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The cell cytoskeleton is a dynamic assembly of semi-flexible filaments and motor proteins.
The cytoskeleton mechanics is a determining factor in many cellular processes, including
cell division, cell motility and migration, mechanotransduction and intracellular transport.
Mechanical properties of the cell, which are determined partly by its cytoskeleton, are also
used as biomarkers for disease diagnosis and cell sorting. Experimental studies suggest
that in whole cell scale, the cell cytoskeleton and its permeating cytosol may be modelled
as a two-phase poro-viscoelastic (PVE) material composed of a viscoelastic (VE) network
permeated by a viscous cytosol. We present the first general solution to this two-phase
system in spherical coordinates, where we assume that both the fluid and network phases
are in their linear response regime. Specifically, we use generalized linear incompressible
and compressible VE constitutive equations to describe the stress in the fluid and network
phases, respectively. We assume a constant permeability that couples the fluid and network
displacements. We use these general solutions to study the motion of a rigid sphere moving
under a constant force inside a two-phase system, composed of a linear elastic network and
a Newtonian fluid. It is shown that the network compressibility introduces a slow relaxation
of the sphere and non-monotonic network displacements with time along the direction
of the applied force. Our results can be applied to particle-tracking microrheology to
differentiate between PVE and VE materials, and to measure the fluid permeability as
well as VE properties of the fluid and the network phases.

Key words: porous media

1. Introduction

The cell, fundamental unit of life, is a mechanical machine assembled from smaller
machines (Needleman & Dogic 2017). The mechanical aspects of the cell are central
to many processes, including cell motility, cell division, organelle transport and
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mechanotransduction (Fletcher & Mullins 2010). The cell cytoskeleton – a dynamic
assembly of polymerizing and depolymerizing semi-flexible filaments, motor proteins
and crosslinkers that are immersed in and permeated by the cell cytoplasm – is the
cell’s machinery for generating active forces and responding to external forces (Howard
2001). A major direction of research in cell mechanics involves studying different types
of mechanical coupling between the discrete components of the cytoskeleton, i.e. single
filaments and motors, and the emergent behaviour of the assembly at larger scales (Shelley
2016; Needleman & Dogic 2017). In comparison, at the whole cell scale, it is useful to view
the cytoskeleton as a continuous material with complex mechanical behaviour. This is the
scope used in this study.

The cytoskeleton rheology is complex due to the multiple mechanisms of active force
generation, and its highly dynamic and heterogeneous structure. A variety of techniques
have been developed over the years for characterizing the cell’s mechanical response to
force/stress in the continuum scale. In probe-based techniques, the relationship between
the force and velocity of particles placed inside the cell or on its boundary is used to extract
the rheological behaviour of the local structure around the probe. These include passive
and active microrheology (MR) (Squires & Mason 2010) and atomic force microscopy
(Haase & Pelling 2015; Beicker et al. 2018). In comparison, techniques such as optical
tweezers, micropipette aspiration and fluid-based deformation cytometry provide the
mechanical response of the whole cell to external forces (Di Carlo 2012; Darling & Di
Carlo 2015; Hobson, Falvo & Superfine 2021). When interpreting these experiments, it is
assumed commonly that the active force generated by the cell is weaker in comparison
with the externally applied force, or in the case of passive MR, weaker than the thermal
force. Therefore, these methods may not be used to study, for example, the mechanics of
cell division, where the active forces lead to significant remodelling of the cytoskeleton.

Here, we focus on applications where the active forces can be neglected in comparison
to the external forces, and focus on only the passive responses of the fluid and the network
phases to external forces. Some of the methods for measuring the active forces in different
cellular processes and the cell’s response to them are surveyed in Weihs, Mason & Teitell
(2006) and Hao et al. (2020).

Relating the force to displacement in probe-based techniques, and predicting cellular
deformations in whole cell techniques, requires specifying a constitutive equation (CE)
for the cellular material(s) and solving the resulting momentum and mass conservation
equations. Several continuum descriptions with different levels of complexity have been
used for modelling the cytoskeleton and its permeating fluid, including viscoelastic (VE)
models, active gel theories that account for active stresses (MacKintosh & Levine 2008;
Banerjee & Marchetti 2011; Prost, Jülicher & Joanny 2015), and Biot poroelasticity
(Moeendarbary et al. 2013); see Mogilner & Manhart (2018) for a review on this topic.
The most widely used model is a generalized linear viscoelastic CE to describe the linear
response of the cytoskeleton and the permeating fluid. The underlying assumption here
is that the fluid and network phases are both incompressible and move with the same
velocity. For this choice of CE, the momentum equation reduces to the Stokes equation
upon the Laplace or Fourier transform in time, allowing one to use the existing boundary
value solutions in Stokes flow. For example, the response function of a spherical probe
moving under a time-dependent force F(t) is simply given by the Stokes drag formula
F̃(s) = (6π G̃(s) a) Ũ(s), where a is the sphere radius, and ∼ denotes variables in Laplace
space (Squires & Mason 2010). This formula together with the fluctuation dissipation
theorem forms the theoretical basis of the generalized Stokes–Einstein relation (GSER)
used in passive MR (Mason & Weitz 1995).
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To determine the frequency range over which the GSER is valid, Levine & Lubensky
(2000) used a two-phase model (compared to an effective single-phase model used in the
GSER) to study the dynamics of a sphere embedded in a VE network and permeated
by a Newtonian fluid. Their calculations show that the fluid flow induced by local
compression and dilation of the network produces a relaxation dynamics that is slower than
shear relaxation. Following this, they define a critical frequency below which the GSER
becomes inaccurate: ωc = (2G + λ)/(a2ξ), where G and λ are the first and second Lamé
coefficients of a linear elastic material, and ξ is the friction coefficient that determines
the fluid–network force exchange due to their relative motion. Interestingly, experimental
and theoretical studies suggest that the flows induced by network compression/dilation
(osmotic flows) may be the key for predicting the observed dynamics in processes such
as cell blebbing (Charras et al. 2005, 2008; Mitchison, Charras & Mahadevan 2008;
Strychalski et al. 2015; Strychalski & Guy 2016) and cell motility (Strychalski et al. 2015).

The osmotic flows can also be computed using Biot theory of linear poroelasticity (Biot
1941, 1955), which neglects the viscous stress contributions from the permeating fluid,
and is thus unable to resolve the faster shear relaxation dynamics. Because of the wide
range of time scales in the cytoskeleton, one cannot assess the relative importance of shear
and bulk (dilation/compression) relaxation in the cytoskeleton a priori. In this regard, the
two-phase model of the cytoskeleton and its fluid medium provides a useful framework to
study both shear and bulk relaxation of the cytoskeleton and the permeating flows.

By solving the conservation equations in a two-phase model, one can compute the
displacement fields in both the fluid and network phases. These displacement fields can be
measured separately, for example, by (i) tracking particles that are smaller than the network
mesh size, to measure the fluid flows (Delarue et al. 2018), and (ii) tracking particles
that are significantly larger than mesh size to measure network displacements. Computing
these fluid flows allows one to investigate the effect of internal flows on the transport of
protein aggregates and organelles inside the cell. Defects in protein transport have been
tied to many diseases (Aridor & Hannan 2000, 2002). Note that the sizes of proteins and
organelles range between tens of nanometres to micron scale. Thus the Péclet number
corresponding the internal flows may well be Pe ≥ 1, leading to significant advective
transport (Mogre, Brown & Koslover 2020). Furthermore, the network deformations may
lead to changes in the local porosity and thus mobility of the proteins (Irianto et al.
2016). For the above reasons, it is desirable to characterize and compute the intracellular
flows.

Analysing the results of mechanical experiments and/or modelling the whole cell
response to external forces requires solving the conservation equations of a two-phase
system. This is more involved than the case of a linear VE material, even for simple
geometries. For example, the solution to a sphere moving in a two-phase system provided
by Levine & Lubensky (2001) is an approximate solution. Instead of imposing the
boundary conditions (BCs) directly, the authors used a wave vector cutoff kmax = π/a to
the fundamental solutions of a point force. Fu, Shenoy & Powers (2008) used a two-fluid
model and obtained an exact closed-form response function of an oscillating sphere. They
used a kinetic friction law for the network BCs to describe the slip velocity between the
network and the probe, and explored the effect of this slip velocity on the computed VE
functions. Later, Fu, Shenoy & Powers (2010) applied the general solution for the two-fluid
model to analyse the swimming of an infinite sheet with a small-amplitude travelling wave
deformation. Diamant (2015) and Sonn-Segev et al. (2014) used the general solution of
a sphere moving in a two-fluid system to study the dynamics at different length scales
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compared to the size of the probe and the network mesh. They explored how these lengths
influence the measurements of single-particle and two-point MR, and the transition to bulk
rheological response at larger lengths.

Typically, the equations of two-phase models are solved numerically using grid-based
techniques such as the immersed boundary method (Strychalski et al. 2015; Strychalski
& Guy 2016; Copos & Guy 2018). Assuming that the network and fluid phases are in
their linear response regime results in a set of linear partial differential equations (PDEs).
This opens the door for developing a mathematical framework, similar to Stokes flow
microhydrodynamics (Kim & Karrila 2013), that can be used to obtain analytical solutions
in simple geometries and to develop special-purpose numerical methods, such as boundary
integral and singularity methods, for solving problems with complex geometries and
multiple interfaces (Pozrikidis 1992).

In this study, we derive the general solutions (in spherical coordinates) of the linear
PDEs describing a two-phase system in Laplace space. We model the network as a general
compressible VE material, and the fluid as a VE incompressible fluid. As an example, we
use the axisymmetric form of the general solution to study the dynamics of a rigid sphere
moving in a PVE material, composed of a linear elastic network and a Newtonian fluid,
under an external force. We derive closed-form expressions for the time-dependent fluid
and network displacement fields, and calculate the time-dependent mobility of the sphere,
as a function of constitutive parameters of the fluid and the network. The motivation for
choosing the sphere problem is to develop a formulation for characterizing PVE materials
using single- and two-point particle-tracking passive and active MR. We show that the
network compressibility, and the response of the fluid to that, introduces a slow relaxation
time scale in addition to the faster shear relaxation time characterized as the ratio of the
fluid viscosity to the network shear modulus. These predictions are in agreement with
the experimental measurements of cell mechanics (Rosenbluth et al. 2008). Altogether,
our solution to the sphere problem suggests that particle-tracking MR experiments may
be used to determine fluid permeability, in addition to VE properties of the fluid and the
network.

2. General solutions

We begin by expressing the conservation equations in the two-phase model, which
includes momentum conservation equations for the fluid and the network phases as
well as the mass conservation of the mixture. The network and the fluid mechanics
are coupled through the friction forces that arise from the relative motion of these two
phases. Due to the microscopic dimensions, inertial forces can be neglected in determining
the intracellular mechanics. With these assumptions, the conservation equations are as
follows.

Mass conservation: ∇ · [φvn + (1 − φ)vf ] = 0. (2.1a)

Momentum equation for the network: ∇ · [σ n − φpI] − ξ(vf − vn) = 0. (2.1b)

Momentum equation for the fluid: ∇ · [σ f − (1 − φ) pI] + ξ(vf − vn) = 0. (2.1c)

Here, subscripts n and f denote network and fluid phases, φ is the volume fraction of the
network phase, σ n and σ f are the network and fluid stresses, p is the pressure that ensures
the incompressibility constraint of the fluid phase, ξ is the friction constant per unit volume
that couples the network and fluid dynamics, and I is the identity matrix. The governing
equations form a well-posed linear set of PDEs, when the network stress is modelled
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using linear VE constitutive equations (CEs). We take the volume fraction of the network
phase, φ, to remain constant in space and time. Thus the compressibility of the network
leads to non-zero divergence of the fluid velocity field: ∇ · vf = (φ/(φ − 1))∇ · vn /= 0.
However, this apparent fluid compressibility is not associated with changes in fluid density,
and arises from fluid sources and sinks in response to changes in the volume of the network
phase. As such, the Newtonian fluid stress does not include the isotropic term that scales
with ηb(∇ · vf ), where ηb is the bulk viscosity.

We use a general linear VE isotropic CE to describe the traceless component of the fluid
stress:

σ f =
∫ t

0
Gf (t − t′)(∇vf (t′)+ ∇vT

f (t
′))dt′, (2.2)

where Gf (t) is the fluid’s shear modulus, and superscript T denotes the transpose
operation. Similarly, we model the network stress σ n using a general linear VE isotropic
CE:

σ n =
∫ t

0
[G(t − t′)

(∇vn(t′)+ ∇vT
n (t

′)
)+ λ(t − t′)

(∇ · vn(t′)
)

I]dt′, (2.3)

where, G(t) and λ(t) are the time-dependent first and second Lamé coefficients.
For a linear elastic network, these coefficients are related through the Poisson
ratio ν: λ = 2Gν/(1 − 2ν). Taking the Laplace transform of (2.2) and (2.3)
yields σ̃ f = η̃(s) (∇ṽf + ∇ṽT

f ) and σ̃ n(s) = G̃(s) (∇ṽn + ∇ṽT
n )+ λ̃(s) (∇ · ṽn), where ∼

denotes variables in Laplace space (s-space), and η̃(s) = L[Gf (t)]. Substituting these
expressions in the Laplace transform of (2.1) gives

∇ · (ṽnφ + ṽf (1 − φ)
) = 0, (2.4a)

η̃(s)∇2ṽf + ξ(ṽn − ṽf )− (1 − φ)∇p̃ = 0, (2.4b)

G̃(s)∇2ṽn + (λ̃(s)+ G̃(s))∇(∇ · ṽn)− ξ(ṽn − ṽf )− φ∇p̃ = 0. (2.4c)

Next, we introduce q := −∇ · ṽn. Using (2.4a), we get ∇ · ṽf = −εq, where ε =
φ/(φ − 1). We then take the divergence of (2.4b), and (2.4c), and add them to get

∇2Φ = 0, where Φ := (εη̃ + (λ̃+ 2G̃))q + p̃. (2.5)

The general solution of the Laplace equation in spherical coordinates is

Φ(r, θ, ϕ) =
∞∑
�=0

m=�∑
m=−�

[
D±
�,m

(
r�

r−�−1

)]
Y�,m(θ, ϕ), (2.6)

where Y�,m = Pm
� (cos θ) eimϕ is the scalar spherical harmonic function of degree � and

order m, Pm
� is the associated Legendre function of degree � and order m, θ ∈ [0,π] is

the polar angle, and ϕ ∈ [0, 2π) is the azimuthal angle; r� and r−�−1 are two linearly
independent functions describing the variation of Φ in the radial direction. For brevity,
we have presented these two functions in the array format ( )±, where D+ (D−) are the
coefficients associated with the function in the first (second) row, to be determined through
imposing BCs. The first row contains the internal solutions (the functions are finite when
r → 0 and are unbounded as r → ∞), and the second row contains the external solutions
(the functions decay to zero as r → ∞ and are singular as r → 0). This notation is used
throughout the paper.
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Eliminating the pressure term, after applying the divergence operator to the network and
fluid phases, produces a modified Helmholtz equation for q:

∇2q − α2
εq = 0, where α2

ε (s) = ξ(1 − ε)2

λ̃(s)+ 2G̃(s)+ ε2η̃
. (2.7)

The general solution for q, in spherical coordinates, can be expressed as

q(r, θ, ϕ) =
∞∑
�=0

m=�∑
m=−�

[
E±
�,m

(
i�(αεr)
k�(αεr)

)]
Y�,m(θ, ϕ), (2.8)

where i�(αεr) = √
π/2αεr I�+1/2(αεr), and k�(αεr) = √

2/παεr K�+1/2(αεr), are
modified spherical Bessel functions of the first and second kind, respectively (Arfken &
Weber 1999). Taking the general solution of the Laplace equation for Φ, and the modified
Helmholtz equation for q, in spherical coordinates, we can express the pressure as

p̃(r, θ, ϕ) =
∞∑
�=0

m=�∑
m=−�

[
D±
�,m

(
r�

r−�−1

)
− (εη̃ + λ̃+ 2G̃)

(
i�(αεr)
k�(αεr)

)
E±
�,m

]
Y�,m(θ, ϕ).

(2.9)

Next, we introduce v+ := η̃ṽf + G̃ṽn and v− := ṽf − ṽn. After summation and
subtraction of (2.4b) and (2.4c), and a few lines of algebra, we arrive at the following
equations for v+ and v−:

∇2v+ − ∇(∇ · v+) = ∇Φ, (2.10a)

∇2v− + γε

1 − ε
∇(∇ · v−)− β2v− = 1

η̃ε
∇Φ, (2.10b)

where

β2 = ξ

(
1

G̃
+ 1
η̃

)
,

1
η̃ε

= 1
1 − ε

(
1
η̃

+ ε

G̃

)
and

γε = λ̃+ G̃

G̃
+ η̃

1 − ε

[(
ε + λ̃+ 2G̃

η̃

)(
1
η̃

+ ε

G̃

)]
.

We note that α2
ε = (1 − ε)β2/(1 − ε + γε). The general solutions for v+ and v− are:

v+ =
∞∑
�=0

m=�∑
m=−�

{(
r�

r−�−1

)[
A±
�,m

√
�(�+ 1)C�,m

+ B±
�,m

(
(�+ 1)P�+1,m + √

(�+ 1)(�+ 2)B�+1,m
−�P�−1,m + √

�(�− 1)B�−1,m

)]
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+ D±
�,m

(
r�+1

r−�

)⎛⎜⎝
1

2(2�+ 3)
1

2(2�− 1)

⎞⎟⎠
⎛⎜⎝ �P�,m + �+ 3

�+ 1
√
�(�+ 1)B�,m

(�+ 1)P�,m + 2 − �

�

√
�(�+ 1)B�,m

⎞⎟⎠
− εη̃ + G̃

α2
ε

E±
�,m

[
d
dr

(
i�(αεr)
k�(αεr)

)
P�,m + 1

r

(
i�(αεr)
k�(αεr)

)√
�(�+ 1)B�,m

]}
, (2.11)

v− =
∞∑
�=0

m=�∑
m=−�

{
A′±
�,m

(
i�(βr)
k�(βr)

)√
�(�+ 1)C�,m

+ B′±
�,m

[
�(�+ 1)P�,m

1
βr

(
i�(βr)
k�(βr)

)
+
√
�(�+ 1)B�,m

×
(

d
d(βr)

(
i�(βr)
k�(βr)

)
+ 1
βr

(
i�(βr)
k�(βr)

))]
− 1
η̃εβ

2 D±
�,m

(
r�−1

r−�−2

)(
�P�,m + √

�(�+ 1)B�,m
−(�+ 1)P�,m + √

�(�+ 1)B�,m

)
− ε − 1

α2
ε

E±
�,m

[
d
dr

(
i�(αεr)
k�(αεr)

)
P�,m + 1

r

(
i�(αεr)
k�(αεr)

)√
�(�+ 1)B�,m

]}
, (2.12)

where

P�,m = Y�,m(θ, ϕ) r̂, (2.13a)

B�,m = 1√
�(�+ 1)

[
∂

∂θ
θ̂ + 1

sin θ
∂

∂ϕ
ϕ̂

]
Y�,m(θ, ϕ), (2.13b)

C�,m = 1√
�(�+ 1)

[
1

sin θ
∂

∂ϕ
θ̂ − ∂

∂θ
ϕ̂

]
Y�,m(θ, ϕ) (2.13c)

are scaloidal–poloidal–toroidal representations of mutually orthogonal vector spherical
harmonics that are used commonly to express the solutions to vector Laplace and
Helmholtz equations in spherical coordinates (Morse & Feshbach 1953), and A±

�,m,
B±
�,m, A′±

�,m, B′±
�,m, D±

�,m and E±
�,m are 12 constants to be determined from BCs; the

solution details are given in Appendix A. Substituting these expressions in relations
ṽf = (v+ + G̃v−)/(η̃ + G̃) and ṽn = (v+ − ηv−)/(η̃ + G̃) gives the fluid and network
velocity (or displacement) fields in s-space, which we do not produce here for brevity.

2.1. Axisymmetric solutions
The general solutions for ṽf and ṽn can be used to obtain analytical expressions for
a variety of problems involving spherical geometries. Several applications of Lamb’s
general solution for Stokes flow may be found in Happel & Brenner (2012) and Kim
& Karrila (2013); the analytical solutions of poroelastic equations using Biot’s general
solution, which neglects the fluid shear forces, are surveyed in Detournay & Cheng (1993)
and Cheng (2016). The majority of these solutions involve axisymmetric geometries, i.e.
∂ϕvr = ∂ϕvθ = 0, and vϕ = 0. This is achieved when the summation index is m = 0 in
(2.11) and (2.12), and A±

�m = A′±
�m = 0. The axisymmetric forms of the fluid and network
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velocities in Laplace space simplify to

ṽr,f = 1

η̃ + G̃

⎡⎢⎢⎣ ∞∑
�=0

⎧⎪⎪⎨⎪⎪⎩
(

B+
�−1

B−
�+1

)(
�r�−1

−(�+ 1)r−�−2

)
+ B′±

�

�(�+ 1)G̃
βr

(
i�(βr)
k�(βr)

)

+ D±
�

(
r�−1

r−�−2

)⎛⎜⎜⎝
�

2(2�+ 3)
r2 − G

η̃εβ
2 �

�+ 1
2(2�− 1)

r2 + G̃
η̃εβ

2 (�+ 1)

⎞⎟⎟⎠ − ε(η̃ + G̃)
α2
ε

E±
�

d
dr

(
i�(αεr)
k�(αεr)

)⎫⎪⎪⎬⎪⎪⎭P�(cos θ)

⎤⎥⎥⎦ ,
(2.14a)

ṽθ,f = 1

η̃ + G̃

⎡⎢⎢⎣ ∞∑
�=1

⎧⎪⎪⎨⎪⎪⎩
(

B+
�−1

B−
�+1

)(
r�−1

r−�−2

)
+ B′±

�

G̃
β

[
d
dr

(
i�(βr)
k�(βr)

)
+ 1

r

(
i�(βr)
k�(βr)

)]

+ D±
�

(
r�−1

r−�−2

)⎛⎜⎜⎝
�+ 3

2(�+ 1)(2�+ 3)
r2 − G̃

η̃εβ
2

2 − �

2�(2�− 1)
r2 − G̃

η̃εβ
2

⎞⎟⎟⎠− ε(η̃ + G̃)
α2
ε

E±
�

1
r

(
i�(αεr)
k�(αεr)

)⎫⎪⎪⎬⎪⎪⎭
d

dθ
P�(cos θ)

⎤⎥⎥⎦ ,
(2.14b)

ṽr,n = 1

η̃ + G̃

[ ∞∑
�=0

{(
B+
�−1

B−
�+1

)(
�r�−1

−(�+ 1)r−�−2

)
− B′±

�

�(�+ 1)η̃
βr

(
i�(βr)
k�(βr)

)

+ D±
�

(
r�−1

r−�−2

)⎛⎜⎜⎝
�

2(2�+ 3)
r2 + η̃

η̃εβ
2 �

�+ 1
2(2�− 1)

r2 − η̃

η̃εβ
2 (�+ 1)

⎞⎟⎟⎠− η̃ + G̃
α2
ε

E±
�

d
dr

(
i�(αεr)
k�(αεr)

)⎫⎪⎪⎬⎪⎪⎭P�(cos θ)

⎤⎥⎥⎦ ,
(2.15a)

ṽθ,n = 1

η̃ + G̃

⎡⎢⎢⎣ ∞∑
�=1

⎧⎪⎪⎨⎪⎪⎩
(

B+
�−1

B−
�+1

)(
r�−1

r−�−2

)
− B′±

�

η̃

β

[
d
dr

(
i�(βr)
k�(βr)

)
+ 1

r

(
i�(βr)
k�(βr)

)]

+ D±
�

(
r�−1

r−�−2

)⎛⎜⎜⎝
�+ 3

2(�+ 1)(2�+ 3)
r2 + η̃

η̃εβ
2

2 − �

2�(2�− 1)
r2 + η̃

η̃εβ
2

⎞⎟⎟⎠− η̃ + G̃
α2
ε

E±
�

1
r

(
i�(αεr)
k�(αεr)

)⎫⎪⎪⎬⎪⎪⎭
d

dθ
P�(cos θ)

⎤⎥⎥⎦ .
(2.15b)

We note that fluid velocity dependency on the network compressibility (through αε) is
proportional to φ ∼ ε 
 1 and thus negligible in most physiologically relevant conditions.
In the next section, we use the axisymmetric solutions to study the dynamics of a spherical
bead moving within a PVE medium, and provide an exact solution of the equations subject
to appropriate BCs. Moreover, we discuss the differences between the dynamics of the
sphere moving in VE and PVE materials in the context of single-particle and two-point
MR.
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General solutions of linear poro-viscoelastic materials

3. A rigid sphere moving a network that is permeated by a fluid

Consider a rigid sphere moving with time-dependent velocity U(t) ẑ in an unbounded PVE
medium. We assume that the size of the sphere is larger than the typical mesh size of
the background network, and assume no-slip BCs for both the network and fluid velocity
fields:

at r = a : ṽr,f = ṽr,n = Ũ(s) cos θ, ṽθ,f = ṽθ,n = −Ũ(s) sin θ. (3.1a,b)

Note that these BCs are accurate only when the interface is between an elastic (or rigid)
domain and a PVE domain. The BCs become more involved at fluid–PVE and PVE–PVE
interfaces (Feng & Young 2020). Since the velocity field must decay to zero at infinity,
and functions corresponding to internal solutions are all unbounded as r → ∞, their
corresponding coefficients (+ superscript) are identically zero.

Applying no-slip BCs (3.1a,b) to the axisymmetric solutions for the fluid and network,
we get

ṽr,f = a
β2r3

Ũ(s)
Δε

[
g1 + (1 − ε)τε(3r2 − a2)β2g2 − 3

α2
ε

β2 (1 − ε) e−β(r−a)(1 + βr)

− εg3 + 3ε(1 + τ) exp(−αε(r − a))(2 + 2αεr + α2
ε r2)

]
cos θ, (3.2a)

ṽθ,f = a
2β2r3

Ũ(s)
Δε

[
g1 − (1 − ε)τε(3r2 + a2)β2g2

− 3
α2
ε

β2 (1 − ε) e−β(r−a)(1 + βr + β2r2)

− εg3 + 6ε(1 + τ) exp(−αε(r − a))(1 + αεr)
]

sin θ, (3.2b)

ṽr,n = a
β2r3

Ũ(s)
Δε

[
−g4 + (1 − ε)τε(3r2 − a2)β2g2 + 3

α2
ε

β2 τ(1 − ε) e−β(r−a)(1 + βr)

+ ετg1 + 3(1 + τ) exp(−αε(r − a))(2 + 2αεr + α2
ε r2)

]
cos θ, (3.2c)

ṽθ,n = a
2β2r3

Ũ(s)
Δε

[
−g4 − (1 − ε)τε(3r2 + a2)β2g2

+ 3
α2
ε

β2 τ(1 − ε) e−β(r−a)(1 + βr + β2r2)

+ ετg1 + 6(1 + τ) exp(−αε(r − a))(1 + αεr)
]

sin θ, (3.2d)

where τ(s) = η̃(s)/G̃(s) is the shear relaxation time, η̃ε = (1 − ε)η̃/(1 + ε τ(s)), and
τε(s) = η̃ε/G̃(s). Defining the inverse of permeability as β2◦ = ξ/η̃, we have

β2 = β2
◦ (1 + τ(s)), α2

ε = β2
◦
τ(s)(1 − ε)2

2(1−ν)
1−2ν + ε2 τ(s)

.
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The remaining coefficients that appear in (3.2) are given by the expressions

Δε = 2τε(1 − ε)(1 + aαε)+ α2
ε

β2 (1 + ετ + τε(1 − ε)(1 + aβ + a2β2)), (3.3a)

g1 = α2
ε

β2 (3 + 3aβ + a2β2), g2 = 1 + aαε + 1
2
α2
ε

β2 (1 + aβ + a2β2), (3.3b)

g3 = 6(1 + τ)(1 + aαε)+ 2τa2α2
ε + 3

α2
ε

β2 (1 + aβ + a2β2), (3.3c)

g4 = 6(1 + τ)(1 + aαε)+ 2a2α2
ε + 3τ

α2
ε

β2 (1 + aβ + a2β2). (3.3d)

Substituting for coefficients in (2.9), the pressure is given by

p̃ = 3a(η̃ + G̃)
2r2

Ũ(s)
Δε

[
2τε(1 − ε)(1 + aαε)+ τε

α2
ε

β2 (1 − ε)(1 + aβ + a2β2)

− 2
α2
ε

β2

(
ετ + λ̃

G̃
+ 2

)
exp(−αε(r − a))(1 + αεr)

]
cos θ. (3.4)

The fluid and network stress components, including the traceless and isotropic parts (see
Appendix B for explicit expressions of the network and fluid stresses), are

σ̃ f
rr = −p̃(1 − φ)+ 2η̃

∂ṽr,f

∂r
, (3.5a)

σ̃ n
rr = (λ̃+ 2G̃)

∂ṽr,n

∂r
+ λ̃

r

(
2ṽr,n + cot θ ṽθ,n + ∂

∂θ
ṽθ,n

)
− φp̃, (3.5b)

σ̃
f

rθ = η̃

(
1
r
∂ṽr,f

∂θ
+ ∂ṽθ,f

∂r
− ṽθ,f

r

)
, (3.5c)

σ̃ n
rθ = G̃

(
1
r
∂ṽr,n

∂θ
+ ∂ṽθ,n

∂r
− ṽθ,n

r

)
. (3.5d)

Evaluating these stresses at r = a and integrating over the sphere surface gives the
following relations for the total force from the fluid and network phases:

F̃ (s) =
∫ 2π

0

∫ π

0
((σ̃ f

rr + σ̃ n
rr)r̂ + (σ̃

f
rθ + σ̃ n

rθ )θ̂)a
2 sin θ dθ dϕ = R̃(s) Ũ(s) ẑ, (3.6)

R̃(s) = 6π G̃(s) a
(1 + τ) τ

Δε

[
η̃ε

η̃
(1 − ε)

(
2(1 + aαε)+ α2

ε

β2 (1 + aβ + a2β2)

)
+ 2

3
ε
α2
ε

β2 (1 + aαε)
]
, (3.7)

where R̃(s) is the response function that we set out to find. Using the fluctuation dissipation
theorem (FDT), the measurable mean squared displacement (MSD) can be related to
the response function using 〈Δr̃2〉 = 6kBT M̃(s)/s2 (Squires & Mason 2010), where 〈 〉
denotes ensemble average, Δr̃2 is the MSD of the spherical probe, M̃(s) = R̃−1(s) is the
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General solutions of linear poro-viscoelastic materials

sphere’s isotropic mobility in Laplace space, and kBT is Boltzmann thermal energy. This
relation is used to compute R̃(s), which in theory can be used to compute G̃(s), η̃(s), ν and
β◦ in single-particle tracking MR.

In two-point MR, the positional cross-correlations of two fluctuating probes are
used to measure the properties of the medium separating them. We can relate these
movements to the medium’s mechanical properties by applying the FDT, which yields
L〈Δx1(0)Δx2(t)〉 = 6kBT M̃21(s)/s2 (Squires & Mason 2010), where L is the Laplace
transform operator, and M̃21(s) is the pair mobility tensor that computes the velocity
of particle 2 due to a force on particle 1: Ũ2(r, s) = M̃21(r, s) · F̃ 1(s), where r is the
pair separation vector. For VE materials, and when the particles are separated by a
large distance (r/a � 1), the motion of particle 2 becomes independent of its size and
asymptotes to the velocity of the surrounding VE fluid: Ũ2(r, s) ≈ ṽ(r, s).

We use a similar approximation here and assume that particle 2 moves with the network
velocity at its centre: U2(r) ≈ vn(r) when r/a � 1. The pair mobility tensor can be
expressed in the general form M̃21 = M̃‖

21r̂r̂ + M̃⊥
21(I − r̂r̂), where ‖ and ⊥ denote parallel

and perpendicular to the direction of applied force, respectively. Using Ũ(s) = M̃(s) F̃(s)
in (3.2), and the above expression for the mobility tensor, we arrive at the expressions

M̃‖
21=M̃(s)

a
β2r3Δε

[· · · ]r,n, M̃⊥
21=M̃(s)

a
2β2r3Δε

[· · · ]θ,n, (3.8a,b)

where [· · · ]r,n and [· · · ]θ,n are the terms between brackets in (3.2c) and (3.2d). These
expressions provide the mathematical framework for analysing two-point MR results.

3.1. Results
In this section, we consider the example of a spherical probe moving under constant force
F ◦, as an analogue to the active MR experiment, within a PVE material composed of
a linear elastic network, with shear modulus G and Poisson ratio ν, and a Newtonian
fluid of viscosity η, making τ(s) = sη/G; see figure 1(a). The probe’s velocity and the
induced displacements in the network and fluid phases can be computed in Laplace
space using (3.6) and (3.2), respectively. We then use Fourier–Euler summation (Abate
& Whitt 1992) to invert numerically the results from s-space to time-space. The limiting
values of all these quantities at t = 0 and t → ∞ can be computed analytically using
the following limits in s-space: f (t = 0+) = lims→∞ s f̃ (s) and f (t → ∞) = lims→0 s f̃ (s)
(see Appendix C). Figure 1(b) shows the variations of 1 − x/x∞ versus t/τ for different
values of β0 > 1, when φ → 0 and ν = 0.3 (length is non-dimensionalized with probe
radius). Here, x is the probe’s position, x∞ = (F◦/6πGa)((5 − 6ν)/4(1 − ν)) is the
long-time position of the probe, and τ = η/G is the time scale of shear deformations.
Note that the curves in the main figures produce identical results for different values of τ
when time is made dimensionless as t/τ . The predictions of the VE model (1 − xVE/x∞ =
e−t/τ ) are displayed as a dashed line. As can be seen, the relaxation at early times
is independent of permeability β◦, and is controlled by τ . This is followed by a slow
relaxation dynamics, with the relaxation time appearing to increase with permeability β◦.
Note that 1 − x/x∞ → 0 as t → ∞.

Next, to study the effect of network compressibility, we compute the relaxation
dynamics for different values of the Poisson ratio ν and a constant permeability β◦ = 2;
see figure 1(c). As can be seen, the extent of deformation that follows a slow relaxation
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Figure 1. (a) A schematic representation of a rigid spherical probe moving under a constant force in a PVE
medium. The sphere moves from x◦ at early times to x∞ at long times. Plots of the sphere relaxation 1 −
x(t)/x∞ versus time are shown for: (b) different values of permeability, when φ → 0 and ν = 0.3; (c) different
values of the Poisson ratio, when φ → 0 and β◦ = 2; and (d) different values of the network volume fraction,
when ν = 0.3 and β◦ = 2. Each inset figure represents the results of its associated main figure, as a function
of rescaled time t/τD, where τD = a2/Dq is the diffusion time scale of the compressibility field for distance a,
where Dq = τ−1α−2

ε is the diffusion coefficient of the network compressibility.

dynamics is reduced with increasing ν. For ν = 0.49, which correspond to a nearly
incompressible network, the relaxation is given almost entirely by the VE model. This
observation suggests that the slow relaxation is induced by network compressibility. An
inspection of (2.7) shows that for a linear elastic network and a Newtonian fluid, it is
a diffusion equation, with the diffusion coefficient given by Dq = τ−1α−2

ε . The same
equation and concept appear in Biot poroelasticity (Detournay & Cheng 1993; Doi 2009;
Cheng 2016), where Dq is sometimes referred to as generalized consolidation coefficient
in the soil mechanics literature.

Following this observation, we rescale the time axis of figure 1(b) with t/τD, where
τD = a2/Dq = a2α2

ε τ is the characteristic time scale for the diffusion of network
compressibility. Upon this rescaling, all the results collapse to a single line at longer
time scales (see the inset of figure 1b), which is consistent with the idea that the slow
relaxation is determined by the diffusion of network compressibility and the fluid pressure
induced by that. This rescaling did not result in the collapse of the data for different
values of ν (see the inset of figure 1c), suggesting a more complex dependency of the
dynamics on ν. To further clarify the role of shear viscosity, in Appendix D, we include
the bead’s relaxation dynamics, where we vary only the shear viscosity and keep the rest
of the parameters unchanged. As we explained earlier, decreasing the viscosity leads to
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General solutions of linear poro-viscoelastic materials

faster initial relaxation and does not affect the long-time relaxation as long as ξ remains
unchanged.

In figure 1(d), we study the effect of volume fraction of the network phase on probe
dynamics in the range 0 < φ ≤ 0.3 for the choice β◦ = 2 and ν = 0.3. The value of φ
appears not to change the qualitative behaviour and has only a minor quantitative effect
on the overall dynamics. We observe the same weak dependencies for the displacement
fields. As such, in the remainder of this paper, we present only the results for φ → 0,
which results in ε = 0, ηε = η, τε = τ and αε = α.

Note that even though φ → 0, the fluid permeability can still be largely affected
by the cytoskeletal network. To see this, consider the expression for permeability of a
dilute fibrous network in a Newtonian fluid: (β◦af )

2 = 8φ/(− lnφ − 1.48) (Sangani &
Acrivos 1982), where af is the radius of the fibre. Let us consider microtubules that
have the largest radius among the cytoskeletal filaments: af ≈ 12 nm. Rescaling this
expression to the probe’s radius – which is the scale of interest here – gives (β◦a)2 =
(a/af )

2(8φ/(− lnφ − 1.48)). Assuming a spherical bead of radius a ∼ 1 μm, we see that
even for very small volume fractions, we have the likely condition φ(a/af )

2 � 1, which
results in β◦a � 1 and a substantial reduction in fluid permeability by the network in the
probe’s length scale.

Based on these findings, we provide a recipe for determining the constitutive parameters
in an active MR set-up such as the one used here, when the fluid is Newtonian. If the fluid
is also VE, then the probe motion alone can determine only the ratio η̃(s)/G̃(s) and not
the individual terms, and displacement fields will be needed to disentangle the time scales
associated with each of the fluid and the network. At very early times, the network is
hardly deformed and the probe velocity is determined by the fluid drag force: U(t → 0) =
F◦/(6πηa). Measuring U(t = 0) can thus be used to compute η. At later intermediate
times the dynamics is controlled by relaxation of shear modes, allowing us to determine
η/G(t) and thus G(t). Having η and G(t), one can compute ν by using the steady-state
displacement of the probe:

x∞ = F◦
6πG(t → ∞)a

5 − 6ν
4(1 − ν)

.

Finally, β◦ can be determined by fitting (3.6) to the displacement versus time at longer
time scales.

We now focus on the network displacement versus time at different, but all large,
distances from the probe. Figure 2(a) shows displacement relaxation along the direction
of the applied force, 1 − u‖

n(r)/u
‖,∞
n , at different distances from the probe, for β◦ = 2,

ν = 0.3 and φ → 0 (as for the rest of the results). Similar to the probe’s dynamics, the
relaxation at early times is determined by the shear modes given by the VE model (dashed
line). For large r/a, the time-dependent 1 − u‖

n/u
‖,∞
n exhibits a slow relaxation dynamics

that varies with separation distance and exhibits a local minimum (a minimum for u‖
n)

followed by what appears to be a local maximum, noting that 1 − u‖
n/u

‖,∞
n → 0 as t → ∞.

Figure 2(b) shows the displacement relaxation in the direction perpendicular to the
applied force, u⊥

n , versus time at different values of r. Unlike the displacements in the
parallel direction, we do not observe any local optimum in time. Aside from this difference,
the relaxation dynamics follows closely the behaviour that we observed in the parallel
direction.
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Figure 2. The relaxation of network displacement fields in response to the moving probe in directions parallel
(a) and perpendicular (b) to the applied force, and at different distances from the sphere, 1 − u(‖,⊥)n /u(‖,⊥),∞n .
The inset figures show the same results as the associated figures when the time axis is scaled as t/τ r

D, where
τ r

D = r2α2τ is the time scale for the network compressibility field to diffuse distance r away from the probe.
Here, we have taken β◦ = 2, φ → 0 and ν = 0.3.

The predicted change in relaxation dynamics with r is in line with previous experimental
results (Rosenbluth et al. 2008), where atomic force microscopy (AFM) was used to
deform the cell cortex, and the displacements of probe particles were measured at different
distances from the AFM tip. Similar to our predictions, the experiments show a fast initial
relaxation that is independent of distance from the AFM tip, followed by a significantly
slower relaxation dynamics that slows down further with increasing distance from the tip.

To test if the slow relaxation is again controlled by the diffusion of the stress associated
with network compressibility, we scale the time axis with the diffusion time scale for
travelling the distance r: τ r

D = r2/Dq = r2α2τ . Again, we observe a nice collapse of the
plots at longer times, which further confirms that slow relaxation dynamics is determined
by the diffusion of network compressibility and its associated stresses.

In Appendix D, we present the results of pressure relaxation dynamics induced by the
probe’s motion under a constant force. In figure 7, we show the relaxation dynamics of the
pressure on the surface of the probe and parallel to the applied force (p(r = a, θ = 0)),
for different values of permeability β◦ and Poisson ratio ν of the PVE material. As
can be seen, in all cases the pressure relaxation is controlled entirely by τD and is
independent of shear relaxation τ . We observe the same behaviour when studying the
pressure relaxation at different probe distances (different values of r/a); see figure 7.
This behaviour is in agreement with the previous two-dimensional immersed boundary
simulations (Strychalski & Guy 2016). (We note that a recent three-dimensional immersed
boundary simulation of cell blebbing by Strychalski (2021) observes a sub-diffusive
pressure relaxation.)

In figures 4(a,b) of Appendix D, we present the relaxation dynamics of the fluid velocity
fields away from the probe in parallel and perpendicular directions for different values of
β◦, ν and r/a. We observe that the fluid velocity does not undergo a slow relaxation process
and the relaxation dynamics is dominated by shear relaxation times τ . This difference
can be explained by noting that the fluid, unlike the network, is incompressible, hence its
dynamics is determined by shear hydrodynamic modes and not the compression modes.
These results confirm further our observations thus far: i.e. for the network displacement
fields the early/fast relaxation dynamics is controlled by τ , and the slow relaxation
is controlled by τ r

D, whereas the relaxation of fluid velocity is determined only by τ .
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Figure 3. (a) The ratio of parallel to perpendicular network displacements, Γn = u‖
n/u⊥

n , as a function of
t/τD

r . Main plot: different values of distance r from the probe, taking β◦ = 2 and ν = 0.3. Inset: different
permeability β◦, taking r/a = 10, ν = 0.3. (b) Variations of Θ = (Γn − Γ∞

n )/(Γ ◦
n − Γ∞

n ) versus time for
different Poisson ratios, taking β◦ = 2 and r/a = 10. Inset: collection of all the data in the figure plotted as Θ
versus t/τD

r . All the data collapse to a single curve irrespective of the choice of ν, r, β◦ and τ .

Another difference between VE and PVE models appears in the ratio of parallel to
perpendicular displacements. For VE materials, u‖

VE/u
⊥
VE = M‖

12/M
⊥
12 = 2, whereas for a

linear elastic material, the ratio is dependent on ν, u‖
E/u

⊥
E = 4(1 − ν)/(3 − 4ν) (Levine &

Lubensky 2000), which changes from 2 for ν = 0.5 to 8
7 for ν = −1. For PVE materials,

the ratio changes over time from 2 at early times to u‖
E/u

⊥
E at long times. Figure 3(a) shows

these variations over time for 10 ≤ r/a ≤ 50 and β◦ = 2, while the inset shows the results
for 2 ≤ β◦ ≤ 20 and r = 50. In both plots, ν = 0.3 and the time is made dimensionless by
τ r

D = r2/Dq. As can be seen, the results for different values of r/a and β◦ all collapse to a
single curve over the entire time domain.

In figure 3(b), we study the effect of ν on the variations ofΘ = (Γn − Γ∞
n )/(Γ ◦

n − Γ∞
n )

as a function of t/τ r
D for different values of ν, with β◦ = 2 and r/a = 10, where

Γn(r, t) = u‖
n/u⊥

n . The data collapse to a single curve. The inset of figure 3(b) shows the
cumulative Θ(t) versus t/τ r

D data for different values of r, β◦ and ν, collapsing to the
same curve. All together, these results show that the relaxation dynamics of displacement
(and mobility) ratios is determined entirely by the diffusion of network compressibility τ r

D.
The experimental determination of this ratio in two-point MR provides another method to
compute Dq and thus β◦. In contrast, as we show in figure 5(a) of Appendix D, the ratio of
fluid displacements in parallel and perpendicular directions remains nearly equal to 2 for
different choices of parameters.

4. Summary

Increasing experimental evidence points to a PVE model as the most accurate description
of the mechanics of the cell cytoskeleton (Mogilner & Manhart 2018). Biot’s theory of
poroelasticity has been used to describe these observations (Charras et al. 2005, 2008).
Biot’s theory neglects shear stresses, which are crucial for determining the mechanical
response of cytoskeletal assemblies (φ 
 1) at short and intermediate time scales.
To overcome this limitation, we include the shear stresses, which modifies the fluid
momentum equation from Darcy to the Brinkman equation. We present the first general
solutions of these modified linear PVE equations in spherical coordinates; the fluid phase
is described as an incompressible linear VE fluid, and the network phase is modelled as
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a compressible linear VE material. Similar to Stokes flow microhydrodynamics (Kim &
Karrila 2013) and linear elasticity (Gurtin 1973), the linearity of the equations of motion
allows development of a robust mathematical framework for describing the motion of
inclusions moving in PVE materials, and the interior displacements generated in PVE
materials by the motion of outer boundaries. These general solutions can be used to
develop Faxén laws for a two-phase system, which relates the force (torque) on a sphere
to the (angular) velocity fields of the fluid and network in general background flow. Faxén
laws can then be used to develop numerical techniques similar to Stokesian dynamics
(Fiore & Swan 2019), for modelling the motion of spherical inclusions in PVE materials,
based on singularity solutions.

To demonstrate the utility of the general solutions, we studied the dynamics of a rigid
sphere moving in a PVE material. Using the axisymmetric form of the general solutions,
we derived closed-form solutions for the sphere’s response function (hydrodynamic
resistance), and fluid and network displacement fields. We showed that the displacement
relaxation of the rigid sphere and the network displacements induced by it follow two
distinct dynamics at short and long time scales. The dynamics at short time scales is
dominated by hydrodynamic shear modes on the system, and thus can be captured using a
VE model. The following slow relaxation dynamics could not be predicted using the VE
model; instead, we showed that this dynamic is controlled by the diffusion time scale of
network compressibility and the response of the fluid pressure to these local changes in
network volume. These predictions are in agreement with the experimental observations,
including the slow distance-dependent relaxation that follows the initial fast relaxation
observed by atomic force microscopy experiments of Rosenbluth et al. (2008). They
are also in agreement with the results of Charras, Mitchison & Mahadevan (2009) and
Moeendarbary et al. (2013), and the experimental and computational observations of slow
propagation of hydrostatic pressure in blebs (Charras et al. 2005, 2008; Strychalski & Guy
2016). Finally, we discussed how our results can be used directly to analyse the results
of single-particle and two-point MR, and calculate fluid permeability in addition to the
commonly measured VE properties of the system.

In studying the probe’s motion, we assumed that the probe size is significantly larger
than the mesh size of the network, which led to assuming no-slip BCs for both the fluid
and network phases at the probe’s surface (r = a). This is a reasonable assumption, since
the mesh size for actin networks in the cell starts from 20 to 200 nm, and the typical probe
size used in the experiments is at least 1000 nm, which is about at least 5 times larger
than the mesh size. On the other hand, it is now possible to include and trace genetically
encoded multimeric nanoparticles of diameter 15–40 nm within the cell (Delarue et al.
2018). The particles that are smaller than the mesh size of the network can be used to
study the effect of network topology and mechanics on the transport of small molecules
and organelles through the fluid phase. The BCs for the network phase need to be modified
when analysing the motion of particles when β◦a ≤ 1. Here, the more appropriate BCs for
the network phase would be to assume that because the network and the probe are not in
direct contact, no force is applied from the network to the probe, i.e. σ n · n̂ = 0 at r = a
(Fu et al. 2008; Diamant 2015). This BC can be incorporated easily within our general
solution. Note that this modification in BCs changes qualitatively the time-dependent
motion of the probe. In particular, the probe’s response at long times will be dominated
by VE properties of the fluid domain when β◦a ≤ 1, in contrast to the mechanics being
determined by the network phase when β◦a > 1.
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Appendix A. Solving the v+ and v− equations

A.1. General solution of the v+ equation
The equation for v+ is

∇2v+ − ∇(∇ · v+) = ∇Φ. (A1)

Using ∇ · v+ = −(εη̃ + G̃)q, we can write the equation for v+ as

∇2v+ = ∇(Φ − (εη̃ + G̃)q). (A2)

We look for the solution of (A2) in the form v+ = v+
h + ∇χ , which can be fulfilled by

requiring that ∇2v+
h = 0, and that χ satisfies

∇2χ = Φ − (εη̃ + G̃)q. (A3)

The general solution for v+
h is (Morse & Feshbach 1953)

v+
h =

∑
�,m

[A±
�,mM±

�,m + B±
�,mN±

�,m + C±
�,mG±

�,m], (A4)

where

M±
�,m =

(
r�

r−�−1

)√
�(�+ 1)C�,m, (A5a)

N±
�,m =

(
r�

r−�−1

)(
(�+ 1)P�+1,m + √

(�+ 1)(�+ 2)B�+1,m
−�P�−1,m + √

�(�− 1)B�−1,m

)
, (A5b)

G±
�,m =

(
r�

r−�−1

)( −�P�−1,m + √
�(�− 1)B�−1,m

(�+ 1)P�+1,m + √
(�+ 1)(�+ 2)B�+1,m

)
, (A5c)

and P�,m, B�,m and C�,m are defined in the main text. Using the Laplace general solution
for Φ, and the Helmholtz general solution for q, (A3) becomes

∇2χ =
∑
�,m

[
D±
�,m

(
r�

r−�−1

)
− (εη̃ + G̃)E±

�,m

(
i�(αεr)
k�(αεr)

)]
Y�m(θ, ϕ). (A6)

The solution for χ is

χ =
∑
�,m

⎡⎢⎣D±
�,m

r2

2

⎛⎜⎝ 1
2�+ 3

r�

1
−2�+ 1

r−�−1

⎞⎟⎠− εη̃ + G̃
α2
ε

E±
�,m

(
i�(αεr)
k�(αεr)

)⎤⎥⎦Y�m(θ, ϕ). (A7)
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So ∇χ becomes

∇χ =
∑
�,m

1
2

(
r�+1

r−�

)
D±
�,m

⎛⎜⎝ �+ 2
2�+ 3

P�,m + 1
2�+ 3

√
�(�+ 1)B�,m

�− 1
2�− 1

P�,m + 1
−2�+ 1

√
�(�+ 1)B�,m

⎞⎟⎠
−
∑
�,m

εη̃ + G̃
α2
ε

E±
�,m

[
d
dr

(
i�(αεr)
k�(αεr)

)
P�,m + 1

r

(
i�(αεr)
k�(αεr)

)√
�(�+ 1)B�,m

]
.

(A8)

Substituting v+
p = ∇χ and v+

h expressions, and setting ∇ · v+ = −(εη̃ + G̃)q, gives

D+
�,m = (�+ 1)(2�+ 3)C+

�+1,m, D−
�,m = �(2�− 1)C−

�−1,m, (A9a,b)

and we get (2.11) in the main text.

A.2. General solution of the v− equation
The equation for v− is

∇2v− + γε

1 − ε
∇(∇ · v−)− β2v− = 1

η̃ε
∇Φ. (A10)

We look for the solution of (A10) in the form v− = v−
h + v−

p . For the homogeneous part,
we assume v−

h = v−
T + v−

L , where ∇ · v−
T = 0 and ∇ × v−

L = 0. Inserting this ansatz into
the v− equation, we get

∇2v−
T − β2v−

T = 0, (A11a)

∇2v−
L + γε

1 − ε
∇ (∇ · v−

L
)− β2v−

L = 0. (A11b)

Since ∇(∇ · v−
L ) = ∇2v−

L , we can write

∇2v−
T = β2v−

T , (A12a)

∇2v−
L = αε

2v−
L , (A12b)

where αε
2 = β2(1 − ε)/(1 − ε + γε). The general solutions for v−

T and v−
L are

(Ben-Menahem & Singh 1968)

v−
T =

∑
�,m

A′±
�,mM ′±

�,m + B′±
�,mN ′±

�,m, (A13a)

v−
L =

∑
�,m

C′±
�,mL±

�,m, (A13b)

where M ′±
�,m = ∇ × (rψ±

T,�,m), N ′±
�,m = (1/β)∇ × ∇ × (rψ±

T,�,m) and L±
�,m =

(1/αε)∇ψ±
L,�,m. Here, ψ±

T,�,m, and ψ±
L,�,m satisfy the scalar Helmholtz equations
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∇2ψ±
T,�,m − β2ψ±

T,�,m = 0 and ∇2ψ±
L,�,m − αε

2ψ±
L,�,m = 0, respectively. So

v−
h =

∑
�,m

A′±
�,mM ′±

�,m + B′±
�,mN ′±

�,m + C′±
�,mL±

�,m, (A14)

where

M ′±
�,m =

(
i�(βr)
k�(βr)

)√
�(�+ 1)C�,m, (A15a)

N ′±
�,m = �(�+ 1)P�,m

1
βr

(
i�(βr)
k�(βr)

)
+
√
�(�+ 1)B�,m

×
{

d
d(βr)

(
i�(βr)
k�(βr)

)
+ 1
βr

(
i�(βr)
k�(βr)

)}
, (A15b)

L±
�,m = d

d(αεr)

(
i�(αεr)
k�(αεr)

)
P�,m +

√
�(�+ 1)B�,m

1
αεr

(
i�(αεr)
k�(αεr)

)
. (A15c)

Next, we seek the particular solution of the form v−
p = ∇χ . Inserting this ansatz into

(A10), we get

∇2χ − β2χ = 1
η̃ε
Φ − γεq. (A16)

Assuming χ = χ1 + χ2, where χ1 and χ2 satisfy equations ∇2χ1 − β2χ1 = −γεq
and ∇2χ2 − β2χ2 = (1/η̃ε)Φ, we get solutions χ1 = −(γε/(α2

ε − β2))q, and χ2 =
−(1/β2)(1/η̃ε)Φ. Using the general solution of Laplace for Φ, and the Helmholtz
equation for q, we get

χ =
∑
�,m

[
− 1
β2

1
η̃ε

D±
�,m

(
r�

r−�−1

)
− γε

α2
ε − β2 E±

�,m

(
i�(αεr)
k�(αεr)

)]
Y�m(θ, ϕ). (A17)

So the particular solution is

v−
p = ∇χ =

∑
�,m

{
− 1
β2

1
η̃ε

D±
�,m

(
r�−1

r−�−2

)(
�P�,m + √

�(�+ 1)B�,m
−(�+ 1)P�,m + √

�(�+ 1)B�,m

)

− γε

α2
ε − β2 E±

�,m

[
d
dr

(
i�(αεr)
k�(αεr)

)
P�,m + 1

r

(
i�(αεr)
k�(αεr)

)√
�(�+ 1)B�,m

]}
. (A18)

Substituting the v−
p and v−

h expressions, and using the facts that γε/(β2 − α2
ε ) =

(1 − ε)/α2
ε and ∇ · v− = (1 − ε)q, we get C′±

�,m = 0, and recover (2.12) in the main text.

A.3. Some relations between vector spherical functions

∇ × (f (r)P�,m) = f (r)
r

√
�(�+ 1)C�,m, ∇ · ( f (r)P�,m

) =
(

2
r

f (r)+ df
dr

)
Y�,m(θ, ϕ),

(A19a)
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∇ × (f (r)B�,m) = −
(

f (r)
r

+ df
dr

)
C�,m, ∇ · (f (r)B�,m)= −

√
�(�+1)

f (r)
r

Y�,m(θ, ϕ),

(A19b)

∇ × (f (r)C�,m
) = f (r)

r

√
�(�+ 1)P�,m +

(
f (r)

r
+ df

dr

)
B�,m, ∇ · (f (r)C�,m

) = 0.

(A19c)

Appendix B. Fluid and network stress fields

The fluid stress components are

σ̃ f
rr = −p̃(1 − φ)+ 2η̃

∂ṽr,f

∂r

= 3aη̃
2β2(1 − ε)r4

Ũ(s)
Δε

[
24ε(1 − ε)

(
1 + τ

τ

)
(1 + aαε)

+ 4a2α2
ε (1 − ε)(2ετ − 1 + 3ε)− 12

α2
ε

β2 (1 − ε)2(1 + aβ)

+ (ε − 1)
η̃ε

η̃

[
2a2τ(ε − 1)+ ((3 − 2ε)τ + 1) r2

]
[2β2(1 + aαε)

+ α2
ε (1 + aβ + a2β2)] + 4

α2
ε

β2 (ε − 1)2(3 + 3βr + β2r2) exp(−β(r − a))

+ 24ε(ε − 1)(1 + τ)(1 + αεr) exp(−αε(r − a))

+ 2α2
ε r2

(
ετ(−5 + 6ε)+ λ̃

G̃
+ 1
τ

(
λ̃

G̃
+ 2

)
+ (2 − 5ε + 6ε2)

)
exp(−αε(r − a))

+ 2α3
ε r3
(

1 + 1
τ

)(
ετ(−1 + 2ε)+ λ̃

G̃
+ 2

)
exp(−αε(r − a))

]
cos θ, (B1)

σ̃
f
rθ = η̃

(
1
r
∂ṽr,f

∂θ
+ ∂ṽθ,f

∂r
− ṽθ,f

r

)
= 3aη̃

2β2r4
Ũ(s)
Δε

[
12ε(1 + τ)(1 + aαε)− 2a2β2(ε − 1)τε(1 + aαε)

− α2
ε

β2 [6(1 − ε)(1 + aβ)− 2a2β2(−1 + ε(3 + 2τ))

+ a2β2τε(ε − 1)(1 + aβ + a2β2)]

+ α2
ε

β2 (1 − ε)(6 + 6βr + 3β2r2 + β3r3) exp(−β(r − a))

− 4ε(1 + τ)(3 + 3αεr + α2
ε r2) exp(−αε(r − a))

]
sin θ. (B2)
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The network stress components are

σ̃ n
rr = (λ̃+ 2G̃)

∂ṽr,n

∂r
+ λ̃

r

(
2ṽr,n + cot θ ṽθ,n + ∂

∂θ
ṽθ,n

)
− φp̃

= 3aG̃
2β2(1 − ε)r4

Ũ(s)
Δε

[
24(1 − ε)(1 + τ)(1 + αεr)+ (ε − 1)τε[2a2(ε − 1)

− (−2 + (3 + τ)ε)r2][2β2(1 + aαε)+ α2
ε (1 + aβ + a2β2)]

+ 4
α2
ε

β2 (ε − 1)[τ(3(ε − 1)(1 + aβ)+ (ε − 3)a2β2)

− 2a2β2] + 24(ε − 1)(1 + τ)(1 + αεr) exp(−αε(r − a))

− 2(1 + τ)α2
ε r2

((
ε2τ + λ̃

G̃
+ 2

)
αεr +

(
ε2τ + λ̃

G̃
+ 6 − 4ε

))
exp(−αε(r − a))

− 4
α2
ε

β2 (ε − 1)2τ(3 + 3βr + β2r2) exp(−β(r − a))

]
cos θ, (B3)

σ̃ n
rθ = G̃

(
1
r
∂ṽn,r

∂θ
+ ∂ṽn,θ

∂r
− ṽn,θ

r

)
= 3aG̃

2β2r4
Ũ(s)
Δε

[
12(1 + τ)(1 + aαε)− 2a2β2τε(ε − 1)(1 + aαε)

− a2α2
ε τε(ε − 1)(1 + aβ + a2β2)

− 2
α2
ε

β2

[
τ
(

3(ε − 1)(1 + aβ)+ (ε − 3)a2β2
)

− 2a2β2
]

+ τ
α2
ε

β2 (ε − 1)

× exp(−β(r − a))
(

6 + 6βr + 3β2r2 + β3r3
)

− 4(1 + τ)

× exp(−αε(r − a))
(

3 + 3αεr + α2
ε r2
)]

sin θ. (B4)

Appendix C. Short- and long-time responses

The velocity fields of fluid and network for a rigid sphere moving with velocity
Ũ(s) in a PVE medium are given in (3.2). The limiting values of all these
quantities at t = 0 and t → ∞ can be computed analytically using the following
limits in s-space: f (t = 0+) = lims→∞ s f̃ (s) and f (t → ∞) = lims→0 s f̃ (s). For a sphere
moving with constant force F◦, the time-dependent velocity of the sphere would be
U(s) = R−1(s)F(s) ≡ M(s) (F◦/s). The sphere starts to move with velocity

U(t → 0) = F◦
6πηa

(
9φ2 + 6aβ◦φ + 3a2β2◦
8φ2 + 8aβ◦φ + 3a2β2◦

)
, (C1)

and at t → ∞ stops with total displacement x(t → ∞) = (F◦/6πηa)τ ((5 − 6ν)/
4(1 − ν)). At t → ∞, the velocity fields of the fluid and network are zero, and the fluid
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Figure 4. Relaxation of displacements in the parallel (a) and perpendicular (b) directions to the applied force,
for different values of permeability β◦, Poisson ratio ν, and separation distances r/a. In all cases, the relaxation
is dominated (down to 1 − u(‖,⊥)f /u∞

f ≈ 0.001) by the shear relaxation time scale τ .

and network displacements are

u∞
r,f = F◦τ

6πηa

(
a

4β2◦r3(ν − 1)(φ − 1)

) (
3(1 − 2ν)(1 + aβ◦)+ a2β2

◦ (φ − 1)

+6β2
◦ r2(1 − ν)(1 − φ)+ 3(2ν − 1)(1 + β◦r) exp(−β◦(r − a))

)
, (C2)

u∞
θ,f = F◦τ

6πηa

(
a

8β2◦ r3(ν − 1)(φ − 1)

) (
3(1 − 2ν)(1 + aβ◦)+ a2β2

◦ (φ − 1)

−6β2
◦ r2(1 − ν)+ 3φβ2

◦ r2(3 − 4ν)+ 3(2ν − 1)

(1 + β◦r + β2
◦r2) exp(−β◦(r − a))

)
, (C3)

u∞
r,n = F◦τ

6πηa

(
a3 + 6ar2(ν − 1)

4r3(ν − 1)

)
, (C4a)

u∞
θ,n = F◦τ

6πηa

(
a3 + 3ar2(3 − 4ν)

8r3(ν − 1)

)
. (C4b)

At t = 0, the velocity of the fluid and network is a Stokes velocity field; when the volume
fraction of the network is zero, φ → 0.

Appendix D. Relaxation dynamics of the fluid and network phases

Figure 4 shows the relaxation of the fluid displacement fields induced by the probe’s
motion in parallel (figure 4a) and perpendicular (figure 4b) directions for different values
of permeability β◦, separation distance r/a, and Poisson ratio ν. As can be seen, in all
instances and in both the parallel and perpendicular directions, the displacement relaxation
is almost entirely (down to 1 − u(‖,⊥)f /u∞

f ≈ 0.001) controlled by the relaxation time scale
of shear forces τ .

Figure 5(a) shows the ratio of parallel to perpendicular fluid displacements, Γf =
u‖

f /u
⊥
f , as a function of t/τ . The main plot is for different values of t/τ , taking β◦ = 2 and

ν = 0.3. In the inset, we plot this ratio for different values of permeability, with r/a = 10
and ν = 0.3. We see that this ratio remains nearly 2 (within 2 % error), indicating a VE
response.
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Figure 5. (a) The ratio of parallel to perpendicular fluid displacements, Γf = u‖
f /u

⊥
f , as a function of t/τ . Main

plot: different values of r, taking β◦ = 2 and ν = 0.3. Inset: different permeabilities, for r/a = 10 and ν = 0.3.
(b) The sphere relaxation 1 − x(t)/x∞ versus time for different values of viscosity, when ν = 0.3, G = 1 and
ξ = 1. Inset plot represents the results as a function of rescaled time t/τD, where τD = a2ξ(1 − 2ν)/2G(1 − ν)

is the diffusion time scale of the compressibility field for distance a.
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Figure 6. Relaxation of displacements of the network in the parallel (a,b) and perpendicular (c,d) directions
to the applied force, for different values of permeability β◦ and Poisson ratio ν.

Figure 5(b) shows the relaxation of the sphere as a function of time for different values of
viscosity, when the friction coefficient ξ and shear modulus of the network G are constant.
We see that decreasing the viscosity leads to faster initial relaxation and does not affect
the long-time relaxation as long as ξ remains unchanged.

Figure 6 shows the relaxation of the network displacement fields induced by the probe’s
motion in parallel (figures 6a,b) and perpendicular (figures 6c,d) directions for different
values of permeability β◦, and Poisson ratio ν at distance r/a = 10. Similar to the
probe’s dynamics, the initial relaxation is determined by shear modes given by the VE
model (dashed line), and for long times the network displacements exhibit slow relaxation
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Figure 7. Pressure relaxation on the surface of the sphere, r = a, moving with constant force in a PVE medium
for different values of (a) permeability, and (b) Poisson ratio of the medium. Each main plot is the pressure
relaxation when the time is normalized with shear relaxation time τ , whereas the inset is pressure relaxation
when it is normalized by PVE diffusion time scale τD = a2α2τ . (c) Pressure relaxation for different values
of distance from the sphere. The main plot shows pressure as a function of t/τ , and the inset when time is
normalized by PVE diffusion time scale τ r

D = r2α2τ . Pressure is normalized by the applied constant force
pressure in Stokes flow, i.e. pst = F◦ cos θ/4πr2, and we take β◦ = 2 and ν = 0.3 for fixed values.

dynamics. In the direction of applied force (u‖
n), we see non-monotonic behaviour (a local

minimum, followed by a local maximum).
Figure 7 shows the fluid pressure relaxation time on the surface of the spherical

probe (when it is normalized by Stokes pressure pst = F◦ cos θ/4πa2). Each main plot
corresponds to pressure relaxation as a function of t/τ , and in the inset we plot the pressure
as a function of PVE diffusion time scale τ r

D = a2α2τ . Also, we plot the (normalized)
pressure as a function of time for different values of distance r, when we put β◦ = 2
and ν = 0.3. As we can see from (3.4), the pressure relaxation is controlled entirely by a
diffusion process corresponding to propagation of the network compressibility. (Note that
the Laplacian of the pressure satisfies a diffusion equation, like q; see (2.7).)
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