
Laser and Particle Beams

cambridge.org/lpb

Research Article

Cite this article: Sharma RP, Kumar N, Uma R,
Singh RK, Gupta PK (2019). Transient setting of
relativistic ponderomotive non-linearity and
filamentation of ultra-short laser pulses in
collisionless plasmas. Laser and Particle
Beams 37, 252–259. https://doi.org/10.1017/
S0263034619000454

Received: 3 April 2019
Revised: 23 May 2019
Accepted: 23 May 2019
First published online: 11 July 2019

Key words:
Filamentation; non-linearity; plasma waves

Author for correspondence:
Narender Kumar, Centre for Energy Studies,
Indian Institute of Technology, Delhi-110016,
India, E-mail: narenderk@svc.ac.in

© Cambridge University Press 2019

Transient setting of relativistic ponderomotive
non-linearity and filamentation of ultra-short
laser pulses in collisionless plasmas

R.P. Sharma1, Narender Kumar1,2, R. Uma1, Ram Kishor Singh3 and P.K. Gupta1

1Centre for Energy Studies, Indian Institute of Technology, Delhi-110016, India; 2Department of Physics, Sri
Venkateswara College, University of Delhi, New Delhi-110021, India and 3Department of Physics, Shivpati Post
Graduate College, Siddharth University, Siddharth Nagar-272205, India

Abstract

We study the setting up of relativistic ponderomotive non-linearity in an under-dense colli-
sionless cold plasma. Using the fluid model, coupled system of equations of the laser beam
and electron plasma oscillations has been derived. We present the numerical simulation for
this coupled system of equations, when the coupling arises through relativistic ponderomotive
non-linearity. The filamentation of the laser beam has been found to vary appreciably with
perturbation wave number. The results show that with time, localized structures become
more complex and the plasma oscillation frequency spectra have several harmonic peaks at
terahertz frequencies when the electron plasma frequency is in terahertz range and laser
frequency is around 2.35 × 1015 rad/s. We also present the semi-analytical model to capture
the underlying physics.

Introduction

The study of non-linear interaction of high-power laser with plasma is an area of very much
importance. For laser–plasma-based applications, one needs an understanding of laser pulse
energy absorption and its coupling with plasma species or electrostatic modes of plasmas
(Chen and Sudan, 1993; Adak et al., 2014; Sharma et al., 2017). The laser imparts large quiver
velocity to electrons that non-linearly couples with the collective modes of the plasma, giving
rise to an ample of non-linear processes such as decay and modulational instability, stimulated
Raman and Brillouin scattering, resonant absorption, self-focusing and filamentation of the
laser pump (Ozaki et al., 2007; Mulser and Bauer, 2010). Parametric instabilities have proven
to be detrimental to the success of laser-induced fusion (Kaw et al., 1973; Kruer, 1974; Liu and
Tripathi, 1986; Umstadter, 2003).

Malka et al. (1997) and Modena et al. (1995) have studied the electron plasma wave for
high-energy electron acceleration and have shown that the electron plasma wave-associated
electric field can be very large in short distances. The transient evolutions of laser pump in
plasma have been studied under ponderomotive non-linearity by Sharma et al. (2015). They
have numerically solved the coupled system of equations comprising laser beam and ion
acoustic wave (modified Zakharov system of equations). The ion acoustic spectra contain
spatial harmonics which get modified with time and result in the laser beam localization.

Sprangle et al. (1990) have derived coupled non-linear equations for the vector potential of
the radiation field and the electrostatic potential of the plasma by using the cold-fluid model
along with “quasistatic” approximation. This approximate one-dimensional non-linear model
describes the self-consistent interaction of intense laser pulse and plasma. Pukhov and
Meyer-ter-Vehn (2002) have carried out 3D particle-in-cell simulations of the short laser
pulse at relativistic intensity for the propagation in slightly under-dense plasma. Their work
showed the occurrence of the mono-energetic beam of electron bunches (∼300 MeV) from
the 3D wave breaking of the laser wake field. Feit et al. (2001) have also studied the intense
beam self-focusing in under-dense plasma and show that a laser beam can be self-channeled
in plasma if laser intensity is high enough to produce electron cavitation.

Brandi et al. (1993) analyzed the self-focusing of the laser beam under quasi steady-state
approximation and also derived the equations for laser beam and plasma oscillation dynamics
under relativistic ponderomotive non-linearity. The present study analyzes the transient
relativistic ponderomotive non-linearity when the quasi steady approximation is not taken
into account using the computational method to solve the coupled equation of laser pump
and electron plasma oscillations. The generation of density harmonics and their effects on
the filamentation of laser beam have also been investigated. In addition to the computation
method, a semi-analytic model has also been presented to describe the non-linear develop-
ment of the laser beam.
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The present study is very important as the transient evolution of
electron density variation involves applications including har-
monic generation of plasma oscillations in THz frequency range
and filamentation of the laser beam. This study is done at a very
high laser frequency compared to the electron plasma frequency
for under-dense plasma. The transient evolution of electron
density variation is of considerable interest and has given rise to
applications including harmonic generation of plasma oscillations
in THz frequency range and filamentation of the laser beam.

This paper is organized as follows: section “Model equations
for laser and plasma oscillations” discussed the coupled equations
of laser and plasma oscillations in the plasma when the coupling
arises via relativistic ponderomotive non-linearity. Section
“Numerical simulation and results” presented the numerical sim-
ulation results, section “Transient self-focusing: a semi-analytical
approach” presented transient self-focusing from the semi-
analytical model, and section “Conclusion” consists of conclusion.

Model equations for laser and plasma oscillations

The propagation dynamics of the laser beam and plasma oscilla-
tions in a collisionless plasma coupled through ponderomotive
and relativistic non-linearity have been obtained as follows.

Equation for the laser

The propagation of a linearly polarized intense laser pump of fre-
quency ω0 along z-direction in an under-dense plasma, of equilib-
rium electron density, n0 has been considered.

The laser is considered to be propagating in a medium with
plasma density oscillations in the background. The laser beam
dynamical equation can be obtained (Ginzburg, 1970) from the
equations of continuity and momentum balance and also with
the Maxwell’s equations:

∂nj
∂t

+ ∇.(nj�vj) = 0 (1)

∂(mj�vj)

∂t
+ �vj.∇(mj�vj) = qj �E + (�vj × �B)

c

{ }
(2)

∇ × �E = − 1
c
∂�B
∂t

(3)

∇ × �B = 4p
c

�J + 1
c
∂�E
∂t

(4)

where, j symbolizes plasma species (e for electron and i for ion)
and qj, mj, vj, nj and Tj symbolize the charge, mass, velocity, num-
ber density, and energy of the plasma species, respectively. The
wave equation in the x-component of the electric field can be
obtained by combining Eqs. (3) and (4)

∇2Ex − (∇(∇.�E))x =
4p
c2

∂Jx
∂t

+ 1
c2
∂2Ex
∂t2

(5)

For ∇1/1 ≪ 1, one may ignore (∇(∇.�E))x term in the wave
equation (Sodha et al., 1976), where ϵ is the non-linear plasma
dielectric constant.

The solution of Eq. (5) can be written as follows (Sodha et al.,
1976):

Ex = A(x, z, t) exp {−i(v0t − k0z)} (6)

where A(x, z, t) is the wave amplitude of slow space and time
dependence,

k0 = v0

c
1− v2

p0

gv2
0

[ ]1/2

and v2
p0 = 4pn0e2/me0, me0 is the electron rest mass and

γ{ = (1 + a2/2)1/2} is the relativistic factor and

a = e|A|
me0v0c

By using the relation, Jx =−eneve, where ne = no + n1;
�ve(= e�E/meiv0) is the drift velocity of electrons and we obtain

Jx = − nee2

meiv0
Ex − i

v0

∂A
∂t

e−i(v0t−k0z)
[ ]

(7)

Using Eqs. (6) and (7) in Eq. (5), we derive in the WKB
approximation (Akhmanov et al., 1968).

2ik0
∂A
∂z

+ ∂2A
∂x2

+ 2iv0

c2
∂A
∂t

= v2
p0

c2g
n1
n0

A (8)

Dynamics of plasma oscillation

A laser with non-uniform amplitude (e.g., Periodic) along its
wavefront exerts a relativistic ponderomotive force
( F
�

p{= −me0c2∇(g− 1)}) on electrons and electrons move
away under the influence of this force, from the maximum field
amplitude region (Brandi et al., 1993). For the case, when the
pulse duration is shorter than ion plasma period, the ions do
not have enough time to move, which creates charge imbalance
between ions and electrons which results in a space charge field
(�Ep). Taking the time derivative of the continuity equation [Eq.
(1)] and using the equation of motion of the electron [Eq. (2)],
we get the following equation of electron density

∂2ne
∂t2

− e∇.(ne�E)
me0g

= ∇. �ve.∇(g�ve)
g

+ e�ve × �B
me0gc

{ }
ne

− ∇. − ne
g

∂g

∂t
+ ∂ne

∂t

{ }
v�e

(9)

To get the equation for plasma oscillation, we linearize (ne =
no + n1, whereno≫ n1) Eq. (9) and using the Poisson equation
(∇.�Ep = −4pn1e), we get

∂2

∂t2
+ v2

p0

g

( )
n1 = − c2n0

4g2
e

me0v0c

( )2
∂2|A|2
∂x2

+ ∂2|A|2
∂z2

( )[

+ e
me0v0c

( )4
∂|A|2
∂x

( )2

+ ∂|A|2
∂z

( )2
( )] (10)
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Equation (10) represents the non-linear dynamical equation of
plasma oscillation under the non-linear force due to the laser
pump. We can write the dimensionless form of Eqs. (8) and
(10) as follows:

i
∂A′

∂t′
+ i

∂A′

∂z′
+ ∂2A′

∂x′2
= c4n

′A′ (11)

∂2n′

∂t′2
+ c1n

′ = −c2
∂2|A′|2
∂x′2

+ ∂|A′|2
∂x′

( )2
[ ]

− c3
∂2|A′|2
∂z′2

+ ∂|A′|2
∂z′

( )2[ ]
(12)

here,

c1 =
v2
p0 t

2
n

g
, c2 = c2t2nn0

4g2x2nnn
, c3 = c2t2nn0

4g2z2nnn
and c4 = 1

g
.

In the above equations, primed values represent the normalized
quantities:

tn = 2hv0

c2k20
, xn = (h)0.5

k0
, zn = h

k0
,

nn = c2k20
hv2

p0
n0 and An = 6me0v0c

e

where, η = 1200 and 6 = 10.
The normalizing parameters, z−1

n and nn are a fraction of the
wave number k0 of the pump laser beam and background number
density n0, respectively. Now to investigate the impact of plasma
oscillations on the localization process of laser and harmonics
generation of plasma oscillations, we solve Eqs. (11) and (12)
numerically.

Numerical simulation and results

The initial condition of the simulation is considered as

A′ (x, z, 0) = A0(1+ b cos(axx
′))(1+ b cos (azz

′)) (13a)

n′(x, z, 0) = −n10|A′(x, z, 0)|2 (13b)

The initial amplitude of the laser beam and electron plasma
density fluctuations are taken as A0 = 1 and n10 = 1, respectively.
The perturbation magnitude, β is considered 0.1 for this study.
Here, αx and αz represent the perturbation wave number and
their value is considered 0.1. The equations are numerically solved
in a spatial periodic domain of step size (2π/αx) × (2π/αz) having
256 × 256 grid points. For space integration, the pseudo-spectral
method is used and the finite difference method is used for
time evolution with a predictor corrector scheme (Canuto et al.,
1988). The time step width is “dt” taken as 5 × 10−6. The veracity
of the present algorithm has been established by first using it for a
non-linear Schrödinger equation to give a constant Plasmon
number. Thereafter, this algorithm is altered to solve our present
equations.

The parameters used in the simulation are: ω0 = 2.35 ×
1015 rad/s, ωp0 = 0.001ω0, n0 = 1.74 × 1015/cm3 (under-dense
region), a = 1.0, and k0z = 7.84 × 104 /cm. The normalizing
parameters are xn = 4.4 × 10−4 cm, zn = 3.05 × 10−2 cm, tn =
1.02 ps, and En = 1.34 × 107 stat V/cm. Figure 1a–1c shows the
localized structures of field intensity, |A

′
|2of the laser beam in

the x-z plane at a distinct time.
Electron plasma oscillations perturb the background electron

density because the non-linear force arises from the laser pump.
This causes the variation of density in the form of modes/har-
monic and non-linear coupling between plasma oscillation and
laser pump. The density variation or non-linear coupling causes
filamentation of laser pump that results in localized structures.
Figure 1a shows the commencement of the localized structure for-
mation that progressively grows into a complex localized structure
as shown in Figure 1b, 1c. Figure 2 depicts the variation of elec-
tron density in the x-z plane at a normalized time, t

′
= 5. It shows

the density depletion in some regions of the x-z plane. The den-
sity cavity formations are observed at a distinct time related to the
electric field coherent structures. Figure 3 represents the frequency
spectrum of the electron plasma oscillations. In this figure, one
can observe the excitation of plasma oscillation of THz frequency,
appearing due to the density oscillations generated at kx = αx,
2αx, 3αx upto 64αx and the oscillations’ peak lies in the THz
frequency region. In laser–plasma interaction, the generation of
an acoustic wave in the THz region has been experimentally
reported by Adak et al. (2015). Figure 4a, 4b shows the normal-
ized density mode | n| variation with kx (when kz = 0) at a distinct
time. With time, the higher order density modes are generated.
The non-linear force due to the laser beam, which is given in
R.H.S. of eqn. (12), is responsible for the generation of harmonic
in the density (Hussain et al., 2017). When kz = αz = 0, at any time
we may write Eqs. (13a) and (13b) as follows

A′(x′, 0) = 1+ b cos (axx
′) (14)

n′(x′, 0) = −(1+ b cos (axx
′))2

= −(1+ b2cos2(axx
′)+ 2b cos (axx

′)) (15)

Equation (15) signifies the generation of density harmonics at αx
and 2αx. Using Eqs. (14) and (15), the R.H.S. term n

′
A

′
of

Eq. (11) can be expressed as

n′A′ = −(1+ b cos (ax x
′))(1+ b2cos2(ax x

′)+ 2b cos (ax x
′))

(16)

Equation (15) shows the generation of density harmonics cor-
responding to αx and 2αx. Combining Eqs. (14), (15), and (11)
one can observe the generation of density harmonics correspond-
ing to αx, 2αx, and 3αx as given in Eq. (16).

Transient self-focusing: a semi-analytical approach

In this section, a semi-analytical approach is discussed using the
results acquired from the simulation to describe the role of the
non-linear progression of the laser beam as the localized structure
and varying number density (Sharma et al., 2015; Hussain et al.,
2017). For a wave having rapid phase variation, the wave equation
in the WKB approximation by neglecting the time variation can
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Fig. 1. Normalized intensity profile of the laser beam in the x-z plane at a distinct time (a) t
′
= 0, (b) t

′
= 8, and (c) t

′
= 16.
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be written as

2ik0
∂A
∂z

+ ∂2A
∂x2

− k20
hg

ne
nn

( )
A = 0 (17)

where nn is the normalizing electron density and the time-
dependent term (ne/nn) can be obtained from simulation results.
The time-dependent term is further expanded to incorporate its
dependency in Eq. (17).

ne
nn

= N +
∑64
j=1

nj(cos ( jaxx
′))

= N +
∑64
j=1

nj 1− j2x′2a2
x

2
+ . . .

( )
(18)

Here,N and nj are the Plasmon number and the number density
of harmonics obtained through simulation for j = 1 to 64. One may
write the solution of Eq. (17) as follows (Akhmanov et al., 1968).

A = A0(x, z)e
ik0s(x,z) (19)

Using the Eqs. (18) and (19) in Eq. (17), and thereafter
equating the real and imaginary parts we get Eqs. (20) and (21)

− 2k20A0
∂S
∂z

+ ∂2A0

∂x2

− k20A0
∂S
∂x

( )2

− k20
j g

A0 N +
∑64
j=1

nj 1− j2x′2a2
x

2
+ . . .

( )( )

= 0

(20)

and

2
∂A0

∂z
+ 2

∂A0

∂x
∂S
∂x

+ A0
∂2S
∂x2

= 0 (21)

Introducing an eikonal and initially Gaussian beam of initial
beam width r0,

A0 = E00
f 1/2

exp − x2

2r20 f 2

( )
(22)

and

S = x2

2f
∂f
∂z

(23)

here, E00 is the initial amplitude of the laser beam. On substituting
Eqs. (22) and (23) in Eq. (20) and equating the x2 coefficients; in
the paraxial ray approximation, the beam width parameter f is
given by

d2f

dj2
= 1

f 3

− 1
jg

r20v
2
0

c2

( )
1
f 2

E00
En

( )2

− 1
jg

r40v
2
0

c2

( )
f a2

x

2

∑64
j=1

njj
2 (24)

where j(= (c z/r20v0)) is the dimensionless distance of propaga-
tion and r0( = 10 μm) is the transverse scale size of the wave.
Runge Kutta method (fourth order) has been adopted to solve

Fig. 2. Plot of the normalized electron density in the x-z plane at a normalized time, t
′
= 5.

Fig. 3. Plot of the normalized frequency spectrum of the plasma density oscillations.
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Eq. (24) with the initial boundary conditionsf = 1, d f /dj = 0 at
ξ = 0. The wave can propagate without divergence and conver-
gence when the diffraction term [due to the first part of the
R.H.S. of Eq. (24)] balances the non-linear part term [due to
the second and third part of the R.H.S. of Eq. (24)]. It is the
third term of Eq. (24) that accommodates the transient progres-
sion as the magnitude of spectral modes varies with time, thus
the transient progression effect of laser pulse occurs. When the
laser travels in the plasma, the non-linearity arises in the beam
and it suffers self-focusing. With time, the decrease of non-
linearity becomes more prominent due to the dominance of
natural diffraction and causes the beam defocusing. This phenom-
enon leads to the competition among the diverging and the con-
verging term (due to the relativistic ponderomotive non-linearity
and density oscillations contribution) and leads to the oscillatory
self-focusing of the beam. Figure 5a, 5b shows the laser beam
localization for two different times, one can notice from the figure
that in early time when the impact of the density oscillations via
non-linearity is trivial initially then there is no beam focusing.
However, the contribution from the density oscillations turns

out to be important and leads into a laser beam focusing in a
later time.

Conclusion

The transient evolution of laser beam has been investigated in the
occurrence of relativistic ponderomotive non-linearity in under-
dense plasma. The numerical simulation has been accomplished
for coupled equations of laser pump and plasma oscillation with-
out assuming the quasistatic approximation. We observed the
laser light getting localized and these localized structures become
more complex with time evolution. The results also show that the
electron plasma oscillation’s frequency spectra have peaks in the
THz region. In addition to the filamentary density depletions, a
substantial density cavity has also been observed. Periodic
perturbation produced the density harmonics which affects the
localization of the laser beam. A semi-analytical model has been
developed using the computational results to study the
time-varying self-focusing phenomenon of the laser beam. The
semi-analytical model predicts that time-varying self-focusing of

Fig. 4. Variation of the normalized electron density | n|versus k x (at fixed k z) for a normalized time (a) t
′
= 3 and (b) t

′
= 23.
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the laser beam depends on the values of density harmonics. The
present model is applicable in experimental and theoretical stud-
ies involving transient localization of the laser beam in plasma.
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