
Robotica (2012) volume 30, pp. 333–342. © Cambridge University Press 2011
doi:10.1017/S0263574711000634

Unified analysis of statics of some limited-DOF parallel
manipulators
Bo Hu†, Yi Lu†∗, Xiuli Zhang‡ and Jianping Yu§

†College of Mechanical Engineering, Yanshan University, Qinhuangdao, Hebei, 066004, P. R. China
‡College of Qinhuangdao Building Material, Qinhuangdao, Hebei, 066004 P. R.China
§College of Foreign Studies, Yanshan University, Qinhuangdao, Hebei, 066004, P. R. China

(Received in Final Form: May 26, 2011; accepted May 24, 2011. First published online: July 1, 2011)

SUMMARY
An observation approach is proposed for determining the
poses of the active/constrained wrench and the unified statics
of some limited-DOF parallel manipulators (PMs) are studied
systematically. First, a general PM model is constructed,
and the unified inverse displacement is analyzed. Second,
various types of acceptable legs are synthesized; the poses
of the active/constrained wrench exerted on the various
acceptable legs are determined by the observation approach.
Third, a unified 6 × 6 Jacobina matrix and a unified statics
equation are derived for solving active/constrained wrench
of many limited-DOF PMs. Finally, two PMs are presented
to illustrate this approach.

KEYWORDS: Parallel manipulators; Robot dynamics;
Kinematics; Statics; Constraint wrench.

Nomenclatures
B, m base and platform
ri active limb and its length (i = 1, 2, . . . , n)
li , Li sides of m and B
P, R prismatic joint and the revolute joint
U, S universal joint and spherical joint
o, O center point of m and B
ai, Ai vertices of m and B
e, E the distances from ai to o and from Ai to O
{m} coordinate o-xyz fixed on m
{B} coordinate O-XYZ fixed on B
F concentrated force exerted on m at o
T concentrated torque exerted on m at o
n the number of independent pose parameters of m
θi independent pose parameters of m
Fai, T ai active forces and active torques exerted on ri

Fcj , T ck constrained forces and torques exerted on rj

xl, xm, xn direction cosine between x and X, x and Y, x and Z
yl, ym, yn direction cosine between y and X, y and Y, y and Z
zl, zm, zn direction cosine between z and X, z and Y, z and Z
α, β, γ Euler angles of m about (Xa, Y1, X2), respectively
Xo, Yo, Zo the position components of o in BA

M the number of degree of freedom
δi , τ i the unit vector of Fai and T ai

cj , tk the unit vector of Fcj and T ck

‖, ⊥ parallel constraint and perpendicular constraint
b 31/2

* Corresponding author. E-mail: luyi@ysu.edu.cn

1. Introduction
Some limited-DOF (degree of freedom) parallel manipu-
lators (PMs) have attracted much attention due to their
relative high stiffness, simple structure, easy to control
and have been used in many practical applications.1–8 In
order to determine the stress and precision and to select
proper actuators, their active/constrained wrench must be
solved.1–3 In dynamics analysis, Huang et al.2 solved the
active forces of some PMs by the virtual parallel mechanism.
Lu et al.3 solved active forces of some limited-DOF PMs by
a virtual serial mechanism and the principle of virtual work.
Dasgupta and Mruthyunjaya4 proposed a Newton–Euler
formulation approach for the inverse dynamics of PMs.
Tsai5 solved the inverse dynamics of a Stewart–Gough
PM by principle of virtual work. Gallardo et al.6 analyzed
dynamics of PMs by screw theory. On the basis of a Stewart
platform, Dai and Huang7 studied mobility of some over
constrained PMs. Zhao et al.8 studied the statics of some
PMs by combining screw theory with virtual power theory. Di
Gregorio9 studied statics of a 3-UPU PM with three rotations.
Kong and Gosselin10 determined the pose of constrained
wrench of some PMs using screw theory. Lu and Hu solved
active/constrained forces of some PMs using Newton–Euler
formulation approach and CAD variation geometry.11–13

Zhao and Dai et al.14–17 studied the kinematics/dynamics
of PMs using the approach of the geometry and constraint
analysis. Other researchers18–25 studied the kinematics/
dynamics of PMs using the vector analytic approach and
Lagrange equations. Although each of these approaches has
its merits, they are relative complicated and not easily to
apply to solve the constrained wrench of some limited-DOF
PMs with redundant and/or common constraints. Therefore,
it is a significant issue to develop a simple, intuition and
easily to learn approach for solving constrained wrench
of some limited-DOF PMs and analyzing their unified
statics.

This paper focuses on an observation approach for
determining the poses of the active/constrained wrench
of various limited-DOF PMs and studies their unified
statics. Two PMs are presented to illustrate this approach.
The results of study show that the proposed approach
is simple, intuition and easy to determine the poses
of the various active/constrained wrenches and to
solve active/constrained wrench of many limited-DOF
PMs.
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Fig. 1. A general PM with n active legs (a) and its force situa-
tion (b).

2. Common Technology for Solving Active/
Constrained Wrench

2.1. A general PM and its inverse kinematics
A general PM with n linear/rotational actuators includes a
fixed base B, a moving platform m, and n active limbs ri

(i = 1, 2, . . . , n), which connect m at ai with B at Ai (see
Fig. 1a). Each of active limbs ri may be composed of a linear
actuator or a rotational actuator. Each of active limbs ri may
be composed of some serial links connected by various joints.
Let {m} be a coordinate frame o-xyz fixed on m at o; {B} be
a coordinate frame O-XYZ fixed on B at O; ‖ be a parallel
constraint; and ⊥ be a perpendicular constraint.

Before analyzing statics of PMs, the positions of the joints
Ai on B and the joints ai on m must be determined. The
position vectors of Ai of B in {B} are represented by Ai and
the position vectors of ai of m in {m} and {B} are represented
by mai and ai , respectively, as follows:1,2

Ai =
⎡
⎣XAi

YAi

ZAi

⎤
⎦ , mai =

⎡
⎣xai

yai

zai

⎤
⎦ , ai =

⎡
⎣Xai

Yai

Zai

⎤
⎦

RB
m =

⎡
⎣ xl yl zl

xm ym zm

xn yn zn

⎤
⎦ , o =

⎡
⎣Xo

Yo

Zo

⎤
⎦ ,

ai = RB
m

mai + o,

(1)

where RB
m is a rotation transformation matrix from {m}

to {B}; o is a vector of point o on m in B; (XoYoZo)
are the components of o. The constraint equations of
(xl, xm, xn, yl, ym, yn, zl, zm, zn) in RB

m can be obtained in
refs. [1, 2]. When each of active legs ri(i = 1, 2, . . . , n) of
the PM is linear leg, ri and its unit vector δi and the vector
ei of the line ei can be solved as follows:

ri = |ai − Ai | , ei =

⎡
⎢⎣

eix

eiy

eiz

⎤
⎥⎦ = ai − o,

δi =

⎡
⎢⎣

δix

δiy

δiz

⎤
⎥⎦ = 1

ri

⎡
⎢⎣

Xai
− XAi

Yai
− YAi

Zai
− ZAi

⎤
⎥⎦ .

(2)

When a active leg includes a link gi and a linear active leg
ri , two ends of a link gi are connected to platform m at ai and
to the one end of ri at point di , respectively; and the other
end of ri is connected to the base B at point Ai . Thus, ri , its
unit vector δi , and the vector ei of the line ei can be solved
as follows:

ri = |di − Ai | , δi = 1

ri

⎡
⎢⎣

Xdi
− XAi

Ydi
− YAi

Zdi
− ZAi

⎤
⎥⎦ , ei = di − o.

(3)

Let α, β, γ be three Euler angles of m, and ϕ be one
of α, β, γ . Set sϕ = sin ϕ, cϕ = cos ϕ, and tϕ = tan ϕ. Let
θi(i = 1, . . . , n < 6) be n independent position-orientation
parameters of the platform, θi ∈ (Xo, Yo, Zo, α, β, λ). On
the basis of the structure constraints of PMs, θi can be
determined by the 6-n constrained equations. The extensions
and the vectors r i of active legs ri , the unit vector δi

of r i , and the vector ei can be represented by θi . Each
of (xl, xm, xn, yl, ym, yn, zl, zm, zn) has been represented by
(α, β, γ ) in ref. [11] corresponding to the 12 different Euler
rotational orders.

The inverse velocity vin of limited-DOF PM can be
expressed in ref. [11] as below

vin = (Jα)n×6V , vin =

⎡
⎢⎣

vr1

...

vrn

⎤
⎥⎦

n×1

, V =
[

v

ω

]
6×1

,

(4)

where Jα is the n × 6 Jacobian matrix, V is general velocity
of m, and v and ω are linear and angular velocities of m.

2.2. Active/constrained wrench of PMs
When ignoring the friction of all the joints in a PM, the
whole workloads can be simplified as a wrench (F, T )
applied onto m at the central point o. It includes the inertia
wrench and the gravity of the platform, and inertia wrench
and the gravity of the active legs, which can be mapped
into a part of the whole workload, and the external working
wrench (such as machining or operating wrench of tool, and
damping wrench of end effector). F is a concentrated force
and T is a concentrated torque. (F, T ) are balanced by
an active wrench (Fa, T a) and a constrained wrench (Fc,
T c) (see Fig. 1b). Here, Fa includes n active wrenches
Fai(i = 1, . . . , n), where Fai can active force and torque,
Fc includes n2 constrained forces Fcj (j = 1, . . . , n1); T c

includes n2 constrained torques T ck(k = 1, . . . , n2). The
equation n1 + n2 + n = 6 is satisfied.

In the limited-dof PMs, there are various possible active
legs connected by various serial joints (see Table I). Some
of them may be composed of some multi-DOF joints, such
as spherical joint S, universal joint U, and cylindrical joint
C. In order to determine the geometric constraints of the
constrained wrench, an equivalent constrained leg re has to
be constructed by replacing S with three uncoplanar and
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Table I. Possible serial structure of active leg for PMs.

Various possible serial structure of active legs

UPU UPRR UPPP UPC UUR
URPR URC URU UCP CPU
CCR CRRR CRRP CRPP CRPR
RRPU RRPRR RRPPP RRPC RRUR
RRRPR RRRC RRRU RRCP PPPU
PPCR PPRRR PPRRP PPRPP PPRPR
RPPPP RPPC RPUR RPUP RPCR
RPRU RPCP PRPU PRPRR PRPPP
PRRRP PRRPP PRRPR PRRC PRRU
SRR SRP SPP SPR UPR
UUP UCR URRR URRP URPP
CPRR CPPP CPC CUR CUP
CRC CRU CCP US CS
RRUP RRCR RRRRR RRRRP RRRPP
PPPRR PPPPP PPPC PPUR PPUP
PPRC PPRU PPCP RPPU RPPRR
RPRRR RPRRP RPRPP RPRPR RPRC
PRPC PRUR PRUP PRCR PRRRR
PRCP SU SRR SPP SC
PRRR RPU PRU RPRR PRRR
RRPR RRRP PS SP

S-spherical joint, U-universal joint, C-cylindrical joint, P-
prismatic joint, R-revolute joint

intersecting revolute joints, U with two crossed revolute
joints, and C with a prismatic joint and a revolute joint,
respectively.

Since the constrained wrench (Fc, T c) do not do any
power during the movement of the PM, if there is
Fc, the following geometric constrains 1 and 2 must
be satisfied. Otherwise, there is no Fc. if there is T c,
the following geometric constrain 3 must be satisfied.
Otherwise, there is no T c. The three geometric constrains of
(Fc, T c) can be determined by the observation approach as
follows:

(1) Let vre be a velocity along prismatic joint P in
equivalent constrained leg re; thus, Fcjvre = 0 must be
satisfied, i.e. Fcj ⊥ P . Thus, each of constrained forces
Fcj must be perpendicular to all the prismatic joints
in re.

(2) Let Re be a unit vector of revolute joint R in re, and let
ρr × Fcj be a torque of Fcj about R, Re (ρr × Fcj ) = 0
must be satisfied. Thus, each of constrained forces Fcj

must intersect or be parallel with all the revolute joints
in re. If active leg includes spherical joint S, Fcj must
intersect with S.

(3) Let ωre be an angular velocity about R in re, T ck ωre = 0
must be satisfied, i.e. T ck ⊥ R. Thus, each of constrained
torques T ck must be perpendicular to all the revolute
joints in re.

Since the constrained force/torque do not do any work when
movement of m, there are

Fcj cj · v + (Fcjρj × cj ) · ω = 0 (j = 1, . . . , n1), (5)

Tτkτ k · ω = 0 (k = 1, . . . , n2). (6)

When Fcj and Tτk are deleted from Eqs. (5) and (6), it
leads to

0(n1+n2) = JcV , Jc =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cT
1 (ρ1 × c1)T

...
...

cT
n1 (ρn1 × cn1)T

01×3 cT
1

...
...

01×3 cT
n2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (7a)

where Jc is a (6 − n) × 6 constrained wrench Jacobian
matrix.

From Eqs. (4) and (7a), it leads to

vr = J6×6V , vr =
[

vin

0(6−n)×1

]
, J6×6 =

[
Jα

Jc

]
. (7b)

Let Fr = [Fa1, . . . , FanFc1, . . . , Fcn1Tτ1, . . . , Tτn2 ]T. On the
basis of the principle of virtual work, it leads to

FT
r vr +

[
F

T

]T

6×1

V = 0. (8)

Substituting Eq. (7b) into Eq. (8), it leads to

Fr = −(
J−1

6×6

)T
[

F

T

]
6×1

. (9)

2.3. Determination of pose of constrained wrench in some
accepted active legs
A key issue to solve the active/constrained wrenches is
to determine their poses by the observation approach
corresponding to different active legs. Some accepted
active legs with linear/rotational actuator are constructed
(see Fig. 2) for some 3-DOF PMs (such as 3SPR,
3RPS, 3RRPRR, 3UPU, 2UPU+SPR, 3UPRR, 3RPRU,
3RSR, and 3RPUR), for some 4-DOF PMs (such
as 2UPS+2SPR, 2UPS+2UPU, 4UPU, 3SPU+UPR,
3SPU+SP, 3SPU+PRRR, and 3SPU+RPRR), and for
some 5-DOF PMs (such as 4SPS+SPR, 4SPS+UPU, and
4SPS+URPR). When given the structure constraints of
each accepted active leg, based on the three geometric
constraints of (Fc, T c) in the Section 2.2, and the poses
of active/constrained wrench in these accepted active legs
can be determined by the observation approach (see Fig. 2).
Here, Rj (j = 1, 2, 3, 4) and Rj are the revolute joints and
their unit vector; r is the extension of active leg ri ; Fa and
δ are an active force and its unit vector; T a and τ are an
active torque and its unit vector; Fc and c are a constrained
force and its unit vector; T c and t are a constrained torque
and its unit vector; T r is a constrained torque produced
by Fc; a is the one end of active leg for connect with
m; A is the other end of active leg for connect with B; g

and g are an auxiliary link and its vector in {B}. When
these accepted active legs are used to synthesize various
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Fig. 2. Force situations of the 21 types active legs with given structure constraints.
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limited-DOF PMs, the active/constrained wrench of these
PMs can be solved.

3. A 3RRPRR PM

3.1. The structure of the 3RRPRR PM and its geometric
constraints
A 3RRPRR PM includes a moving platform m, a fixed base B,
and 3 RRPRR-type active legs with the linear actuator (see
Fig. 3a). Here, m is an equilateral ternary links with three
vertices ai (i = 1, 2, 3) and three sides li and a central point
o; B is an equilateral ternary link with three vertices Ai and
three sides Li and a central point O. Each of RRPRR-type
active legs connects m with B by two intercrossed revolute
joints R3i and R4i at ai , an active leg ri with a prismatic
joint P , and two intercrossed revolute joints R1i and R2i at
Ai . In structure, some geometric constraints (R1i ⊥ R2i, R1i

coincident with a line AiO, R3i ⊥ R4i , R4i ⊥ m, R2i ⊥ ri ,
R3i ⊥ ri , and R2i ‖ R3i) are satisfied. Under these geometric
constraints, the 3RRPRR PM has three planes Pi(OaoaiAi),
including ri and a line aoO, which is perpendicular to m at
point ao. Under the geometric constraints (R3i ⊥ aoO, R2i ‖
R3i , R2i ⊥ AiO, R2i ⊥ ri , and R3i ⊥ ri), some geometric
constraints (R2i ⊥ 
aoOai , R3i ⊥ 
OaiAi , i.e., R2i ⊥ Pi)
are satisfied. Obviously, under these geometric constraints,
Pi ⊥ m is satisfied.

3.2. Inverse displacement kinematics
From Eq. (1), mai , ai and Ai(i = 1, 2, 3) can be derived as
follows:11

ma1 = e

2

⎡
⎢⎣

b

−1

0

⎤
⎥⎦ , ma2 =

⎡
⎢⎣

0

e

0

⎤
⎥⎦ , ma3 = e

2

⎡
⎢⎣

−b

−1

0

⎤
⎥⎦ ,

A1 = E

2

⎡
⎢⎣

b

−1

0

⎤
⎥⎦ , A2 =

⎡
⎢⎣

0

E

0

⎤
⎥⎦ , A3 = E

2

⎡
⎢⎣

−b

−1

0

⎤
⎥⎦ .

(10a)

a1 = 1

2

⎡
⎢⎣

bexl − eyl + 2Xo

bexm − eym + 2Yo

bexn − eyn + 2Zo

⎤
⎥⎦ , a2 =

⎡
⎢⎣

eyl + Xo

eym + Yo

eyn + Zo

⎤
⎥⎦ ,

a3 = 1

2

⎡
⎢⎣

−bexl − eyl + 2Xo

−bexm − eym + 2Yo

−bexn − eyn + 2Zo

⎤
⎥⎦ .

(10b)
where e is the distance from ai to o (i = 1, 2, 3), E is the
distance from Ai to O, and b = 31/2.

Corresponding to XYX rotational orders of the platform in
ref. [11], (xl, xm, xn, yl, ym, yn, zl, zm, zn) can be represented
by (α, β, γ ) as follows:

xl = cβ, xm = sαsβ, xn = −cαsβ,

yl = sλsβ, ym = cαcλ − sαcβsλ,

yn = sαcλ + cαcβsλ, zl = cλsβ,

zm = −cαsλ − sαcβcλ, zn = −sαsλ + cαcβcλ.

(10c)

Fig. 3. (Colour online) The 3RRPRR PM and its force situation.

From Pi ⊥ m (i = 1, 2, 3) of the 3RRPRR PM, the three
equations of plane Pi(OaoaiAi) are derived as follows:

∣∣∣∣∣∣∣
XA1 − Xa1 YA1 − Ya1 ZA1 − Za1

Xa1 Ya1 Za1

zl zm zn

∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣

e
2 (bxl − yl) + Xo

e
2 (bxm − ym) + Yo

e
2 (bxn − yn) + Zo

bE/2 −E/2 0

zl zm zn

∣∣∣∣∣∣∣
= 0,
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∣∣∣∣∣∣∣
XA2 − Xa1 YA2 − Ya2 ZA2 − Za2

Xa2 Ya2 Za2

zl zm zn

∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣
eyl + Xo eym + Y eyn + Zo

0 E 0

zl zm zn

∣∣∣∣∣∣∣
= 0,

∣∣∣∣∣∣∣
XA3 − Xa3 YA3 − Ya3 ZA3 − Za3

Xa3 Ya3 Za3

zl zm zn

∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣
− e

2 (bxl + yl) + Xo − e
2 (bxm + ym) + Yo − e

2 (bxn + yn) + Zo

−bE/2 −E/2 0

zl zm zn

∣∣∣∣∣∣∣
= 0.

,

(11a)
Three plane equations are simplified as follows:

be(znxl − zlxn) − e(ylzn − zlyn)

+ 2Xozn − 2Zozl + 3e(znxm − zmxn)

+ be(zmyn − znym) + 2b(Yozn − Zozm) = 0,

Zozl − Xozn

= e(znyl − ylzn) × be(znxl − zlxn) + e(ylzn − zlyn)

− 2Xozn + 2Zozl − 3e(znxm − zmxn)

+ be(zmyn − znym) + 2b(Yozn − Zozm) = 0.
(11b)

From Eqs. (2) and (11b), it leads to

eym − exl + 2Yozn − 2Zozm = 0, Zozl − Xozn = −exm,

exm − 3eyl + 2Xozn − 2Zozl = 0, xm = yl. (11c)

From Eqs. (2) and (11c), it leads to

z2
m = y2

n, z2
l = x2

n,

Xo = Zozl + rxm

zn

, Yo = 2Zozm + r(xl − ym)

2zn

.
(11d)

From Eqs. (2) and (11c), it leads to (−cαsβ)2 = (cγ sβ)2, i.e,
α = γ . Next, from Eqs. (10c) and (11d), it leads to

Xo = (Zocα + esα)sβ

−s2
α + c2

αcβ

,

Yo = Zosαcα(1 + cβ) + e
(
cβ − c2

α + s2
αcβ

)/
2

−s2
α + c2

αcβ

.

(11e)

The formulae for solving ri are derived from Eqs. (2), (3),
(10), and (11) as follows:

r2
2 = D + 2e(ylXo + ymYo + ynZo) − 2E(eym + Yo),

D = X2
o + Y 2

o + Z2
o + E2 + e2,

r2
1 = D + EYo − bEXo + be(xlXo + xmYo + xnZo)

− e(ylXo + ymYo + ynZo)
+ eE(byl + bxm − 3xl − ym)/2,

r2
3 = D + EYo + bEXo − be(xlXo + xmYo + xnZo)

− e(ylXo + ymYo + ynZo) − eE

×(byl + bxm + 3xl + ym)/2.

(12)

When given (α, β, Zo), ri(i = 1, 2, 3) can be represented by
(α, β, Zo) from Eqs. (11e) and (12).

3.3. Active force and constrained force and torque
A loop equation of OAiaio can be expressed as

O Ai + Ai ai = Oo + oai . (13a)

Differentiating both sides of Eq. (13a) with respect to time,
it leads to

vriδi + ωri × riδi = v + ω × ei , δi = ai − Ai

|ai − Ai | ,

ei = ai − o, (13b)

where vri is the input velocity of ri and ωri is the angular
velocity vector of ri .

Dot multiplying both side of Eq. (13b) by δi , it leads to

vri = [
δT

i (ei × δi)T ]
V ,

vin = JαV , vin = [vr1 vr2 vr3 ]T.
(13c)

On the basis of the force situation of the RRPRR-type active
leg with a linear actuator, the force situation of the 3RRPRR
PM is determined (see Fig. 3b). From Eqs. (7b), (9) and (13c),
the active and constrained forces can be solved as follows:

[Fa1 Fa2 Fa3 Fc1 Fc2 Fc3 ]T = −(
J−1

6×6

)T
[

F

T

]
6×1

,

J6×6 =
[

Jα

Jc

]
, Jα =

⎡
⎢⎣

δT
1 (e1 × δ1)T

δT
2 (e2 × δ2)T

δT
3 (e3 × δ3)T

⎤
⎥⎦ ,

Jc =

⎡
⎢⎣

cT
1 (ρ1 × c1)T

cT
2 (ρ2 × c2)T

cT
3 (ρ3 × c3)T

⎤
⎥⎦ .

(13d)

Three constrained torques T ri are solved as

T ri = [Fci ci × (Ai − Qi)] · δi . (13e)

All relevant items in Eq. (13d) can be derived as follows:
From Eqs. (10c) and (11c), it leads to

xl = cβ, xm = sαsβ, xn = −cαsβ,

yl = sαsβ, ym = c2
α − s2

αcβ, yn = −sαcα(1 + cβ),

zl = cαsβ, zm = sαcα(1 + cβ), zn = −s2
α + c2

αcβ.

(14a)

The unit vectors Rji of revolute joints Rji (j = 1, 2, 3, 4; i =
1, 2, 3) are determined as follows:

R11 = 1

2

⎡
⎢⎣

b

−1

0

⎤
⎥⎦ , R12 =

⎡
⎢⎣

0

1

0

⎤
⎥⎦ , R13 = 1

2

⎡
⎢⎣

−b

−1

0

⎤
⎥⎦ ,

R41 = R42 = R43 =

⎡
⎢⎣

zl

zm

zn

⎤
⎥⎦ ,

R21 = R31, R22 = R32, R22 = R32.

(14b)
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An equation of axis of R4i is expressed as

(x − Xai)/zl = (y − Yai)/zm = (z − Zai)/zn. (14c)

When z = 0, from Eq. (14c), three intersected points Qi of
R4i and OAi in {B} are derived as follows:

Q1 = 1

zn

⎡
⎢⎣

−Za1zl + Xa1zn

−Za1zm + Ya1zn

0

⎤
⎥⎦

= 1

2zn

⎡
⎢⎣

−(bexn − eyn + 2Zo)zl + (bexl − eyl + 2Xo)zn

−(bexn − eyn + 2Zo)zm + (bexm − eym + 2Yo)zn

0

⎤
⎥⎦,

Q2 = 1

zn

⎡
⎢⎣

−Za2zl + Xa2zn

−Za2zm + Ya2zn

0

⎤
⎥⎦

= 1

zn

⎡
⎢⎣

−(eyn + Zo)zl + (eyl + Xo)zn

−(eyn + Zo)zm + (eym + Yo)zn

0

⎤
⎥⎦ ,

Q3 = 1

zn

⎡
⎢⎣

−Za3zl + Xa3zn

−Za3zm + Ya3zn

0

⎤
⎥⎦

= 1

2zn

⎡
⎢⎣

(bexn + eyn − 2Zo)zl + (−bexl − eyl + 2Xo)zn

(bexn + eyn − 2Zo)zm + (−bexm − eym + 2Yo)zn

0

⎤
⎥⎦.

(14d)
The unit vector δi of ri , the vector ei of the line ei , the unit
vector ci of constrained force Fci , and the arm vector ρi of
Fci to o can be solved as follows:

ci = R2i = R1i × δi

|R1i × δi | , ρi = Qi − o, (i = 1, 2, 3),

o =

⎡
⎢⎢⎢⎢⎣

Zocαsβ + rsαsβ

−s2
α + c2

αcβ

−Zocαsα(1 + cβ) + r
(
cβ − c2

α + s2
αcβ

)
/2

−s2
α + c2

αcβ

Zo

⎤
⎥⎥⎥⎥⎦ .

(14e)

When given (α, β, Zo), o, Qi , δi , ei , ci , and ρi can be solved
from Eqs. (11e), (12), (13b), and (14a)–(e).

4. The 2SPS+2SPR PM

4.1. The 2SPS+2SPR PM and its geometric constraints
A 2SPS+2SPR PM (see Fig. 4a) has 4 DOFs, i.e., n = M =
4. It includes a platform m, a base B, and four linear active legs
ri(i = 1, 2, 3, 4) with linear actuator for connecting m with B.
In order to avoid the singularity of mechanism, the shape of B
and m should be a square and a rectangle, respectively. Here,
two SPS-type limbs connect m at ai with B at Ai(i = 1, 4),
and two SPR-type active limbs connect m at ai with B at
Ai(i = 2, 3).

Fig. 4. The 2SPS+2SPR PM (a) and its forces situation (b).

4.2. Inverse displacement kinematics
From Eq. (2), mai , Ai and ai(i = 1, 2, 3, 4) can be derived
as follows:

ma1 = 1

2

⎡
⎢⎣

l1

−l2

0

⎤
⎥⎦ , ma2 = 1

2

⎡
⎢⎣

l1

l2

0

⎤
⎥⎦ , ma3 = 1

2

⎡
⎢⎣

−l1

l2

0

⎤
⎥⎦ ,

ma4 = 1

2

⎡
⎢⎣

−l1

−l2

0

⎤
⎥⎦ ,

A1 = L

2

⎡
⎢⎣

1

−1

0

⎤
⎥⎦ , A2 = L

2

⎡
⎢⎣

1

1

0

⎤
⎥⎦ , A3 = L

2

⎡
⎢⎣

−1

1

0

⎤
⎥⎦ ,

A4 = L

2

⎡
⎢⎣

−1

−1

0

⎤
⎥⎦ ,

(15a)

a1 = 1

2

⎡
⎢⎣

xll1 − yll2 + 2Xo

xml1 − yml2 + 2Yo

xnl1 − ynl2 + 2Zo

⎤
⎥⎦ ,

a2 = 1

2

⎡
⎢⎣

xll1 + yll2 + 2Xo

xml1 + yml2 + 2Yo

xnl1 + ynl2 + 2Zo

⎤
⎥⎦ ,

a3 = 1

2

⎡
⎢⎣

−xll1 + yll2 + 2Xo

−xml1 + yml2 + 2Yo

−xnl1 + ync2 + 2Zo

⎤
⎥⎦ ,

a4 = 1

2

⎡
⎢⎣

−xll1 − yll2 + 2Xo

−xml1 − yml2 + 2Yo

−xnl1 − ynl2 + 2Zo

⎤
⎥⎦ .

(15b)

In the 2SPS+2SPR PM, there are two geometric constrains
(r2 ⊥ e1 and r3 ⊥ e2). From them, two geometric constraint
equations are derived as follows:

a2 A2 · a1a3

= 1

2

⎡
⎣ xll1 + yll2 + 2Xo − L

xml1 + yml2 + 2Yo − L

xnl1 + ynl2 + 2Zo

⎤
⎦

T ⎡
⎣ xll1 − yll2

xml1 − yml2

xnl1 − ynl2

⎤
⎦ = 0,

https://doi.org/10.1017/S0263574711000634 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574711000634


340 Unified analysis of statics of some limited-DOF parallel manipulators

a3 A3 · a2a4

= 1

2

⎡
⎣ −xll1 + yll2 + 2Xo + L

−xml1 + yml2 + 2Yo − L

−xnl1 + ynl2 + 2Zo

⎤
⎦

T ⎡
⎣ xll1 + yll2

xml1 + yml2

xnl1 + ynl2

⎤
⎦ = 0.

(16a)

From (16a), it leads to

l1(Xoxl + Yoxm + Zoxn) − El1xm + Ll2yl/2 = 0,

l2
1 − Ll1xl − l2

2 − 2l2(Xoyl + Yoym + Zoyn) + Ll2ym = 0.

(16b)

From (16b), it leads to

Xo = 1

2

[
l2xm + 2Zozl

zn

− Ll2ylym

znl1
− l1xm(l1 − Lxl)

znl2

]
,

Yo = 1

2

[
2Zozm − l2xl

zn

+ l1xl(l1 − 2Exl)

l2zn

+ Ll2y
2
l

l1zn

]
+ E.

(16c)

Corresponding to XYX rotational orders of the platform in
ref. [10], (xl xm xn yl ym yn zl zm zn) can be represented
by (α, β, γ ) as the same as Eq. (10c). From Eqs. (10c) and
(16c), it leads to

Xo = sβ [l2sα+2Zocλ−Lsλ(cαcλ−sαcβsλ) l2
l1

−sα(l1−Lcβ ) l1
l2

]

2(cαcβcλ−sαsλ) ,

Yo = −2Zo(cαsλ+sαcβcλ)−l2cβ+cβ (l1−Lcβ ) l1
l2

+Ls2
β s2

λ

l2
l1

2(cαcβcλ−sαsλ) + E.

(16d)

From Eqs. (2), (3), (10c), (15a), (15b), and (16b), ri(i =
1, 2, 3, 4) can be derived as follows:

r2
1 = L2/2 + X2

o + Y 2
o + Z2

o

+L(l1xm − l2ym − Xo + Yo) + (
3l2

2 − l2
1

)
/4,

r2
2 = L2/2 + X2

o + Y 2
o + Z2

o

−L(l1xl + l2yl + Xo + Yo) + (
3l2

1 − l2
2

)
/4,

r2
3 = L2/2 + X2

o + Y 2
o + Z2

o

+L(l2yl − l1xl + Xo − Yo) + (
3l2

1 − l2
2

)
/4,

r2
4 = L2/2 + X2

o + Y 2
o + Z2

o

−L(l2ym + l1xm − Xo − Yo) + (
3l2

2 − l2
1

)
/4.

(17)

From Eqs. (10c) and (16d), ri (i = 1, 2, 3, 4) can be
represented by (α, β, γ, Zo).

4.3. Solving active and constrained forces
On the basis of the force situation of a SPR-type active
leg with a linear actuator (see Fig. 2), the force situation
of the 2SPS+2SPR PM is determined (see Fig. 5b). From
Eqs. (8), (9), and (13c), a formula for solving the active and
constrained forces is expressed as

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Fa1

Fa2

Fa3

Fa4

Fc2

Fc3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= −(
J−1

6×6

)T
[

F
T

]
, J6×6 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

δT
1 (e1 × δ1)T

δT
2 (e2 × δ2)T

δT
3 (e3 × δ3)T

δT
4 (e4 × δ4)T

cT
2 (ρ2 × c2)T

cT
3 (ρ3 × c3)T

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

(18)

Fig. 5. (Colour online) The solved results of 3RRPRR and
2SPS+2SPR PMs.

The unit vector δi of ri(i = 1, 2, 3, 4), the vector ei of the
line ei , the unit vector ci of constrained force Fci , and the
arm vector ρi of Fci to o can be solved as follows:

δi = ai − Ai

ri

, c2 = a1 − a3

|a1 − a3| , c3 = a2 − a4

|a2 − a4| ,
ei = o − ai ,

ρ2 = o − A2, ρ3 = o − A3, o = [
Xo Yo Zo

]T
.

(19)

All relevant items in Eq. (19) can be represented by
(α, β, γ, Zo) and can be solved using Eqs. (14a), (15a)–(15b),
(16d), and (17).

5. Examples and Expandability of the Approach

5.1. Solved examples
Set workloads: F = [−20 − 30 − 60]TkN, T = [−30 −
30 100]T kN · cm. By means of relative analytic equations
and Matlab, the active/constrained wrench of two PMs are
solved (see Fig. 5). The solved results have been verified by
their simulation mechanisms.
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In the 3RRPRR PM, when set L = 120, l = 60 cm, and
given independent pose parameters (α, β, Zo) versus time
(see Fig. 5a). The extensions of active legs ri(i = 1, 2, 3) are
solved (see Fig. 5b). The active forces Fai , the constrained
forces Fci , and the constrained torques Tri are solved (see
Figs. 5c and 5d).

In the 2SPS+2SPR PM, when set L = 100, l1 = 60,
l2 = 50 cm, and given the four independent pose parameters
(α, β, γ, Zo) versus time (see Fig. 5e); the extension of active
legs ri(i = 1, 2, 3, 4) are solved (see Fig. 5f). The active
forces Fai and the constrained forces T ri are solved (see
Fig. 5g).

5.2. The expandability of proposed approach
In dynamics analysis of the limited-DOF PMs, when some
formulae are derived for solving the Jacobian matrices and
velocity/acceleration of the piston/cylinder in the legs of
PMs, the formulae can be derived for solving the inertia
wrenches/gravity of the various legs. After that, based on the
statics Eq. (9) and Fig. 2 in Section 2.4, when the inertia
wrenches/gravity of the legs and the friction loads of the
joints are transformed into a part of the dynamic workload,
the formulae may be derived for solving the dynamic
workloads and the dynamic active/constrained wrench.

In elastic deformation analysis of the limited-DOF PMs,
the force situations of some limited-DOF PMs can be
analyzed, and the poses of the active/constrained wrench
can be determined based on the statics equation (9) and
Fig. 2 in Section 2.4. After that the elastic deformations
of active/constrained legs in these PMs can be analyzed, and
the compliance matrices of active/constrained legs can be
derived. Finally, based on 6 × 6 Jacobina matrix in Eq. (9)
and the compliance matrices of active/constrained legs, some
total stiffness matrices and the elastic deformations of some
limited-DOF PMs may be derived and analyzed.

6. Conclusions
A methodology is developed for unified statics analysis
of some limited-DOF parallel kinematic machines PMs.
A common force balanced equation and a unified 6 × 6
Jacobina matrix are derived. They can be used to solve the
active/constrained wrench of the limited-dof PMs. The 21
types of accepted active legs with linear/rotational actuator
are synthesized. Three common geometric constraints
of the constrained wrench are determined and can
be used to determine the poses of active/constrained
wrench corresponding to the 21 different accepted active
legs are determined. When these accepted active legs
are used to synthesize various limited-DOF PMs, their
active/constrained wrench can be solved.

This approach has been used to solve the active forces and
constrained forces of a 3-DOF 3RRPRR PM and a 4-DOF
2SPS+2SPR PM. The solved results are verified by their
simulation mechanisms.

The proposed approach is simple, intuition, and easy to be
used to determine the poses of the various active/constrained
wrench and to analyze unified statics of some limited-DOF
PMs. It is provide foundations for analyses of the dynamics
and the elastic deformation of various limited-DOF PMs.
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