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SUMMARY

This study was aimed at comparing in-field parameters and remote sensing NDVI (normalized difference
vegetation index) by both satellite (SAT) and unmanned aerial vehicle (UAV) for the assessment of early
nitrogen (N) status and prediction of yield in winter wheat (Triticum aestivum L.). Six increasing N rates, i.e.,
0, 40, 80, 120, 160, 200 kg N ha−1 were applied, half at tillering and half at shooting. Thus, when the crop
N status was monitored between the two N applications, consecutive N treatments differentiated from
each other by just 20 kg N ha−1. The following in-field and remote sensed parameters were compared
as indicators of crop vegetative and N status: plant N% (w:w) concentration; crop N uptake (Nupt); ratio
between transmitted and incident photosynthetically active radiation (PARt/PARi); leaf SPAD values,
an indirect index for chlorophyll content; SAT and UAV derived NDVI. As reliable indicators of wheat
N availability, in-field parameters were ranked as follows: PARt/PARi ∼= Nupt > SPAD ∼= N%. The
PARt/PARi, Nupt and SPAD resulted quite strongly correlated to each other. At all crop stages, the NDVI
was strongly correlated with PARt/PARi and Nupt. It is of relevance that NDVI correlated quite strongly
to in-field parameters and grain yield at shooting, i.e., before the second N application, when the N rate
can still be adjusted. The SAT and UAV NDVIs were strongly correlated to each other, which means they
can be used alternatively depending on the context.

I N T RO D U C T I O N

Economic and environmental sustainability of cropping systems can be improved by
reducing inputs (i.e., tillage, irrigation water and fertilizers, pesticides and herbicides)
and increasing use efficiencies. This implies the adoption of precision agriculture
practices (Bongiovanni and Lowenberg-Deboer, 2004; Bora et al., 2012). In few
words any input should be provided at the right rate (neither less, to avoid yield
loss, nor more, to avoid money loss, pollution and health risks), at the right time
(i.e., synchronizing application schedule with crop needs) and only where necessary
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(i.e., targeted delivery), as revealed by an accurate monitoring of the crop status. As
far as nitrogen (N) fertilization is concerned, the total N rate should be defined with
due accuracy because it is the main factor affecting N use efficiency and thus the
chance to obtain high yield with limited N loss to the environment (Muñoz-Huerta
et al., 2013). A balance approach is required, based on estimated total crop N need and
estimated amounts of N available in the soil at sowing (Nmin) and of N that will become
available during the growing cycle. The total N rate is then likely to be split into several
applications in order to reduce leaching risks, allowing in-season adjustments of the
N rate according to the actual crop N status. In fact, initial estimates of total N rates
may fail due to unpredictable season weather and soil variability between fields or
field patches. For this reason, a monitoring of the crop N status is needed over time
and space, in particular in early growth phases, when any adjustment of the crop N
status can still be effective for the final yield.

The absolute reference to evaluate the crop nutritional status is the critical N
concentration, i.e., the minimum N concentration needed in plant tissues to maximize
crop growth and yield. The critical N concentration is known to decrease along the
crop growing cycle according to a so called critical N dilution curve, as reported for
wheat by Cao et al. (2015). At any growth stage, there is a critical N concentration
below which the crop would yield less than potential, and over which the crop would
have luxury N accumulation (Tei et al., 2003). Therefore, lab analyses on destructive
plant samples could reveal the actual N status of the crop, but they are not feasible
in the ordinary farm practice, because labour consuming, expensive and not timely.
Alternative quick tests have been proposed for in-field destructive or non-destructive
monitoring of the crop N status, e.g., chlorophyll meter readings (SPAD), VIS–NIR
spectroscopy, and nitrate-N concentration in the petiole sap (sap test) (Muñoz-Huerta
et al., 2013; Ulissi et al., 2011). The accuracy of these methods has been found to
be quite high, although variable with the species and the crop N status. A feasible
alternative to in-field monitoring for crop N status on medium and large scale is
the use of vegetation indices (VIs) calculated through proximal or remote sensing of
canopy spectral response in the wavelength of green, red, red-edge and near infrared
using multispectral sensors (Cao et al., 2015; Maresma et al., 2016).

Despite the wide range of VIs available in the literature, the most widespread VI for
assessing vegetation status remains the normalized difference vegetation index (NDVI)
(Basso et al., 2001), largely used as a reference index in many papers comparing VIs
and sensors (Cao et al., 2015; Huete et al., 1997; Thenkabail et al., 2000). The NDVI
usually varies between −1 (water) and +1 (dense and vigorous vegetation). NDVI can
be easily calculated by proximal sensor measurements (Casa and Castrignanò, 2008;
Quebrajo et al., 2015; Tilling et al., 2007), however, these methods are still labour
consuming for representative plant sampling and thus hard to use for monitoring
spatial heterogeneity of the crop in wide fields. NDVI calculation using remote-sensed
images can represent an alternative to proximity methods, giving the chance to easily
get quantitative information over time and space. Remote multi-spectral sensors are
able to measure canopy reflectance in R and NIR bands allowing NDVI calculation
over larger areas. Depending on the specific application, sensors can be carried at
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different altitudes by satellites (SAT), airplanes, helicopters and by different types of
unmanned aerial vehicles (UAV) flying at low altitude.

SAT images, due to the acquisition heights, are generally characterized by a coarser
resolution, but a higher applicability to wide area observations, and so, they are
able to recognize variation in vegetation growth, and to support N management
at district or regional level (Huete et al., 1997; Wu et al., 2015). On the other
hand, Low Altitude Remote Sensing (LARS) using UAV includes a range of data
collection techniques operating through different sensors (mainly optical) commonly
applied in precision agriculture (Maresma et al., 2016; Torres-Sánchez et al., 2014).
These techniques are suitable when traditional remote sensing cannot be applied
(e.g., cloudy skies, small fields, requirement of higher resolution maps). While NDVI
from SAT images (SAT NDVI) is typically calculated using reflectance values
after radiometric and atmospheric corrections (Campbell and Wayne, 2011), NDVI
from UAV images (UAV NDVI) is generally calculated after a calibration based
on different approaches as single or multiple reflectance calibration targets and
incident light sensors (Candiago et al., 2015; Honkavaara et al., 2014; Saberioon
et al., 2014)

Winter wheat is a typical crop where the N rate is split in at least two application
times in order to increase N uptake efficiency, support the formation of yield
components and limit N leaching by fall-spring rainfall. The first N application
usually falls in late fall-early winter, while the last occurs in late winter-early spring.
Therefore, there is room to evaluate the crop N status after the first N application and,
in case, adjust the rate by the following fertilizer application in order to avoid yield loss
or overfertilization. This would be of great relevance as wheat is the most widespread
crop all over the world and Mediterranean rainfed cropping systems are actually
based on winter wheat (Benincasa et al., 2016; Bonciarelli et al., 2016). The accuracy
of crop N status evaluation in early growth stages becomes crucial for this purpose. To
this aim, remote sensing methods could be very useful for overcoming all the issues
depicted above for in-field and proximal methods. SAT and UAV NDVI have been
widely tested to assess wheat N status and estimate crop final yield, with encouraging
results. Strong correlations were found between SAT NDVI and specific agronomic
traits such as above ground biomass (Perry et al 2013), SPAD, stem sap nitrate, biomass
and N uptake (Jia et al 2012) as well as between UAV NDVI and wheat leaf area index
(Lelong et al., 2008). However, few studies compared lab analysis on plant samples
and in-field and remote sensing methods to assess wheat N status in early growth
stages (Cao et al., 2015; Eitel et al., 2011; Perry et al., 2013). None of these studies
compared both SAT and UAV NDVIs although SAT and UAV images generally differ
in terms of spatial, spectral and radiometric resolution, and pre-processing procedures
applied on them. Moreover, wheat N availabilities differed widely due to differences
in N rates and/or spreading techniques (Cao et al., 2015; Eitel et al., 2011; Sultana
et al., 2014).

Hence, the aim of this work was to compare in-field parameters and the widely used
NDVI, evaluating the reliability of NDVI through UAV and SAT remote sensing for
detecting small differences in wheat early N status and predicting yield.
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M AT E R I A L S A N D M E T H O D S

Crop and treatments

The experiment was carried out at the Foundation for Agricultural Education of
the University of Perugia, located in Casalina, Province of Perugia, middle Tiber
valley, Central Italy (170 m a.s.l., 42.95°N, 12.40°E). The field was located in a
plain area characterized by a rather homogeneous loam soil with 1.3% (w:w) organic
matter. Winter wheat (Triticum aestivum L., cv. PRR58) was sown on November 24th,
2014 at the density of 400 seeds m−2 in rows 0.125 m apart. Experimental treatments
consisted of six increasing fertilizer-N rates: 0, 40, 80, 120, 160 and 200 kg N ha−1 as
urea, split into two applications of half rate each, the first at tillering (February 12th,
2015, i.e., 80 days after sowing, DAS) and the second at shooting (April 14th, 2015,
i.e., 141 DAS). Treatments were laid down in a randomized blocks design with three
replicates, with a total of 18 plots. Each plot measured 78 m2 (6 × 13 m), with the
main axis oriented North–South.

In-field measurements

Growth analysis and N accumulation. Plant samplings were taken on February 12th (80
DAS), i.e., just before the first fertilizer-N application; April 14th (141 DAS), i.e., about
two months after the first N application and just before the second N application;
May 17th (174 DAS), i.e., about one month after the second N application. At each
sampling date, all plants (roots excluded) from 0.375 m2 per plot (i.e., 0.5 m per
row in six central rows) were harvested to measure the fresh (FW, Mg ha−1) and dry
(DW, Mg ha−1) weights after 72 h at 80 °C. The N concentration (N%) of grinded
subsamples of the dry matter was measured by the Kjeldahl method (TKN, Total
Kjeldahl Nitrogen). The total N accumulation in the above ground biomass (Nupt, kg
ha−1) was calculated as the product of DW by N concentration.

SPAD readings. The SPAD 502 (Minolta Ltd., Osaka, Japan) is a portable
spectrophotometer for in-field non-destructive quick measurements of leaf greenness,
which is correlated to chlorophyll concentration, and in turn, with N concentration in
leaf tissues (Hoel and Solhaug, 1998). SPAD measurements were performed several
times between tillering and initial grain filling: January 28th (65 DAS); February 12th
(80 DAS); March 4th (100 DAS) and 19th (115 DAS); April 1st (128 DAS) and 29th
(156 DAS); May 13th (170 DAS) and 27th (184 DAS). In every date, measurements
were taken on ten top fully expanded leaves (then the flag leaf, after heading) from
10 plants per plot.

Measurements of photosynthetically active radiation. The PAR incoming upon the canopy
(PARi) and transmitted to the soil below the canopy (PARt) was measured with a
ceptometer (AccuPAR PAR-80, Decagon Devices Inc., Pullman, WA, USA) in order
to calculate the PARt/PARi ratio. The measurements were performed on April 1st
(128 DAS) and 29th (156 DAS) and on May 13th (170 DAS). At each measurement
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date, five PARt measurements were taken per plot, by positioning the line ceptometer
normal to wheat rows direction.

Grain yield. Wheat grain yield (GY, Mg ha−1) was determined for each plot by
harvesting the whole plot area excluding two border rows per side. The thousand
grain weight (TGW, g) was determined based on the dry weight of three replicates of
100 grains each.

NDVI from satellite data (SAT NDVI)

SAT NDVI was calculated using two high resolution multi-spectral images. The
first was collected on March 18th, 2015 (114 DAS) by the GeoEye-1 satellite including
blue (450–510 nm), green (510–580 nm), red (655–690 nm) and near infrared (780–
920 nm) bands. The second was collected on May 10th, 2015 (167 DAS) by the
WorldView-2 satellite including blue (400–450 nm), green (506–586 nm), red (624–
694 nm), and near infrared (765–901 nm) bands. The spatial resolution at ground
level was 2 m and the radiometric resolution 11 bit (2048 levels for each band).
Both the images were geometrically and atmospherically corrected using GRASS
GIS modules with the purpose of reducing the deformations produced by the terrain
morphology, the atmosphere and lighting conditions on the values measured by the
two satellite sensors. Geometric correction was performed by an orthorectification
procedure using a 10 m resolution DTM (Digital Terrain Model), while the
atmospheric correction was based on the application of the 6S algorithm (Second
Simulation of Satellite Signal in the Solar Spectrum) (Vermote et al., 1997) on radiance
at top-of-atmosphere (TOA) values. With the aim to improve the direct comparison
of NDVI values calculated from remote-sensed data from different satellites, a further
co-registration procedure was developed, based on the NDVI calculated on pseudo-
invariant sites (Bouvet, 2014). These sites were identified through the selection of 32
points located on objects whose ground reflectance does not change significantly over
time, such as paved roads, roofs, and other pseudo-invariant surfaces (Hadjimitsis
et al., 2009). The average responses of red and near infrared bands (NIR) in circular
areas of 5 m radius around the points were calculated, and then a linear regression
between average values was performed. The R2 value of the red and NIR spectral
bands between the two satellite images was 0.91 and 0.90, respectively. These
correlation values indirectly highlighted a difference between the reflectance curves,
which justified the application of this additional calibration procedure. The linear
regression allowed the coefficients calculation to calibrate the Geo-Eye 1 image on the
WorldView2 image. After being cross-calibrated using QGIS (QGIS Development
Team 2014), the red and NIR bands were used to calculate NDVI (Supplementary
Figure S1 available online at http://dx.doi.org/10.1017/S0014479717000278), as
NDVI = (NIR –R)/(NIR+R), where NIR is the reflectance in the near-infrared
portion of the EM spectrum and R is the reflectance in the red portion of the EM
spectrum.
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Wheat growth stage is a very important factor influencing NDVI response (Hansen
and Schjoerring, 2003). Thus, in order to perform a chronologically effective
comparison between satellite, UAV, and in-field data, we estimated the satellite NDVI
values on April 14th, 2015 (141 DAS, shooting) by a linear interpolation between
available satellite NDVI data on March 18th (114 DAS) and May 10th (167 DAS).
The linear approach appears reliable as NDVI values have been demonstrated to
grow linearly from early tillering to booting growth stage (De la Casa and Ovando,
2013; Perry et al., 2013). The final NDVI mean values were calculated using the grid
statistics for polygon QGIS tool on the SAT NDVI layers and parcel geometries,
excluding an internal buffer of 1 m to limit boundary effects.

NDVI from UAV data (UAV NDVI)

The UAV data collection was performed through a compact, light and robust
carbon hesacopter (SF6, Skyrobotic, Italy) equipped with a stable flight controller
and a multispectral camera (ADC Micro, Tetracam, Inc., CA, USA) detecting green
(520–600 nm), red (630–690 nm), and NIR (760–900 nm) bands. The camera sensor,
6.55 × 4.92 mm wide, with a pixel size of 3.2 µm and a focal length of 8.43 mm,
is able to produce images of 2048 × 1536 pixels. Flight height was set to 100 m
above ground with an average flight speed of 5 m s−1. Thanks to the gimbal system,
the camera was able to collect stable and nadiral images with a spatial resolution
of 3.8 cm. All the shoots were on-fly georeferenced by the NRTK (Network Real
Time Kinematic) technique, based on the reception of differential correction data
in real time from a permanent stations network through the NTRIP protocol. UAV
images were collected on three dates: March 31st (127 DAS), April 14th (141 DAS,
i.e., about two months after the first N application and just before the second N
application), and May 18th (175 DAS, i.e., about one month after the second N
application). Raw images were pre-processed and radiometrically corrected using
the Tetracam PixelWrench II software (Company, Country). Calibration coefficients
were calculated by the software using a picture taken before the flight on the
white Teflon calibration tag supplied with the camera. Processed images were
subsequently rectified, mosaicked, and georeferenced using the Agisoft Photoscan
software (Company, Country). Twelve Ground Control Points (GCPs), georeferenced
using a dual-frequency NRTK GNSS receiver, were used to improve spatial accuracy
of final image mosaics. NDVI calculation was performed in QGIS using red and NIR
bands from final image mosaics (Figure S1). Also in this case, the NDVI mean values
were calculated for each date using the grid statistics for polygon QGIS tool on the
UAV NDVI raster layers and parcel geometries, excluding an internal buffer of 1 m
to limit border effects.

Data analysis

In order to assess the efficacy of SAT and UAV data for revealing N crop status,
linear correlation coefficients were calculated between either SAT NDVI or UAV
NDVI and parameters from in-field measurements performed both in early and
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late growth stages. Due to weather and/or logistical aspects (i.e., rainfall and field
accessibility, need to respect fertilization schedule, need of clear sky with no passage
of clouds, high ratio of direct/diffuse radiation, and no or slow wind), in-field
measurements and image acquisitions were not always synchronous. In particular,
frequent cloudy weather and rainfall (about 170 mm) occurred between February
20th and April 10th, particularly during the whole month of March (150 mm), which
hampered/delayed the second N application and many of in-field measurements.
However, comparable data were collected through these measurements. A time
schedule of cultivation operations and measurements during the wheat growing cycle
is reported in Figure S2.

R E S U LT S

In-field data

All parameters from in-field measurements (FW, DW, N%, Nupt, SPAD,
PARt/PARi) varied with fertilizer-N rate and crop stage (Figure 1). In particular, FW,
DW and N uptake increased while PARt/PARi decreased with either increasing N
rate or crop ageing. On the other hand, N% and SPAD values generally increased
with N rate and decreased with crop ageing (except for SPAD at later dates and at
high N rates). All treatments showed N% concentration in the dry matter always
below the critical N concentration reported by Cao et al. (2015) (Figure 2).

Pairwise linear correlations between Nupt and PARt/PARi, SPAD and N%, SPAD
and Nupt (i.e., the independent parameters more linked to crop N nutrition and leaf
development) are reported for either just before (141 DAS) and after (170 DAS) the
second N application (Figure 3). No correlations can be drawn for measurements
in March in lack of most of in field parameters for that period. The correlations
were less strong before than after the second N application. The correlation was
significant and strong between PARt/PARi and Nupt and between Nupt and SPAD
in both crop stages (Figure 3A,C,D,F). The correlation between N% and SPAD was
significant but weak in the first crop stage and became moderate only in the second
one (Figure 3B,E).

Wheat grain yield (GY) increased with increasing N rate, but differences between
the highest N rates were slight and generally not significant (Table 1). The thousand
grain weight decreased slightly at high N rates (Table 1).

Remote sensed NDVI

Both SAT and UAV NDVI values were affected by wheat N availability, but
differences were not always significant between N rates over 80 kg N ha−1 (Figure 4).
The SAT and UAV NDVIs were strongly correlated in all the three crop stages, with
R2 increasing from 0.84 at the second half of March (around 120 DAS) to 0.90 in mid-
April (about 140 DAS) and 0.95 around mid-May (around 170 DAS) (Figure 5). On
April 14th (141 DAS, i.e., just before the second N application), pairwise correlation
of UAV NDVI versus in-field parameters were always stronger than those of SAT
NDVI (Table 2). The strongest correlations were those of UAV NDVI versus Nupt
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Figure 1. Time course of above ground biomass fresh weight (FW, in A) and dry weight (DW, in B), N% concentration
(C), total above-ground N accumulation (Nupt, in D), SPAD values (i.e., greenness) of leaves (E), and PARt/PARi
ratio (F) in soft wheat as affected by increasing N fertilization rates (0, 40, 80, 120, 160, 200 kg N ha−1), split into
two applications (see arrows), the first at tillering (February 12th, 2015, 80 days after sowing, DAS) and the second at
shooting (April 14th, 2015, 141 DAS). PARt is the photosynthetically active radiation transmitted to the soil below

the canopy and PARi the PAR incoming above the canopy. Vertical bars represent standard errors.
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Table 1. Grain yield (GY) and thousand grain weight (TGW) in soft wheat
grown at increasing N fertilization rates (0, 40, 80, 120, 160, 200 kg N ha−1),
split into two applications, the first at tillering (February 12th, 2015, 80 days

after sowing, DAS), the second at shooting (April 14th, 2015, 141 DAS).

N rate GY TGW

kg N ha−1 Mg DW ha−1 g
0 4.5 4.9
40 5.7 5.0
80 5.9 5.0
120 7.8 4.8
160 8.3 4.5
200 8.4 4.6
Mean 6.8 4.8
AnOVa ∗∗∗ ∗∗∗
LSD p = 0.05 0.97 0.15

∗∗∗ = Fisher’s significance at p < 0.001.

Figure 2. Correlation between N% concentration (on above-ground dry biomass) and above-ground biomass (DW)
observed in wheat grown at increasing N fertilization rates (0, 40, 80, 120, 160, 200 kg N ha−1), split into two
applications, the first at tillering (February 12th, 2015, 80 days after sowing, DAS) and the second at shooting (April
14th, 2015, 141 DAS). The symbols represent the data collected from each plot at the sampling dates of February
12th, April 14th and May 17th (174 DAS), and the curve represents the critical N concentration for wheat by Cao

et al. (2015).
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Figure 3. Relationships between in-field parameters measured to evaluate vegetative and N status of wheat grown at
increasing N fertilization rates (0, 40, 80, 120, 160, 200 kg N ha−1), split into two applications, the first at tillering
(February 12th, 2015, 80 days after sowing, DAS) and the second at shooting (April 14th, 2015, 141 DAS). N% is
the N concentration (w:w) in the above-ground dry matter, Nupt is the total above-ground N accumulation, SPAD
readings express the leaf greenness, PARt is the photosynthetically active radiation transmitted to the soil below the
canopy and PARi is the PAR incoming above the canopy. In A to C, measurements taken before the second fertilizer-
N application (PARt/PARi and SPAD on April 1st, 128 DAS; N% and Nupt on April 14th). In D to F, measurements
taken around one month after the second fertilizer-N application (PARt/PARi and SPAD on May 13th, 170 DAS;

N% and Nupt on May 17th, 174 DAS).
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Figure 4. Time course of normalized difference vegetation index (NDVI) from (A) satellite (SAT) and (B) unmanned
air vehicles (UAV) sensed data in soft wheat as affected by increasing N fertilization rates (0, 40, 80, 120, 160,
200 kg N ha−1), split into two applications, the first at tillering (February 12th, 2015, 80 days after sowing, DAS)

and the second at shooting (April 14th, 2015, 141 DAS). Vertical bars represent standard errors.
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Figure 5. Relationships between UAV and SAT NDVI in wheat grown at increasing N fertilization rates (0, 40, 80,
120, 160, 200 kg N ha−1) split into two applications, the first at tillering (February 12th, 2015, 80 days after sowing,
DAS) and the second at shooting (April 14th, 2015, 141 DAS). In A, UAV NDVI recorded on March 31st (127 DAS)
and SAT NDVI recorded on March 18th (114 DAS). In B, UAV NDVI recorded on April 14th and SAT NDVI of
April 14th, calculated by linear interpolation between data recorded on March 18th and May 10th (167 DAS). In C,

UAV NDVI recorded on May 18th (175 DAS) and SAT NDVI recorded on May 10th.
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Table 2. Pearson’s R2 and P values for the linear correlations between either UAV (unmanned aerial vehicle) NDVI
(normalized difference vegetation index) or SAT (satellite) NDVI and in-field parameters measured to evaluate
vegetative and N status in wheat grown with 0, 40, 80, 120, 160, 200 kg N ha−1, split into two applications, the
first at tillering (February 12th, 2015, 80 days after sowing, DAS), the second at shooting (April 14th, 2015, 141
DAS). PARt is the photosynthetically active radiation transmitted to the soil below the canopy and PARi is the PAR
incoming above the canopy; N% is the nitrogen concentration (w:w) in the above-ground dry matter; Nupt is the
total above-ground N accumulation; SPAD readings express the leaf greenness. Each correlation considers 18 points
(6 N rates × 3 replicates). The closest measurement dates for in-field parameters and NDVI are compared. The SAT

NDVI of April 14th is calculated by linear interpolation between data recorded on March 18th and May 10th.

UAV (April 14th) SAT (April 14th)

In-field parameter Measurement date R2 p value R2 p value

PARt/PARi Apr 1st 0.8792 9.44E–09 0.7932 7.3E–07
N% Apr 14th 0.5785 2.48E–04 0.4062 4.4E–03
Nupt Apr 14th 0.8842 6.70E–09 0.7388 4.9E–06
SPAD Apr 1st 0.7028 1.39E–05 0.6186 1.1E–04

UAV (May 18th) SAT (May 10th)

R2 p value R2 p value

PARt/PARi May 13th 0.9436 2.06E–11 0.9148 5.67E–10
N% May 27th 0.5636 3.31E–04 0.5939 1.82E–04
Nupt May 27th 0.7209 8.35E–06 0.7409 4.55E–06
SPAD May 13th 0.7538 3.00E–06 0.7174 9.25E–06

and PARt/PARi (R2 around 0.88) followed by those of SAT NDVI versus PARt/PARi
(R2 = 0.79) and Nupt to (R2 = 0.74), while the weakest were those with N% (R2 0.58
for UAV NDVI and 0.41 for SAT NDVI), as shown in Table 2. At around mid-May
(about 170 DAS, i.e., about one month after the second N application) differences
in pairwise correlations of UAV NDVI and SAT NDVI versus in-field parameters
decreased (Table 2). With respect to mid-April, the strength of correlations with
PARt/PARi and SPAD increased considerably for both UAV and SAT NDVI, while
that with Nupt decreased markedly for UAV NDVI and that with N% increased
dramatically for SAT NDVI (Table 2).

The correlation between grain yield and either UAV or SAT NDVI was weak for
March data (R2 below 0.5 for both), strong for April data (R2 = 0.80 for UAV and
0.76 for SAT) and still reasonable for May data (R2 = 0.67 for UAV and 0.68 for
SAT) (Figure 6).

D I S C U S S I O N

Our experimental design was able to differentiate the vegetative and nutritional status
imposed with increasing N rates (Figure 1). In particular, the crop grown at the
highest N rate had much higher leaf area than the unfertilized control. For example,
assuming a hypothetical light extinction coefficient for wheat of 0.5 (Zhang et al.,
2015), the LAI was higher than five for the well N fed treatments and lower than
two for the unfertilized control, as it can be easily derived from PARt/PARi values
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Figure 6. Correlations between either UAV (unmanned aerial vehicle) NDVI (normalized difference vegetation index)
recorded on March 31st (127 days after sowing, DAS) (A), April 14th (141 DAS) (B) and May 18th (175 DAS) (C), or
SAT (satellite) NDVI of March 18th (114 DAS) (D), April 14th (E) and May 10th (167 DAS) (F) and grain yield in
soft wheat grown at increasing N fertilization rates (0, 40, 80, 120, 160, 200 kg N ha−1), split into two applications,
the first at tillering (February 12th, 2015, 80 DAS) and the second at shooting (April 14th, 2015). SAT NDVI of April

14th was calculated by linear interpolation between data recorded on March 18th and May 10th.

https://doi.org/10.1017/S0014479717000278 Published online by Cambridge University Press

https://doi.org/10.1017/S0014479717000278


618 PAO L O B E N I N C A S A et al.

according to the light penetration model proposed by Monsi and Saeki (1953). In
turn, the higher leaf area index implied a higher soil cover and thus a lower bare soil
component, which is known to affect the NDVI (Carlson and Ripley, 1997). Overall,
based on differences between treatments visible in Figure 1, PARt/PARi and Nupt
can be considered good indicators of wheat N availability, followed by SPAD and
N% (Figure 1). In fact, since an N limited crop shows less biomass accumulation
and leaf expansion, it is obvious and well documented in the literature that N
concentration per unit biomass weight or unit leaf area (thus, N% and SPAD values) is
less affected. Moreover, for a given N% concentration, some variation in SPAD values
has been found due to differences in irradiance (Hoel and Solhaug, 1998), which
is affected by solar elevation (thus on daytime and month), leaf angle and weather
(e.g., haze, clouds). In any case, parameters taken by independent measurements
like PARt/PARi, Nupt and SPAD resulted quite strongly correlated to each other
(Figure 3), which means that each of them can be used to evaluate the accuracy of
SAT and UAV NDVI.

Our results on NDVI (Figure 4) are in line with evidence obtained in Pakistan by
Sultana et al. (2014), with some differences in absolute values likely associated with
wheat cultivar and techniques used for spectral calibration. A slight UAV NDVI
saturation occurred only for May data at the highest N rates, confirming the findings
of Hansen and Schjoerring (2003), who concluded that some effect of saturation
can occur for LAI higher than 2.5 and high N status. As the scientific literature
suggests a linear variation of NDVI between tillering and booting growth stages, we
performed a linear interpolation of satellite data that represents a simplistic predictor
of values. This, together with the different calibration procedures of the data from the
two satellite sensors, may have caused the reduction of SAT NDVI values on April
14th (141 DAS, Figure 4). However, this did not affect substantially the relative values
of data and their correlations, so that the data could be used for in-field nitrogen
assessment.

The little difference in SAT NDVI in fertilized treatments reflected the actual little
difference in wheat N status caused by the unusually high winter rainfall that likely
leached most of the N provided by the first N application. This is confirmed by the
N concentration measured just before the second N application, which was markedly
lower than the critical N concentration in all treatments (Figure 2). On the contrary,
both SAT and UAV NDVI for high N rates were close to saturation several weeks
after the second N application both due to the higher LAI and the improved N status,
which was close to the critical N concentration (Figures 1, 2 and 4). However, the
strong correlation between SAT and UAV NDVIs (Figure 5) indicates that, despite
the two remote sensing methods imply different image pre-processing procedures,
they have similar sensitiveness in monitoring crop vegetative/nutritional status
and thus can be used alternatively for the assessment of in-field crop condition. Of
course, the choice will depend on the peculiarities of each method, taking into account
the context where to use it (e.g., cost, flexibility, weather conditions, land size, etc.)
and the purpose of the assessment (e.g., cross-comparison with other fields, in field
assessment etc.). For example, the use of SAT was not as flexible as that of UAV, and,
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actually, we did not have the chance to make an additional/delayed measurement
of NDVI with respect to that planned in mid-March. Moreover, considering that
data from UAV can be calibrated through different approaches, the purpose of
data collection should guide the calibration techniques to find a good compromise
between the inter-comparability of data and the complexity of the calibration process.

The strength of correlations between either UAV or SAT NDVI and some in-
field parameters was comparable to that of other widely recognized accurate systems
(Cao et al., 2015). The strong correlations of UAV and SAT NDVI with PARt/PARi
(Table 2) support our previous statement that the NDVI was highly dependent on
leaf area and ground cover. So, NDVI is an expression of the overall vegetative
status rather than of the sole nutritional status of the crop. Similarly, the strong
correlation between NDVI and Nupt (Table 2) was also due to the strong correlation
of NDVI with DW (R2 always >70%, data not shown) rather than with N%,
confirming the findings of Jia et al. (2012). Thus, NDVI would be only in part able
to screen an N deficient crop from a well N fed crop limited by other unfavourable
environmental conditions (e.g., flooding, low temperature, etc.). This depends from
the fact that the robustness and sensitivity of NDVI depends not only on vegetation
red/infrared ratio related to greenness but also on ground cover by the canopy (Ren
et al., 2008). Actually, moderate N deficiency not always causes detectable changes
in N concentrations per unit dry weight or unit leaf area and greenness (thus N%
and SPAD values). Thus, the farmer should also consider possible unfavourable
environmental conditions other than N availability for low NDVI when deciding
whether adjust the N rate.

Data indicate that NDVI was able to screen quite well the crop vegeta-
tive/nutritional status in mid-April, i.e., at wheat shooting (Table 2). This is of
relevance because at this stage there is still room for adjusting the N rate by the second
N application. It is worth to notice that after the first N application the actual stepwise
difference between N treatments was of just 20 kg N ha−1 (i.e., 0, 20, 40, 60, 80,
100 kg N ha−1), which not necessarily has a detectable effect on crop vegetative and
nutritional status. In addition, base soil N fertility likely accounted for some dozens
of kg (explaining the quite high grain yield of the unfertilized control), which initially
shifted the crop total N availability, thus contributing to mask effects of treatments.
On the other hand, the heavy rainfall in March likely leached the N supplied with
the first N application, so neutralising its effect. In fact, the in-field measurements
themselves (N%, Nupt, and SPAD) revealed that contiguous N treatments were not
so different. From an agronomic point of view, substantial differences were those
between N deficient and well N fed clusters of treatments (e.g., 0–40 vs. 60–100 kg
N ha−1, before the second N application). These clusters were screened with due
accuracy by either in-field methods or NDVIs.

The quite strong correlation between grain yield and NDVI of April (Figure 6)
confirms that NDVI could be a good predictor of crop yield in wheat grown at a
given N availability (Raun et al., 2001), provided the N application has been efficient.
The weak correlation of grain yield with March NDVI data is partly due to the above
mentioned high rainfall, which likely leached most of the N supplied in mid-February.
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On the other hand, the slight decrease of accuracy of NDVI in May was caused by
the above discussed saturation of NDVI at high N rates, as also shown by Lelong
et al. (2008). However, the decrease of accuracy of NDVI at high N rates would have
a relative importance because the gain in grain yield at high N availability becomes
non-significant (Table 1). The lack of statistical difference between high N rates in
terms of grain yield would indicate that the N concentration for maximum yield may
be lower than N concentration for maximum growth. This stands especially for wheat,
which has high crop plasticity and can compensate yield limitations at different crop
stages, from tillering to grain filling.

C O N C L U S I O N S

Our results demonstrate that both UAV and SAT NDVIs are comparable to in-field
methods for accuracy in detecting differences in crop N status and yield. In other
words, remote sensed NDVI can be useful to reveal important N deficiencies and
can detect this deficiency at an early crop stage like shooting, when the N rate can
still be adjusted by a further fertilizer-N application. This means that NDVI derived
from remote sensing can support a decision on whether and, to a certain extent, how
much N rate has to be adjusted. This feature together with the chance of monitoring
wide areas in little time allows fertilization according to crop spatial variability, thus
improving fertilization management at a farm scale. The SAT and UAV NDVIs were
strongly correlated to each other and then they can be used alternatively for the
assessment of crop nitrogen status, depending on the context where to use them (e.g.,
cost, flexibility, weather, land size, etc.). An accurate timing of remote sensing image
acquisition is highly recommended to obtain relevant information for N management
purposes.
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