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SUMMARY

A system to control a database is used for modelling of
robotic mechanisms. This brings up the modelling
process of robotic mechanisms to a higher level of
abstraction and reduces the problem of numerical
complexity reduction of the robotic mechanism model to
database updating. Structural System Analysis was used
to describe the functionality of the system for modelling
of robotic mechanisms. The database model is presented
by Extended Model Object-Connections, and all the
object types for representation of mathematical expres-
sions in the form of calculating graph are described in
detail. The complete system is implemented and tested
on the example of a robotic mechanism with six degrees
of freedom and on the example of anthropomorphic
locomotion robotic mechanism.

KEYWORDS: Dynamic models; Complex mechanisms; Sym-
bolic form; Robots; EMOC; Structural system analysis.

1. INTRODUCTION

Active spatial mechanisms consist of simple and complex
kinematic chains, some of which can also be closed. In
case of a simple kinematic chain, no link connects more
than two kinematic pairs. In a complex kinematic chain,
there exists at least one link comprising more than two
kinematic pairs, whereas in a closed kinematic chain each
link belongs to at least two kinematic pairs.

Considerable progress in modelling robotic mechan-
isms, compared to numerical methods'? has been
achieved by introducing the numeric-symbolic and
symbolic methods which develop special data structures
for representing analytical expressions of the model and
enable reduction of numerical complexity of the
generated model. Advancements of the symbolic
methods for forming mathematical models of robotic
mechanisms were introduced in references 3-5. In
reference 6, a numeric-symbolic method was suggested as
an effective solution to generating mathematical models
of robotic mechanisms.

Later, a large number of symbolic methods based upon
Newton-Euler’s and Lagrange’s equations have been
developed.” From these methods software packages were
developed which may be divided in two groups. To the
first group belong the model generators based on general-
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purpose computer algebra systems (MACSYMA-based
software® and REDUCE-based packages’). To the
second group belong the software products based on
specific symbolic manipulation strategies (SYMB,°
EMDEG,'"” ARM,'"" SYMORO'" and SYM"*'%).

SYMB relies upon numeric-symbolic strategy, where
the mechanism parameters are treated as the real
numbers. The package is based on the Newton-Euler
equations, from which the closed-form robot model is
derived. The model quantities are represented by the
polynomials, whose variables can be the trigonometric
functions. To each polynomial are assigned a vector of
constants and a matrix of exponents. Algebraic
operations between the polynomials are introduced, as
well as a systematic procedure for transforming
polynomials into suitable forms with a minimal number
of calculating operations. SYMB generates a FORTRAN
source code of various types of kinematics and dynamics
models.

EMDEG (Efficient Manipulator Dynamic Equation
Generator) is software package for symbolic modelling
of robotic mechanisms, described in reference 10. It is
based on the FEuler-Lagrange equations which are
modified to a series of recursive expressions. The
simplification rules form the basis for the LISP-based
program EMDEG. Two basic ideas are employed in
simplification: factorisation and simplification using a set
of rules, and segregation of configuration-independent
parameters. These parameters are grouped and pre-
computed as constants. The equations of motion are
based on a modified Denavit-Hartenberg notation.
EMDEG automatically generates the symbolic expres-
sions for the terms that depend on joint coordinates and
optimises them successfully. This concept is not extended
to the terms that depend on joint velocities and
accelerations, which is the lack of this software package.
Similar algorithms for symbolic modelling of serial link
manipulators were proposed in reference 16.

ARM (Algebraic Robot Modeler) is another well-
known computer program for symbolic generation of
dynamic robot models based on one of the following
four formulations: two on classical Lagrange, the
Q-Matrix Lagrange, and the recursive models, providing
alternative algebraic representations for symbolic pro-
cessing. ARM consists of two programs: composer and
performer. The composer (C program) specifies the
symbolic mathematical operations following one of the
four formulations, while performer (a LISP program)
generates the resulting symbolic expressions.
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In SYMORO (SYmbolic MOdelling of RObots) the
Newton-Euler method is applied for generation both the
simple and complex kinematic chains models. Using the
fact that driving torques depend linearly on joint masses
and the tensor of inertia, the program regroups the
parameters in order to minimise the overall number of
system parameters. Identification of the parameters
which should be grouped together is done by the use of
Lagrangian equations, whih clearly express the linear
dependence in the closed form. The drawback of the
method is its applicability only to inverse dynamic
models.

The SYM program package is a successor of SYMB,
evolved from an inverse dynamics symbolic model
generator into a program environment that generates
different kinds of models and performs a wide set of
transformations on the generated models. In this package
too the expressions are represented by the trigonometric
polynomials similar to those in SYMB. SYM generates
highly efficient C source code for various types of
kinematics and dynamics models. This package is also
capable of generating robot control laws.

In reference 17 a new approach was introduced which
uses the nonlinear transmission elements, denominated
kinematical transformers, that are assembled together by
linear equations to kinematical networks representing
general mechanisms. This methodology is applied for the
modelling of the kinematics and dynamics of multibody
systems,'® which is based on the responsibility-driven
approach for object-oriented design and the concept of
kinetostatic transmission elements for mechanical modell-
ing. As a result, a highly data-independent formulation is
achieved, where the generic operations offer several
analogies to general mappings from manifold theory.

In references 19-21 the database controlling system
was introduced into the modelling process of robotic
mechanisms. The polynomial representation of the
expressions taken (SYMB, SYM) in this case, the model,
instead of being in the form of a program written in a
programming language, is obtained stored in the
database. Navigation through the database, and its
updating, enables calculation of the desired robotic
quantities and the reduction of numerical complexity of
the model.

The basic Newton-Euler method for forming the
model of simple kinematic chain dynamics in closed
form® has been broadened in such a way as to enable the
modelling of both complex and closed kinematic chains,
using the notations introduced in reference 2.

The model of a simple kinematic chain with » links has
been derived in reference 6 in the form:

P =H(q, ©)§ +q'C(q, ©)4 + h“(q, ©) (1)
where:

P e R" - vector of the mechanism driving torques;
H(g, ©): R" X R™ — R"™" — mechanism inertial
matrix;
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C(g, ©®): R" X R™ — R — matrix of Coriolis and
centrifugal effects;

h“(q, ©): R" X R™ — R" - gravitational vector;

g € R" — vector of generalised coordinates;

© € R™ - vector of the kinematic and dynamic
parameters of the mechanism;

whereby the matrix C represents a set of n matrices
(C'(qg, ®),...,C"(q,0)), where C'(q,0)eR"™". Al
matrices of the system (1) have to be explicitly
dependent of the sets of kinematic (K;) and dynamic (D;)
parameters.

The complete derivation procedure has been given in
reference 6. The matrices H and C, and the vector h“
can be calculated from the following expressions:

n

Hy = 2

Jj=max (i,k)

| @ xF) - @)

3 (2
+ 2:1 (Ez ' El)/u)(é,k . (jm)lm] )

H,, = H,

where H, i =k is (i, k)-th element of the inertial matrix
H(g, ©).
In the same way we obtain that

n
Cu= 3 |m@xn)@x@xn
j=max (i,k)
3
+5 > (- Gin)en + (€ Giu)€n 3)
n=1
+ (5/ ' q’ju)gik] : q)jw]j,u}
5k = Cikl

where Cj, k=1 is (k [)-th clement of the matrix
C'(q, ©), and €, =& Xé.
Finally,

he==3 (@x7)- G) @

where k¢ is the i-th element of the vector A9(q, ©).

In this way, all the model quantities are given in an
analytical form suitable for genrating the closed form
mathematical model of the robotic mechanism.

A specification of complex kinematic chains is that
there exists at least one mechanism link participating in
more than two kinematic pairs. Such links are nominated
branching links.

In order to calculate the vector £ and the matrices H
and C, it is necessary to introduce the corresponding
number of “+ joints series.” In Figure 1 a complex
kinematic chain is presented, with the marked series of
“+” joints to the j-th joint. (Each joint consisting a
simple kinematic chain when going from the support to
the j-th joint is marked with a “+”").
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Fig. 1. Series of “+” joints of a complex kinematic chain.

At the j-th joint, the influence of this joint on the
vector h” and the matrices H and C can be calculated
according to:

AH’::k = [mj(a X ;';1) (€ X ;’;k)
3
3 @ GG G |
sch={m@xiy-@x@xin

3
+3 E [(& - Gjn)En + (k- Gi)En
wm=1

CR AR N
AhfT = ((&XF,) - G)

where symbol A denotes the increment of the observed
quantity with respect to the j-th joint.

Now the corresponding components can be calculated
by summing up the values from (5) with respect to the
corresponding series of ““+” joints:

Hy = 2 AH)y; Ciy= Z ACj; hi= 2 Ahi7 - (6)
9 W )

In the case when the mechanism contains also a closed
kinematic chain then, instead of it, an equivalent open
kinematic chain is introduced, containing one fictitious
joint added at the end of the chain. Also, the vectors Ql,
Q2 and Q; and vectors Q{ , 0} and 0}, are introduced,
representing the axes of the coordinate frames connected
to the end link and the base, respectively. The position of
the end link is determined in such a way, that the
coincidence of the equivalent open chain with the closed
kinematic chain yields the coincidence of the coordinate
frames Q and 0.
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Fig. 2. End link of an equivalent chain.

In the case when these systems do not coincide, as
represented in Figure 2, the translatory displacements
Ap=p'—p and infinitesimal rotation increment A&
are introduced.

As a result of this closing, the equivalent kinematic
chain looses 6 degrees of freedom. Hence, the joints of
the equivalent chain are divided into two sets of joints.
The first, the so-called basic set of joints (), consists of
all but the last six joints, and the second, the so-called
supplementary set (S) consists of the last six joints.

The relation between the basic (u,i=1,...,n,,n,Is
the number of basic joints) and the supplementary
(S;,i=1,...,6) joints should be determined for the case
of small translatory and angular displacements. Small
displacements of all joints, Ag, are introduced, which can
also be divided into basic, Au, and supplementary, AS.

On the basis of the above, the following equations
hold:

n-ny, 1y
D X F) - QJAS; == D (& X F) - OfAu; + A - Of
i=1 i=1
(7
n—n, &

> & QjAS;=— 2, &  OjAu;+ AG - O]
i=1

i=]

where n is the number of equivalent chain joints, m is the
serial number of the end link, k =n, +iand j=1,2, 3.
If the following matrices are formed:

A=[Ay]=—[(€x X i) - Qj']

A=[Au]=lé O]
B =[B;] = ~[(& X %) O]
B= [~ji] =[é - Q/] ®)
P01 01 F 0
C=|i-04j-0 k-0
P03 ] 05 k-0f
equation (7) can be written in the form:
A B C 0
-~ |AS=] -- |Au+]| - |Ap+] -~ Ao (9)
A B 0 C

On the end link of the equivalent mechanism act the
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force R* and torque M*, representing the reaction of the
closed chain base. These two vectors posses six
components, represented by:

S = (R¥, R¥, R¥, M¥, M}, M¥)" (10)

Now the model of the active spatial mechanism in
closed form is obtained as:

P=H(q,0)j +4"C(q,©)j + h%(q,0)+ B(q,©)Z (11)

where the matrices H and C and the vector A remain
unchanged compared to the complex open kinematic
chain, where the T is given by equation (10) and the
matrix B is given by equation (8).

The paper describes a system for forming mathemati-
cal models of the dynamics of complex robotic
mechanisms. Using the method of Structural System
Analysis (SSA) the system is decomposed into the basic
processes, which are described in detail. Then, a detailed
description of data structure is given for representing the
robot model in the form of a calculating graph. The
model of the database for storing the robot model is
presented by means of Extended Model Object-
Connections (EMOC). The complete system was tested
on the example of a simple kinematic chain with six
degrees of freedom. Another example was the
anthropomorphic locomotion mechanism with eight
degrees of freedom, representing a complex active spatial
mechanism that also contains a closed kinematic chain.

2. STRUCTURAL SYSTEM ANALYSIS

The relationships between the process, the interface, and
the data storage of the system for robotic mechanisms
modelling is represented in the SSA method by means of
a flow chart. The context diagram of the system for
modelling the robotic mechanisms, representing the
highest level diagram, is presented in Figure 3.

The system’s input is one of the existing methods for
modelling of robotic mechanisms, containing the
mathematical expressions to form the mechanism’s
model; the method being taken over from the interface
method for model generation. In this paper we adopted
the approach to forming the robotic mechanism’s
mathematical model in closed form, according to
Newton-FEuler’s method.

A detailed analysis shows that the mathematical
relations forming the robotic mechanism model can be
represented by a set of expressions of the form:

Y=8+---+8, (12)
where each addend is of the form:

S=K; - Xf..... X (13)
where:

Y - robotic quantity calculated by the given relation;

K; - real number;

X; — the quantity, the calculation of which is represented
by some of the previous model formulae, or a basic
quantity;

E; — exponent, which can be either 1 or 2.
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Fig. 3. Context diagram for modelling the robotic mechanisms.

The system generates as its output a mathematical
model of the robotic mechanism with the least possible
number of calculating operations. this model is registered
in the interface model of the robotic mechanism. The
model is recorded in the data file as a series of
mathematical expressions, or as a program in the
corresponding programming language.

2.1. Decomposition of the system

In Figure 4 is given the first level of decomposition of the
system for robotic mechanism modelling by means of
SSA.

Three basic processes can be distinguished: model
forming, reducing of calculating complexity and
calculation of the model quantities. The first process, on
the basis of the method for forming the mathematical
model of the robotic mechanism dynamics and the data
on the mechanism’s topology, generates in the database a
complete model of the dynamics in the form of a
calculating graph. In the second process, the developed
analytical expressions are formed, redundant mathemati-
cal operations eliminated from them, and then, the
model is generated again in the form of a calculating
graph, this time with a smaller number of calculating
operations. By means of the third process, analytical and
numerical calculations are carried out on the generated
model of the robotic mechanism.

2.2. Description of the modelling process
In this paragraph each of the three above processes are
further decomposed into the subprocesses by means of
the SSA method, and described in detail.
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Topology and mechanism
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Method for Formula 2. Reduction
model 1. Model forming of calculating
generation complexity

Calculating graph

Analytical expressions

Generalised coordinates
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Model of
Analytical expressions the robotic
of robotic quantities mechanism

Fig. 4. Decomposition of the system.

2.2.1. Model forming. The first process of model
forming generates the mathematical model of the robotic
mechanism. Its decomposition is presented in Figure 5.
The first task of this process is to form the model
calculating graph, performed in the graph forming
process. It is true that calculation of the analytical
expressions for any model quantity can be represented
by a tree structure. However, as some quantities may
participate in more than one analytical expressions of the
quantities from the higher calculation level, and our goal
was to represent the complete model calculation using a

Method for
model

Formula

generation

Fig. 5. Decomposition of model forming process.
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Topology

1.1 Graph forming

unique structure, the term tree had to be generalised.
Hence, we use the term calculating graph. On the basis
of the mathematical expressions taken from the interface
method for model generation and the concrete mechan-
ism topology given in the data storage topology and
mechanism parameters, a calculating graph is formed in
the data storage calculating graph. The graph nodes
represent the quantities participating in the mathematical
expressions of the model forming method. In each node,
there are fields in which the characteristics of the robotic
quantity represented by this node are stored, e.g. its

Topology and mechanism
paramcters

1.2 Eliminating
redundant
operations

Calculating graph
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numerical value and quantity type.”’ Each mathematical
expression that has been taken from the modelling
method is stored in the data storage calculating graph
such that the quantities participating in the expression
are interconnected in a way enabling the later calculation
of the expression. The way for storing the expression is
explain in more detail in section 3, where the data
storage calculating graph is described. When all
expressions ar stored, the complete calculating graph of
the robotic mechanism model of the prescribed topology
is formed.

The other task of the model forming process is to
eliminate the redundant operations of the type of
multiplying by zero and one, and adding zero, which is
performed by the eliminting redundant operations
process. This part of the process requires the knowledge
of the robotic mechanism parameters, prescribed in the
data storage topology and mechanism parameters. The
option exists to prescribe numerical values of all the
mechanism parameters (numeric-symbolic modelling), or
to prescribe only the zero values of those parameters
which do not influence the final model (symbolic
modelling). Based on the values of the parameters, each
expression stored in the data storage calculating graph is
updated and rearranged in such a way to eliminte the
unnecessary multiplications and addings. For each model
quantity which is on the left-hand side of the equality
sign in some of the expression (one of the calculating
graph nodes), each of the nodes which represent the

2.1 Graph choice

Calculating graph

2.2 Forming derived

analytical expressions

2.4 Neglecting the

identical expressions

2.5 Dividing expressions
into products

2.6 Extraction of
monomes

Dynamic models

quantities participating in the expression is checked. If
this node represents the mechanism parameter whose
numerical value is zero or one, this node is disconnect
from the graph if the mathematical operation which is
represented by this connection is redundant one.

Even in the mathematical model of the robotic
mechanism thus generated, various calculations belong-
ing to the third system’s process, such as forming the
analytical expressions, or calculating the numerical
values for the corresponding model quantities can be
carried out. However, in order to obtain the most
efficient resulting model involving the smallest possible
number of calculating operations, needed for its
calculation, it is necessary to carry out first the reduction
of calculating complexity of the model.

2.2.2. Reduction of calculating complexity. The second
process, reduction of calculating complexity, reduces the
complexity of the model calculating graph generated in
the first process by diminishing he number of calculating
operations needed for its calculation. Its decomposition
is shown in Figure 6.

The first step in this process, the choice of a graph on
which the reduction of calculating complexity will be
performed, is carried out in the graph choice process. It
is possible to chose either a subgraph or a complete
calculating graph. In this way the reduction of the
calculating complexity can be carried out in several
analogous steps, so that the first subgraph is chosen on

2.3 Trigonometric identitics

Analytical expressions

Fig. 6. Decomposition of the reduction of calculating complexity process.
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which the reduction of calculating complexity is carried
out, and then the process of the reduction of calculating
operations is performed on the newly-formed complete
calculating graph. Similarly, in several consecutive steps
different subgraphs can be chosen, and only at the end
the complete calculating graph is processed. By this
process the complexity of the model analytical
expressions is reduced, and even better results can be
achieved in the total reduction of the calculating
operations.

The process of subgraph choice is done by determining
the starting set of quantities and including in the
subgraph the quantities from this set and every other
quantity necessary for calculating one of the quantities
from the starting set. In choosing the starting set of the
quantities we must regard the following condition: None
of the subgraph quantities apart from the ones from the
starting set should be needed for calculating any other
quantity of the rest of the graph. By analysing the model
equations it is easy to determine which quantities can
participate in the starting set of the subgraph. The graph
nodes which represent the quantities of the chosen
subgraph are marked in order to separate the subgraph
from the remainder of the graph.

For all the quantities of the chosen subgraph (or
complete graph) the analytical expressions are formed
first in fully-developed form within the process forming
derived analytical expressions, which are then stored in
the new data storage analytical expressions. This data
storage is described in more detail in the section 3. The
next step is to use the trigonometric identities
(trigonometric  identities process) in all analytical
expressions formed, by which all redundant mathemati-
cal operations are eliminated. This process updates the
expressions from the data storage analytical expressions
in order to reduce the number of calculating operations
needed for their calculation.

Then, in the process neglecting the identical expressions
the identical analytical expressions are eliminated, in
order to avoid repetition of the same calculations. If two
(or more) identical analytical expressions have been
found, one of them is erased from the data storage
analytical expressions, and in the data storage calculating
graph the node, which represents the quantity from the
left-hand side of the equality sign of the erased
expression, is disconnected from its subsequent nodes
(the quantities which participate in its analytical
expression) and connected to the graph node which
represents the quantity from the left-hand side of the
equality sign in the expression identical to the erased
one. Now, for all the remaining analytical expressions a
new calculating graph is formed, with the least possible
number of calculating operations.

One way to achieve this is to apply the monomial
extraction algorithm.*'* The main task of the algorithm
is to write the analytic expressions of the form (12), for
which we want to generate the calculation graph in the
following form:
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where Y, and Y, are also the expressions of the type (1),
and where:

p=[lxy (15)
i=1

is the monomial of a degree d(u) =272 ¢;and m < L.

The monomial u is unique for all analytic expressions
for which we generate the calculation graph. It is chosen
so that the maximal reduction in number of multiplica-
tion is achieved by extracting the monomial u from each
of the expressions. For some expressions Y, can be equal
to zero, and in this case Y = Y,. The same procedure is
repeated for all expressions Y; and Y,, while there is a
monomial g whose extraction results in the reduction in
number of multiplications.

To obtain a maximal reduction in the number of
mathematical operations, instead of applying this
algorithm, the analytical expressions are divided first into
products.” The analytic expressions of the form (12) is
first written in the following form:

M
Y= 2 (Y- Yp) + Yy (16)
=1

where Y,, Y, I[=1,...,M and Y,,, are also the
expressions of the type (12).

The expressions Y,, Y,, [=1,..., M have two
addends at least, and are determined in a way which
maximises reduction of the number of mathematical
operations. Y,,,; represents the remainder of the
expression Y which can not be split into products any
more. After applying this algorithm, all expressions are
obtained in the form (16). Now, the monomial extraction

algorithm is applied over all the expressions
Yll; )112; [= 1’ R | M and YM+1-
The process dividing expressions into products

connects the expressions that have been divided (Y) with
their products (Y, Y, [=1,..., M, Ys.,), and these
connections are stored in the data storage calculating
graph. In the same way, in the data storage analytical
expressions the initial expression (Y) is substituted by the
expressions into which it has been divided (Y, Y, [ =
1,..., M, Yy.1). Then, on all the expressions from the
data storage analytical expressions the algorithm of
extraction of monomes (The process extraction of
monomes) is applied, by which a new calculting graph is
formed. In the case that the complete calculating graph
was processed, the process of calculating complexity
reduction is thus finished, and in the case of a subgraph
the starting subgraph in the data storage calculating
graph is substituted by the newly-formed graph and the
reduction of calculating complexity is continued.

2.2.3. Calculation of the model guantities. In the second
process, a calculating graph of the robotic mechanism
model is formed, having the smaller number of
calculating operations than the starting one. The third
process, calculation of the model quantities comprises of
the use of the model formed for various calculations. In
Figure 7 is given the decomposition of this process.

The process calculating numerical values based on the
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Dynamic models

Calculating graph

3.1 Calculating
numerical values

3.2 Forming
analytical expressions

of the robotic quantitics

3.3 Model printout

Generalised coordinates

Model
Analytical cxpressions Model of
of robotic quantitics the robotic
mechanism

Fig. 7. Decomposition of the calculation of the model quantities process.

values of the generalised coordinates taken from the data
storage generalised coordinates calculates the numerical
values for desired model quantities. By bottom-up
navigation through the calculating graph the numerical
value of each quantity is calculated on the basis of the
already calculated numerical values of the quantities
participating in the expression of the current quantity.
The calculated value is stored in the value field of the
corresponding node of the calculating graph.

The process forming analytical expressions of the
robotic quantities, on the basis the expressions stored in
the data storage calculating graph forms the analytical
expression of the desired quantity and stores it in the
data storage analytical expressions of robotic quantities.
The process model print-out from the data storage
calculating graph takes over the complete model and
writes it in the form of a series of mathematical
expressions in the interface model of the robotic
mechanism.

3. DATABASE MODEL

In this section, the data storages calculating graph and
analytical expressions, which are of essential importance
in the working process of robotic mechanism modelling,
are described in more detail. The developed analytical
expressions for all quantites are of the same form as the
initial expressions of the model (equations (12) and
(13)), whereby in this case X is always some of the basic
robotic mechanism quantities (parameter, or generalised
coordinate). The database model, encompassing both
above data storages, is given in the EMOC form in
Figure 8.

The object variable is used for storing all variables
(e.g. Y, X;), and its components are the following
attributes: code, type, var_val and level.

The attribute code contains a unique designation
assigned to the variable and represents a unique key to
the object.

The attribute type takes values from the set
{07,417, 42’ “3’}, where ‘0’ denotes that the variable has
constant numerical value, stored in the attribute var_val.
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The value ‘1’ denotes that this variable is one of the
robotic mechanism parameters (i.e. mass, moment of
inertia,...), while ‘2’ denotes that this variable
represents some of the mechanism’s generalised coordin-
ates, or the sine or cosine of some of the generalised
coordinates. Both the ‘1’ and 2° denote that this variable
is not calculated by one of the expressions, because it
represents an input quantity. Two different notations are
introduced, as the mechanism parameters are constant
for a given configuration and can be substituted by real
numbers (numeric-symbolic method), whereas the
generalised coordinates are time-dependent, and in the
model expressions they always behave as variables. The
value ‘3’ denotes that calculation of this variable is
described by a formula, represented by the object
addends and connection multiply.

The attribute level is introduced to enable calculating
the robotic quantities by bottom-up navigating through
the database. Its value means the number of steps
needed for calculating this variable. The variables that
are not calculated by means of an expression (variables
whose type attribute has the values ‘0°, ‘1’ and 2’)
possess 0 as the value of this attribute; all variables
calculated directly via some of the mentioned variables
obtain 1 as attribute value etc., depending on the number
of steps, needed to calcualte the given variable.

The object addends is a weak object of the object
variable, and it serves to connect the variable with its
addends. It consists of the inherited key code and the
attributes ser _num and add_val.

The value of attribute code is transferred from the
variable which is one the left-hand side of the equality
sign in the expression, by means of which the variable
(Y) is calculated, the attribute ser_num is added in order
to form a unique key, and it represents the serial number
of each addend, whereas in the attribute add_val the
value of the constant coefficient (K;) is stored.

The addends object specialises on two objects expadd
and anaadd. This specialisation is needed in order to
distinguish the expressions forming the model from the
complete analytical expressions of the model variables.
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type level
code var_val
varexp varana
variable
(0,M) | (R,N) (0,M) | (R.N)
(0,M) | (R,N)
ser_num add_val
(R,C)
addends
multiply anamul
(1,1) [ (CC)
(C,C) | (CC)
(0,M) | (R,N) (0,M) | (R,N)
expadd anaadd
expvar anavar
Fig. 8. Database model.
Thus the object expadd represents the addends  connecting of the addends of the complete analytical

participating in the expressions of the first type (12), and
the object anaadd represents the addends from the
complete analytical expressions. Neither of these objects
has supplementary attributes, but they have different
connections with the object variable.

By means of the connection multiply each addend of
the first type expression is connected to its factors (Xj),
which are also represented as the instances of the object
variable. Since an addend is not to have factors, and can
have even more of them, the cardinality of the
connection (0, M) is determined in the direction from the
object addends towards the object variable. Analogously,
a variable has not to be a factor in any addend, and can
also participate in several addends (from different
expressions), so that the same cardinality of the
connection is obtained in the opposite direction, too.

By means of the analogous connection anamul the
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expressions with their factors is realised, which are also
the instances of the object variable. The connection
cardinalities are the same as with the connection
multiply.

Such a database model can be implemented in a simple
way, either in a relational or network model of database,
or in their combiantion. In the presented data structure
the complete robotic mechanism model is stored in the
form of a calculating graph.

4. CASE STUDIES

The described system for modelling robotic mechanisms

was implemented in programming language C under

SCO UNIX operative system. The data structure for

representing the model in the form of calculating graph is

realised in the database controlling system db_VISTA.
The procedure of generating of the robot dynamics
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mathematical model is illustrated on the example of an
industrial robot mechanism with six rotational degrees of
freedom and an anthropomorphic locomotion mechan-
ism with eight degrees of freedom.

4.1. Industrial Robot Mechanism

In Figure 9 is presented the robot mechanism
configuration with six links, interconnected by rotational
joints, whereas in Table I are given the values of the
robotic mechanism parameters.

Since a simple kinematic chain is in question, the
closing matrix B is not participating in the dynamics
model, so the task is to form the model for calculting the
components of the matrices H, C and vector he. After
storing the complete model in the database and
eliminating the redundant operations of the type of
multiplication by and adding of neutral elements (model
forming process), 10268 multiplications and 6166
additions were needed to calculate all the components of
the matrices H and C and vector h°.

The process reduction of calculating complexity is
performed in the steps described above. As the subgraph
on which the reduction of calculating complexity was
applied first, served the part of the graph containing all
the variables Qg and variables ¢, i=1,...,6,
j,k=1,2,3. These variables represent the components
of transformation matrices from the local to the absolute
coordinate frame (Qy ), and vectors of the axes of
rotation for each joint (e;). When in the original model
only the variables of the chosen subgraph were singled
out, 768 multiplications and 382 additions were needed
for their calculation. Then the algorithm for forming
analytical expressions was used and the expressions were
obtained, whose calculation required 543 multiplications
and 191 additions, After eliminating the trigonometric
identities and the identical expressions, 60 multiplications
and 14 additions were needed for calculation. On
applying the algorithm for extraction of monomes, a
calculating graph was obtained with 43 multiplications
and 14 additions. In this case none of the expressions

Fig. 9. Robotic mechanism configuration.
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Table 1. Robotic mechanism parameters.

i 1 2 3 4 5 6
en 00 10 10 10 0.0 0.1
e 00 00 00 00 0.0 0.0
en 1.0 00 00 00 1.0 0.0
rar [m] 00 00 00 00 0.0 0.0
rix [m] 00 04 00 0075 0075 015
ri (] 04 00 -04 00 0.0 0.0
Foa[m] 0.0 00 00 00 0.0 0.0
rina[m] 00 —04 00 —0075 -0.075 —0.15
Fiislm] =04 00 04 00 0.0 0.0
m, [kg] 00 50 50 10 1.0 2.0
Jo[kg/m?] 00 025 025 0002 0002 001
Io[kg/m] 00 001 025 0002 0002 0002
Ji[kg/m?] 02 025 001 0002 0002 001

could be resolved into products. Now, the designated
part was substituted in the original structure by the
newly-formed calculating graph, and a new calculating
graph was obtained with 9544 multiplications and 5798
additions.

Now, all algorithms for the reduction of calculating
complexity were consecutively applied onto the newly-
obtained mechanism model. First, the analytical expres-
sions were formed for the components of the matrices H,
C, and vector 1%, with totally 931 multiplications and 310
additions. After eliminating the trigonometric identities
and the identical expressions, the expressions were
obtained with 442 multiplications and 174 additions.
Then, on the obtained expressions the procedure of
dividing the expressions in products was applied. Now,
the total number of operations for calculating the
expressions was 328 multiplications and 138 additions.
After applying the algorithm for extraction of monomes,
a calculating graph with 140 multiplications, 107
additions, 7 sines and 7 cosines was obtained.

The numbers of multiplications and additions involved
in the process of reducing the calculating complexity are
given in Table II.

The results in the Table 11 show that the model with
smaller numbers of calculating operations is obtained,
compared to the existing results. In the Appendix the
complete model is written in form of mathematical
expressions, obtained as output from the database
(model printout process).

Table I1. Numbers of multiplications and additions.

Mult. no. Add. no.
Starting graph 10268 6166
Starting subgraph 768 382
Analytical expressions 543 191
Simplified expressions 60 14
New subgraph 43 14
New graph 9544 5798
Analytical expressions 931 310
Simplified expressions 442 174
Dividing expressions into products 328 138
Final graph 140 107



https://doi.org/10.1017/S0263574798000125

Dynamic models

4.2. Anthropomorphic locomotion mechanism

In this example we considered the mechanism model
with eight links interconnected by rotational joints. The
robotic configuration is shown in Figure 10.

The mechanism contains a closed kinematic chain, as
well as a branched link, so that equation (11) is to be
used. After storing the complete model in the databasc
and eliminating the redundant operations of the type of
multiplication by and addition of neutral elements, 18346
multiplications and 10863 additions were needed to
calculate all the components of the matrices H, C and B,
and vector h“.

The analogous algorithm for generating the model and
reducing its calculating complexity is applied as in the
previous example. In Table III are presented the
numbers of multiplications and additions for the starting
and final dynamics model of the complete anthropomor-
phic mechanism.

The achieved results show significant reduction in the
number of calculating operations in the casc of the
complex robotic mechanisms.

5. CONCLUSION

By means of a dctailed analysis of Newton-Euler’s
method it was determined that the mathematical
relations forming the robotic mechanism model, are in
the polynomial form. With the aim of forming
mathematical models of robotic mechanisms in symbolic
form, it is necessary to develop special data structures,
suitable for storing the polynomial expressions and for
the reduction of their calculating complexity. For this
purpose we proposed to use the database controlling
system, which is the main difference comparing to the
existing results. Since the complete model is stored in the
database, and there is a possibility for calculating the
desired model quantity, the process of robotic mechan-

|
7
4

s
3

6
2
1

Fig. 10. Robotic mechanism configuration.

https://doi.org/10.1017/50263574798000125 Published online by Cambridge University Press

33
Table I1I. Numbers of multiplications and additions.
Mult. no. Add. no.
Starting graph 18346 10863
Final graph 925 904

ism modelling is brought up to a higher level of
abstraction. The advantage of this approach is also in the
fact that the different indexing of individual types of
objects enables the navigation through the graph for
model calculation in different ways, which gives the
possibility for developing more efficient algorithms for
reducing the calculating complexity.

In the scope of the process of reducing the calculating
complexity of the robotic mechanism models, two
novelties have been introduced. The first one is
concerned with the choice of the graph on which the
reduction of calculating complexity is to be performed,
so that this process is carried out by the “divide and
conquer” method. In this way, the problem of the
complexity of analytical cxpressions for the model’s
quantities is overcome. The second novelty is the
development of the algorithm for dividing the expres-
sions into products, which enables additional reduction
of the calculating complexity of the resultng model.

The introduction of the database controlling system
enables the use of standard methodologies such as
Structural System Amnalysis for describing the basic
process of the system and Extended Model Object-
Connections for designing database model. Using these
standard methodologies our aim was to form a general
procedure for representing and reducing the calculation
complexity of polynomial expressions. This paper gives
an cxample of the application of this procedure on the
modelling of robotic mechanism dynamics, but it can also
be applied on non-robotic systems represented by
polynomial expressions.

The complete system was implemented and tested on
examples of a standard robotic configuration with six
degrees of freedom and an anthropomorphic locomotion
configuration with cight degrees of freedom. This
example showed that the models with smaller numbers of
calculating operations was obtained, compared to the
existing results. the development of a user-oriented
program package for automatic generation of the
dynamics model of robotic mechanisms is in progress.
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Pl74 - 4'16 ° CZ223 + 3.689125
Pl7(w =832 C2223 + 10.499125
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Piry=4.16 87,

P =832-CQ, 8575,
P=3.6-CZ,s-S7Z,,
Py =68-CQ, SO,
P3=80, CZy
Poo=51.012 - SZ,,
h4; =873 Py

hg; = hz(l; — Py

h:(s; =805 P,

Hyo = =505 Hy,
CGZ = 52234 : Cés
Cas SQ% ) Pw

Cis = Cis
C;‘z =805 Py
Cos = Cis
ng = C(»s
5 _ 2
63— 65
C24 = Cm
22 =C; 65
C()S
C = C2;
Xo =874 X5

X,=—1.08- P,
X1 =825 Pso+ Py
Py =874 Pis
Xip=Psys— Py
Xu=-054-P,
Xio=Closy* Py + Ps;
XIX CZ2’54 Xﬁ
Xi9g=—054- P,
Xoy = CZyzy - Pos + Pyy
KXo = Prgz — Piog
Xog = Psy = CZoss Pus
X =824 Psy+ Ps,
P,=0.012 - KSZ,3, - SQ5
P =CZysy Py
P =CZs3y - Py
Py =874 Py
Poy= P+ Pys
Pyg=—CZy4 Py
Py = P+ Py
P,=0.54 Py
P,= 054 - CZ,334
Ps; =1.08 - P, 5
Py, =—0.54 - P
Py = Poy + Psy
Pou=0.54 - CZypsy + Py,
Pos=—-216- P,
Poo=—1.08 - Pyjo
FPoo= —0.10125 - CQs — Hss
Pry=Piyo- P14
—=90.252 - SQ, — Psyq
P7(, =(.26675 + P53
Py =0.54 - P 5

§°
It

Fos = Pryo - Pris
Pyu=P4+ Py
Py =P— P,
Pyy=P,— Py

P]()3 =108 - P149
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Pios= —SZ5p334* Pioo

Pioe = Pioo " Prio

Pios=CQs - Heg

Pug=—CQs- Py

Pro = 0.193625 - KCs

Pios =16.64 - Py + Py

Pioo =832 P+ Py

Py = Pigy+ Py

Pros =4.16 - Pyy5

Pige =0.181625 - KC;

Py =KSZ5,— 1.0

Pes=68-KS, +3.6-KSZ,;
+0.085125 - K§Z,34 + 0.407625

Pigs = Pioz 1+ Pios

Pros = 0.193625 - KCZs,

Pros = ~0.10125 - KSZ 1,

hS =h + Pys

Hy;3 =805 Py

Hy =805 Py

His= 582534 Poo+ Py

Hyo=CZyy Py

Hys =805+ Xy
Hz = Hy,
Hae = Hy,

C,lxz =505 Py
Cir=8Qs5- Py
Cm C(»z
Co4 C(»z
Co=—Ceq

C 2= Xos+ Xos - Xog
C42—X27+X5'X28
C;;- CZyy Pios+ Prog

m _C(luz
CéZ"Xf%l + X5 Xx
Py =805 Py
C§1=P2(,+Plz
Cs=C%
Cs=C4
‘21 = _C(I72
Cf&zz “ng
CfB: “ng
Cfm: _ng
CZI = _C(175

gl = C(lyz
191 = C(I»2

= C(],z

(51 = C(le

Xo= 82534 Pos + Py
Xeg= 82531 Py + Py
Py =825, X5
Xog=Pp+ Py
XKoo= Prigs — Py
Xoz=Clogs - Xz — Xy
X3 =823 Psz— Xy
Pu=8754 P
Fs=CZ5 Psi + Py
Py=CZyy- Pz + Py
Pz =Pyt Py
Pio= Py — Py,
Py = P+ Pys
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Pis=P,p+ Py
Pz(): 0.]0125 ° SZZ34+X1()
Pyy= Py — Xy
P?() P7‘J P28

s = CQOs* Py + Paos
P45 =CZys4 Py
Py = Pig + Py
Pyy=Pigo+ Pro3
Pios=1.08 - P4y
Pl()7 P](, 0195625
P4y =3.689125 + Pyg
Pz = P + Prgy
P47 =0.079125 + Py,
Pias= Pigy + Pies
Pi7g = Pige - Pig7 + Prss

Hy, =505 Py
Hys = SQs+ X3
Hyy = P35+ Py
Clzz =805 Py
C;3 = Cﬂ‘wz

Czlm = Czltz

Czlm = Czltz

Céz =CZs4 " Pior
Css SQs - Py

Ch=Xan+ Xs X
Coo=Xn+Xs X
C3) = Py + Py

C%, =505 Py
C3s=CZsq " Pios + Pros
Ci=0C;

=824 Pus
Pz P+ Py
Ps=P + Py

Py =Py = 87254 Xy
P39 =832 Pz + Py
Hy,=X,+Xs-X,
Hyy = X7+ X5+ Xy
Hy=Hyu+ X5 X,
Hy =X+ X5 Xy
Hy = Hy+ X5 X3

Cii = SQs P
Cl=Cl,
C5,=Cs,
C33 C32
Ci@ = C42!2
szmz C4212
C%} = C2
C%,

3

535 sz

3 3

54 = Lsp
C21 - _C

5 z

3= 51

5 5

"H 31
Pys =8Qs - Py
Xiz=Ps+ P
Xis=Ps+ P
Xi7=Ps+ P

Py =874 Pias + Py
C£|:X13+X5’X14
Cy=Xis+Xs Xy
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C?m: C4111:X17+X18'X19
C21:P20+P15 SM_Cél
52= 505" Pis X, =805 - P+ P
C3= X+ Xs Xy H, =X +X; X,
Ch=C% c? =-Cl
sz SQs- Py C?IZ"C;I
32 =805 B Chi=Cl
Cftl =—C5
X4 = Pizs+ Puus The presented mathematical model, for the given
X;=Pyst+ P internal coordinates of the concrete robotic mechanism,
X1o= Piss+ P4 calculates the matrices H and C, and the vector A“.
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