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We consider the problem of estimating the common time of a change in the mean
parameters of panel data when dependence is allowed between the cross-sectional
units in the form of a common factor. A CUSUM type estimator is proposed, and
we establish first and second order asymptotics that can be used to derive consistent
confidence intervals for the time of change. Our results improve upon existing theory
in two primary directions. Firstly, the conditions we impose on the model errors only
pertain to the order of their long run moments, and hence our results hold for nearly
all stationary time series models of interest, including nonlinear time series like the
ARCH and GARCH processes. Secondly, we study how the asymptotic distribution
and norming sequences of the estimator depend on the magnitude of the changes
in each cross-section and the common factor loadings. The performance of our
results in finite samples is demonstrated with a Monte Carlo simulation study, and
we consider applications to two real data sets: the exchange rates of 23 currencies
with respect to the US dollar, and the GDP per capita in 113 countries.

1. INTRODUCTION

In this paper, we consider the problem of estimating the time of a change in the
mean present in panel data in which there are N cross-sectional units comprised
of time series data of length T . A common structural break in panel data is a
quite natural occurrence. For example, if the panel data under consideration is
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comprised of exchange rates of various currencies with respect to US dollars, then
a crisis in the US would be expected to simultaneously affect each cross-sectional
unit. Similar phenomena may be produced by governmental policy changes, the
introduction of a new technology, etc., and in these cases it is of interest to
estimate the time at which such occurrences are manifested in sample data. The
theory of change point analysis has been extensively developed to study problems
of this nature; see Csörgő and Horváth (1997), Brodsky and Darkhovskii (2002),
Aue and Horváth (2012), and Horváth and Rice (2014) for reviews of the field.

Classical methods in change point analysis consider univariate and multivariate
data of a fixed dimension. In many panel data examples, however, the number of
cross-sections N is comparable in size to the length of the series T . In these cases,
asymptotics as T remains fixed and N tends to infinity, or as N and T jointly
tend to infinity, are more appropriate. Although in principle one could detect the
common change present in each cross-sectional unit by examining a single series,
an analysis that utilizes all available series should provide improved detection and
estimation.

The literature on structural breaks in panel data has grown considerably in the
last two decades. We refer to Arellano (2003), Hsiao (2003, 2007), and Baltagi
(2013) for surveys of several panel data models and their applications to econo-
metrics and finance. The early foundations for estimating structural changes in
panel data were developed in Joseph and Wolfson (1992, 1993), and many as-
pects of the problem have now seen at least some consideration; Li, Qian, and Su
(2015) and Qian and Su (2015) consider multiple structural breaks in panel data,
and Kao Trapani, and Urga (2015) considers break testing under cointegration.

Bai (2010), Kim (2011, 2014), Baltagi, Kao, and Liu (2012), Baltagi, Feng,
and Kao (2015), and Horváth and Hušková (2012) are most closely related to the
present paper. Bai (2010) considers the problem of estimating a common break
in the means of panel data that do not exhibit cross sectional dependence. A least
squares estimator is proposed that is shown to be consistent when N tends to
infinity, and its asymptotic properties are derived as N and T jointly tend to
infinity. Kim (2011, 2014) and Baltagi et al. (2012, 2015) extend the methodology
of the least squares estimator of Bai (2010) to panels exhibiting cross-sectional
dependence modeled by common factors, and to detect a change in the time
trend or slope parameters of a panel regression. Horváth and Hušková (2012)
study testing for the presence of a common change in the mean using a CUSUM
estimator under cross-sectional dependence. In each of these papers, asymptotics
are derived assuming the model errors are linear processes, and that the rates of
divergence relative to N and T of the size of the changes and the magnitudes of
the factor loadings are fixed.

In this paper, we extend the existing theory in two primary directions. We derive
second order asymptotics for the CUSUM change point estimator assuming only
an order condition on the long run moments. This extends the asymptotic theory
of change point estimation to a wide variety of error processes, notably many non-
linear time series examples like the ARCH and GARCH processes. We also show
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explicitly how the asymptotic distribution and norming sequences of the estima-
tor depend on the magnitude of the changes in each panel and the common factor
loadings. This allows for the computation of the limit distribution under several
conceivable rates of divergence for the magnitudes of changes and factor loadings.

The remainder of the paper is organized as follows. In Section 2, we present
our assumptions and the main results of the paper. Section 3 contains examples of
error processes that satisfy the assumptions of Section 2. Estimators for the norm-
ing sequences that appear in the results of Section 2 are developed and studied
in Section 4. The implementation of the results of the paper as well as a Monte
Carlo simulation study and data applications are detailed in Section 5. The proofs
of all results are contained in Appendices A and B.

2. ASSUMPTIONS, AND MAIN RESULTS

We consider the panel data model

Xi,t = μi + δi I{t > t0}+γiηt + ei,t , 1 ≤ i ≤ N ,1 ≤ t ≤ T, (2.1)

where the idiosyncratic errors e′
i,t s have mean zero, ηt denotes the common factor

with loadings γi , 1 ≤ i ≤ N , and δi denotes the change in the mean of panel i that
occurs at the common, and unknown, change point t0.

Assumption 2.1.

(i) The sequences {ei,t ,−∞ < t < ∞},1 ≤ i ≤ N are independent, and

(ii) {ηt ,−∞ < t < ∞} and {ei,t ,−∞ < t < ∞}, 1 ≤ i ≤ N are stationary.

According to Assumption 2.1(i), the only source of dependence between the
panels is the common factor ηt . The idiosyncratic errors form a stationary time
series, similar to the assumption in Bai (2010) and Kao Trapani, and Urga (2012,
2015). Throughout this paper δi and γi , 1 ≤ i ≤ N , are allowed to depend on N
and T . For the sake of simplicity, we consider the case when γi ∈ R, but our results
could be extended to the more general case of a vector valued factor loading and
common factor.

Assumption 2.2. The time of change in the mean t0 satisfies

t0 = �T θ� with some 0 < θ < 1.

Assumption 2.2 is standard in change point analysis, and corresponds with the
assumptions of Bai (2010), Kim (2011, 2014), and Horváth and Hušková (2012).
It is of interest in some econometric applications to allow for θ to depend on N
and T and tend to the end points 0 or 1 at a certain rate; see Andrews (2003) and,
in the panel data setting, Qian and Su (2015). The consideration of this problem
in generality for our estimator is not a goal of the present paper, and requires a
thorough study.
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The estimator that we use for t0 is defined as the location of the maximum of
the sum of the CUSUM processes over cross–sections:

t̂N ,T = argmax1≤t<T

N∑
i=1

(
Si (t)− t

T
Si (T )

)2

,

where

Si (t) =
t∑

s=1

Xi,s .

The estimator of Bai (2010) is

t∗N ,T = argmax1≤t<T

N∑
i=1

(
Si (t)− t

T
Si (T )

)2 1

(t (T − t))
, (2.2)

which is the maximum likelihood estimator for t0 assuming that the panels are
independent and normally distributed with the same variance. The estimator t̂N ,T

maximizes the weighted log likelihood; see e.g. Hawkins (1986), Csörgő and
Horváth (1997, Sects. 2.1 and 2.8.1) for the case when N = 1, and Chan et al.
(2013). Due to the weight (t (T − t))−1 in the definition of t∗N ,T , the limit distri-
bution of t∗N ,T does not depend on the break fraction θ ; see Bai (2010).

We impose only conditions on the long run moments of the error processes for
our asymptotic results. The long run moments of the errors in panel i are defined
by

Ui,ν(t) = E

∣∣∣∣∣
t∑

s=1

ei,s

∣∣∣∣∣
ν

, 1 ≤ i ≤ N ,

and we assume that they satisfy the following conditions:

Assumption 2.3.

(i) There exists σi ,1 ≤ i ≤ N such that

max
1≤i≤N

sup
1≤t≤T

∣∣∣∣1t Ui,2(t)−σ 2
i

∣∣∣∣= o(1),

where C1 ≤ σi ≤ C2 for all 1 ≤ i ≤ N with some 0 < C1 ≤ C2 < ∞, and

(ii)

1

N
sup

1≤t≤T

N∑
i=1

(
1

tκ/2
Ui,κ (t)

)2

= O(1) with some κ > 4.
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Additionally, we must assume an analogous condition on the common factors:

Assumption 2.4. With some κ̄ > 2.

Eηt = 0, E

(
t∑

s=1

ηs

)2

= t +o(t), and E

∣∣∣∣∣
t∑

s=1

ηs

∣∣∣∣∣
κ̄

= O(t κ̄/2), as t → ∞.

Assumptions 2.3 and 2.4 do not assume any specific structure on the error
terms, in contrast to the structural break literature with panel data to date. We
provide several examples in Section 3, including linear and nonlinear time series,
martingales, and mixing sequences, where Assumptions 2.3 and 2.4 are satisfied.

The size of the changes and the correlation between the panels will play a
crucial role in the asymptotic distribution of the estimator, and these quantities
will be measured by

	N ,T =
N∑

i=1

δ2
i , 
N ,T =

N∑
i=1

γ 2
i and �N ,T =

N∑
i=1

δiγi .

The limit results below are proven when min(N ,T ) → ∞.

Assumption 2.5. As min(N ,T ) → ∞,

(i)
T 	N ,T

N
→ ∞,

and

(ii)

N ,T

(T 	N ,T )1/2
→ 0.

Assumption 2.5 means that the sizes of all changes cannot be too small and
that the factor loadings cannot be much larger than the sample size and the size of
the changes. Bai (2010) assumes that 	N ,T /N converges to a positive limit while
under the assumptions of Kim (2011), the common factor dominates. A primary
goal of our paper is to show how the relationship between the loadings and the
sizes of the changes affect the limit distribution of the time of change estimator.

Our first result pertains to the asymptotic distribution of t̂N ,T when 	N ,T is
large.

THEOREM 2.1. If Assumptions 2.1–2.5 hold,

	N ,T → ∞ (2.3)
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and

�N ,T

	N ,T
= o(1), (2.4)

as N ,T → ∞, then we have that

P
{
t̂N ,T = t0

}→ 1. (2.5)

The assumption in (2.4) may seem somewhat restrictive since it rules out the
example of simultaneous fixed break sizes and factor loadings. We note that due to
the result on page 635 of Horváth and Hušková (2012), when the factor loadings
are fixed, the CUSUM test for the presence of a change point will reject with
probability tending to one regardless of if a change exists or not, and so something
along the lines of (2.4) must be assumed for the CUSUM estimator of the time of
change to be consistent.

Remark 2.1. Assume that T is fixed. If Assumptions 2.1–2.4 are satisfied and

N ,T /	N ,T → 0, and 	N ,T /N → ∞, then (2.5) holds.

Remark 2.2. In order to establish the consistency of Bai’s (2010) estimator in
(2.2) for fixed T and under our assumptions, we must assume in addition that
for each i , ei,t and ηt are uncorrelated random variables, and that {ei,t ,0 ≤ t <
∞,1 ≤ i ≤ N } and {ηt ,0 ≤ t < ∞} are independent. If in addition to Assump-
tions 2.1–2.4, Eη4

0 < ∞, 	N ,T /N 1/2 → ∞ and 
N ,T /	N ,T → 0 hold, then we
have that

lim
N→∞ P

{
t∗N ,T = t0

}= 1. (2.6)

We provide a proof of Remark 2.2 in Appendix A.

The main difference between Remarks 2.1 and 2.2 is in the assumption that
	N ,T /N → ∞ and 	N ,T /N 1/2 → ∞. Remark 2.2 allows smaller changes to
establish consistency, but much stronger assumptions on the sequences ei,t ,1 ≤
i ≤ N and ηt . If we cannot assume that ei,t ,1 ≤ i ≤ N and ηt are sequences of
uncorrelated random variables, and the independence of {ηt , t ≥ 0} and {ei,t , t ≥
0,1 ≤ i ≤ N }, then (2.6) can be proven under conditions of Remark 2.1. In this
case (2.5) and (2.6) can hold only if 	N ,T /N → ∞ when T is fixed.

We now turn to the asymptotic distribution of 	N ,T (t̂N ,T − t0) when (2.3) does
not hold, i.e. the sizes of the changes are small, or occur in only a few panels:

Assumption 2.6.

(i) 	N ,T = O(1),

(ii) T 	N ,T (1 + log(T/	N ,T ))−2/κ̄ → ∞, where κ̄ is defined in Assump-
tion 2.4, and

(iii) T 1−2/κ	N ,T /N 1/2 → ∞, where κ is defined in Assumption 2.3(i i).
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By Assumption 2.5, we have that T 	N ,T → ∞, so Assumption 2.6(ii) holds
if, 	N ,T T (log T )−2/κ̄ → ∞. If N/T 4/κ → ∞, i.e., the number of the cross-
sections is large, then Assumption 2.6(iii) follows from Assumption 2.5. However,
Assumption 2.5(ii) also holds if the number of cross-sectional units is relatively
small with respect to the length of the panels and the sizes of the changes.
Next we introduce an assumption that is a companion to Assumption 2.3:

Assumption 2.7.

(i)
1

N

N∑
i=1

|Eei,0ei,t | = O(t−τ ) with some τ > 2, and,

(ii) max
1≤i≤N

Ui,τ̄ (t) = O
(
t τ̄ /2) with some τ̄ > 2.

Assumption 2.7 requires an upper bound for the average autocorrelation of the
idiosyncratic errors, and a uniformity condition that augments Assumption 2.3(ii).

Our first result in this direction covers the case when the sizes of the changes
are small and the effect of the correlation between the panels is negligible or
moderate. We measure the dependence between the panels with respect to the
sizes of the changes by

s= lim
min(N ,T )→∞

�N ,T

	
1/2
N ,T

.

To describe the limit distribution of t̂N ,T we need to introduce a drift function

gθ (u) =
{

(1− θ)|u|, if u < 0

θu, if u ≥ 0

and an asymptotic variance term

σ 2 = lim
N ,T →∞

1

	N ,T

N∑
i=1

δ2
i σ 2

i .

We note that by Assumption 2.3(i) we get that C1 ≤ σ ≤ C2. Let

Ui (t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

t∑
s=1

ei,s, if t = 1,2,3, . . .

0, if t = 0

−
−1∑
s=t

ei,s, if t = −1,−2,−3, . . .
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We define the function u(s, t) as the asymptotic covariance of
∑N

i=1 δiUi (t), i.e.
for all integers s and t

u(s, t) = lim
N→∞ E

⎛
⎝ N∑

j=1

δjUj (s)

⎞
⎠( N∑

i=1

δiUi (t)

)
. (2.7)

We note that u(s, t) = limN→∞
∑N

i=1 δ2
i EUi (s)Ui (t). It follows from Assumption

2.3(i) that the function u(s, t) is finite for all integers s and t . This function only
appears in Theorem 2.2 when 	N ,T is above some positive bound for all N and
T . In this case u(t, t) > 0, if t �= 0.
The next result considers the case when the common factors are negligible.

THEOREM 2.2. We assume that Assumptions 2.1–2.7 hold,

	
−τ̄ /2
N ,T

N∑
i=1

|δi |τ̄ → 0, (2.8)

where τ̄ is defined in Assumption 2.7(ii), and

s= 0. (2.9)

(a) If

	N ,T → 0, (2.10)

then we have

	N ,T
(
t̂N ,T − t0

)
σ 2

D→ argmaxu {W (u)− gθ (u)} , (2.11)

where W (u),−∞ < u < ∞ is a two–sided Wiener process.
(b) If

	N ,T → d ∈ (0,∞), (2.12)

then we have

t̂N ,T − t0
D→ argmaxt{G(t)−dgθ (t)}, (2.13)

where G(t), t = 0,±1,±2, . . . is Gaussian with EG(t) = 0 and EG(s)G(t) =
u(s, t).

Remark 2.3. Since the proofs of Theorem 2.2 and the results to follow depend
on normal approximations for the sums

∑N
i=1

∑t
s=1 ei,s and

∑N
i=1

(∑t
s=1 ei,s

)2,
the independence of {ei,t , t ≥ 0} on i could be relaxed, as pointed out by Bai
(2010) and Kim (2011). This would be an important consideration, for example,
if the cross-sectional units of the panels are indexed by location, i.e. i = i, a vector
describing the location of each cross-section. In this case a spatial structure could
be assumed on the errors. If Assumption 2.1(i) is replaced by a weak dependence
or spatial assumption, the norming constants would change in our limit theorems.
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Remark 2.4. If 	
−τ̄ /2
N ,T

∑N
i=1 |δi |τ̄ → 0 with some τ̄ > 2 does not hold, then

the limit in (2.13) might not be the argmax of a normal process with a drift. For
example, if δ1 = 1 and δi = 0 for all i ≥ 2, then the limit in (2.13) is determined
by the error terms e1,t ,−∞ < t < ∞.

Remark 2.5. The distribution of argmaxu{W (u)− gθ (u)} is known explicitly.
Its density was derived by Ferger (1994) from Corollary 4 of Bhattacharya and
Brockwell (1976) (cf. Csörgő and Horváth (1997, p. 177)).

Remark 2.6. If (2.12) holds, γi = 0 for all 1 ≤ i ≤ N and Eei,0ei,t = 0 for all
1 ≤ i ≤ N and t �= 0, then we get the analogue of Theorem 4.2 of Bai (2010).
In this case G(s) is a Wiener process on integers, so the main difference between
the limits in (2.11) and (2.13) is that the argmax is computed on the real line or
on integers.

So far, in this paper, the common factor was treated as a part of the error term
with a negligible contribution to the limiting behavior of the estimator. However,
it has been observed in testing for changes in panel data that the effect of strong
correlation between the cross-sectional units of the panels might make standard
statistical procedures invalid (cf. Horváth and Hušková (2012)). Our next result
covers the case when the order of the common factors and the sizes of the changes
are essentially the same. Since the contribution of the ηt ’s to the limit will not be
negligible, we need to specify the relation between the errors and the common
factors:

Assumption 2.8. The sequences {ηt ,−∞ < t < ∞} and {ei,t ,−∞ < t <
∞,1 ≤ i ≤ N } are independent.

Similarly to Ui (t), we introduce

V(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

t∑
s=1

ηs, if t = 1,2,3, . . .

0, if t = 0

−
−1∑
s=t

ηs, if t = −1,−2,−3, . . . ,

which will be part of the limit distribution when (2.12) holds or �N ,T is pro-
portional to 	N ,T . In all the other cases we assume the asymptotic normality of
V(t):

Assumption 2.9.

T −1/2
�T u�∑
t=1

ηt
D[0,1]−→ W (u), where W is a Wiener process.
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THEOREM 2.3. We assume that Assumptions 2.1–2.9, and (2.8) hold, and

0 < |s| < ∞. (2.14)

(a) If (2.10) holds, then we have

	N ,T (t̂N ,T − t0)

σ 2 + s2
D→ argmaxu {W (u)− gθ (u)} , (2.15)

where W (u),−∞ < u < ∞ is a two–sided Wiener process.
(b) If (2.12) holds, then we have

t̂N ,T − t0
D→ argmaxt{G(t)+ sd1/2V(t)−dgθ (t)}, (2.16)

where G(t), t = 0,±1,±2, . . . is the Gaussian process defined in Theorem 2.2,
independent of V(t), t = 0,±1,±2, . . .

The effect of correlation between the cross-sectional units of the panels is
demonstrated in Theorem 2.3. The limit distribution in (2.15) remains the same
as in (2.11) but the variance of the estimator increases by s2. The effect of the
common factor is more transparent in (2.16) since an additional term appears in
the limit which depends on the distribution of the common factors.

THEOREM 2.4. If Assumptions 2.1–2.9, and (2.8) hold, and

|s| = ∞, (2.17)

then we have

	2
N ,T

�2
N ,T

(
t̂N ,T − t0

) D→ argmaxu {W (u)− gθ (u)} , (2.18)

where W (u),−∞ < u < ∞ is a two–sided Wiener process.

Theorem 2.4 covers the case when the limit distribution of the estimator for
the time of change is completely determined by the common factors. The limit
distribution in (2.18) is the same as in (2.11) and (2.15) but the rate of convergence
is much slower. The effect of having several panel cross-sections with changes is
overshadowed by the strong influence of the common factor. For further results
when the common factor is dominant in the limit distribution, we refer to Kim
(2011).

3. EXAMPLES

In this section, we study some examples of error processes that satisfy the as-
sumptions of Section 2. We restrict our attention to establishing Assumption 2.3
for examples of possible model error sequences ei,t ’s, but the same sequences
could be used for the common factors as well.
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Example 3.1
Let {ei,t ,−∞ < t < ∞} be independent, identically distributed random variables
with Eei,0 = 0, Ee2

i,0 = σ 2
i and E |ei,0|κ < ∞. Due to independence we have that

Ui,2(t) = tσ 2
i for all t = 0,1,2 . . . (3.1)

By the Rosenthal inequality (cf. Petrov (1995, p. 59)) we obtain for all t ≥ 1 that

Ui,κ (t) ≤ C
{

t E |ei,0|κ + tκ/2σκ
i

}
≤ Ctκ/2{E |ei,0|κ +σκ

i },

where C is an absolute constant, depending on κ > 2 only. If the error terms in
each panel are independent and identically distributed, then, assuming C1 ≤ σi ≤
C2 for all 1 ≤ i ≤ N , Assumption 2.3(i) holds; Assumption 2.3(ii) is satisfied if

1

N

N∑
i=1

(E |ei,0|κ)2 = O(1) with some κ > 4. (3.2)

If max1≤i≤N E |ei,0|τ̄ ≤ C0 with some τ̄ > 2 and C0 > 0, then Assumption 2.7(ii)
is also fulfilled.

ARMA processes are very often used in classical time series analysis and our
next example shows that stationary ARMA processes satisfy the basic assump-
tions of the first section. We consider the more general case of linear processes,
which are investigated by Bai (2010), Kim (2011), and Horváth and Hušková
(2012).

Example 3.2
We assume that {εi,t ,−∞ < t < ∞} are independent and identically distributed
random variables with Eεi,0 = 0 and E |εi,0|κ < ∞ with some κ > 4. The error
terms ei,t form a linear process given by

ei,t =
∞∑

�=0

ci,�εi,t−�,

where sup� �−2−αi |ci,�| ≤ Ci with some Ci > 0 and αi > 0. By the Phillips and
Solo (1992) representation we get

t∑
s=1

ei,s − C̄i

t∑
s=1

εi,s =
∞∑

j=−∞

(
t∑

k=1

c̄k− j

)
εi, j ,

where C̄i = ∑∞
�=0 ci,� �= 0, c̄i,0 = ci,0 − C̄i , c̄i,� = ci,�, if � ≥ 1 and c̄i,� = 0, if

� ≤ −1. Minkowski’s inequality and the discussion in Example 3.1 indicate that
we need to choose σ 2

i = C̄2
i Eε2

i,0 in Assumption 2.3(i) and we also have Ui,κ (t) =
O
(
tκ/2

)
and |Eei,0ei,t | = O

(
t−2−αi

)
, as t → ∞.
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Example 3.3
Let us assume that {ei,t ,−∞ < t < ∞} is a stationary orthogonal martingale dif-
ference sequence with respect to some filtration with Eei,0 = 0, Ee2

i,0 = σ 2
i and

E |ei,0|κ < ∞. Then (3.1) as well as Assumption 2.7 hold. By Li (2003) we also
have

Ui,κ (t) ≤ Ctκ/2 E |ei,0|κ with some constant C depending only on κ,

completing the proof of (3.2). Under assumption max1≤i≤N E |ei,0|τ̄ ≤ C0 with
some τ̄ > 2 and C0 > 0, we obtain Assumption 2.7.

Since the early 1980’s, ARCH, GARCH processes and their various extensions
have become extremely popular models in the analysis of macroeconomic and
financial data. For a survey and detailed study of volatility models we refer to
Francq and Zakoı̈an (2010). The next example shows that a large class of volatility
processes satisfies the assumptions in Section 2.

Example 3.4
We assume that {εi,t ,−∞ < t < ∞} are independent and identically distributed
random variables with Eεi,0 = 0 and Eε2

i,0 = 1. The error terms are defined by

ei,t = hi,tεi,t , (3.3)

where the volatility process hi,t > 0 is measurable with respect to the σ–algebra
generated by εi,s,s ≤ t − 1. Usually, hi,t is given by a recursion involving
ei,s,hi,s,s ≤ t − 1. Francq and Zakoı̈an (2010) provide conditions for the exis-
tence of a stationary solution of (3.3) in several models and establish their basic
properties. Assuming that E |ei,0|κ < ∞ with some κ > 4, {ei,t ,−∞ < t < ∞}
is a stationary orthogonal martingale satisfying the conditions in Example 3.3.
In case of the most popular GARCH(p,q) model hi,t = ω +∑p

�=1 α�e2
i,t−� +∑q

�=1 βj hi,t− j , ω > 0,α� ≥ 0,βj ≥ 0,1 ≤ � ≤ p,1 ≤ j ≤ q. The necessary
and sufficient condition for the existence of the higher moments in case of
GARCH(1,1) is given in Nelson (1990). He and Teräsvirta (1999), Ling and
McAleer (2002) and Berkes, Horváth, and Kokoszka (2003) partially extend his
results to the more general case. The existence of moments of augmented GARCH
sequences is discussed in Carrasco and Chen (2002) and Hörmann (2008).

Linear processes and the volatility models of Example 3.4 are in the class of
m–decomposable processes.

Example 3.5
We say the ei,t is a Bernoulli shift if it can be written as

ei,t = fi (εi,t ,εi,t−1,εi,t−2, . . .)

with some functional fi , where {εi,t ,−∞ < t < ∞} are independent and identi-
cally distributed random variables. The conditions of Section 2 are satisfied if the
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Bernoulli shift is m–decomposable, i.e. if

∞∑
m=1

(
E
∣∣∣ei,t − e(m)

i,t

∣∣∣κ)1/κ
< ∞ with some κ > 4,

where e(m)
i,t = fi (εi,t ,εi,t−1, . . . ,εi,t−m+1,ε

∗
i,t−m,ε∗

i,t−m−1 . . .), and the ε∗
i,t ’s are

independent copies of εi,0, independent of εi,t ,1 ≤ i ≤ N ,−∞ < t < ∞. Berkes,
Hörmann, and Schauer (2011) prove that there is constant Ci such that Ui,κ (t) ≤
Ci tκ/2, |Eei,0ei,t | ≤ Ci t−κ/2 and Ui,2(t) = tσ 2

i + (t), as t → ∞, with some σ 2
i .

They also provide several examples for m–decomposable Bernoulli shifts.

Example 3.6
There is a well developed theory of partial sums of mixing random variables
where the long run moments Ui,κ (t) play a crucial role. It has been established
under various conditions that Ui,2(t) = tσ 2

i + o(t) and Ui,κ (t) = O(tκ/2), as
t → ∞. For surveys on mixing processes we refer to Bradley (2007) and Dedecker
et al. (2007).

Example 3.7
We assumed in Examples 3.2 and 3.4 that the innovations εi,t ,−∞ < t <
∞ are independent and identically distributed. However, this assumption can
be replaced with the less restrictive requirement that {εi,t ,−∞ < t < ∞} is
a stationary sequence. Rosenthal–type inequalities for sums of functionals of
stationary processes are developed in Wu (2002) and Merlevéde, Peligrad, and
Utev (2006). These results can be used to establish Assumptions 2.3, and 2.7.

4. ESTIMATION OF NORMING SEQUENCES

Theorems 2.2–2.4 contain the limit distribution of t̂N ,T with different normal-
izations that reflect the effects of the sizes of changes and the loading factors.
However, in case of finite N and T it is impossible to check which specific con-
dition on the growths of 	N ,T and �N ,T holds. Therefore it is useful to produce
norming sequences that would work in all possible cases. Let

�N ,T =
N∑

i=1

σ 2
i δ2

i +�2
N ,T .

Under the conditions of Theorems 2.2–2.4 we have that

	2
N ,T

�N ,T

(
t̂N ,T − t0

)
converges in distribution. (4.1)

The limit distribution in (4.1) is argmaxu{W (u) − gθ (u)} except in the special
cases of (2.13) and (2.16). In these cases, the limit distribution is the argmax
of a process defined on integers. The limits in (2.13) and (2.16) depend on the
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distributions of {Xi,t ,1 ≤ i ≤ N ,1 ≤ t ≤ T }. If d is close to zero in (2.13) or (2.16),
the limiting distributions can be well approximated with argmaxu(W (u)−gθ (u)).
As numerically investigated by Bai (2010) in the context of the least squares esti-
mator, argmaxu{W (u)− gθ (u)} gives a reasonable approximation for the limit in
(2.13) when u(s, t) = min(t,s). Hence we recommend that argmaxu(W (u) −
gθ (u)) can be used as the limit in (4.1) in practice.

The limit result in (4.1) can only be used for hypothesis testing or confidence
intervals if the norming factor can be consistently estimated from the sample. We
estimate 	N ,T with

	̂N ,T =
N∑

i=1

⎛
⎝ 1

t̂N ,T

∑
1≤t≤t̂N ,T

Xi,t − 1

T − t̂N ,T

∑
t̂N ,T <t≤T

Xi,t

⎞
⎠

2

.

It is more difficult to estimate �N ,T . Let

UN (t) =
N∑

i=1

(
Si (t)− t

T
Si (T )

)2

, (4.2)

r̂N ,T (t) = −t
T − t̂N ,T

T
+ (

t − t̂N ,T
)

I
{
t > t̂N ,T

}
,

and

r̂N ,T = r̂N ,T
(
t̂N ,T

)= −t̂N ,T
T − t̂N ,T

T
. (4.3)

The estimator for �N ,T is defined as

�̂N ,T = 1

2(M2 − M1)

∑
M1<|v|≤M2

1

4|v|r̂2
N ,T

(
UN

(
t̂N ,T + v

)−UN
(
t̂N ,T

)

− 	̂N ,T

(
r̂2

N ,T

(
t̂N ,T + v

)− r̂2
N ,T

))2

.

THEOREM 4.1. (i) We assume that the conditions of Theorem 2.2 or 2.3 are
satisfied. If M1 < M2, M1 → ∞ and M2/T → 0, then

	̂N ,T

	N ,T

P→ 1 (4.4)

and

�̂N ,T

�N ,T

P→ 1. (4.5)
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(ii) We assume that the conditions of Theorem 2.4 are satisfied. If M1 < M2, M1 →
∞ and

M2/min
(

T,�2
N ,T /	2

N ,T

)
→ 0,

then (4.4) and (4.5) hold.

Since (4.4) and (4.5) hold, the limit result in (4.1) remains true when the norm-
ing is replaced with the corresponding estimators, i.e.

	̂2
N ,T

�̂N ,T

(
t̂N ,T − t0

)
converges in distribution. (4.6)

If the interaction between the cross-sectional units of the panels is small,
i.e. �2

N ,T /
∑N

i=1 σ 2
i δ2

i → 0, as N ,T → ∞, then we need to estimate only

	N ,T and
∑N

i=1 σ 2
i δ2

i . Using σ̂ 2
i ,1 ≤ i ≤ N , the long run variance estimators

for σ 2
i , a possible estimator for

∑N
i=1 σ 2

i δ2
i is

∑N
i=1 σ̂ 2

i

[∑
1≤s≤t̂N ,T

Xi,s/t̂N ,T −∑
t̂N ,T <s≤T Xi,s/(T − t̂N ,T )

]2.

5. SIMULATIONS, AND DATA EXAMPLES

5.1. Simulations

Using the estimators defined in Section 4, we computed the empirical percent-
ages when the variable defined in (4.6) was below the asymptotic quantiles for
several N and T . We considered the case when there was no interaction between
the panel’s cross-sections, i.e. γi = 0, and also examples when cross-sectional
correlation was present. We tried various values of the break point t0 = �T θ�,
and we observed that the applicability of the limit results presented in Section 2
did not depend on θ . Therefore, in Tables 1 and 2, we present the results when
θ = 1/2. We used 1,000 independent repetitions to produce each table entry. The
90th, 95th, and 99th percentiles of the distribution of argmaxu(W (u)− g1/2(u))
are 4.70, 7.69, and 15.89, respectively. Table 1 illustrates that 	N ,T must be
small in order to use Theorem 2.2(a), and the approximation improves when T
increases. In case of larger 	N ,T , when the conditions of Theorem 2.1 are more
applicable, we observed that the distribution of t̂N ,T was more concentrated than
what we would expect from the asymptotics in Theorem 2.2(a). We observed that
the coverage at the 99% level was inflated in the examples that we considered,
indicating that the 99th percentile of argmaxu(W (u)− g1/2(u)) may be conserva-
tive in practice to approximate the 99th percentile of the normalized changepoint
estimator.

Our comments also hold when interaction between the cross-sections of the
panel is allowed as illustrated by Table 2, but, due to the dependence, larger T is
needed to use the limit results.
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TABLE 1. Empirical percentages of 	̂2
N ,T

(
t̂N ,T − t0

)
/�̂N ,T below the asymp-

totic quantiles for various values of N ,T,δi when γi = 0 for all 1 ≤ i ≤ N .

N/T δi 90% 95% 99%

25/100 0.150 88.7% 94.7% 100%
25/250 0.100 87.6% 94.4% 99.8%
25/500 0.060 89.9% 96.4% 100%
50/100 0.100 89.1% 97.1% 100%
50/250 0.070 88.1% 95.4% 100%
50/500 0.050 86.5% 94.9% 100%

100/100 0.085 86.1% 94.5% 100%
100/250 0.055 86.9% 94.3% 99.9%
100/500 0.035 88.5% 96.5% 100%

TABLE 2. Empirical percentages of 	̂2
N ,T

(
t̂N ,T − t0

)
/�̂N ,T below the asymp-

totic quantiles for various values of N ,T,δi when γi = 0.03 for all 1 ≤ i ≤ N .

N/T δi 90% 95% 99%

25/100 0.150 86.9% 94.9% 100%
25/250 0.100 90.7% 95.6% 100%
25/500 0.060 89.2% 97.2% 100%
50/100 0.100 87.6% 95.6% 100%
50/250 0.070 91.0% 96.4% 100%
50/500 0.050 88.3% 96.3% 100%

100/100 0.085 89.4% 95.9% 100%
100/250 0.055 85.1% 94.0% 99.9%
100/500 0.035 90.1% 96.5% 100%

Figure 1 shows that the density function of the limit follows the shape of the
histogram of t̂N ,T closely.

FIGURE 1. The histogram of t̂100,500 with δi = 0.07,γi = 0,1 ≤ i ≤ 100 (left panel) and
the histogram of t̂50,100 with δi = 0.1,γi = 0.03,1 ≤ i ≤ 50 (right panel) and the density
of the limiting random variable
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5.2. Applications

In the first example we consider the exchange rates between the US dollar and 23
other currencies. The data can be found at the website www.federalreserve.
gov/releases/h10/hist/. Figure 2 contains the graphs of the exchange rates
between the United Kingdom (UK), Canada (CA), Singapore (SI), Switzerland
(SW), Denmark (DN), Norway (NO) and Sweden (SD). In our study we used the
time period 03/13/2001–03/11/2003 so we have N = 23 panels and each panel has
T = 500 observations. Using the testing method in Horváth and Hušková (2013)
the no change in the mean of the panels null hypothesis is rejected. The estimated
time of change is t̂23,500 = 297 so the change is indicated on 05/16/2002. We also
constructed confidence intervals using (4.6). Since 	̂23,500 is very large, the 90%,
95%, and 99% confidence intervals contain only a single element, t̂23,500 = 297,
i.e. the conditions of Theorem 2.1 hold in this case. It is clear from Figure 2 that
the exchange rates are between 1.3 and 11, so if the same proportional change
occurs in a panel with high values, this change will give a very large δ2 compared
to the other panels. Hence a single panel can disproportionately contribute to
	̂N ,T . To overcome this problem we rescaled the observations in each panel with
the first observation, i.e. with the exchange rate on 03/13/2001. Figure 3 contains
the graphs of the relative changes in exchange rates with respect to the US dollar
for the same countries as in Figure 2. We repeated our analysis for the relative
changes (rescaled) in the exchange rates with respect to the US dollar, resulting
in t̂23,500 = 303 which corresponds to 05/24/2002. In the definition of �̂23,500 we
used M2 − M1 ≈ �T 1/2/	̂23,500�. The 90%, 95%, and 99% confidence intervals
are [292,330], [287,341], and [274,371]. Note that all these confidence intervals
contain 297 which was obtained for the non–scaled exchange rates. Some of the
graphs show a linear trend after the time of change instead of changing to another
constant mean. The limit distribution of the time of change is local, i.e. it is
determined by the observations in the neighborhood of t0. Replacing the linear
trend with an average value close to t0 can justify the asymptotic validity of the
confidence intervals. Also, after the change point was found and the means of the
corresponding segments were removed, the stationarity of the residuals could not
be rejected.
The exchange rates data and the scaled exchange rates contain further level shifts.
Using the binary segmentation method one can divide the data into homogenous

FIGURE 2. The graphs exchange rates, 1=UK, 2=SI, 3=CA, 4=SW (left panel); 1=DN,
2=NO, 3=SD (right panel) with respect to the US dollar.
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FIGURE 3. The graphs of relative exchange rates, 1=UK, 2=SI, 3=CA, 4=SW (left panel);
1=DN, 2=NO, 3=SD (right panel) with respect to the US dollar.

segments and provide confidence intervals for the time of changes. Sato (2013)
investigates the number and the location of the changes in daily log returns in
30 currency pairs between 04/01/2001 and 30/12/2011 and points out that the
study of the individual pairs might not find all the changes in the exchange rates
mechanism.

In the second example we compare the growth rates of the GDP/capita
for N = 113 countries. The data can be found at the website www://data.
worldbank.org/indicator/NY.GDP.MKTP.CD. The data are recorded in
current US dollars. We removed some countries from the data set due to a large
number of missing values, so we used N = 113 panels with T = 51 covering
the time period 1961–2012. To achieve stationarity of the errors we transformed
the data by taking log differences. The graphs of the log transformed GDP’s
are exhibited in Figure 4. We used the CUSUM test of Horváth and Hušková
(2013) to test the stability of the means of the panels which was rejected at a
very high significance level. The estimator for the time of change is t̂113,51 = 19

FIGURE 4. The graphs of the log differences of the GDP/capita for 113 countries between
1961 and 2012.
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which corresponds to 1979/1980. Applying the limit result in (4.6), [16,21] is the
asymptotic 90% and 95% confidence interval, while the 99% confidence interval
is [12,22].

6. CONCLUSION

We established the first and second order asymptotic properties of a CUSUM
estimator of the time of change in the mean of panel data. Our results are derived
under long run moment conditions, which serve to extend the asymptotic theory
to a broader family of error processes than had been previously considered in the
literature, and we provided an in depth study on how the rates of divergence of the
sizes of changes and the common factor loadings are manifested in the asymptotic
behavior of the test statistic. Our results were demonstrated with a Monte Carlo
simulation study, and we considered application to two real data sets.
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APPENDIX A. Proofs of Theorems 2.1–2.4 and
Remarks 2.1 and 2.2

Throughout the proofs c denotes unimportant constants whose values might change from
line to line. Using (2.1) we have

Si (t)− t

T
Si (T ) = Qi (t)+γi V (t)+ δi r(t),
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where

Qi (t) =
t∑

s=1

ei,s − t

T

T∑
s=1

ei,s , V (t) =
t∑

s=1

ηs − t

T

T∑
s=1

ηs (A.1)

and

r(t) = −t
T − t0

T
+ (t − t0)I{t > t0}. (A.2)

Hence we have(
Si (t)− t

T
Si (T )

)2
= Q2

i (t)+γ 2
i V 2(t)+ δ2

i r2(t)+2V (t)γi Qi (t)+2r(t)δi Qi (t)

+2V (t)r(t)γi δi . (A.3)

Let 0 < α < θ < 1−α and define

t̃N ,T (α) = argmax�T α�≤t≤T −�T α�
N∑

i=1

(
Si (t)− t

T
Si (T )

)2
.

LEMMA A.1. If Assumptions 2.1–2.5 are satisfied, then we have

lim
min(N ,T )→∞ P

{
t̂N ,T = t̃N ,T (α)

}= 1 for all 0 < α < θ < 1−α (A.4)

and

t̂N ,T

T
P→ θ as min(T, N ) → ∞. (A.5)

Proof. It is easy to see that for every 0 < α < θ < 1−α

1

T 2
max�T α�≤t≤T −�T α�r2(t) → θ2(1− θ)2,

1

T 2
max

1≤t≤�T α�r2(t) → α2(1− θ)2,

1

T 2
max

T −�T α�≤t≤T
r2(t) → α2θ2.

We prove that

sup
1≤t≤T

N∑
i=1

Q2
i (t) = OP (N T ). (A.6)

Elementary arguments give

E Q2
i (t) ≤ Ui,2(t)+2

{
Ui,2(t)Ui,2(T )

}1/2 +Ui,2(T )
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and therefore by Assumption 2.3(i) we have

max
1≤t≤T

N∑
i=1

E Q2
i (t) = O(N T ).

Let qi (u) = (Q2
i (uT )− E Q2

i (uT ))/T . Using Assumption 2.1(i), for every 0 ≤ u < v ≤ 1
by the Rosenthal inequality (cf. Petrov (1995, p. 59)) we have with ν = κ/2

E

∣∣∣∣∣∣
N∑

i=1

(qi (v)−qi (u))

∣∣∣∣∣∣
ν

≤ c

⎧⎪⎨
⎪⎩

N∑
i=1

E |qi (v)−qi (u)|ν +
⎛
⎝ N∑

i=1

E(qi (v)−qi (u))2

⎞
⎠

ν/2
⎫⎪⎬
⎪⎭ .

By the Cauchy–Schwarz inequality we conclude for all 1 ≤ s ≤ t ≤ T that

E(Q2
i (t)− Q2

i (s))2 ≤ E
{
(Qi (t)− Qi (s))

2 (|Qi (t)|+ |Qi (s)|)2
}

≤ 4
(

E(Qi (t)− Qi (s))
4
)1/2 (

E Q4
i (t)+ E Q4

i (s)
)1/2

.

Using the definition of Qi (t) and Assumption 2.1(ii) we get that

E(Qi (t)− Qi (s))
4 ≤ 23

{
Ui,4(t − s)+

(
t − s

T

)4
Ui,4(T )

}
.

and similarly

E Q4
i (t) ≤ 23 (Ui,4(t)+Ui,4(T )

)
.

Also,(
E Q2

i (t)− E Q2
i (s)

)2 ≤ 2E(Qi (t)− Qi (s))
2
(

E Q2
i (t)+ E Q2

i (s)
)

≤ 8

(
Ui,2(t − s)+

(
t − s

T

)2

Ui,2(T )

)(
Ui,2(t)+Ui,2(s)+2Ui,2(T )

)
.

Thus applying Assumption 2.3(ii) we get that with some 0 < c < ∞⎛
⎝ 1

N

N∑
i=1

E(qi (v)−qi (u))2

⎞
⎠

ν/2

≤ c|u − v|ν/2 for all 0 ≤ u < v ≤ 1.

Repeating the arguments used above we obtain that

E
∣∣∣Q2

i (t)− Q2
i (s)

∣∣∣ν ≤ E
{|Qi (t)− Qi (s)|ν (|Qi (t)|+ |Qi (s)|)ν

}
≤ 2ν

(
E |Qi (t)− Qi (s)|2ν

)1/2 (
E |Qi (t)|2ν + E |Qi (s)|2ν

)1/2
,

E |Qi (t)− Qi (s)|2ν ≤ 22ν

{
Ui,2ν(t − s)+

(
t − s

T

)2ν

Ui,2ν(T )

}
,
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E |Qi (t)|2ν ≤ 22ν (Ui,2ν(t)+Ui,2ν(T )
)

and∣∣∣E Q2
i (t)− E Q2

i (s)
∣∣∣2ν ≤ E |Qi (t)− Qi (s)|ν

(
E |Qi (t)|ν + E |Qi (s)|ν

)
≤ 22ν

(
Ui,ν (t − s)+

(
t − s

T

)ν

Ui,ν (T )

)(
Ui,ν (t)+Ui,ν (s)+2Ui,ν (T )

)
resulting in

1

N

N∑
i=1

E |qi (u)−qi (v)|ν ≤ c|u − v|ν/2 for all 0 ≤ u,v ≤ 1

with some c. Using Billingsley (1968, pp. 95 and 127) we conclude that the process∑N
i=1 qi (u)/N is tight in D[0,1] and therefore (A.6) holds.

The moment assumption in Assumption 2.4 with the maximal inequality of Móricz,
Serfling, and Stout (1982) yields that E(max1≤t≤T |V (t)|)κ̄ = O(T κ̄ ) and therefore by
Markov’s inequality we conclude

max
1≤t≤T

|V (t)| = OP

(
T 1/2

)
. (A.7)

By (A.7) we get immediately that

sup
1≤t≤T

N∑
i=1

γ 2
i V 2(t) = OP (T 
N ,T ). (A.8)

Following the proof of (A.6) we get

sup
1≤t≤T

∣∣∣∣∣∣
N∑

i=1

γi Qi (t)

∣∣∣∣∣∣= OP

(
T 1/2


1/2
N ,T

)

and therefore by (A.7)

sup
1≤t≤T

∣∣∣∣∣∣
N∑

i=1

V (t)γi Qi (t)

∣∣∣∣∣∣= OP

(
T 


1/2
N ,T

)
. (A.9)

Similarly to (A.9) we have that

sup
1≤t≤T

∣∣∣∣∣∣
N∑

i=1

r(t)δi Qi (t)

∣∣∣∣∣∣= OP

(
T 3/2	

1/2
N ,T

)
. (A.10)

Using again Assumption 2.4 and the definition of r(t), one can easily verify that

max
1≤t≤T

∣∣∣∣∣∣
N∑

i=1

V (t)r(t)γi δi

∣∣∣∣∣∣= OP

(
T 3/2 ∣∣�N ,T

∣∣) . (A.11)

https://doi.org/10.1017/S0266466615000468 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466615000468


ASYMPTOTIC PROPERTIES OF THE CUSUM ESTIMATOR 389

It follows from (A.6)–(A.11) that

1

T 2	N ,T
max

1≤t≤T

N∑
i=1

(
Si (t)− t

T
Si (T )

)2
P→ θ2(1− θ)2,

1

T 2	N ,T
max

1≤t≤�αT �

N∑
i=1

(
Si (t)− t

T
Si (T )

)2
P→ α2(1− θ)2

and

1

T 2	N ,T
max

T −�αT �≤t≤T

N∑
i=1

(
Si (t)− t

T
Si (T )

)2
P→ α2θ2,

which immediately implies Lemma A.1. n

According to (A.4), it is enough to consider the asymptotic behavior of

t̂N ,T = argmax�αT �≤t≤�(1−α)T � {UN (t)−UN (t0)} ,
with any 0 < α < θ < 1−α < 1, where UN (t) is defined in (4.2). It is easy to see that

UN (t)−UN (t0)

=
N∑

i=1

{
δ2

i

(
r2(t)− r2(t0)

)
+ Q2

i (t)− Q2
i (t0)+γ 2

i

(
V 2(t)− V 2(t0)

)

+2γi (Qi (t)V (t)− Qi (t0)V (t0))+2δi (r(t)Qi (t)− r(t0)Qi (t0))

+2γi δi (V (t)r(t)− V (t0)r(t0))

}
. (A.12)

LEMMA A.2. If Assumption 2.2 holds, then for all 0 < α < θ < 1 −α there are 0 <
c1,c2 < ∞ such that

−c1|t0 − t |T ≤ r2(t)− r2(t0) ≤ −c2|t0 − t |T
for all 1 ≤ t ≤ T .

Proof. The result follows from Assumption 2.2 and the definition of r(t). n

Throughout Lemmas A.3–A.7 we assume that 1 ≤ M ≤ T .

LEMMA A.3. If Assumptions 2.1–2.3 hold, then

max|t−t0|≥M

1

|t − t0|

∣∣∣∣∣∣
N∑

i=1

[
Q2

i (t)− Q2
i (t0)

]∣∣∣∣∣∣= OP

(
N + T 2/κ N 1/2 + (N T/M)1/2

)
. (A.13)

Proof. We write

Q2
i (t)− Q2

i (t0) = 2Qi (t0)(Qi (t)− Qi (t0))+ (Qi (t)− Qi (t0))2.

https://doi.org/10.1017/S0266466615000468 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466615000468


390 LAJOS HORVÁTH ET AL.

Using Assumption 2.3(i) we get that

sup
1≤t≤T

N∑
i=1

∣∣∣E Q2
i (t)− E Q2

i (t0)
∣∣∣

|t − t0| = O(N ). (A.14)

Let χi (t) = (Qi (t)− Qi (t0))2 − E(Qi (t)− Qi (t0))2. Elementary arguments give

P

⎧⎨
⎩ max

1≤t≤T

1

|t − t0|

∣∣∣∣∣∣
N∑

i=1

χi (t)

∣∣∣∣∣∣≥ x

⎫⎬
⎭

= P

⎧⎨
⎩
∣∣∣∣∣∣

N∑
i=1

χi (t)

∣∣∣∣∣∣≥ x |t − t0| for at least one 1 ≤ t ≤ T

⎫⎬
⎭

≤
∑

1≤t≤T

P

⎧⎨
⎩
∣∣∣∣∣∣

N∑
i=1

χi (t)

∣∣∣∣∣∣≥ x |t − t0|
⎫⎬
⎭

≤
∑

1≤t≤T

(x |t − t0|)−ν E

∣∣∣∣∣∣
N∑

i=1

χi (t)

∣∣∣∣∣∣
ν

, (A.15)

where in the last step we used Markov’s inequality. Let ν = κ/2, where κ is given in
Assumption 2.3(ii). The processes χi (t) are independent in i , so using the Rosenthal in-
equality (cf. Petrov (1995, p. 59)) we conclude with some c > 0, not depending on t ,

E

∣∣∣∣∣∣
N∑

i=1

χi (t)

∣∣∣∣∣∣
ν

≤ c

⎧⎪⎨
⎪⎩

N∑
i=1

E |χi (t)|ν +
⎛
⎝ N∑

i=1

Eχ2
i (t)

⎞
⎠

ν/2
⎫⎪⎬
⎪⎭ .

Assumptions 2.1(i) and 2.3(ii) yield

N∑
i=1

E |χi (t)|ν ≤ cN |t − t0|ν (A.16)

and⎛
⎝ N∑

i=1

Eχ2
i (t)

⎞
⎠

ν/2

≤ cNν/2|t − t0|ν . (A.17)

Thus we conclude via (A.15)–(A.17)

P

⎧⎨
⎩ max

1≤t≤T

1

|t − t0|

∣∣∣∣∣∣
N∑

i=1

χi (t)

∣∣∣∣∣∣≥ x

⎫⎬
⎭≤ c

∑
1≤t≤T

Nν/2|t − t0|ν
(x |t − t0|)ν ≤ c

xν
T Nν/2.

Choosing x = c∗N 1/2T 1/ν with a large enough c∗ we get that

max
1≤t≤T

1

|t − t0|

∣∣∣∣∣∣
N∑

i=1

χi (t)

∣∣∣∣∣∣= OP

(
T 1/ν N 1/2

)
.
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Let

Si (t) =
t∑

s=1

ei,s . (A.18)

It follows from the definition of Qi (t) that∣∣∣∣∣∣
N∑

i=1

(Qi (t0)(Qi (t)− Qi (t0))− E[Qi (t0)(Qi (t)− Qi (t0))])

∣∣∣∣∣∣
≤
∣∣∣∣∣∣

N∑
i=1

(
Qi (t0)(Si (t0)−Si (t))− E

[
Qi (t0)(Si (t0)−Si (t))

])∣∣∣∣∣∣
+ |t − t0|

T

∣∣∣∣∣∣
N∑

i=1

(
Qi (t0)Si (T )− E

[
Qi (t0)Si (T )

])∣∣∣∣∣∣ .
Using Assumptions 2.1(i), and 2.3(ii) with the Cauchy–Schwarz inequality we get that

var

⎛
⎝ N∑

i=1

Qi (t0)Si (T )

⎞
⎠=

N∑
i=1

var(Qi (t0)Si (T )) ≤
N∑

i=1

(
E Q4

i (t0)ES4
i (T )

)1/2 = O
(

N T 2
)

and therefore∣∣∣∣∣∣
N∑

i=1

(
Qi (t0)Si (T )− E

[
Qi (t0)Si (T )

])∣∣∣∣∣∣= OP

(
N 1/2T

)
.

With ζi (t) = Qi (t0)ei,t − E[Qi (t0)ei,t ] we can write for 1 ≤ t ≤ t0 that

N∑
i=1

(
Qi (t0)(Si (t0)−Si (t))− E

[
Qi (t0)(Si (t0)−Si (t))

])=
t0∑

s=t+1

N∑
i=1

ζi (s).

By the Markov inequality we have

P

⎧⎨
⎩ max

1≤t≤t0−M

1

t0 − t

∣∣∣∣∣∣
t0∑

s=t+1

N∑
i=1

ζi (s)

∣∣∣∣∣∣≥ x(N T/M)1/2

⎫⎬
⎭

≤ P

⎧⎨
⎩ max

log M≤k≤log t0
max

ek≤�≤ek+1

1

�

∣∣∣∣∣∣
t0∑

s=t0−�

N∑
i=1

ζi (s)

∣∣∣∣∣∣≥ x(N T/M)1/2

⎫⎬
⎭

≤ P

{
max

ek≤�≤ek+1

1

�

∣∣∣∣∣∣
t0∑

s=t0−�

N∑
i=1

ζi (s)

∣∣∣∣∣∣≥ x(N T/M)1/2

for at least one log M ≤ k ≤ log t0

}

https://doi.org/10.1017/S0266466615000468 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466615000468


392 LAJOS HORVÁTH ET AL.

≤
log t0∑

k=log M

P

⎧⎨
⎩ max

ek≤�≤ek+1

∣∣∣∣∣∣
t0∑

s=t0−�

N∑
i=1

ζi (s)

∣∣∣∣∣∣≥ x(N T/M)1/2ek

⎫⎬
⎭

≤
(

x(N T/M)1/2
)−ν

log t0∑
k=log M

e−kν E max
ek≤�≤ek+1

∣∣∣∣∣∣
t0∑

s=t0−�

N∑
i=1

ζi (s)

∣∣∣∣∣∣
ν

. (A.19)

Next we need a maximal inequality for the double sum in the last term above. With ζ̄i (s) =
ζi (t0 − s +1) we get that

t0∑
s=t0−�+1

N∑
i=1

ζi (s) =
�∑

s=1

N∑
i=1

ζ̄i (s).

By the independence of the processes ζ̄i (s) in i , Rosenthal’s inequality (cf. Petrov (1995,
p.59)) implies that

E

∣∣∣∣∣∣
N∑

i=1

v∑
s=u

ζ̄i (s)

∣∣∣∣∣∣
ν

≤ c

⎧⎪⎨
⎪⎩

N∑
i=1

E

∣∣∣∣∣
v∑

s=u
ζ̄i (s)

∣∣∣∣∣
ν

+
⎛
⎝ N∑

i=1

E

(
v∑

s=u
ζ̄i (s)

)2
⎞
⎠

ν/2
⎫⎪⎬
⎪⎭ . (A.20)

We have via the Cauchy–Schwarz inequality

E

(
v∑

s=u
ζ̄i (s)

)2

≤ E

(
Qi (t0)

v∑
s=u

ei,s

)2

≤
(

E Q4
i (t0)

)1/2

⎛
⎝E

(
v∑

s=u
ei,s

)4
⎞
⎠

1/2

and therefore

N∑
i=1

E

(
v∑

s=u
ζ̄i (s)

)2

≤
N∑

i=1

(
E Q4

i (t0)
)1/2

(
E

( v∑
s=u

ei,s

)4)1/2

≤
⎧⎨
⎩

N∑
i=1

E Q4
i (t0)

N∑
i=1

E

(
v∑

s=u
ei,s

)4
⎫⎬
⎭

1/2

.

Using that the ei,t ’s have mean zero and Assumption 2.3, we conclude

N∑
i=1

E

(
v∑

s=u
ζ̄i (s)

)2

≤ cN T |u − v|.

Similarly, by the definition of ζ̄i we get

E

∣∣∣∣∣
v∑

s=u
ζ̄i (s)

∣∣∣∣∣
ν

≤ 2ν

{
E

∣∣∣∣∣Qi (t0)

v∑
s=u

ei,s

∣∣∣∣∣
ν

+
∣∣∣∣∣E
[

Qi (t0)

v∑
s=u

ei,s

]∣∣∣∣∣
ν}

,

and by applications of the Cauchy–Schwarz inequality we have

∣∣∣∣∣E
[

Qi (t0)

v∑
s=u

ei,s

]∣∣∣∣∣≤
⎧⎨
⎩E Q2

i (t0)E

[
v∑

s=u
ei,s

]2
⎫⎬
⎭

1/2

,
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E

∣∣∣∣∣Qi (t0)

v∑
s=u

ei,s

∣∣∣∣∣
ν

≤
⎧⎨
⎩E |Qi (t0)|2ν E

∣∣∣∣∣
v∑

s=u
ei,s

∣∣∣∣∣
2ν
⎫⎬
⎭

1/2

resulting in

N∑
i=1

E

∣∣∣∣∣
v∑

s=u
ζ̄i (s)

∣∣∣∣∣
ν

≤ cN T ν/2|u − v|ν/2.

Using the inequalities above, we get the upper bound for the moment in (A.20):

E

∣∣∣∣∣∣
v∑

s=u

N∑
i=1

ζ̄i (s)

∣∣∣∣∣∣
ν

≤ cNν/2T ν/2|u − v|ν/2. (A.21)

Applying the maximal inequality in Móritz et al. (1982) to (A.21) we conclude

E max
ek≤�≤ek+1

∣∣∣∣∣∣
�∑

s=1

N∑
i=1

ζ̄i (s)

∣∣∣∣∣∣
ν

≤ cNν/2T ν/2ekν/2.

Hence (A.19) implies that

P

⎧⎨
⎩ max

1≤t≤t0−M

1

t0 − t

∣∣∣∣∣∣
t0∑

s=t+1

N∑
i=1

ζi (s)

∣∣∣∣∣∣≥ x(N T/M)1/2

⎫⎬
⎭

≤ c

xν(N T/M)ν/2

∞∑
k=log M

e−kν/2 Nν/2T ν/2

≤ c

xν
,

resulting in

max
1≤t≤t0−M

1

t0 − t

∣∣∣∣∣∣
t0∑

s=t+1

N∑
i=1

ζi (s)

∣∣∣∣∣∣= OP ((N T/M)1/2).

Similar arguments yield

max
t0+M≤t≤T

1

t0 − t

∣∣∣∣∣∣
t0∑

s=t+1

N∑
i=1

ζi (s)

∣∣∣∣∣∣= OP ((N T/M)1/2),

which completes the proof of the lemma. n

LEMMA A.4. If Assumptions 2.1–2.3 hold, then

max|t−t0|≥M

1

|t − t0|

∣∣∣∣∣∣
N∑

i=1

δi (r(t)Qi (t)− r(t0)Qi (t0))

∣∣∣∣∣∣= OP

(
T 1/2	

1/2
N ,T + T (	N ,T /M)1/2

)
.
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Proof. First we write

δi (r(t)Qi (t)− r(t0)Qi (t0)) = r(t)δi (Qi (t)− Qi (t0))+ δi Qi (t0)(r(t)− r(t0)).

Applying the definition of r(t) with Assumptions 2.1(i) and 2.3(i), we get

max|t−t0|≤T

|r(t)− r(t0)|
|t − t0|

∣∣∣∣∣∣
N∑

i=1

δi Qi (t0)

∣∣∣∣∣∣= OP

(
T 1/2	

1/2
N ,T

)
.

It follows from the definition of Qi (t) that for all i

Qi (t0)− Qi (t) = Zi (t, t0)− t0 − t

T

T∑
s=1

ei,s , if 1 ≤ t ≤ T,

where

Zi (t, t0) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

t0∑
s=t+1

ei,s , if 1 ≤ t < t0

0, if t = t0

−
t∑

s=t0+1

ei,s , if t0 < t ≤ T .

Clearly,
(∑N

i=1 δi
∑T

s=1 ei,s
)2 = O

(
T 	

1/2
N ,T

)
on account of Assumptions 2.1(i) and 2.3(i)

and therefore

max|t−t0|≤T

|r(t)|
|t − t0|

∣∣∣∣∣∣
t − t0

T

N∑
i=1

δi

T∑
s=1

ei,s

∣∣∣∣∣∣≤
∣∣∣∣∣∣

N∑
i=1

δi

T∑
s=1

ei,s

∣∣∣∣∣∣= OP

(
T 1/2	

1/2
N ,T

)
.

Repeating the arguments used in (A.19), by Markov’s inequality we have

P

⎧⎨
⎩ max

1≤t≤t0−M

1

t0 − t

∣∣∣∣∣∣
N∑

i=1

δi Zi (t, t0)

∣∣∣∣∣∣≥ x(	N ,T /M)1/2

⎫⎬
⎭

≤ P

⎧⎨
⎩ max

log M≤ j≤log T
max

e j ≤�≤e j+1

1

�

∣∣∣∣∣∣
N∑

i=1

δi Zi (t0 −�, t0)

∣∣∣∣∣∣≥ x(	N ,T /M)1/2

⎫⎬
⎭

≤
∞∑

j=log M

P

⎧⎨
⎩ max

e j ≤�≤e j+1

∣∣∣∣∣∣
N∑

i=1

δi Zi (t0 −�, t0)

∣∣∣∣∣∣≥ xe j (	N ,T /M)1/2

⎫⎬
⎭

≤ (M/	N ,T )ν/2

xν

∞∑
j=log M

e− jν E max
e j ≤�≤e j+1

∣∣∣∣∣∣
N∑

i=1

δi Zi (t0 −�, t0)

∣∣∣∣∣∣
ν

. (A.22)

With ēi,s = ei,t0−s+1 we get

max
e j ≤�≤e j+1

∣∣∣∣∣∣
N∑

i=1

δi Zi (t0 −�, t0)

∣∣∣∣∣∣= max
e j ≤�≤e j+1

∣∣∣∣∣∣
�+1∑
s=1

N∑
i=1

δi ēi,s

∣∣∣∣∣∣ .
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Using Assumptions 2.1(i), 2.3(ii) and 2.5(ii) with Rosenthal’s inequality we conclude for
all ν > 2 that

E

∣∣∣∣∣∣
v∑

s=u

N∑
i=1

δi ēi,s

∣∣∣∣∣∣
ν

≤ c(v −u)ν/2

⎧⎨
⎩

N∑
i=1

|δi |ν +	
ν/2
N ,T

⎫⎬
⎭≤ 2c(v −u)ν/2	

ν/2
N ,T , (A.23)

since by the multinomial theorem

N∑
i=1

|δi |ν ≤ 	
ν/2
N ,T .

The maximal inequality of Móricz et al. (1982) and (A.23) imply that

E max
e j ≤�≤e j+1

∣∣∣∣∣∣
N∑

i=1

δi Zi (t0 −�, t0)

∣∣∣∣∣∣
ν

≤ c	ν/2
N ,T e jν/2,

and therefore by (A.23) we have

P

⎧⎨
⎩ max

1≤t≤t0−M

1

t0 − t

∣∣∣∣∣∣
N∑

i=1

δi Zi (t, t0)

∣∣∣∣∣∣≥ x(	N ,T /M)1/2

⎫⎬
⎭

≤ c
(M/	N ,T )ν/2

xν

∞∑
j=log M

e− jν/2	
ν/2
N ,T

≤ c

xν
. (A.24)

Thus we conclude that

max
1≤t≤t0−M

1

t0 − t

∣∣∣∣∣∣
N∑

i=1

δi Zi (t, t0)

∣∣∣∣∣∣= OP

(
(	N ,T /M)1/2

)

and by similar arguments we have

max
t0+M≤t≤T

1

t − t0

∣∣∣∣∣∣
N∑

i=1

δi Zi (t, t0)

∣∣∣∣∣∣= OP

(
(	N ,T /M)1/2

)
,

which also completes the proof of the lemma. n

LEMMA A.5. If Assumptions 2.1–2.4 hold, then

max|t−t0|≥M

1

|t − t0|

∣∣∣∣∣
N∑

i=1

γ 2
i (V 2(t)− V 2(t0))

∣∣∣∣∣= OP

(

N ,T

(
1+ (log(T/M))2/κ̄ + M−1/2T 1/2

))
.
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Proof. We write |V 2(t)− V 2(t0)| ≤ (V (t)− V (t0))2 + 2|V (t0)||V (t)− V (t0)|. If 1 ≤
t ≤ t0, then

|V (t)− V (t0)| ≤
∣∣∣∣∣∣

t0∑
s=t+1

ηs

∣∣∣∣∣∣+
|t − t0|

T

∣∣∣∣∣∣
T∑

s=1

ηs

∣∣∣∣∣∣
and therefore

(V (t)− V (t0))2 ≤ 4

⎛
⎝ t0∑

s=t+1

ηs

⎞
⎠

2

+4
(t − t0)2

T 2

⎛
⎝ T∑

s=1

ηs

⎞
⎠

2

.

Thus we get from Assumption 2.4 that

max|t−t0|≥M

(V (t)− V (t0))2

t0 − t
= OP (1)+2

⎛
⎝ max|t−t0|≥M

1

(t0 − t)1/2

∣∣∣∣∣∣
t0∑

s=t+1

ηs

∣∣∣∣∣∣
⎞
⎠

2

.

Repeating the arguments used in (A.19) we get that

P

⎧⎨
⎩ max

t0−t≥M

1

(t0 − t)1/2

∣∣∣∣∣∣
t0∑

s=t+1

ηs

∣∣∣∣∣∣≥ x

⎫⎬
⎭

≤ P

⎧⎨
⎩ max

log M≤k≤log T
max

ek≤u≤ek+1

1

u1/2

∣∣∣∣∣∣
t0∑

s=t0−u+1

ηs

∣∣∣∣∣∣≥ x

⎫⎬
⎭

≤
log T∑

k=log M

P

⎧⎨
⎩ max

ek≤u≤ek+1

∣∣∣∣∣∣
t0∑

s=t0−u+1

ηs

∣∣∣∣∣∣≥ xek/2

⎫⎬
⎭

≤ 1

x κ̄

log T∑
k=log M

e−kκ̄/2 E max
ek≤u≤ek+1

∣∣∣∣∣∣
t0∑

s=t0−u+1

ηs

∣∣∣∣∣∣
κ̄

.

Following the arguments used in the proofs of Lemmas A.3 and A.4 one can verify that

E max
ek≤u≤ek+1

∣∣∣∣∣∣
t0∑

s=t0−u+1

ηs

∣∣∣∣∣∣
κ̄

≤ cekκ̄/2

which implies that

P

⎧⎨
⎩ max

t0−t≥M

1

(t0 − t)1/2

∣∣∣∣∣∣
t0∑

s=t+1

ηs

∣∣∣∣∣∣≥ x

⎫⎬
⎭≤ c

log(T/M)

x κ̄
.

Similar computations can be performed for t − t0 ≥ M and thus we conclude

max|t0−t |≥M

1

(t0 − t)1/2

∣∣∣∣∣∣
t0∑

s=t+1

ηs

∣∣∣∣∣∣= OP

(
(log(T/M))1/κ̄

)
.
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As in the proof of Lemma A.3 we have that

sup
t0−t≥M

1

t0 − t

∣∣∣∣∣∣
t0∑

s=t+1

ηs

∣∣∣∣∣∣= OP

(
M−1/2

)
and

sup
t−t0≥M

1

t − t0

∣∣∣∣∣∣
t∑

s=t0+1

ηs

∣∣∣∣∣∣= OP

(
M−1/2

)
. (A.25)

The proof of the lemma is now complete. n

LEMMA A.6. If Assumptions 2.1–2.4 hold, then

max|t−t0|≥M

1

|t − t0|

∣∣∣∣∣∣
N∑

i=1

γi (Qi (t)V (t)− Qi (t0)V (t0))

∣∣∣∣∣∣= OP

(



1/2
N ,T T 1/2 M−1/2

)
.

Proof. We write

Qi (t)V (t)− Qi (t0)V (t0) = V (t)(Qi (t)− Qi (t0))+ (V (t)− V (t0))Qi (t0).

Assumption 2.4 implies that

max
1≤t≤T

|V (t)| = OP

(
T 1/2

)

and by the arguments used in the proof of Lemma A.4 one can show that

max|t−t0|≥M

1

|t − t0|

∣∣∣∣∣∣
N∑

i=1

γi (Qi (t)− Qi (t0))

∣∣∣∣∣∣= OP

(
M−1/2


1/2
N ,T

)
.

Similar arguments yield

max|t−t0|≥M

|V (t)− V (t0)|
|t − t0|

∣∣∣∣∣∣
N∑

i=1

γi Qi (t0)

∣∣∣∣∣∣= OP

(
T 1/2 M−1/2


1/2
N ,T

)
.

n

LEMMA A.7. If Assumptions 2.1–2.4 hold, then

max|t−t0|≥M

1

|t − t0|

∣∣∣∣∣∣
N∑

i=1

γi δi (V (t)r(t)− V (t0)r(t0))

∣∣∣∣∣∣= OP

((
T 1/2 + T M−1/2

)∣∣�N ,T
∣∣) .

Proof. Since V (t)r(t)− V (t0)r(t0) = V (t0)(r(t)−r(t0))+r(t)(V (t)− V (t0)), Lemma
A.7 follows from

max|t−t0|≥M

∣∣∣∣V (t0)
r(t)− r(t0)

t − t0

∣∣∣∣= OP

(
T 1/2

)
(A.26)
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and

max|t−t0|≥M

∣∣∣∣r(t)
V (t)− V (t0)

t − t0

∣∣∣∣= OP

(
T M−1/2

)
. (A.27)

The claim in (A.26) is an immediate consequence of the definition of r(t) and Assump-
tion 2.4 while (A.27) is proven in (A.25). n

Proof of Theorem 2.1. Under assumptions (2.3) and (2.4) we use Lemmas A.2–A.7
with M = 1. n

Proof of Remark 2.1. The proof of this remark follows Bai (2010) closely. We use
(A.3). Since T is fixed,

max
1≤t≤T

N∑
i=1

γ 2
i V 2(t) = OP (
)

and by Assumption 2.3(i) and Markov’s inequality we have

max
1≤t≤T

N∑
i=1

Q2
i (t) = OP (N ).

By the Cauchy–Schwarz inequality and Assumption 2.3(i) we conclude

E

∣∣∣∣∣∣
N∑

i=1

V (t)γi Qi (t)

∣∣∣∣∣∣= O
(

1/2

)

and therefore

max
1≤t≤T

∣∣∣∣∣∣
N∑

i=1

V (t)γi Qi (t)

∣∣∣∣∣∣= OP

(

1/2

)
.

Similar arguments give

max
1≤t≤T

∣∣∣∣∣∣r(t)
N∑

i=1

δi Qi (t)

∣∣∣∣∣∣= OP

(
	1/2

)

and

max
1≤t≤T

∣∣∣∣∣∣r(t)V (t)
N∑

i=1

δi γi

∣∣∣∣∣∣= OP (|�|).

The final term coming from (A.3) to consider is �N
i=1r2(t)δ2

i = 	r2(t). Under the condi-
tions of the remark, this is the asymptotically dominating term which has a unique maxi-
mum at t0. Hence Remark 2.1 is proven. n
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Proof of Remark 2.2. Let

fi (t) = 1

(t (T − t))1/2
(Qi (t)+γi V (t)) ,

where Qi (t) and V (t) are defined in (A.1). We note that due to the assumption that the ei,s
and ηt are sequences of uncorrelated random variables we get that

E f 2
i (t) = σ 2

i +γ 2
i (A.28)

and

var( f 2
i (t)) ≤ C1

(
Ee4

i,0 +γ 4
i

)
(A.29)

with some constant C1. We write

N∑
i=1

(
Si (t)− t

T
Si (t)

)2 1

t (T − T )
=H1,N (t)+H2,N (t)+H3,N (t),

with

H1,N (t) = 	
r2(t)

t (T − T )
, H2,N (t) =

N∑
i=1

f 2
i (t) and H3,n(t) = 2

N∑
i=1

fi (t)
δi r(t)

(t (T − t))1/2
,

where r(t), t = 1,2, . . . ,T is defined in (A.2). We show that for all t �= t0

lim
N→∞ P{H1,N (t0)−H1,N (t) ≤H2,N (t)

−H2,N (t0)+H2,N (t)−H2,N (t0)} = 0, (A.30)

which immediately implies Remark 2.2. We note that with some C2 > 0 we have that
H1,N (t0)−H1,N (t) ≥ C2	 for all t �= t0. By the independence of the processes Qi (t),
1 ≤ i ≤ N and V(t) we conclude

E
(H2,N (t)−H2,N (t0)

)2 =
N∑

i=1

E

(
1

t (T − t)
Q2

i (t)− 1

t0(T − t0)
Q2

i (t0)

)2

+4
N∑

i=1

E

(
1

t (T − t)
Qi (t)γi V (t)− 1

t0(T − t0)
Qi (t0)γi V (t)

)2

+ E

(
V 2(t)

t (T − t)
− V 2(t0)

t0(T − t0)

)2


2

= O
(

N +
 +
2
)

and therefore

max
1≤t<T

∣∣H2,N (t)−H2,N (t0))
∣∣= OP

(
N 1/2 +
1/2 +


)
.

Similarly,

max
1≤t<T

∣∣H3,N (t)−H3,N (t0))
∣∣= OP

(
	1/2 +|�|

)
= OP

(
	1/2 +	1/2
1/2

)
,

since |�| ≤ 	1/2
1/2, completing the proof of (A.30). n
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LEMMA A.8. We assume that Assumptions 2.1–2.6 hold, and |s| < ∞. Then, as
N ,T → ∞ we have that

	N ,T |t̂N ,T − t0| = OP (1). (A.31)

Proof. By Lemma A.1 it is enough to prove that for all 0 < α < θ

	|t̃N ,T (α)− t0| = OP (1). (A.32)

Under Assumption 2.6(i) we choose M = C/	N ,T , where C > 0 is a constant. Using
Lemmas A.2, A.3, A.5–A.7 and Assumption 2.5(ii) we obtain that

	N ,T (r2(t)− r2(t0))+
N∑

i=1

(
Q2

i (t)− Q2
i (t0)

)
+
N ,T

(
V 2(t)− V 2(t0)

)
(A.33)

+2
N∑

i=1

γi (Qi (t)V (t)− Qi (t0)V (t0))+2
N∑

i=1

γi δi (V (t)r(t)− V (t0)r(t0))

= 	N ,T

(
r2(t)− r2(t0)

)
(1+oP (1)) uniformly on |t − t0| ≥ M

for all M . Also, by Lemmas A.2 and A.4 we obtain that

lim
C→∞ liminf

N ,T →∞ P

{
sup

|t−t0|≥C/	N ,T

N∑
i=1

[
δ2

i

(
r2(t)− r2(t0)

)
+2δi (r(t)Qi (t)− r(t0)Qi (t0))

]
< 0

}
= 1.

Hence Lemma A.8 is established under Assumption 2.6(i) and |s| < ∞. n

LEMMA A.9. We assume that Assumptions 2.1–2.6 hold, and |s| < ∞. Then, as
N ,T → ∞ we have that

sup
|t−t0|≤C/	

∣∣∣∣∣∣
1

T

N∑
i=1

δ2
i

(
r2(t0)− r2(t)

)
−2θ(1− θ)	gθ (t − t0)

∣∣∣∣∣∣= o(1), (A.34)

sup
|t−t0|≤C/	

∣∣∣∣∣∣
1

T

N∑
i=1

δi (Qi (t)r(t)− Qi (t0)r(t0))

+ θ(1− θ)

N∑
i=1

δi (Si (t)−Si (t0))

∣∣∣∣∣∣
= oP (1), (A.35)

sup
|t−t0|≤C/	

∣∣∣∣∣∣
1

T

N∑
i=1

γi δi (V (t)r(t)− V (t0)r(t0))+ θ(1− θ)�N ,T (V (t)− V (t0))

∣∣∣∣∣∣
= oP (1), (A.36)
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sup
|t−t0|≤C/	

∣∣∣∣∣∣
1

T

N∑
i=1

(
Q2

i (t)− Q2
i (t0)

)∣∣∣∣∣∣= oP (1), (A.37)

sup
|t−t0|≤C/	

∣∣∣∣∣∣
1

T

N∑
i=1

γ 2
i

(
V 2(t)− V 2(t0)

)∣∣∣∣∣∣= oP (1) (A.38)

and

sup
|t−t0|≤C/	

∣∣∣∣∣∣
1

T

N∑
i=1

γi (Qi (t)V (t)− Qi (t0)V (t0))

∣∣∣∣∣∣= oP (1), (A.39)

for all C > 0, where 	 = 	N ,T and Si (·) is defined in (A.18).

Proof. First we note

1

T

N∑
i=1

δ2
i

(
r2(t)− r2(t0)

)
= 2r(t0)

T

N∑
i=1

δ2
i (r(t)− r(t0))+ 1

T

N∑
i=1

δ2
i (r(t)− r(t0))2.

Using the definition of r(t) and Assumption 2.5(i) we conclude

sup
|t−t0|≤C/	

∣∣∣∣∣∣
1

T

N∑
i=1

δ2
i (r(t)− r(t0))2

∣∣∣∣∣∣= O(1/(T 	)) = o(1)

and

sup
|t−t0|≤C/	

∣∣∣∣∣∣
2r(t0)

T

N∑
i=1

δ2
i (r(t)− r(t0))−2θ(1− θ)	gθ (t − t0)

∣∣∣∣∣∣= o(1),

completing the proof of (A.34).
Similarly,

N∑
i=1

δi (Qi (t)r(t)− Qi (t0)r(t0)) = r(t0)

N∑
i=1

δi (Qi (t)− Qi (t0))+
N∑

i=1

δi Qi (t)(r(t)− r(t0))

and

N∑
i=1

δi (Qi (t)− Qi (t0)) =
N∑

i=1

δi (Si (t)−Si (t0))+ t − t0
T

N∑
i=1

δiSi (T ).

Computing the variance of
∑N

i=1 δiSi (T ) we get

sup
|t−t0|≤C/	

∣∣∣∣∣∣
r(t0)

T

t − t0
T

N∑
i=1

δiSi (T )

∣∣∣∣∣∣= OP

(
1/(T 	)1/2

)
= oP (1)
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by Assumption 2.5(i), so (A.35) is proven.
Clearly,

V (t)r(t)− V (t0)r(t0) = (V (t)− V (t0))r(t)+ V (t0)(r(t)− r(t0)).

By Assumption 2.4 we get that V (t0) = OP
(
T 1/2) and therefore

sup
|t−t0|≤C/	

|V (t0)(r(t)− r(t0))| = OP

(
T 1/2/	

)
.

We note that for all t0 ≤ t ≤ t0 +C/	

|V (t)− V (t0)| ≤
∣∣∣∣∣∣

t∑
s=t0+1

ηs

∣∣∣∣∣∣+
|t − t0|

T

∣∣∣∣∣∣
T∑

s=1

ηs

∣∣∣∣∣∣
and by Assumption 2.4 we have that |∑t

s=t0+1 ηs | = OP

(
1/	1/2

)
and the process

	1/2∑�u/	�
s=1 ηs , 0 ≤ u ≤ 1 is tight in D[0,C]. Thus by stationarity we get

sup
t0≤t≤C/	

∣∣∣∣∣∣
t∑

s=t0+1

ηs

∣∣∣∣∣∣= OP

(
1/	1/2

)

and similar arguments can be used on t0 −C/	 ≤ t ≤ t0. We conclude that

sup
|t−t0|≤C/	

|V (t)− V (t0)| = OP

(
1/	1/2 + T −1/2/	

)
= OP

(
1/	1/2

)
(A.40)

completing the proof of (A.36) on account |s| < ∞.
With ψi (t) = Q2

i (t)− Q2
i (t0)− E(Q2

i (t)− Q2
i (t0)) we can write

sup
|t−t0|≤C/	

1

T

∣∣∣∣∣∣
N∑

i=1

(
Q2

i (t)− Q2
i (t0)

)∣∣∣∣∣∣
≤ sup

|t−t0|≤C/	

1

T

∣∣∣∣∣∣
N∑

i=1

(
E Q2

i (t)− E Q2
i (t0)

)∣∣∣∣∣∣+ sup
|t−t0|≤C/	

1

T

∣∣∣∣∣∣
N∑

i=1

ψi (t)

∣∣∣∣∣∣ .
We obtain from the proof of Lemma A.1 that

sup
|t−t0|≤C/	

1

T

∣∣∣∣∣∣
N∑

i=1

(
E Q2

i (t)− E Q2
i (t0)

)∣∣∣∣∣∣= O

(
N

T 	

)
= o(1).

For every t ∈ [t0 −C/	, t0 +C/	] we have that

E

⎛
⎝ 1

T

N∑
i=1

ψi (t)

⎞
⎠

2

≤ C
1

T 2

N∑
i=1

Eψ2
i (t)
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and

sup
|t−t0|≤C/	

Eψ2
i (t) ≤ 9 sup

|t−t0|≤C/	

{
Q2

i (t)(Qi (t)− Qi (t0))2 + Q2
i (t0)(Qi (t)− Qi (t0))2

}

= O(1)

{
sup

|t−t0|≤C/	

(
E Q4

i (t)
)1/2

sup
|t−t0|≤C/	

(
E(Qi (t)− Qi (t0))4

)1/2
}

= O(T/	).

Next we show that
√

	/(N T )
∑N

i=1 ψi (u/	) is tight in D[−C,C]. Using Rosenthal’s
inequality (cf. Petrov (1995, p. 59)) we obtain that

E

∣∣∣∣∣∣
N∑

i=1

(ψi (t)−ψi (s))

∣∣∣∣∣∣
κ/2

≤ c

⎧⎪⎨
⎪⎩

N∑
i=1

E |ψi (t)−ψi (s)|κ/2 +
⎛
⎝ N∑

i=1

E(ψi (t)−ψi (s))
2

⎞
⎠

κ/4
⎫⎪⎬
⎪⎭

with some constant c. It is easy to see that

|ψi (t)−ψi (s)| ≤
{
|Qi (t)(Qi (t)− Qi (s))|+ |Qi (s)(Qi (t)− Qi (s))|+ |E Q2

i (t)− E Q2
i (s)|

}
and

|E Q2
i (t)− E Q2

i (s)| ≤ c|t − s|.
By the Cauchy–Schwarz inequality and Assumption 2.3(ii) we have for all t,s ∈ [t0 −
C/	, t0 +C/	]

E(Qi (t)(Qi (t)− Qi (s)))
2 ≤

(
E Q4

i (t)E(Qi (t)− Qi (s))
4
)1/2 ≤ cT |t − s|

and therefore

E(ψi (t)−ψi (s))
2 ≤ cT |t − s|

where c is a constant. Also, for κ of Assumption 2.3(ii) we have

E |Qi (t)(Qi (t)− Qi (s))|κ/2 ≤ {
E |Qi (t)|κ E |Qi (t)− Qi (s)|κ

}1/2 ≤ c
{
Ui,κ (t)Ui,κ (|t − s|)}1/2

with some constant c. Thus we get via Assumption 2.3(ii) that

E

⎧⎪⎨
⎪⎩
∣∣∣∣∣∣
(

	

N T

)1/2 N∑
i=1

(ψi (u/	)−ψi (v/	))

∣∣∣∣∣∣
κ/2

⎫⎪⎬
⎪⎭≤ c|u − v|κ/4,

establishing tightness by Billingsley (1968, pp. 95 and 127). This also completes the proof
of (A.37).
Following the arguments in the proof of (A.36) one can show that

sup
|t−t0|≤C/	

∣∣∣V 2(t)− V 2(t0)
∣∣∣≤ 2 sup

|t−t0|≤C/	
|V (t)− V (t0)| sup

|t−t0|≤C/	
|V (t)|

= OP

(
T 1/2/	1/2

)
,
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and therefore (A.38) follows from Assumption 2.5(ii). To prove (A.39) we first write

Qi (t)V (t)− Qi (t0)V (t0) = V (t)(Qi (t)− Qi (t0))+ Qi (t0)(V (t)− V (t0)).

Repeating the arguments used in the proof of (A.37) we obtain that

1

T
sup

|t−t0|≤C/	

∣∣∣∣∣∣V (t)
N∑

i=1

γi (Qi (t)− Qi (t0))

∣∣∣∣∣∣= OP

((

N ,T /(T 	)

)1/2
)

= oP (1)

via applying Assumption 2.5(ii) and T 	 → ∞. n

Let

RN ,T (u) =
N∑

i=1

δiSi (u/	N ,T ), u ≥ 0,

where Si (·) is defined in (A.18).

LEMMA A.10. If Assumptions 2.1, 2.3, 2.7, (2.8) and (2.10) hold, then we have

RN ,T (u)
D[0,C]−→ σ W (u),

for all C > 0, where W (u) stands for a Wiener process.

Proof. For the sake of notational simplicity we write 	 = 	N ,T . Let 0 = u0 < u1 <
u2 < · · · < uk ≤ C and α1,α2, . . . ,αk . Under (2.10) we write

k∑
�=1

α�(RN ,T (u�)− RN ,T (u�−1)) =
N∑

i=1

k∑
�=1

α�δi (Si (u�/	)−Si (u�−1/	)).

Using Assumptions 2.1, 2.3, 2.7(i), and (2.10), we get that

N∑
i=1

E

⎛
⎝ k∑

�=1

α�δi (Si (u�/	)−Si (u�−1/	))

⎞
⎠

2

= σ 2
k∑

�=1

α2
� (u� −u�−1)(1+o(1)).

Also, Assumptions 2.1(ii) and 2.7(ii) imply

N∑
i=1

E

∣∣∣∣∣∣δi

k∑
�=1

α�(Si (u�/	)−Si (u�−1/	))

∣∣∣∣∣∣
τ̄

≤ c
N∑

i=1

|δi |τ̄ max
1≤�≤k

Ui,τ̄ (|u� −u�−1|/	)

≤ c

⎧⎨
⎩	−τ̄ /2

N∑
i=1

|δi |τ̄
⎫⎬
⎭ (A.41)
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So using Lyapunov’s theorem (cf. Petrov (1995, p. 154)) we conclude via (2.8) that

k∑
�=1

α�(RN ,T (u�)− RN ,T (u�−1))
D→ σ

k∑
�=1

α�(W (u�)− W (u�−1)),

where W stands for a Wiener process. Applying the Cramér–Wold theorem (cf. Billingsley
(1968, p. 49)) we obtain that the finite dimensional distributions of RN ,T (u) converge to
that of σ W (u). Next we show that RN ,T (u) is tight in D[0,C]. Following the arguments
in (A.41), Rosenthal’s inequality yields for all 0 ≤ u,v ≤ C

E |RN ,T (u)− RN ,T (v)|τ̄

≤ c	−τ̄ /2

⎧⎨
⎩

N∑
i=1

|δi |τ̄ E |Si (u/	)−Si (v/	)|τ̄ +
(

N∑
i=1

δ2
i E(Si (u/	)−Si (v/	))2

)τ̄ /2
⎫⎬
⎭

≤ c

⎧⎨
⎩

N∑
i=1

|δi |τ̄ Ui,τ̄ (|u − v|/	)+
(

N∑
i=1

δ2
i Ui,2(|u − v|/	)

)τ̄ /2
⎫⎬
⎭

≤ c

{
	−τ̄ /2

N∑
i=1

|δi |τ̄ +1

}
|u − v|τ̄ /2

≤ c|u − v|τ̄ /2

on account of Assumption 2.7(ii) and (2.8). The tightness now follows from Billingsley
(1968, p. 127). n

LEMMA A.11. If Assumptions 2.1, 2.3, 2.7 and (2.8) hold, then for all integers 0 < t1 <
t2 < .. . < tK we have that⎛
⎝ N∑

i=1

δiSi (t�),1 ≤ � ≤ K

⎞
⎠ D−→ (G(t�),1 ≤ � ≤ K ) ,

where the Gaussian process G(t), t = 0,±1,±2. . . . is defined in Theorem 2.2.

Proof. We repeat the first half of the proof of Lemma A.10. The result of Lemma A.11
follows from (A.41) and Lyapunov’s central limit theorem due to assumption (2.8). n

Proof of Theorem 2.2. Let 	 = 	N ,T . It follows from Assumption 2.1(ii) and Lemma
A.10 that for all C > 0

N∑
i=1

δi (S(t0 +u/	)−S(t0))
D[−C,C]−→ σ W (u), (A.42)

where W (u),−∞ < u < ∞ is a two sided Wiener process. Also, 	gθ (u/	) = gθ (u) and
since s= 0 by (A.40) we have that

�N ,T sup
|t−t0|≤	

|V (t)− V (t0)| = oP (1). (A.43)
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By Lemma A.9 we conclude that for all C > 0

1

T
(UN (t0 +u/	)−UN (t0))

D[−C,C]−→ 2θ(1− θ)(σ W (u)− gθ (u)). (A.44)

By the continuous mapping theorem we conclude from (A.44) that for all C

argmax|t−t0|≤C/	 (UN (t0 +u/	)−UN (t0))

D−→ argmax|u|≤C (σ W (u)− gθ (u)). (A.45)

According to the law of iterated logarithm, we have that

lim
C→∞argmax|u|≤C (σ W (u)− gθ (u)) → argmaxu(σ W (u)− gθ (u)) a.s. (A.46)

Now (2.11) follows from Lemma A.8, (A.45) and (A.46).
It follows from Assumption 2.1(ii), (A.43) and Lemmas A.9, A.11 that for every integer
C > 0{

1

T
(UN (t0 + t)−UN (t0)) , t = 0,±1,±2, . . . ,±C

}
D−→ {2θ(1− θ)(G(t)−dgθ (t)), t = 0,±1,±2, . . . ,±C} . (A.47)

Observing that u(t, t) = O(t), the normality of G(t) with the Borel–Cantelli lemma yields
that lim|t |→∞G(t)/t = 0, and therefore

lim
C→∞argmax|t |≤C (G(t)−dgθ (t)) = argmaxt (G(t)−dgθ (t)) a.s.

The proof of (2.13) is now completed via Lemma A.8. n

Proof of Theorem 2.3. It follows from Assumption 2.8 that the Wiener processes in
Assumption 2.9 and (A.42) are independent. Hence Lemma A.9 yields for all C > 0 that

1

T
(UN (t0 +u/	)−UN (t0))

D[−C,C]−→ 2θ(1− θ)
(
σ 2 + s2

)1/2
W (u)− gθ (u)),

where W (u),−∞ < u < ∞ is a two–sided Wiener process. Arguments used in (A.45) and
(A.46) could be repeated to finish the proof of (2.15).
Referring again to Assumption 2.8 it is immediate that the Gaussian processG(t) and V(t)
are independent. So applying Lemma A.9 we replace (A.47) with

{
1

T
(UN (t0 + t)−UN (t0)) , t = 0,±1,±2, . . . ,±C

}
D−→

{
2θ(1− θ)(G(t)+ sd1/2V(t)−dgθ (t)), t = 0,±1,±2, . . . ,±C

}
for any C > 0. Observing that V(t)/t → 0 a.s. we need only minor modifications of the
proof of (2.13) to complete the proof of (2.16). n
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LEMMA A.12. We assume that Assumptions 2.1–2.6 hold, and |s| = ∞. Then, as
N ,T → ∞ we have that

|t̂N ,T − t0| = OP (MN ,T ), (A.48)

where MN ,T = (�N ,T /	N ,T )2.

Proof. By Lemma A.1 it is enough to prove that for all 0 < α < θ

|t̃N ,T (α)− t0| = OP (MN ,T ). (A.49)

The result follows from Lemmas A.2–A.7 with M = (�N ,T /	N ,T )2. n

Proof of Theorem 2.4. Let M = (�N ,T /	N ,T )2. Since 	N ,T is bounded, by (2.17)
we have

�N ,T

	N ,T
→ ∞. (A.50)

Following the proof of Lemma A.9 one can show that for all C > 0

sup
|t−t0|≤C M

∣∣∣∣ 1

T

N∑
i=1

δi (Qi (t)r(t)− Qi (t0)r(t0))

∣∣∣∣= oP (1), (A.51)

sup
|t−t0|≤C M

∣∣∣∣∣∣
1

T

N∑
i=1

(Q2
i (t)− Q2

i (t0))

∣∣∣∣∣∣= oP (1), (A.52)

sup
|t−t0|≤C M

∣∣∣∣∣∣
1

T

N∑
i=1

γ 2
i (V 2(t)− V 2(t0))

∣∣∣∣∣∣= oP (1) (A.53)

and

sup
|t−t0|≤C M

∣∣∣∣∣∣
1

T

N∑
i=1

γi (Qi (t)V (t)− Qi (t0)V (t0))

∣∣∣∣∣∣= oP (1). (A.54)

It follows from Assumptions 2.4 and 2.9 that for all C > 0

1

T

(
	N ,T

(
r2(t0 +uM)− r2(t0)

)
+2�N ,T (V (t0 +uM)r(t0 +uM)− V (t0)r(t0))

)
D[−C,C]−→ 2θ(1− θ)(W (u)− gθ (u)),

where W (u),−∞ < u < ∞ denotes a two–sided Wiener process. Using now (A.51)–
(A.54)

1

T
(UN (t0 +uM)−UN (t0))

D[−C,C]−→ 2θ(1− θ)(W (u)− gθ (u)).

Arguments used in (A.45) and (A.46) could be repeated to complete the proof of Theo-
rem 2.4. n
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APPENDIX B. Proof of Theorem 4.1

For the sake of brevity we use t̂ , 	 and � for t̂N ,T , 	N ,T and �N ,T , respectively . We
start with the proof of (4.4). Let M = M(N ,T ) be a sequence satisfying

M → ∞, M/T → 0, (B.1)

if the conditions of Theorem 2.2 or 2.3 hold and

M → ∞, M/min
(

T,�2/	2
)

→ 0 (B.2)

under the assumptions of Theorem 2.4. First we show that for all M satisfying M/T → 0
we have that

sup
|u|≤M

∣∣∣∣∣∣∣
1

	

N∑
i=1

⎛
⎝ 1

t0 +u

∑
1≤t≤t0+u

Xi,t − 1

T − (t0 +u)

∑
t0+u<t≤T

Xi,t

⎞
⎠

2

−1

∣∣∣∣∣∣∣= oP (1). (B.3)

Using (2.1) we have for all 0 < u ≤ M

1

t0 +u

∑
1≤t≤t0+u

Xi,t − 1

T − (t0 +u)

∑
t0+u<t≤T

Xi,t =
(

u

t0 +u
−1

)
δi + γi

t0 +u

∑
1≤t≤t0+u

ηt

+ 1

t0 +u

∑
1≤t≤t0+u

ei,t − γi

T − (t0 +u)

∑
T −(t0+u)<t≤T

ηt − 1

T − (t0 +u)

∑
T −(t0+u)<t≤T

ei,t .

Since M/T → 0, we have

sup
0<u≤M

∣∣∣∣∣
(

t0
t0 +u

)2
−1

∣∣∣∣∣→ 0. (B.4)

Applying Assumption 2.4 with Markov’s inequality and the maximal inequality of Móritz
et al. (1982) we obtained for all z > 0

P

⎧⎪⎨
⎪⎩




T 2	
sup

0<u≤M

⎛
⎝ ∑

1≤t≤t0+u

ηt

⎞
⎠

2

≥ z

⎫⎪⎬
⎪⎭= P

⎧⎪⎨
⎪⎩ sup

0<u≤M

⎛
⎝ ∑

1≤t≤t0+u

ηt

⎞
⎠

κ̄

≥ (zT 2	/
)κ̄/2

⎫⎪⎬
⎪⎭

≤
(




T 2	

)κ̄/2

E sup
0<u≤M

⎛
⎝ ∑

1≤t≤t0+u

ηt

⎞
⎠

κ̄

= O
(
(
/(T 	))κ̄/2

)
→ 0 (B.5)

on account of Assumption 2.5. Following the proof of (B.5) but now using Assump-
tions 2.1(i) and 2.3, we conclude

P

⎧⎪⎨
⎪⎩

1

T 2	

N∑
i=1

⎛
⎝ ∑

1≤t≤t0

ei,t

⎞
⎠

2

≥ z

⎫⎪⎬
⎪⎭≤ 1

zT 2	

N∑
i=1

E

⎛
⎝ ∑

1≤t≤t0

ei,t

⎞
⎠

2

= 1

z
O (N/(T 	)) → 0 (B.6)
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by Assumption 2.5(i). The stationarity in Assumption 2.1(ii) yields

P

⎧⎪⎨
⎪⎩

1

T 2	
sup

0<u≤M

N∑
i=1

⎛
⎝ ∑

t0+1≤t≤t0+u

ei,t

⎞
⎠

2

≥ z

⎫⎪⎬
⎪⎭

= P

⎧⎪⎨
⎪⎩

1

T 2	
sup

0<u≤M

N∑
i=1

⎛
⎝ ∑

1≤t≤u

ei,t

⎞
⎠

2

≥ z

⎫⎪⎬
⎪⎭

≤
M∑

u=1

P

⎧⎪⎨
⎪⎩

1

T 2	

N∑
i=1

⎛
⎝ ∑

1≤t≤u

ei,t

⎞
⎠

2

≥ z

⎫⎪⎬
⎪⎭

= 1

z
O

(
N M

T 2	

)
→ 0 (B.7)

by Assumption 2.5(i) and the assumption that M/T → 0. Putting together (B.6) and (B.7)
we obtain that

sup
0<u≤M

1

	

N∑
i=1

⎛
⎝ 1

t0 +u

∑
1≤t≤t0+u

ei,t

⎞
⎠

2

= oP (1). (B.8)

Following the proofs of (B.5) and (B.8) one can prove that

sup
0<u≤M

1

	

N∑
i=1

⎛
⎝ γi

T − (t0 +u)

∑
T −(t0+u)<t≤T

ηt

⎞
⎠

2

= oP (1) (B.9)

and

sup
0<u≤M

1

	

N∑
i=1

⎛
⎝ 1

T − (t0 +u)

∑
T −(t0+u)<t≤T

ei,t

⎞
⎠

2

= oP (1). (B.10)

The result in (B.3) now follows from (B.4), (B.5), and (B.8)–(B.10). Since under our con-
ditions

|t̂ − t0|/M = oP (1), (B.11)

the proof of (4.4) is complete.

By (A.3) we have

UN
(
t̂ + v

)−UN
(
t̂
)= U (1)

N (v)+ . . .+U (6)
N (v),
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where

U (1)
N (v) =

N∑
i=1

δ2
i

(
r2(t̂ + v)− r2(t̂)

)
, U (2)

N (v) =
N∑

i=1

(
Q2

i (t̂ + v)− Q2
i (t̂)

)
,

U (3)
N (v) =

N∑
i=1

γ 2
i

(
V 2(t̂ + v)− V 2(t̂ )

)
,

U (4)
N (v) = 2

N∑
i=1

γi
(
Qi (t̂ + v)V (t̂ + v)− Qi (t̂ )V (t̂ )

)
,

U (5)
N (v) = 2

N∑
i=1

δi
(
r(t̂ + v)Qi (t̂ + v)− r(t̂ )Qi (t̂ )

)
,

and

U (6)
N (v) = 2

N∑
i=1

δi γi
(
r(t̂ + v)V (t̂ + v)− r(t̂ )V (t̂ )

)
.

It follows from the proofs of Lemmas A.3, A.5, A.6, and A.9 that for all M satisfying (B.1)
we have

sup
|v|≤M

1

|v|r̂2
N ,T

{∣∣∣U (2)
N (v)

∣∣∣+ ∣∣∣U (3)
N (v)

∣∣∣+ ∣∣∣U (4)
N (v)

∣∣∣}2 = oP
(
�N ,T

)
,

where r̂N ,T is defined in (4.3). Applying now Lemmas A.4, A.7, and A.9 we conclude

sup
|v|≤M

1

|v|r̂2
N ,T

∣∣∣U (5)
N (v)−U (7)

N (v)
∣∣∣2 = oP (�N ,T )

and

sup
|v|≤M

1

|v|r̂N ,T

∣∣∣U (6)
N (v)−U (8)

N (v)
∣∣∣2 = oP (�N ,T ),

where

U (7)
N (v) = 2r(t0)

N∑
i=1

δiAi
(
v; t̂

)
and U (8)

N (v) = 2r(t0)

N∑
i=1

δi γiB
(
v; t̂

)
,

Ai (v ; t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t+v∑
s=t+1

ei,s , v > 0

0, v = 0

t−1∑
s=t+v

ei,s , v < 0,
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and

B(v ; t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t+v∑
s=t+1

ηs , v > 0

0, v = 0

t−1∑
s=t+v

ηs , v < 0.

Using (B.1) and (B.11) one can verify that

sup
|v|≤M

1

|v|r̂N ,T

∣∣∣U (7)
N (v)−U (9)

N (v)
∣∣∣2 = oP (�N ,T )

and

sup
|v|≤M

1

|v|r̂N ,T

∣∣∣U (8)
N (v)−U (10)

N (v)
∣∣∣2 = oP (�N ,T ),

where

U (9)
N (v) = 2r(t0)

N∑
i=1

δiAi (v ; t0) and U (10)
N (v) = 2r(t0)

N∑
i=1

δi γiB(v ; t0).

Let m = m(N ,T ) ≤ M and m → ∞, as min(N ,T ) → ∞. Using Assumptions 2.3 and 2.4
we get

sup
m≤|v|≤M

∣∣∣∣ 1

4|v|r2(t0)
E
(

U (9)
N (v)+U (10)

N (v)
)2 −�N ,T

∣∣∣∣= o(�N ,T ).

and

sup
|v|≤m

1

4|v|r2(t0)�N ,T

(
U (9)

N (v)+U (10)
N (v)

)2 = OP (1). (B.12)

We claim that

sup
m≤|v|≤M

∣∣∣∣∣ 1

4|v|r2(t0)�N ,T

(
U (9)

N (v)+U (10)
N (v)

)2 −1

∣∣∣∣∣= oP (1). (B.13)

The statement in (B.13) is a uniform weak law of large numbers, so we can repeat the proof
of (B.4) to prove it. Namely, due to stationarity, it follows from Assumptions 2.3 and 2.4
that for every v ∈ [−M, . . . ,−m,m, . . . , M] that

1

4|v|r2(t0)�N ,T

(
U (9)

N (v)+U (10)
N (v)

)2 P→ 1. (B.14)

Now (B.13) follows from (B.14) if
(

U (9)
N (v)+U (10)

N (v)
)2

/(|v|r2(t0)�N ,T ),m ≤ |v| ≤ M

is tight. The tightness can be proven along the lines of the proofs of Lemmas A.4 and A.7.
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Our arguments show that

sup
|v|≤M

∣∣∣∣ 1

4|v|r̂2
N ,T

(
UN (t̂ + v)−UN (t̂ )−	N ,T

(
r2(t̂ + v)− r2(t̂ )

))2

− 1

|v|r(t0)

(
U (9)

N (v)+U (10)
N (v)

)2
∣∣∣∣= oP (�N ,T ). (B.15)

Putting together (B.12), (B.13), and (B.15), the result in (4.5) follows.
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