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By studying two unsharp quantum structures, namely extended lattice ordered effect

algebras and lattice ordered QMV algebras, we obtain some characteristic theorems of MV

algebras. We go on to discuss automata theory based on these two unsharp quantum

structures. In particular, we prove that an extended lattice ordered effect algebra (or a lattice

ordered QMV algebra) is an MV algebra if and only if a certain kind of distributive law

holds for the sum operation. We introduce the notions of (quantum) finite automata based

on these two unsharp quantum structures, and discuss closure properties of languages and

the subset construction of automata. We show that the universal validity of some important

properties (such as sum, concatenation and subset constructions) depend heavily on the

above distributive law. These generalise results about automata theory based on sharp

quantum logic.

1. Introduction

Based on the Hilbert space formalisation of quantum mechanics, Birkhoff and von

Neumann proposed the concept of quantum logic in 1936, where projectors on a Hilbert

space are regarded as quantum events of the logic. In quantum theory, quantum events

reflect the projector valued (PV) measure of an observable. Since the set P(H) of all

projection operators of a separable Hilbert space is an orthomodular lattice, orthomodular

lattices have been the main model used in the study of quantum logic (Husimi 1937;

Kaplansky 1955; Mackey 1963; Kalmbach 1983). However, the set of projection operators

is not the set of maximal possible events produced by the statistical rules of quantum

theory, so the PV measure is generalised to the positive operator valued (POV) measure.

E(H) denotes the set of all positive operators of Hilbert space, and its elements are called

effects (Ludwig 1983). Any event in P(H) always satisfies the non-contradiction principle,

and such an event is called a sharp event. The quantum logic corresponding to P(H) is

then called sharp quantum logic. Since quantum events reflected by E(H) do not satisfy

the non-contradiction principle, they are called unsharp events, and the quantum logic

corresponding to E(H) is called unsharp quantum logic (Chiara et al. 2004). Recently,

many algebraic structures have been proposed to reflect quantum effects. In 1994, Foulis
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introduced effect algebras equivalent to difference posets (Kôpka and Chovanec 1994)

and unsharp orthoalgebras (Giuntini and Greuling 1989). Effect algebras can be regarded

as one of the main models for unsharp quantum logic. As special kinds of effect algebras,

multiple valued (MV) algebras play an analogous role to that of Boolean algebras in

sharp quantum logic (Chang 1958; Dvurečenskig and Pulmannová 2000). In addition,

quantum MV (QMV) algebras are another important kind of unsharp quantum structure

(Giuntini 1996), which are not only a non-lattice theoretic generalisation of MV algebras,

but also a non-idempotent generalisation of orthomodular lattices.

Finite automata are among the simplest abstract mathematical models of computing

machines, and automata theory is an essential part of computation theory. In order

to set up a theory of computation based on quantum logic, automata theories based on

orthomodular lattices have been established (Qiu 2003, 2004; Ying 2000a, 2000b, 2005; Qiu

and Ying 2004). With this approach, the authors revealed an essential difference between

classical computation theory and computation theory based on quantum logic. They

found that many important properties of automata depend heavily on the distributivity

of the underlying logic. Since unsharp quantum logic embodies the general laws of

quantum theory, it is necessary to establish automata theory based on unsharp quantum

structures.

In this paper, we mainly consider two algebraic models of unsharp quantum logic:

extended lattice ordered effect algebras and lattice ordered QMV algebras. We find

that extended lattice ordered effect algebras (or lattice ordered QMV algebras) are MV

algebras if and only if they satisfy a certain kind of distributive law relating to the sum

operation, which is the main operation on unsharp quantum structures. Interestingly,

when setting up automata theory based on these unsharp quantum logics, we find that

some important properties (such as the sum, concatenation and subset construction of

automata) depend heavily on this kind of distributivity of truth-valued lattices. We

conclude that distributivity of the underlying lattice is essential for building automata

theory based on either orthomodular lattice or more general unsharp quantum structures.

This generalises the results of automata theory based on sharp quantum logic.

2. Preliminaries

A partial binary operation on a non-empty set P is a map ⊕ : D(⊕) −→ P with domain

D(⊕) ⊆ P × P . If D(⊕) = P × P , then ⊕ is a total binary operation or simply a binary

operation. If � is a binary operation that extends a partial binary operation ⊕, we call �
a total extension of ⊕.

Definition 2.1 (Foulis and Bennett 1994). An effect algebra is a system ϕ = (E, 0, 1,⊕),

where 0, 1 are distinct elements of E, and ⊕ is a partial binary operation on E that

satisfies the following conditions:

(E1) If (a, b) ∈ D(⊕), then (b, a) ∈ D(⊕) and b ⊕ a = a ⊕ b.

(E2) If (a, b), (a ⊕ b, c) ∈ D(⊕), then (b, c), (a, b ⊕ c) ∈ D(⊕) and a ⊕ (b ⊕ c) = (a ⊕ b) ⊕ c.

(E3) For every a ∈ E, there exists a unique a′ ∈ E such that (a, a′) ∈ D(⊕) and a ⊕ a′ = 1.

(E4) If (a, 1) ∈ D(⊕), then a = 0.
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Remark 2.1. Let ϕ = (E, 0, 1,⊕) be an effect algebra.

(i) Define a � b if and only if there exists an element c ∈ E such that a ⊕ c = b. Then

the relation � is a partial order relation such that 0 � a � 1 for all a ∈ E. If (E; �)

is a lattice, then E is called a lattice ordered effect algebra.

(ii) If b is the unique element of E such that a⊕ b = 1, then b is called the orthosupplement

of a and denoted a′.

(iii) a ⊕ b is defined if and only if a � b′.

(iv) 0′ = 1, a′′ = a for all a ∈ E and a � b implies b′ � a′.

(v) Given a � b, c � d ∈ E, the existence of b ⊕ d implies the existence of a ⊕ c, in which

case a ⊕ c � b ⊕ d.

(vi) For all a, b, c, d ∈ E, if a ⊕ b = a ⊕ c, then b = c.

Example 2.1 (Foulis and Bennett 1994). Let H be a complex Hilbert space and E(H) be

the set of self-adjoint linear operators on H whose inner product 〈, 〉 satisfies ∀φ ∈ H, 0 �
〈Aφ,φ〉 � ‖φ‖2. It is easy to see that E(H) is a poset with respect to the partial ordering

A1 � A2 if and only if ∀φ ∈ H, 〈A1φ,φ〉 � 〈A2φ,φ〉. Define 0 = 0, 1 = I, A′ = I − A and,

for A,B ∈ E(H), A ⊕ B = A + B, if A + B is defined in E(H). Then (E(H), 0, I,⊕) is an

effect algebra.

Definition 2.2 (Gudder 1995). A supplement algebra (S-algebra for short) is an algebraic

structure M = (M,�,′ , 0, 1) consisting of a set M with two constant elements 0, 1, a unary

operation ′ and a binary operation � on M satisfying the following axioms:

(S1) a � b = b � a.

(S2) a � (b � c) = (a � b) � c.

(S3) a � a′ = 1.

(S4) a � 0 = a.

(S5) a′′ = a.

(S6) a � 1 = 1.

A multiple-valued (MV) algebra (Chang 1958) is an S-algebra satisfying:

(MV) (a′ � b)′ � b = (a � b′)′ � a.

For an S-algebra, we define the following three binary operations:

a � b = (a′ � b′)′

a 
 b = (a � b′) � b

a � b = (a � b′) � b.

A quantum MV (QMV) algebra (Giuntini 1996) is an S-algebra satisfying:

(QMV1) a � (b 
 a) = a.
(QMV2) (a 
 b) 
 c = (a 
 b) 
 (b 
 c).
(QMV3) a � [b 
 (a � c)′] = (a � b) 
 (a � (a � c)′].
(QMV4) a � (a′ 
 b) = a � b.

(QMV5) (a′ � b) � (b′ � a) = 1.

It is easy to see that under the operations 
 and �, a QMV algebra cannot be a lattice

(Giuntini 1996).
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Fig. 1. M6 in Example 2.3.

Example 2.2. Let (Q,�,′ , 0, 1) be a QMV algebra. Define a ⊕ b = a � b if and only if

a � b < 1 or a = b′. Then (Q,⊕, 0, 1) is an effect algebra.

It is easy to see from the definition that every MV algebra is a QMV algebra. However,

the converse is not true.

Example 2.3. M6 = {a, a′, b, b′, 0, 1}, which is determined by a particular modular sub-

lattice of the spin 1
2

(Svozil 1998), is a QMV algebra but not an MV algebra. The

operation � is taken as the sup of the lattice and ′ as the orthocomplement.

Example 2.4. Let E(H) be the set of effects on H . Define 0 = 0, 1 = I, A′ = I −A and, for

A,B ∈ E(H),

A � B =

{
A ⊕ B, if A ⊕ B is defined

I, otherwise.

Then ϕ = (E(H), 0, 1,�,′ ) is a QMV algebra but not an MV-algebra. Again, ϕ is not

an effect algebra.

If a, b are elements of a QMV-algebra, we write a � b if a = a 
 b.

A QMV-algebra M is quasi-linear if a �� b implies a 
 b = b (Giuntini 1996).

A QMV-algebra (respectively, an MV-algebra) M is linear if ∀a, b ∈ M, either a � b or

b � a.

Example 2.5. Let ϕ = (E,⊕, 0, 1) be an effect algebra. The operation ⊕ could be extended

to a total operation � : E × E −→ E by defining

a � b =

{
a ⊕ b, if (a ⊕ b) is defined

1, otherwise.

We use ϕ̄ = (E, 0, 1,�) to denote the resulting structure and call it an extended effect

algebra. From Gudder (1995), we can see that an extended effect algebra ϕ̄ preserves the

order of effect algebra and is equivalent to a quasilinear QMV algebra.

The following distributive laws hold for lattice ordered effect algebras.

Proposition 2.1 (Dvurečenskig and Pulmannová 2000). Let ϕ = (E,⊕, 0, 1) be a lattice

ordered effect algebra. If a ⊕ b and a ⊕ c exist, then (a ⊕ b) ∧ (a ⊕ c) = a ⊕ (b ∧ c) for any

a, b, c ∈ E.
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Fig. 2. M4 in Example 2.6

However, distributive laws for the operation � may not hold for quasilinear QMV

algebras, as shown by the following example.

Example 2.6. Consider M = {0, 1, a, b} with the operations ⊕ and ′ defined as a = a′ �=
b = b′. Then (M,⊕, 0, 1) is a lattice ordered effect algebra. However, its extension is just

M4, where a � b = 1, 1 � x = 1 for any x ∈ M. Furthermore, it is also the smallest QMV

algebra that is not an MV algebra (Giuntini 1996).

Obviously, a � (a′ ∧ b) = a � 0 = a, but (a � a′) ∧ (a � b) = 1. Thus the distributive law

� over ∧ does not hold.

But the distributive law is true for MV algebras.

Proposition 2.2 (Dvurečenskig and Pulmannová 2000). Let ϕ = (M,�, 0, 1) be an MV

algebra. Then for all a, b, c ∈ M, we have a � (b ∧ c) = (a � b) ∧ (a � c).

3. Characterising MV algebras

From Example 2.6, we know that there are lattice ordered QMV (quasilinear QMV)

algebras that are not MV algebras. However, when they satisfy the distributive law, they

become MV algebras.

In this section, we give a characterisation of MV (linear MV) algebras using the

distributive law.

Theorem 3.1. Let ϕ = (Q,�, 0, 1) be a lattice ordered quasilinear QMV algebra. The

following conditions are equivalent:

(i) ϕ is a linear MV algebra.

(ii) For all u, v, w ∈ Q, (u � v) ∧ (u � w) = u � (v ∧ w).

Proof. ‘(i) implies (ii)’ follows from Proposition 2.2.

We now show that ‘(ii) implies (i)’. Since a quasilinear QMV algebra is an MV algebra

if and only if it is linear, we only need to prove that any two elements are comparable

in Q. To show a contradiction, assume that there are a and b that are incomparable.

(1) First we prove there exists no x ∈ Q such that 0 < x < a. Otherwise, if such an x

existed, there would be x < b. Indeed, let u = a′, v = x, w = b, so v < u′. Thus v ⊕ u

exists. Since a and b are incomparable, u′ and w are incomparable. So w � u′, that is,

u � w = 1. Then (u � v) ∧ (u � w) = (u ⊕ v) ∧ 1 = u ⊕ v, by the distributive law, and

the equality is equal to u ⊕ v ∧ w. Furthermore, we have v = v ∧ w by Remark 2.1.
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Fig. 3. in Theorem 3.1

Obviously, v �= w. Thus v < w, that is, x < b. Since Q is a lattice, 0 < x � a ∧ b. There

are c and d such that a = (a ∧ b) ⊕ c and b = (a ∧ b) ⊕ d because (Q,⊕, 0, 1) is also an

effect algebra. Clearly, c and d are incomparable. Otherwise, if we suppose c � d, then

a = (a ∧ b) ⊕ c � (a ∧ b) ⊕ d = b by monotony of the operation ⊕ in effect algebras,

which contradicts our assumption of the incomparability of a and b. Similarly, from

c < a, we have c < b by the incomparability of a and b. Thus there exists one e ∈ Q

such that b = c ⊕ e. Again e < a since a, b are incomparable. That is, e � a ∧ b. But

a = (a ∧ b) ⊕ c and b = c ⊕ e lead to b � a, which contradicts our assumption of the

incomparability of a and b. So there exists no x such that 0 < x < a or 0 < x < b.

(2) Similarly, we prove there exists no y such that a < y < 1. If such a y existed, then we

would have 0 < y′ < a′. Clearly, a′ and b′ are incomparable. By the same reasoning

as in (1), we have 0 < y′ < b′. This contradicts (1). So there exists no y such that

a < y < 1 or b < y < 1.

From the discussion in (1) and (2), we conclude that all elements are incomparable with

each other except for 0 and 1.

Since Q is a lattice ordered quasilinear QMV algebra, for any a ∈ Q, 0 < a < 1, we

have a � a �= a. Indeed, if a � a = a, then a � a′, otherwise, a ⊕ a = a, which means

a = 0. But a 
 a′ = (a � a) � a′ = a � a′ = (a′ � a)′ = 0 �= a′, which is in contradiction

with the definition of quasilinear QMV algebras. Hence, for any 0 < a < 1, we have

a � a = 1. As for the other elements, if 0 < a, b < 1, a �= b, then a � b � a and a � b � b.

So a � b � a ∨ b = 1, that is, a � b = 1. For complement operation ′, there are only

two choices for any a ∈ Q if a �= 0, 1: either a′ = a or a′ �= a. From the discussion, ϕ is

just given by the three cases shown in Figures 3, 4 and 5. In the following, we show that

these quasilinear QMV algebras do not satisfy the distributive law. For the case shown

in Figure 3, considering elements a, a′, b ∈ Q, we have (a � a′) ∧ (a � b) = 1 ∧ 1 = 1, but

a� (a′ ∧ b) = a� 0 = a, which destroys the distributive law. Similarly, the distributive law

does not hold for the other two cases (Figure 4 and 5) either. So there are no incomparable

elements in Q, which shows that ϕ must be linear, that is, ϕ is a linear MV algebra.

Theorem 3.2. Let ϕ = (Q,�, 0, 1) be a lattice ordered QMV algebras. The following

conditions are equivalent:

(i) ϕ is an MV algebra.

(ii) For all u, v, w ∈ Q, (u � v) ∧ (u � w) = u � (v ∧ w).
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Fig. 4. in Theorem 3.1

Fig. 5. in Theorem 3.1

Proof. ‘(i) implies (ii)’ follows from Proposition 2.2.

We now prove that ‘(ii) implies (i)’. For any a, b ∈ Q, assume a′ � b = 1. Let u =

a′, v = b, w = a. Then (a′ � b) ∧ (a′ � a) = a′ � (b ∧ a), namely, a′ � b = a′ � (b ∧ a).

By a′ � b = 1, then a′ � (b ∧ a) = a′ � a. Since b ∧ a � a, a � a, we have b ∧ a = a by

Giuntini (1996, Theorem 2.5). That is, a � b. So ϕ is an MV algebra from Giuntini (1996,

Theorem 2.14).

Remark 3.1. Since an MV algebra is linear if and only if it is quasilinear, Theorem 3.2

gives us an alternative way to prove Theorem 3.1.

Remark 3.2. From Theorems 3.1 and 3.2, we see that the distributive law � over ∧ plays

an important role in transforming a QMV algebra into an MV algebra. What about the

distributive law for � over 
? The 
 operation is another prime operation in QMV

algebra in addition to �. However, there exists a QMV algebra with all u, v, w ∈ E,

(u � v) 
 (u � w) = u � (v 
 w) that is not an MV algebra. For example, M4 is such a

QMV algebra.

4. E-valued automata

As we know that MV algebras play an important role in the development of unsharp

quantum logic where Lukasiewicz disjunction, denoted ⊕, and conjunction, denoted �, are

the main operations in MV algebras. Using these two operations along with ∨ and ∧ in

lattices, Di Nola and Gerla (Di Nola and Gerla 2004; Gerla 2003; Gerla 2004) proposed

the semiring reduction of MV algebras. The authors gave the definition of automata
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on MV algebras from a semiring perspective and found languages of automata on MV

algebras that retain some of the regularity of formal power series. Given the relation

between MV algebras and effect algebras, we naturally ask: from the point of view of

unsharp quantum logic, how can we set up automata theory based on these quantum

structures and how can it be characterised?

In this section, we extend the truth lattice to lattice ordered effect algebras to ensure

that some relevant definitions are well defined, and we give the definition of automata

based on extended lattice ordered effect algebras. Similarly, we can obtain automata

theory based on lattice ordered QMV algebras without changing anything.

We first recall some notions from classical automata theory. An automaton is a quintuple

R = 〈Q,Σ, I, T , E〉 in which:

(i) Q is a finite non-empty states set.

(ii) Σ is a finite alphabet whose elements are called labels.

(iii) I ⊆ Q is the initial states set.

(iv) T ⊆ Q is the terminal states set.

(v) E ⊆ Q× Σ ×E, and each (p, σ, q) ∈ E is called a transition in R and means that input

σ makes state p become q.

Obviously, conditions (iii), (iv) and (v) in the above definition can be treated as the

following propositions with ‘yes/no’ as their truth values:

(a) For any q ∈ Q, is q an initial state?

(b) For any p ∈ Q, is p a terminal state?

(c) Does σ make state p become q?

Hence, it is easy to see that classical automata theory is indeed based on boolean logic.

In a similar way, we let quantum logic denote the truth value of the propositions,

and can set up automata theory based on quantum logic. In the following, E denotes an

extended lattice ordered effect algebra (a lattice ordered quasilinear QMV algebras). If

we use E now to denote a lattice ordered QMV algebra, we can obtain automata theory

based on lattice ordered QMV algebras without changing anything.

Let Σ∗,Σ+ be the sets of strings over Σ with Σ∗ =
⋃∞

n=0 Σn and Σ+ =
⋃∞

n=1 Σn, and let

ε = Σ0 denote the empty string.

Definition 4.1 (E-valued non-deterministic finite automaton). An E-valued non-

deterministic finite automaton is a quintuple M = (Q,Σ, I, T , δ) in which:

(i) Q is a finite non-empty state set.

(ii) Σ is a finite alphabet.

(iii) I : Q → E is the initial state function.

(iv) T : Q → E is the terminal state function.

(v) δ : Q × Σ ∪ {ε} × Q → E is the transition function, where δ(p, ε, q) =

{
0, p = q

1, p �= q.

As in the classical case, δ(p, σ, q) indicates the truth value of the proposition that

input σ causes state p to become q.
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Definition 4.2 (n-path). An n-path between p and q in M is a finite sequence of states of

the form π = (p0 = p, p1, p2, · · · , pn = q). In a given E-automaton M, the set of all paths

π = (p0 = p, p1, p2, · · · , pn = q) of length n between p and q will be denoted by Pn
M(p, q).

The n-path π is assigned with the function ||π|| : Σn → E, such that

||π||(σ1 · · · σn) = �i=0,1,···,n−1δ(pi, σi+1, pi+1).

Then a word s = σ1σ2 · · · σn ∈ Σ+ is accepted with degree

|M|(s) = ∧p,q∈Q ∧π∈Pn
M (p,q) I(p) � ||π||(s) � T (q).

Now we give the definitions of a general E-valued language and an E-valued recognis-

able language.

Definition 4.3. An E-valued language L on Σ is a map L : Σ∗ → E.

An E-valued language L on Σ is called a recognisable language if there exists an

E-valued automaton M such that L = |M|. In detail, for any word s = σ1σ2 · · · σn ∈ Σ+,

L(s) = |M|(s) = ∧p,q∈Q ∧π∈Pn
M (p,q) I(p) � ||π||(s) � T (q).

Let L(E) denote the class of E-valued recognisable languages of Σ∗. Obviously, L(E) is

a subset of (E)Σ
∗
.

Definition 4.4. Let f, g ∈ (E)Σ
∗

be E-valued subsets.

(i) The intersection of two E-valued languages f and g, denoted f ∧ g, is defined by

(f ∧ g)(s) = f(s) ∧ g(s) for any s ∈ Σ∗.

(ii) The sum of E-valued languages f and g, denoted f � g, is defined by (f � g)(s) =

f(s) � g(s) for any s ∈ Σ∗.

(iii) Denote sR = σn · · · σ1 for any s = σ1 · · · σn ∈ Σn(n � 1), and εR = ε. The reversal of

an E-valued language L is defined by fR(s) = f(sR).

(iv) The concatenation of two E-valued languages f and g, denoted f · g, is defined by

(f · g)(s) =
∧

s1s2=s

[f(s1) � g(s2)] for any s ∈ Σ∗.

5. Closure properties of an E-valued language

In this section, we discuss the closure properties of an E-valued language.

Theorem 5.1. L(E) is closed under the intersection operation.

Proof. Suppose M1 = (Q1,Σ, I1, T1, δ1) and M2 = (Q2,Σ, I2, T2, δ2) are two E-valued

automata with Q1 ∩ Q2 = φ. The languages they recognise are L1 and L2,

respectively.

Construct an E-valued automaton M1 ∧ M2 = (Q1 ∪ Q2,Σ, I
M1∧M2 , TM1∧M2 , δM1∧M2 ) as

follows:

IM1∧M2 : Q1 ∪ Q2 −→ E, p �−→
{
I1(p), p ∈ Q1

I2(p), p ∈ Q2

https://doi.org/10.1017/S0960129509007701 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129509007701


Y. Shang, X. Lu and R. Lu 746

TM1∧M2 : Q1 ∪ Q2 −→ E, p �−→
{
T1(p), p ∈ Q1

T2(p), p ∈ Q2

δM1∧M2 : Q1 ∪ Q2 × Σ ∪ {ε} × Q1 ∪ Q2 −→ E,

(p, σ, q) �−→

⎧⎪⎨
⎪⎩
δ1(p, σ, q), p, q ∈ Q1

δ2(p, σ, q), p, q ∈ Q2

1, otherwise.

Let Pn
M1∧M2

denote the set of paths π = (p0, p1, · · · , pn) with pi ∈ Q1 ∪ Q2 for every

i = 0, 1, 2, · · · , n. For every s = σ1 · · · σn ∈ Σ∗ and π ∈ Pn
M1∧M2

, we have

||π||M1∧M2 (s) = δM1∧M2 (p0, σ1, p1) � · · · � δM1∧M2 (pn−1, σn, pn)

=

⎧⎪⎨
⎪⎩

||π||M1 (s), if π ∈ Pn
M1

||π||M2 (s), if π ∈ Pn
M2

1, otherwise.

Hence, for any s = σ1σ2 · · · σn ∈ Σ+,

|M1 ∧ M2|(s) = ∧p,q∈QM1∧M2 ∧π∈Pn
M1∧M2

(p,q) (IM1∧M2 (p) � ||π||(s) � TM1∧M2 (q))

= ∧p,q∈Q1∪Q2
∧π∈Pn

M1
(p,q) ∧π∈Pn

M2
(p,q)(I

M1∧M2 (p)

�||π||(s) � TM1∧M2 (q))

=
[
∧p,q∈Q1

∧π∈Pn
M1

(p,q) (I1(p) � ||π||(s) � T1(q))
]

∧
[
∧p,q∈Q2

∧π∈Pn
M2

(p,q) (I2(p) � ||π||(s) � T2(q))
]

= L1(s) ∧ L2(s)

and

|M1 ∧ M2|(ε) =
∧

p∈Q1∪Q2

(IM1∧M2 (p) � TM1∧M2 (p))

=

⎛
⎝ ∧

p∈Q1

I1(p) � T1(p)

⎞
⎠ ∧

⎛
⎝ ∧

p∈Q2

I2(p) � T2(p)

⎞
⎠

= |M1|(ε) ∧ |M2|(ε).

So we have proved that M1 ∧ M2 is the E-valued automaton corresponding to

L1 ∧ L2.

Suppose M1 = (Q1,Σ, I1, T1, δ1) and M2 = (Q2,Σ, I2, T2, δ2) are E-valued automata with

Q1 ∩ Q2 = φ. Construct an E-valued automaton

M1 � M2 = (Q1 × Q2,Σ, I
M1�M2 , TM1�M2 , δM1�M2 )
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where

IM1�M2 : (p, q) ∈ Q1 × Q2 �−→ I1(p) � I2(q)

TM1�M2 : (p, q) ∈ Q1 × Q2 �−→ T1(p) � T2(q)

δM1�M2 : ((p0, q0), σ, (p1, q1)) ∈ (Q1 × Q2) × Σ ∪ {ε} × (Q1 × Q2)

�−→ δ1(p0, σ, p1) � δ2(q0, σ, q1)

Theorem 5.2. Let M1 = (Q1,Σ, I1, T1, δ1) and M2 = (Q2,Σ, I2, T2, δ2) be two E-valued

automata, and L1, L2 be two E-valued languages corresponding to M1,M2, respectively.

If one of the Q1, Q2 contains at least two states, then |M1 � M2|=L1 � L2 if and only if

(a � b) ∧ (a � c) = a � (b ∧ c) for any a, b, c ∈ E.

Proof.

— If part:

Suppose s = σ1 · · · σn ∈ Σn(n � 1) and for any a, b, c ∈ E, that (a�b)∧(a�c) = a�(b∧c).
Then

(L1 � L2)(s) = |M1|(s) � |M2|(s)
= ∧p0 ,···,pn∈Q1

(I1(p0) � δ1(p0, σ1, p1) � · · · � T1(pn))

� ∧q0 ,···,qn∈Q2
(I2(q0) � δ2(q0, σ1, q1) � · · · � T2(qn))

= ∧pi∈Q1
(I1(p0) � · · · � T1(pn) � (∧qi∈Q2

(I2(q0) � · · · � T2(qn))))

= ∧pi∈Q1
(∧qi∈Q2

(I1(p0) � · · · � T1(pn) � I2(q0) � · · · � T2(qn)))

= ∧pi∈Q1 ,qi∈Q2
(I1(p0) � I2(q0) � δ1(p0, σ1, p1) � δ2(q0, σ1, q1) � · · ·

�T1(pn) � T2(qn))

= ∧pi∈Q1 ,qi∈Q2
(IM1�M2 (p0, q0) � δM1�M2 ((p0, q0), σ1, (p1, q1)) � · · ·

�TM1�M2 (pn, qn))

= |M1 � M2|(s)

It is easy to see that |M1|(ε) � |M2|(ε) = |M1 � M2|(ε).
— Only if part:

If the distributive law (a�b)∧ (a� c) = a� (b∧ c) does not hold, there exist a, b, c ∈ E

such that (a � b) ∧ (a � c) �= a � (b ∧ c). Let

M1 = (Q1,Σ, I1, δ1, T1)

M2 = (Q2,Σ, I2, δ2, T2)

be two automata, where

Σ = {σ}
Q1 = {p0, p1}
Q2 = {q0, q1}

I1(p0) = a

I1(p1) = 0
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δ1(p0, σ, q) = 0 for any q ∈ Q1

δ1(p, σ, q) = 1 for any p �= p0

T1(p) = 0 for any p ∈ Q1

I2(q0) = 0

I2(q1) = 0

δ2(q0, σ, q1) = b

δ2(q1, σ, q0) = c

δ2(·, σ, ·) = 1 for any other cases

T2(p) = 0 for any p ∈ Q2.

Then |M1|(σ) = a, |M2|(σ) = b∧ c, and (|M1| � |M2|)(σ) = a� (b∧ c). By construction,

M1 � M2 = (Q1 ∪ Q2,Σ, I
M1�M2 , TM1�M2 , δM1�M2 ).

It is easy to see that

(|M1 � M2|)(σ) = ∧pi∈Q1 ,qi∈Q2
(IM1�M2 (p0, q0) �

δM1�M2 ((p0, q0), σ1, (p1, q1)) � · · · � TM1�M2 (pn, qn))

= (a � b) ∧ (a � c) �= a � (b ∧ c)

= (|M1| � |M2|)(σ).

From the above result and Theorem 3.1, we obtain the following result.

Corollary 5.1. If E is an MV algebra, then L(E) is closed under the sum operation.

Theorem 5.3. L(E) is closed under the reversal operation.

Proof. Assume that L ∈ L(E) and M = (Q,Σ, I, T , δ) is the automaton corresponding

to L. Construct an E-valued automaton MR = (Q,Σ, IR, TR, δR) as follows:

IR(p) = T (p)

TR(p) = I(p)

δR(p, σ, q) = δ(q, σ, p).

Thus, for any s = σ1 · · · σn ∈ Σn(n � 1),

|MR |(s) = ∧p0 ,···,pn∈Q(IR(p0) � δR(p0, σ1, p1) � · · · � δR(pn−1, σn, pn) � TR(pn))

= ∧p0 ,···,pn∈Q(T (p0) � δ(p1, σ1, p0) � · · · � δ(pn, σn, pn−1) � I(pn))

= ∧pn,···,p0∈Q(I(pn) � δ(pn, σn, pn−1) � · · · � δ(p1, σ1, p0) � T (p0))

= |M|(sR).

It is easy to see that (|M1| � |M2|)(ε) = |M1 � M2|(ε). That is |MR |(s) = L(sR) = LR(s).

Hence LR ∈ L(E).

Suppose M1 = (Q1,Σ, I1, T1, δ1) and M2 = (Q2,Σ, I2, T2, δ2) are E-valued automata with

Q1 ∩ Q2 = φ.
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Construct an E-valued automaton M1 · M2 = (Q,Σ, IM1·M2 , TM1·M2 , δM1·M2 ) with

Q = Q1 ∪ Q2

IM1·M2 (p) =

{
I1(p), p ∈ Q1

1, p ∈ Q2

TM1·M2 (p) =

{
T1(p) � |M2|(ε), p ∈ Q1

T2(p), p ∈ Q2

and δM1·M2 : Q × Σ ∪ {ε} × Q −→ E defined as follows:

(i) When σ ∈ Σ,

δM1·M2 (p, σ, q) =

⎧⎪⎪⎨
⎪⎪⎩
δ1(p, σ, q), p, q ∈ Q1

δ2(p, σ, q), p, q ∈ Q2

a, p ∈ Q1, q ∈ Q2

1, p ∈ Q2, q ∈ Q1

where a =
∧

p′∈Q1
[δ1(p, σ, p

′) � T1(p
′) � I2(q)] ∧

∧
p′′∈Q2

[T1(p) � I2(p
′′) � δ2(p

′′, σ, q)].

(ii) When σ = ε,

δM1·M2 (p, ε, q) =

{
0, q = p

1, q �= p.

Theorem 5.4. Let M1 = (Q1,Σ, I1, T1, δ1),M2 = (Q2,Σ, I2, T2, δ2) be an E-valued automata,

and L1, L2 be two E-valued languages corresponding to M1,M2, respectively. Then L1 ·L2

is the E-valued language of M1 · M2 if and only if (a � b) ∧ (a � c) = a � (b ∧ c) for any

a, b, c ∈ E.

Proof.

— If part:

We use M to denote M1 · M2. Assume n � 1, s = u1u2 · · · un ∈ Σ+, π = (p0 =

p, p1, p2, · · · , pn = q) ∈ Pn
M(p, q). If p0 ∈ Q1 and pn ∈ Q2, there is one k (0 � k � n − 1)

such that pk ∈ Q1, pk+1 ∈ Q2 .

If q ∈ Q2, then:

|M1 · M2|(s) =
∧

p,q∈Q

∧
π∈Pn

M (p,q)

(
IM1·M2 (p) � ||π||(s) � TM1·M2 (q)

)

=
∧

p∈Q1 ,q∈Q2

[
I1(p)

�
∧

0�k�n−1

∧
p1 ,···,pk∈Q1

∧
pk+1 ,···,pn−1∈Q2

(
k∑

i=1

δ1(pi−1, ui, pi)

� δM1·M2 (pk, uk+1, pk+1) �
n∑

i=k+2

δ2(pi−1, ui, pi)

)

� T2(q)

]
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=
∧

p∈Q1 ,q∈Q2

⎡
⎢⎣I1(p)

�
∧

0�k�n−1

∧
p1 ,···,pk∈Q1

∧
pk+1 ,···,pn−1∈Q2

⎛
⎝ k∑

i=1

δ1(pi−1, ui, pi)

�

⎡
⎣ ∧
p′∈Q1

(δ1(pk, uk+1, p
′) � T1(p

′) � I2(pk+1))

∧
∧

p′′∈Q2

(T1(pk) � I2(p
′′) � δ2(p

′′, uk+1, pk+1)

⎤
⎦

�
n∑

i=k+2

δ2(pi−1, ui, pi)

⎞
⎠

� T2(q)

⎤
⎥⎦

=
∧

0�k�n−1

⎡
⎣ ∧
p0 ,···,pk ,p′∈Q1

∧
pk+1 ,···,pn∈Q2

[
I1(p0) �

k∑
i=1

δ1(pi−1, ui, pi)

�δ1(pk, uk+1, p
′)

�T1(p
′) � I2(pk+1) �

n∑
i=k+2

δ2(pi−1, ui, pi) � T2(pn)

]

∧
∧

p0 ,···,pk∈Q1

∧
pk+1 ,···,pn,p′′∈Q2

[
I1(p0)

�
k∑

i=1

δ1(pi−1, ui, pi) � T1(pk) � I2(p
′′)

�δ2(p
′′, uk+1, pk+1) �

n∑
i=k+2

δ2(pi−1, ui, pi) � T2(pn)

] ⎤
⎦

=
∧

0�k�n−1

(|M1|(u1 · · · uk+1) � |M2|(uk+2 · · · un))

∧ (|M1|(u1 · · · uk) � |M2|(uk+1 · · · un))

=
∧

v1v2=s,v1 ,v2∈Σ∗

|M1|(v1) � |M2|(v2).
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If q ∈ Q1, we have

|M1 · M2|(s) =
∧

p,q∈Q

∧
π∈Pn

M (p,q)

(
IM1·M2 (p) � ||π||(s) � TM1·M2 (q)

)

=
∧

p,q∈Q1

∧
π∈Pn

M1
(p,q)

I1(p) � ||π||(s) � T1(q) � |M2|(ε)

= |M1|(s) � |M2|(ε).

Thus

|M1 · M2|(s) =
∧

v1v2=s,v1 ,v2∈Σ∗

(|M1|(v1) � |M2|(v2))

for n � 1.

If s = ε, we have

|M1 · M2|(ε) =
∧
p∈Q

(IM1·M2 (p) � TM1·M2 (p))

=
∧
p∈Q1

(I1(p) � TM1·M2 (p))

=
∧
p∈Q1

(I1(p) � T1(p) � |M2|(ε))

=
∧
p∈Q1

(I1(p) � T1(p)) � |M2|(ε)

= |M1|(ε) � |M2|(ε).

— Only if part:

If the distributive law is not true, there exist a, b, c ∈ E such that (a � b) ∧ (a � c) �=
a � (b ∧ c). Let M1 = (Q1,Σ, δ1, I1, T1) be an automaton where

Q1 = {p0, p1}
Σ = {σ}

I1(p0) = T1(p1) = 0

I1(p1) = T1(p0) = 1

δ1(p0, σ, p1) = a

δ1 = 1 for other arguments.

And M2 = (Q2,Σ, δ2, I2, T2) where

Q2 = {q0, q1, q2}
I2(q0) = T2(q1) = T2(q2) = 0

I2(q1) = I2(q2) = T2(q0) = 1

δ2(q0, σ, q1) = b

δ2(q0, σ, q2) = c

δ2 = 1 for other arguments.
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Let s = σσ. Then

|M1 · M2|(s) =
∧
ri∈Q

IM1·M2 (r0) � δM1·M2 (r0, σ, r1)

� δM1·M2 (r1, σ, r2) � TM1·M2 (r2)

=
∧

r1 ,r2∈Q
I1(p0) � δM1·M2 (p0, σ, r1)

� δM1·M2 (r1, σ, r2) � TM1·M2 (r2)

= (I1(p0) � δ1(p0, σ, p1) � [1 ∧ δ2(q0, σ, q1)] � T2(q1))

∧(I1(p0) � δ1(p0, σ, p1) � [1 ∧ δ2(q0, σ, q2)] � T2(q2))

∧(I1(p0) � [δ1(p0, σ, p1) ∧ 1] � δ2(q0, σ, q1) � T2(q1))

∧(I1(p0) � [δ1(p0, σ, p1) ∧ 1] � δ2(q0, σ, q2) � T2(q2))

= (a � b) ∧ (a � c).

In addition,

(L1 · L2)(s) = (|M1|(ε) � |M2|(σσ)) ∧ (|M1|(σ) � |M2|(σ)) ∧ (|M1|(σσ) � |M2|(ε))
= a � (b ∧ c).

Then, by a � (b ∧ c) �= (a � b) ∧ (a � c), we have |M|(s) �= (L1 · L2)(s).

From Theorems 5.4 and 3.1, we have the following results.

Corollary 5.2. If E is an MV algebra, L(E) is closed under the concatenation operation.

Corollary 5.3. If E is an MV algebra, L(E) is closed under the Kleene closure.

Furthermore, letting x � y = (x′ � y′)′, we can define an automaton on extended lattice

ordered effect algebras as follows.

An E-valued nondetermined finite automaton is a quintuple M = (Q,Σ, I, T , δ) in

which:

(i) Q is a finite non-empty state set.

(ii) Σ is a finite non-empty set of input symbols.

(iii) I : Q → E is the initial state function.

(iv) T : Q → E is the terminal state function.

(v) δ : Q × Σ ∪ {ε} × Q → E is the transition function, where δ(p, ε, q) =

{
1, p = q

0, p �= q.

Let Σ∗,Σ+ be the sets of strings over Σ with Σ∗ =
⋃∞

n=0 Σn and Σ+ =
⋃∞

n=1 Σn, and let

ε = Σ0 denote the empty word.

The n-path π is assigned with the label ||π|| ∈ EΣn

(n � 1) such that

||π||(σ1 · · · σn) = �i=0,1,···,n−1δ(pi, σi+1, pi+1).
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In a given E-valued automaton M, the set of all paths π = (p0 = p, p1, p2, · · · , pn = q) of

length n between p and q will be denoted by Pn
M(p, q). Then a word s = σ1σ2 · · · σn ∈ Σ+

is accepted with E-value

|M|(s) = ∨p,q∈Q ∨π∈Pn
M (p,q) I(p) � ||π||(s) � T (q).

Similarly, we can define language of the automata and discuss the corresponding

properties of the language.

Remark 5.1. Let E denote an orthomodular lattice. Then � becomes ∧ in orthomodular

lattices. Thus, we can obtain the automata theory based on orthomodular lattices

(Ying 2000a, 2000b, 2005; Qiu 2003, 2004).

6. Subset construction of E-valued automata

In this section, we give the subset construction of E-valued automata.

Definition 6.1. Given an E-valued automaton M = (Q,Σ, I, T , δ), if

(i) there is a unique q0 in Q with I(q0) �= 1,

(ii) there exists at most one q for any pair (p, σ) ∈ Q × Σ such that δ(p, σ, q) �= 1,

then we call M a determined E-valued automaton.

Definition 6.2 (Subset construction of E-valued automata). If E is finite, the subset

construction of an E-valued automaton M = (Q,Σ, I, T , δ), denoted EM , is defined as

EM = (EQ,Σ, Ī , T̄ , δ̄), where:

(i) EQ : Q → E, that is, the set of all E-valued subsets of Q.

(ii) Ī : EQ → E, Ī(X) =

{
0, X = I

1, otherwise.

(iii) T̄ : EQ → E.T̄ (X) = ∧p∈Q(X(p) � T (p)).

(iv) Defining YX,σ(q) = ∧p∈Q(X(p) � δ(p, σ, q)) for any σ ∈ Σ, X ∈ EQ, we have δ̄ :

EQ × Σ ∪ {ε} × EQ −→ E, is defined as

(a) When σ ∈ Σ,

δ̄(X, σ, Y ) =

{
0, Y = YX,σ

1, otherwise.

(b) When σ = ε,

δ̄(X, ε, Y ) =

{
0, X = Y

1, otherwise.

Since E is finite, EQ is finite too. Thus, it is easy to see that EM is an E-valued determined

automaton.

In the following, we will show that only the distributive law can warrant that an E
automaton M and its subset construction have the same ability to recognise languages.

Theorem 6.1. If E is finite and M is an E-valued automaton, then |M| = |EM | if and only

if (a � b) ∧ (a � c) = a � (b ∧ c) for any a, b, c ∈ E.
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Proof.

— If part:

For any s = σ1σ2 · · · σn ∈ Σ+,

|EM |(s) = ∧X,Y ∈EQ ∧π∈Pn

EM
(X,Y ) (Ī(X) � ||π||(s) � T̄ (Y ))

= ∧X0 ,···,Xn∈EQ(Ī(X0) � δ̄(X0, σ1, X1) � · · ·
� δ̄(Xn−1, σn, Xn) � T̄ (Xn))

= Ī(I) � δ̄(I, σ1, YI,σ1
) � · · · � T̄ (Xn)

= T̄ (Xn)

= ∧pn∈Q(Xn(pn) � T (pn))

= ∧pn∈Q
(
∧pn−1∈Q(Xn−1(pn−1) � δ(pn−1, σn, pn)

)
� T (pn))

= ∧pn∈Q
((

∧pn−1∈Q
(
· · ·

(
∧p0∈QI(p0) � δ(p0, σ1, p1)

)
· · ·

)
� δ(pn−1, σn, pn))

� T (pn))

= ∧pn∈Q ∧pn−1∈Q · · · ∧p0∈Q (I(p0) � δ(p0, σ1, p1) · · ·
� δ(pn−1, σn, pn) � T (pn))

= ∧pi∈Q(I(p0) � δ(p0, σ1, p1) · · · � δ(pn−1, σn, pn) � T (pn))

= |M|(s),

and |EM |(ε) = Ī(I) � T̄ (I) =
∧
p∈Q

(I(p) � T (p)) = |M|(ε).

— Only if part:

If the distributive law does not hold, then there exist a, b, c ∈ E such that (a � b) ∧
(a � c) �= a � (b ∧ c). Let M = (Q, {σ}, I, T , δ) be an automaton where

Q = {p, q}
I(p) = 0

I(q) = 0

T (p) = a

T (q) = 1

δ(p, σ, p) = b

δ(q, σ, p) = c

δ = 1 for other cases.

Thus

|EM |(σ) = ∧p1∈Q
(
∧p0∈QI(p0) � δ(p0, σ, p1)

)
� T (p1)

= ∧p1∈Q
(
∧p0∈Qδ(p0, σ, p1)

)
� T (p1)

= ∧p1∈Q (δ(p, σ, p) ∧ δ(q, σ, p)) � T (p1)

= (δ(p, σ, p) ∧ δ(q, σ, p)) � T (p)

= (b ∧ c) � a.
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But

|M|(σ) = ∧p0 ,p1∈Q(I(p0) � δ(p0, σ, p1) � T (p1))

= (b � a) ∧ (c � a)

�= |EM |(σ).

Corollary 6.1. If E is a finite MV algebra, an E-valued non-determined finite automaton

has an equal ability to recognise languages as its subset construction.

Remark 6.1. When E is a lattice ordered QMV algebra, it is easy to see that the results

still hold.

7. Conclusion

In this paper, we have considered two algebraic models of unsharp quantum logic:

extended lattice ordered effect algebras (lattice ordered quasilinear QMV algebras) and

lattice ordered QMV algebras. They are the main models for unsharp quantum logic. For

unsharp quantum structures, the sum (or partial sum) operation is the main operation. By

studying properties of the sum operation on these two quantum structures, we find that

if they satisfy a certain kind of distributive law, they become MV algebras. Interestingly,

when we set up automata theory based on these quantum structures, although some

constructions are valid without distributivity, we find it is essential for the more interesting

ones (such as sum, concatenation and the subset construction of automata). From these

results, we can conclude that one can only do automata theory in the presence of a

distributivity law, and this holds even when we go from orthomodular lattices to the

general unsharp quantum structures.
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