cubic cuspidal edges.

Recall that if (X,0) is d;-minimal, then 0 < £ < mo(X,0) — 1, where & is the
number of cusps. We then have the following property, which is, in some sense, dual
to proposition 2.5.
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PROPOSITION 3.10. Let (X,0) be a d1-minimal surface parametrized by f(u,v) =
(u,y4(v)), where x = 0 is a generic plane. The following statements are equivalent:

(1) Kk =mo(X,0) —1,
(2) f is an F-finite frontal,
(3) f is a frontal unfolding of o and, for each t # 0, v is F-stable.

Proof. Since (X, 0) is §;-minimal, the only singularities outside the origin are trans-
verse double points and semi-cubic cuspidal edges. Moreover, for each ¢, the trans-
verse slice Y; is parametrized by v (v) = (p(t,v),q(t,v)) and it has only cusps and
nodes if t # 0. By proposition 3.7 and corollary 3.9, in order to show the equivalence
between the three statements, we need only show that x = mo(X,0) —1 if and only
if f is a frontal.

Given h € Oy, we denote by o,(h) the order of h in v, that is, the order of
h(0,v) € O;. Assume that o,(p) = m and 0,(q) = k with m < k. Then, because of
the genericity assumption, we have that mg(X,0) = m.

For a fixed small enough t # 0, « is equal to the number of solutions of p, (¢, v) =
qv(t,v) = 0 in v. If h = ged(py, @), then & is less than or equal to the number of
solutions of h(t,v) = 0 in v. In particular,

k< oy(h) < op(py) =m—1=mp(X,0) — 1.
Thus, we have the following equivalences:
k=mo(X,0) =1 <= o,(h)=0,(py) <= pv|q <= [isa frontal

O

4. Local Euler obstruction

The local Euler obstruction was first introduced by McPherson [11] as an ingredi-
ent in the construction of characteristic classes of singular algebraic varieties. Here,
we prefer to use the approach of Lé and Teissier [7] in terms of polar multiplic-
ities. Given an analytic set germ (V,0) C (C",0) of dimension d, its local Euler
obstruction is computed as an alternate sum

d—1

Eu(V,0) = (=1)'m4(V,0),

=0
where m;(V,0) denotes the ith-polar multiplicity (see [7] for definitions and details).
In particular, for a surface (X, 0),

Eu(X,0) = mo(X,0) — m1(X,0),

and hence Eu(X,0) < mo(X,0).

In the next theorem, we compute the local Euler obstruction of a §;-minimal
surface in terms of the number of transverse cusps x. To do this, we first characterize
the number v of transverse nodes in terms of the number of vanishing cycles of the
transverse slice Y;.
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LEMMA 4.1. Let (X,0) be a 61-minimal surface. Then, for each t # 0 small enough,
the Euler characteristic of Y; is

x(Yi) =1-v.

Proof. We define § = 01(X,0) = §(Y,0). Since (X,0) is 6;-minimal, we have seen
in the proof of theorem 2.1 that (Y,0) is irreducible, and hence its Milnor number
is u(Y,0) = 2§ (by Milnor’s formula).
On the other hand, x(Y%) is related to the Milnor number by the following for-
mula [3]:
p(Y,0)— > u(Yy,p) = dime H'(V;;C) =1 — x(Y3).
pES(Y?)

For each t # 0 small enough, the only singularities of Y; are simple cusps, with
Milnor number 2, and nodes, with Milnor number 1. Hence, we obtain

w(Y,0) — Z w(Ye,p) =20 — 2k +v) =
peS(Y?)

THEOREM 4.2. Let (X,0) be a §;-minimal surface. Then,
Eu(X,0) =1+ &.
In particular, 1 < Eu(X,0) < mo(X,0).

Proof. We use a formula of Brasselet et al. [2] that is valid whenever (X,0) is
equidimensional and has one-dimensional singular locus Y. We take ¢t # 0 small
enough, and assume that Y; N X' = {x1,..., 2, }. Then,

Eu(X,0) = x(Y;) —m+ Y _Eu(X, ;).
i=1

Note that Y; N X is the singular locus of Y;, and, since each singular point has delta
invariant 1, we have that m = 6;(X,0) = k + v. By lemma 4.1, x(¥;) = 1 — v.
For each ¢ = 1,...,m, Eu(X,z;) = 2 if X is either a semi-cubic cuspidal edge or a
transverse double point at x;. Thus,

EuX,0)=1-v—(k+v)+2c+2v=1+k.
O

As a consequence, we arrive at the following result, which characterizes those
surfaces that are stable unfoldings of plane curves or frontals.

COROLLARY 4.3. Let (X,0) C (C3,0) be an irreducible surface with singular locus
of dimension 1. The following then hold.

(1) (X,0) is the image of a corank 1 A-finite germ if and only if it is 01-minimal
and Eu(X,0) = 1.
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(2) (X,0) is the image of a corank 1 F-finite front if and only if it is d1-minimal
and Eu(X,0) = my(X,0).

Proof. Tt follows directly from theorem 2.1, propositions 2.5, 3.10 and theorem 4.2.
O

We finish with a result where we consider irreducible surfaces with one-dimen-
sional locus in any ambient space and without any finiteness assumption. Given
a space curve (Y,0) C (CV,0), the first polar multiplicity was introduced by the
author and Tomazella in [14] as

m(Y;0) = p((v,0));

where ¢: CV — C is a generic linear form and p(f|(y,0)) is the Milnor number in
the sense of Mond and van Straten [13]. It is then shown that

where p(Y,0) is now the Milnor number of a space curve as defined by Buchweitz
and Greuel [3].

PROPOSITION 4.4. Let (X,0) C (CN*1,0) be an equidimensional surface with one-
dimensional singular set .. Then, fort # 0,

mi(X,0) =mi(Y,0) = Y m (Vi)
z€S(Y:)

where Yy is the transverse slice of (X,0).

Proof. This is again a consequence of the Brasselet-Lé-Seade formula together
with (4.1):

m1(X,0) =mo(X,0) — Eu(X,0)
=mo(X,0) —x(Ya) + Y (Bu(X,z)—1)

z€S(Yy)
= mo(¥0,0) — 1+ (L—x(V) + 3 (mo(¥ez) — 1)
z€S(Y:)
=mo(Y,0) = 14 p(Y0,0) = > (u(Ye,z) = mo(Ys, ) + 1)
z€S(Yy)
=m1(Yp,0) + Z mq(Yz, x).

z€S(Y:)
O

COROLLARY 4.5. With the above hypothesis, the following statements are equiva-
lent:

(1) m1(X,0) =0,

(2) (X,0) defines a my-constant deformation of (Y,0).
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Moreover, if N =2 and (X,0) admits a parametrization, then any of the two above
statements is also equivalent to the following one:

(3) (X,0) is a frontal.

Proof. The equivalence between the first two statements follows directly from prop-
osition 4.4. According to Lé and Teissier [7], the condition m;(X,0) = 0 is also
equivalent to the fact that (X,0) has a finite number of limiting tangent planes
at the origin. But, in the particular case that (X,0) admits a parametrization
f:(C2,0) — (C3,0), this condition is equivalent to the fact that (X, 0) is a frontal.

O
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