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Abstract

Objectives: To perform the preliminary tests of coarctation of aorta repair trainer, evaluate
the surgical properties of the simulation and to assess and enhance residents’ skills.
Methods: Single patient’s angio-CT anatomy data were converted into magnified 3D-printed
model of aortic coarctation with hypoplastic aortic arch, serving for creation of a mould used
during wax copies casting. Wax cores were painted with six layers of elastic silicone andmelted,
yielding phantoms that were consecutively fixed in amounting with andwithout a thoracic wall.
Simulation included: proximal and distal aortic arch clamping, incision of its lesser curvature,
extended end-to-end anastomosis with 7-0 suture. A head-mounted camera video recording
enabled anastomosis time and mean one suture bite time evaluation. Leakage assessment
was done by a water test. Results: Two residents performed nine simulations each. Last four
runs were performed with thoracic wall attached. All phantoms performed well, enabling
tissue-like handling and cutting, excellent suture retention, and satisfactory elasticity.
Median anastomosis times were 22 033″ and 24 047″ for phantoms without and with thoracic
wall (p= not significant (NS)). Median times needed to pass suture through one side of anas-
tomosis and regrasp needle were, respectively, 9″ and 13″ (p < 0.001). Median total number of
leakages per phantom equalled 2 for both difficulty levels. There were no significant inter-res-
ident differences in all assessed parameters. Conclusions: This medium-fidelity aortic coarcta-
tion repair trainer showed its feasibility in replication of major critical steps of the real
operation. Objective surgical efficiency parameters could be obtained from each simulation
and compared between trainees and at different adjustable difficulty levels.

Coarctation of the aorta is a CHDoccurring in approximately 3 of 10,000 live births.1 This defect
may be accompanied by varying degrees of aortic arch hypoplasia. The diagnosis is based on
echocardiographic study2 and usually is an indication for an urgent surgery in the neonatal
period. Coarctation of the aorta repair is an example of operation demanding a substantial
experience in vascular anastomosis creation in time-limited neonatal left lateral thoracotomy
conditions, as there is reduction of a blood flow in the patient’s lower body under passive mild
hypothermia. The necessity to perform an extended end-to-end anastomosis on a delicate
neonatal aortic tissue increases the difficulty of the procedure further.

Repetitio est mater studiorum. Success in performing any procedure originates from tedious
process of learning and practicing. Surgeons have very few opportunities to train, aside from
operation on living patient. It takes many attempts to acquire all technical skills necessary to
perform safely and independently an operation without cardio-pulmonary bypass, such as
coarctation of the aorta repair. Insufficient availability of courses exploiting human cadavers
and ethical problems concerning operating on animals result in operating on patient being
the most common way to gather essential experience and know-how. As learning process is
inseparably bounded with making mistakes, culture of focusing on outcomes and general
emphasis on patient’s safety stand in opposite to this approach. Using appropriate simulators
may address mentioned issues.

A plethora of different medical simulators have been created with the purpose of training
the next-generation physician in different fields of medicine3–5 including cardiac surgery.6–8

Multiple repetitions of operative sequences during the simulation improve the trainees’manual
skills, increase self-confidence during these manoeuvres, and help to reduce stress during the
first surgery on a real patient. All this accounts for potentially better clinical outcomes. During
the development of aortic coarctation simulator, we hypothesised that deliberate practice with
this training device could facilitate acquisition of aware automatism regarding safe manipula-
tion of delicate aortic wall tissue and handling of fine monofilament suture (6-0, 7-0).

The objective of the study was to perform preliminary tests of aortic coarctation repair
trainer, including evaluation of its surgical properties, as well as to assess and enhance residents’
skills by monitoring intraoperative surgical behaviour at different simulation difficulty levels.
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Methods

Patient’s anatomical data were collected from angio-CT
scan obtained during ELECTROCARDIOGRAM-gated protocol
(128-slice device; Siemens Somatom Definition AS, Siemens,
Berlin, Germany) with the use of intravenous contrast agent
(Visipaque; GE Healthcare AS, Oslo, Norway; dosage: 1.5 mg/kg,
flow: 0.8 ml/second). Scan was performed after transthoracic echo-
cardiogram turned out to be insufficient for surgical approach plan-
ning. Digital Imaging and Communications in Medicine (DICOM)
images (Fig 1a) were processed by the open-source DICOM process-
ing software – Slicer 3D (The Brigham and Women’s Hospital, Inc.,
Boston, Massachusetts, United States of America) (version 4.5.0,
http://www.slicer.org).9 The volume representing aorta was seg-
mented with Crop Volume and Threshold Effect Tools (Fig 1b) –
only voxels with specific tissue density were selected andmerged into
a solid structure corresponding to the aorta and its branches. Then,
the surface of the structure was translated into a mesh and saved as a
stereolitography file. The mesh was processed using open-source 3D
software: Blender (Stichting Blender Foundation, Amsterdam,
Netherlands) (version 2.76; Blender Foundation, http://www.
blender.org) and MeshLab (Istituto di Scienza e Tecnologie 78
dell’Informazione – Consiglio Nazionale delle Ricerche, Pisa,
Italy) (version 2016.12; Istituto di Scienza e Tecnologie
dell’Informazione – Consiglio Nazionale delle Ricerche, http://
www.meshlab.net)10 giving the final, magnified virtual model of
coarctation of the aorta with hypoplastic aortic arch (Fig 2a).

The aortic coarctation prototype was 3D-printed using
Selective Laser Sintering technology (EOS Formiga P110, material
PA 2200; EOS, Monachium, Germany) – Figure 2b. This printed
model was used to create amould that served for wax copies casting
(Fig 2c). The wax cores were painted with six layers of stretch
resistant silicone (GUMOSIL M, Zakład Chemiczny, Silikony

Polskie Ltd, Nowa Sarzyna, Poland) andmelted after complete poly-
merisation yielding the ultimate elastic phantom (Fig 2d), which
was magnified 2.4 times compared to patient’s aorta. The final
diameter of the model’s transverse arch was 14.2 mm at the level
of brachiocephalic trunk, 9.6 mm at the level of left common
carotid artery, 8.6 mm at the level of left subclavian artery,
and 5.5 mm at the level of isthmus. The phantom was fixed in
the custom made mounting and placed on the operative table.

The simulator mounting was composed of a wooden plank of
30 cm × 18 cm × 2 cm, two drainage pipe holders to support a
detachable sector of poly-vinyl pipe imitating thoracic wall during
lateral thoracotomy and a piece of sponge supporting the descend-
ing aorta. The phantom was fixed with elements of disposable
syringes, cable ties, and insulated copper wire (Fig 3).

All simulations took place in an operating theatre environment
(Fig 4a). Residents were equipped with surgical telescopes, and pri-
mary operator also held head-mounted flashlight. Proximal and
distal aortic arch clamping, excision of patent ductus arteriosus,
incision of lesser curvature of the arch as well as extended end-
to-end anastomosis (with the use of Yavo Polipropylen 7-0 suture;
Yavo, Bełchatów, Poland, http://yavo.com.pl) were simulated.
Initial simulations were performed without the detachable part
imitating the thoracic wall, greatly increasing manoeuvrability in
the operative field (Fig 3a). In order to increase the difficulty level
of the training, the thoracic wall element was mounted back on
during final simulation runs (Fig 3b).

Residents’ intraoperative surgical behaviour was monitored by
the analysis of video recorded from a head-mounted camera
(Integra Luxtec DLX UltraLite Pro Camera, Plainsboro, New
Jersey, United States of America) – Figure 4b. Parameters such
as anastomosis time and mean one suture bite time were registered
by frame-by-frame analysis of each simulation footage by
DaVinci Resolve software (version 12.5; Blackmagic Design,

Figure 1. Imaging of the coarctation of the
aorta with the use of angio-CT. (a) – patient’s
angio-CT source image. (b) –Threshold Effect
Tool allows to extract voxels representing given
shade of grey. Image shows dilated patent duc-
tus arteriosus, hypoplastic aortic arch with its
three vascular branches, and the coarctation
of the aorta.

Figure 2. Consecutive stages of silicone phan-
tom creation. (a) Virtual model – result of
angio-CT data processing. (b) 3D-printed, rigid
hollow model. (c) Wax core ready to apply
silicone coating. (d) Hollow elastic phantom
before simulation.
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Port Melbourne, Australia, https://www.blackmagicdesign.com/
products/davinciresolve).

The robustness of anastomoses was assessed by the following
water test. Each phantom was fixed to the mounting with the
use of closed tip needle protectors or disposable syringes of
different sizes occluding all five vascular ends in a water-tight man-
ner. This enabled a connection of the phantom to a test hydraulic
system composed of infusion set, three-way stop cock, IV bag with
saline, and disposable 50 ml syringe. This system was connected
to cardio-monitor (Infinity Delta XL, Dräger, Lübeck, Germany)
in order to maintain a perfusion pressure of 100 mmHg generated
by the syringe plunger. Every imperfection of suture line was
revealed by leaking water and subsequently marked and counted.
Leakage from areas where suture passed through silicone wall
(suture holes) was not taken into consideration.

All variables analysed in this study were expressed as median
with ranges. Intergroup comparisons were performed with the
use of non-parametric Mann–Whitney U-test. The p-value not
exceeding 0.05 was considered statistically significant. Statistical
analyses were performed with the use of open-source R
project statistical software (R Foundation, Vienna, Austria)
(R: A Language and Environment for Statistical Computing,
version 3.3, https://www.r-project.org).

Results

Two residents performed nine simulation runs each. The last four
runs were performed with thoracic wall attached. The phantoms
performed well, enabling tissue-like handling and cutting, excellent
suture retention, and satisfactory elasticity. Median anastomosis
time during simulation without thoracic wall was 23 033″ (20 050″–
39 035″). Simulations with attached thoracic wall yielded a median
anastomosis time of 24 047″ (18 05″–33 014″). This difference was
not statistically significant (p= 0.63, Fig 5). Median suture bite times
were 9″ (7″–10″) and 13″ (11″–17″) for simulations, respectively,
without and with the thoracic wall (p< 0.001, Fig 6). Similarly, there
were significantly more suture bites applied during simulation with-
out (163.5, range from124 to 224) compared towith the thoracic wall
(111.5, range from 90 to 131, p= 0.0013).

Median number of leakages per phantom was 2 (0–4) for
simulation without thoracic wall and 2 (0–3) for more difficult
simulation (p =NS, Fig 7). There were no significant inter-resident
differences in all assessed parameters.

Discussion

The development of medical technology, the emphasis on patient
safety during surgery, and increase of the quality of postoperative
care have improved the outcomes of modern paediatric cardiac
surgery. This has increased public expectations as well.
Therefore, the optimal training of cardio-surgical residents is chal-
lenging for all accredited cardiac units. Surgical simulators are
interesting and useful tools for future cardiac surgeons’ training.
Surgical simulators increase dexterity,11,12 which is an indispen-
sable component of surgical skills.

The dynamic development of different medical simulations
created a new branch of science13 and made surgical simulators
a recognised training mean in surgery, especially in cardiac
surgery, neurosurgery, general surgery, and vascular surgery.14

However, currently, there is no literature description of a surgical
simulator dedicated to coarctation of the aorta repair training.
PubMed search (dating from 25 June, 2017) with all combinations
of the following query: [“surgical” or “blank field”] and [“CoA” or
“coarctation of the aorta” or “coarctation of aorta”] and [“repair”
or “correction” or “blank field”] and [“simulator” or “trainer” or
“simulation”] yielded no results.

Several reports concerning the use of silicone to produce vascu-
lar models in neurosurgery,15–17 paediatric surgery,18 or cardio-
vascular surgery19,20 are available. Similarly, vascular phantoms
utilised in our aortic coarctation repair simulator were made of
elastic silicone. This material enabled a good surgical performance
as well as, thanks to its water-tightness, made leakage tests possible
for anastomosis quality assessment.

Currently, 3D printing technology is widely used and being
evaluated inmodern cardiac surgery. It is possible to create detailed
heart and great vessel models that allow surgeons to understand
precisely the anatomy and facilitate optimal operation plan-
ning.19–23 Valverde et al23 showed in their paper that using an exact
3D replica of patient’s organ can help to choose the most efficient
surgical approach, especially in complex heart diseases. Ma et al22

remarked that measures taken on the preoperative 3D models cor-
responded with actual intraoperative measurements. Shmauss
et al21 proved the usability of 3D reconstruction in many various
sophisticated cases not only in perioperative planning but also in
simulation of procedures and intraoperative orientation as well.

Figure 3. Simulator’s construction. (a) Phantom mounted inside the simulator’s
basis – after simulation run – perspective of the assistant. Thoracic wall removed.
(b) Phantom mounted inside the simulator’s basis, thoracic wall attached – surgeon’s
perspective.
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Simulators based on 3D life-like replicas of the human anatomy
have serious potential to improve cardiothoracic resident training.
Hermsen et al24 designed curriculum based on 3D-printed model
to teach residents septal myectomy. Choice of the procedure was
probably non-contingent, as it is very difficult to teach due to
limited visibility, remarkably variable anatomy, and significant
potential complications. Evaluation after five simulation runs
showed that resections performed by residents became as effective
as performed by attending surgeon.

Simulation makes possible for surgeons to develop new skills
by trial and error without risking patient’s health and life.
Sardari Nia et al25 used high-fidelity endoscopic simulator to pro-
duce the suturing map for mitral valve annuloplasty. It was then
successfully used during European Association for Cardio-
Thoracic Surgery (EACTS) endoscopic mitral valve courses as a
standardised teaching tool.

Low price, high usability and simplicity of production are desir-
able features of surgical simulators.15,16,22 In the presented model,
a relatively expensive 3D printing technology was applied to obtain
a semi-product that enabled subsequent low-cost single model
production. However, end-product – elastic silicone phantom pro-
duction was time-consuming due to the necessity of repeated
silicone painting and drying followed by wax core melting. The
direct use of 3D-printed models made of suitable surgical materials
for aortic coarctation repair simulation is a potential solution.
However, at the time of the development of the simulator, this tech-
nology was not available for both technical and financial reasons.

Our aortic coarctation repair trainer was well accepted by the
residents willingly taking part in simulation runs. Objective bench-
mark parameters such as anastomosis time could be assessed and
compared between simulation runs revealing, for example, a slight
trend towards faster and faster anastomosis at both difficulty levels
(Fig 5 – Resident 1). A surgical “obstacle” – the thoracic wall – was
a factor that made a simulation more difficult and more realistic
(Fig 6). This was reflected by the significant increase of single
suture bite time and decrease of suture bite count per anastomosis.

Figure 5. Total anastomosis time without and with thoracic wall.

Figure 4. Simulation runs. (a) Simulation in
operating theatre environment – two residents
equipped with surgical telescopes and headlight
during the simulation. (b) Operator’s view
recorded with head-mounted camera – video
frame showing incision of lesser curvature of
aortic arch. The phantom is clamped proximally
and distally (out of the cadre).

Figure 6. Mean suture bite time without and with thoracic wall.

Figure 7. Total number of leakages during all simulation runs performed by two
residents.
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These two factors combined gave total anastomosis times similar to
those without thoracic wall. It is noteworthy that even less suture
bites were taken, the quality of anastomosis did not suffer as shown
by incidence of leaks.

The biggest advantage of designed water test is possibility to
perform it under physiologic (or supra-physiologic for a neonate)
pressure and objectivity of suture line evaluation. Dynamic tests of
anastomosis are currently at the design stage.

The presented coarctation of the aorta repair simulator can be a
useful training tool for residents thanks to its good surgical proper-
ties and the possibility of imitating real anatomical relations of a
coarctation of the aorta. What is noteworthy, it allows scaling
the complexity of the simulated procedures from the simple pro-
cedures (end-to-end) to the complex ones (extended end-to-end)
by preparing adequate models. Simulation difficulty degree asso-
ciated with a size of the phantom and its wall thickness can be
modified depending on the level of training advancement – as
models used in primary tests were magnified, it is possible to pre-
pare life-sized phantoms for further practice. Addition of the
element that simulates the chest wall and restricts the space in
the operating field reflects the real difficulties during the operation
of a newborn. Moreover, a patient-specific image data from the
angio-CT/MRI studies can be used to practice a planned procedure
before a real operation.

Our trainer does not replicate the real anatomy of structures
surrounding and adhering to the aorta – heart, lungs as well as peri-
cardium and both visceral and parietal pleurae. The phantoms are
devoid of intercostal arteries, making the descending aorta more
mobile than in reality. Only one pattern of silicone phantoms
used in all simulation runs does not represent anatomical variety
existing in real patients. As the model was magnified, it does not
mimic all technical challenges a surgeon has to manage when deal-
ing with petite organs of a neonate. All these limitations make the
trainer amedium-fidelity simulator targeted as vascular anastomo-
sis learning tools in a space constrained environment.

Conclusions

This medium-fidelity CoA repair trainer showed its feasibility in
replication of major critical steps of the real operation. Objective
surgical efficiency parameters could be obtained from each
simulation and compared between trainees and at different
adjustable difficulty levels. Further studies taking into account
higher number of simulation runs are needed to evaluate trainees’
learning progress.
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