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We study bubble motion in a vertical capillary tube under an external flow. Bretherton (J.
Fluid Mech., vol. 10, issue 2, 1961, pp. 166–188) has shown that, without external flow, a
bubble can spontaneously rise when the Bond number (Bo ≡ ρgR2/γ ) is above the critical
value Bocr = 0.842, where ρ is the liquid density, g the gravitational acceleration, R the
tube radius and γ the surface tension. It was then shown by Magnini et al. (Phys. Rev.
Fluids, vol. 4, issue 2, 2019, 023601) that the presence of an imposed liquid flow, in the
same (upward) direction as buoyancy, accelerates the bubble and thickens the liquid film
around it. In this work we carry out a systematic study of the bubble motion under a wide
range of upward and downward external flows, focusing on the inertialess regime with
Bond numbers above the critical value. We show that a rich variety of bubble dynamics
occurs when an external downward flow is applied, opposing the buoyancy-driven rise of
the bubble. We reveal the existence of a critical capillary number of the external downward
flow (Cal ≡ μUl/γ , where μ is the fluid viscosity and Ul is the mean liquid speed) at
which the bubble arrests and changes its translational direction. Depending on the relative
direction of gravity and the external flow, the thickness of the film separating the bubble
surface and the tube inner wall follows two distinct solution branches. The results from
theory, experiments and numerical simulations confirm the existence of the two solution
branches and reveal that the two branches overlap over a finite range of Cal, thus suggesting
non-unique, history-dependent solutions for the steady-state film thickness under the same
external flow conditions. Furthermore, inertialess symmetry-breaking shape profiles at
steady state are found as the bubble transits near the tipping points of the solution branches,
which are shown in both experiments and three-dimensional numerical simulations.
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1. Introduction

The motion of an elongated bubble confined in a narrow geometry is of interest to a wide
range of science and engineering fields, and can be found in various processes in industry,
geology and medical applications. Examples include oil production and recovery (e.g.
Blunt 2001; Zhou & Prosperetti 2019), surface cleaning (e.g. Asayesh, Zarabadi & Greener
2017; Khodaparast et al. 2017), coating processes (e.g. Quéré 1999; Kotula & Anna 2012;
Yu, Khodaparast & Stone 2017), medical therapy (e.g. Feinstein et al. 1984; Uhlendorf
& Hoffmann 1994; Hu et al. 2015), heat exchange (e.g. Ferrari, Magnini & Thome 2018;
Magnini & Matar 2020), etc. As a bubble translates in a liquid-filled capillary under an
external flow, a thin film of liquid, separating the bubble surface and the inner tube wall, is
formed owing to the competition of viscous and surface tension effects. It is of particular
interest to understand the thickness of this lubricating film because it is responsible for
the heat and mass transfer performance of the system. Furthermore, as in many of the
applications mentioned above, the stability of the process and its efficiency are dependent
on the thin film thickness and/or the interactions with the bubble surface. As a result,
understanding the correlation between the film thickness and an applied external flow is
the key to enable fine-tuning of the film thickness for better process control.

As first described theoretically by Bretherton (1961), for a horizontal configuration with
negligible buoyancy effects, the lubricating film is uniform near the centre body of the
bubble, and the dynamics can be described by a single dimensionless number, the capillary
number of the bubble, Cab ≡ μUb/γ , where Ub is the bubble velocity, and μ and γ

represent the dynamic viscosity of the fluid and surface tension, respectively. In the limit of
small bubble velocity, Cab < 5 × 10−3, the uniform film thickness, b, relative to the inner
radius of the cylindrical capillary, R, satisfies b/R = 0.643(3Cab)

2/3. In the inertialess
regime (Re � 1, where Re ≡ ρUbR/μ, and ρ denotes the fluid density), this relationship
was further extended to Cab < 2 by Aussillous & Quéré (2000) as

b
R

= 1.34Ca2/3
b

1 + 3.35Ca2/3
b

. (1.1)

In both limits, the bubble velocity and the external flow velocity can be related by
Cal/Cab = (1 − b/R)2, where Cal ≡ μUl/γ , and Ul represents the cross-sectionally
averaged external flow velocity.

In a system where buoyancy effects are not negligible, the Bond number Bo ≡ ρgR2/γ
can be used to quantify the gravitational effects, with g denoting the acceleration of
gravity. As described in the same paper characterizing the horizontal configuration,
Bretherton (1961) predicted that the bubble will rise spontaneously in a vertically oriented
capillary through a stagnant fluid for Bo > Bocr = 0.842. While Bocr has been confirmed
by subsequent investigations (Lamstaes & Eggers 2017; Dhaouadi & Kolinski 2019; Li
et al. 2019), the experimental film thickness measured by Thulasidas, Abraham & Cerro
(1995) shows deviation from Bretherton’s prediction for a bubble rising under a small
co-flow. Thereafter, many studies in the literature have investigated the combined effects
of buoyancy and external flow on the bubble motion, but the majority of the research has
focused on the regime with Bo � 1, where buoyancy and inertial effects dominate the
dynamics (e.g. Nicklin 1962; Collins et al. 1978; Taitel, Barnea & Dukler 1980; Polonsky,
Barnea & Shemer 1999; Araújo et al. 2012). Under these circumstances, the bubble always
rises with a thick annular film, as well as a flattening, or even fragmented, bottom end.
The steady thin films, relied on in many of the industrial and medical processes mentioned
above, thus cannot be obtained in this inertia-dominant regime, but they can be achieved
in the buoyancy- and capillary-dominant regime by reducing the Bond number.
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Bubble dynamics in vertical capillary with external flow

Recently, Magnini et al. (2019) revisited the bubble dynamics in a vertical capillary
under external flow for Bo � 1. The authors showed that an upward external flow
accelerates the rise of the bubble and thus thickens the film, and suggested that the
same theoretical results could be applied to the case with a downward external flow;
the latter suggestion, however, lacked experimental confirmation. As we shall see in the
current work, the external downward flow regime, in fact, contains richer dynamics than
expected. Not only does the film profile admit different solution branches, but we find
that multiple solutions are possible in some range of external downward flow, i.e. there
is non-uniqueness. Thus, it is important to investigate the full picture of the correlation
between the bubble profiles, buoyancy effects and external flow, which will provide further
insights for enhancing the controllability of technologies involving thin films.

In this paper, we investigate the dynamics of a bubble in the inertialess regime at Bo �
Bocr, where the bubble is confined in a vertically oriented channel and translates at a steady
state under a general external flow. By identifying the distinct bubble morphologies under
different alignments between gravity and the external flow, we solve for the bubble profile,
combining efforts in theory, experiments and direct numerical simulations. Theoretical
derivations are provided in § 2, which provides the governing equations for determining
the different solution branches of the film profile. Experiments and direct numerical
simulations are both adopted for consolidating the theoretical predictions, with the
methods described in § 3. Results from theory, experiments and simulations are compared
in § 4. A phase diagram is then generated, providing a full picture of the axisymmetric
bubble profiles and their uniform film thicknesses based on the combinations of Bo and
Cal, including the direction of the external flow relative to gravity. Furthermore, inertialess
symmetry-breaking bubble profiles are found in both experiments and simulations, with
the characteristic features described in § 4.2.

2. Theoretical derivation

The theoretical derivation in this section assumes azimuthal symmetry in the bubble
profile (figure 1a–c). An axisymmetric bubble, for example in figure 1(a), can be divided
into three regions: a leading spherical cap (region I, also known as the ‘nose’), which
smoothly connects to a uniform film region with thickness b (region II), and a trailing
spherical cap (region III, also known as the ‘tail’), which connects to region II with
undulations. For a bubble in a vertically oriented capillary under an external flow, two
possible axisymmetric bubble profiles can be obtained, including the ‘nose-up’ (figure 1b)
and the ‘nose-down’ (figure 1c) configurations. In this section, theoretical derivations will
be provided to solve for the uniform film thickness in these two cases.

As mentioned previously, the classic Bretherton problem in a horizontal capillary can
be considered as the special case with Bo = 0. In the absence of buoyancy effects, the
tube orientation does not alter the dynamics, and the uniform film thickness is solely
determined by the magnitude of the external flow. The film thickness vanishes as Cal → 0,
with the direction of the bubble motion and the bubble nose pointing in the same direction
as the external flow.

In the case where Bo is not negligible, the dynamics of the bubble are governed by
the combination of viscous and capillary effects, buoyancy and the external flow. Since a
bubble can spontaneously rise through a stagnant fluid in a vertically oriented capillary
when Bo > Bocr, it is intuitive that this bubble might sustain a small magnitude of the
downward flow and continue to rise. As will be shown later in this section, the directional
alignment between the two driving forces will significantly affect the axisymmetric bubble
profile, which can be categorized naturally in one of two cases: a bubble with the ‘nose’
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Figure 1. Schematics of bubble profiles. Bubbles are confined in a vertically oriented cylindrical capillary
under an external flow, which is characterized by the cross-sectional averaged fluid velocity Ul, whose
magnitude is shaded in dark grey. (a) Different regions in an axisymmetric bubble profile. The axisymmetric
bubble profile is characterized by three distinct regions: I (shaded red), the bubble ‘nose’; II, uniform film
region; and III (shaded blue), the bubble ‘tail’. As shown by the arrows in the insets, when moving away
from the uniform film region II, the film thickness connecting to the nose varies monotonically, while the film
connecting to the bubble tail exhibits undulations. (b) Axisymmetric bubble profile with the nose pointing
upwards and the uniform film thickness h(x) = b in region II. The inset shows a parabolic velocity profile
u( y) in region II in the laboratory frame. (c) Axisymmetric bubble profile with the nose pointing downwards.
Note that panels (b) and (c) are illustrated at the same magnitude of downward flow speed Ul, suggesting the
non-unique film profiles under the same flow conditions. (d) The symmetry-breaking bubble profile, which
shows the cross-section with the maximum (left) and minimum (right) film thicknesses. While the thick film
adopts a profile with the nose (red) pointing upwards and the tail (blue) pointing downwards, the profile of the
thin film has the opposite arrangement. The bubble centreline offsets from the tube centreline towards the thin
film. The symmetry breaking will be discussed in § 4.2.

pointing upwards or downwards. In this problem, the Bond number Bo = ρgR2/γ and the
capillary number of the external flow Cal = μUl/γ are both given. Based on the input,
we seek to uncover the dynamics of the bubble at steady state, especially the uniform
film thickness b/R as well as the non-dimensional speed, or the capillary number of the
bubble, Cab = μUb/γ . Hereafter, negative values of the liquid or bubble capillary number
are associated with downward liquid or bubble flow.

2.1. ‘Nose-up’ branch: bubble profile with nose pointing upwards
We begin by summarizing the results from Magnini et al. (2019), who investigated the
dynamics of a confined bubble translating at steady state under an external upward flow. In
fact, with a small variation, as we will describe in the following context, it can be extended
to describe a more general case: the dynamics of a bubble with its ‘nose’ pointing upwards
(figure 1b).

As indicated in figure 1(b), the coordinates are represented by (x, y), with x pointing
vertically upwards and y = R − r pointing radially inwards from the tube inner wall. With
the assumption that the film thickness is much smaller than the tube radius, b/R � 1, (x, y)
can effectively be treated as local Cartesian coordinates, and the lubrication approximation
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Bubble dynamics in vertical capillary with external flow

can be applied to simplify the Navier–Stokes equations as

continuity ux + vy = 0, (2.1a)

x-direction uyy = 1
μ

( px + ρg) , (2.1b)

y-direction py = 0, (2.1c)

where subscripts denote derivatives, the velocities in (x, y) are represented by (u, v) and p
denotes the fluid pressure.

In a reference frame moving with the bubble at the steady-state speed Ub, the velocity
profile within the thin film can be obtained by integrating equation (2.1b) with the
boundary conditions

u
∣∣
y=0 = −Ub and uy

∣∣
y=h(x) = 0, (2.2a,b)

which results in

u( y) = 1
2μ

(px + ρg)(y2 − 2hy) − Ub. (2.3)

Note that, due to the gravitational effects, fluid in the thin film is always draining
vertically downwards with a parabolic profile. Specifically, the velocity profile within
the uniform film region ub( y) = ρg( y2 − 2by)/(2μ) − Ub can then be obtained by
demanding h(x) = b and px = 0 from (2.3). An expression for κx, the gradient of curvature
along the x-direction, can thus be obtained by matching the fluxes from integrating the two
velocity profiles, and, consistent with the relative magnitude of terms in the lubrication
approximation, expressing the gradient of capillary pressure as px = −γ κx:

κx = 3μUb

γ

(h − b)

h3 + ρg
γ

(h3 − b3)

h3 . (2.4)

The two terms in (2.4) indicate the contributions from the capillary and buoyancy effects,
respectively. This expression for κx, obtained from the lubrication equations, can be
equated to its geometrical counterpart, κx = (∇ · n)x, where n denotes the normal vector
of the bubble surface pointing inwards to the gas phase (figure 1b), leading to

3μUb

γ

(h − b)

h3 + ρg
γ

(h3 − b3)

h3 =
[

1
(h2

x + 1)1/2
1

R − h
+ hxx

(h2
x + 1)3/2

]
x
. (2.5)

As noticed previously (Magnini et al. 2019), the full expression for the curvature of
the film profile is necessary in order for (2.4) to describe the liquid flow in both the thin
film and bubble cap regions. One can further proceed with non-dimensionalization by
defining X = x/�, H = h/b and K = κ�2/b, with � denoting the characteristic length scale
in the x-direction, which will be determined below. Different from Magnini et al. (2019),
non-dimensionalizing (2.5) shows that there are two choices for the characteristic scale �,
which lead to two different expressions for ε ≡ b/�:

ε1 = Ca1/3
b or ε2 = (α2Bo)1/3, (2.6)

where α = b/R. Note that ε1 and ε2 are consistent with the characteristic
scales for the classic Bretherton problems in horizontal (Bo = 0) and vertical
orientations (Cal = 0), respectively. Furthermore, the ratio between these two choices,
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λ ≡ (ε2/ε1)
3 = α2Bo/Cab, quantifies the relative significance of the buoyancy and

capillary effects within the thin film region. While the right-hand side (RHS) of the
rescaled equation (2.5) shows

RHS = HXXX

f 3 − 3ε2HXH2
XX

f 5 − α

1 − αH
HXHXX

f 3 +
(

α

1 − αH

)2 HX

ε2f
, (2.7)

with f = (ε2H2
X + 1)1/2, different choices of ε result in a slightly different left-hand side

(LHS) of the rescaled equation (2.5):

ε = ε1, LHS = 3
(H − 1)

H3 + λ(H
3 − 1)

H3 , (2.8a)

ε = ε2, LHS = 3
λ

(H − 1)

H3 + (H3 − 1)

H3 . (2.8b)

When the system is provided with an upward external flow, as in Magnini et al. (2019),
both length-scale choices are well defined and thus perform equivalently. When solving
for the film profile with a downward flow, however, choosing ε1 becomes problematic, as
Cab → 0, which leads to an artificial singularity in the term associated with λ in (2.8a).

As a result, in order to extend the film profile solution with an upward nose towards the
downward flow regime, while avoiding the artificial singularity, the characteristic length
scale is chosen interactively during the numerical shooting process (see § 2.3 for more
detail): ε = ε1 is chosen when λ < 1, where capillary effects outweigh buoyancy in the
thin film and (2.7) and (2.8a) are solved; otherwise, when λ � 1, ε = ε2 is chosen and
(2.7) and (2.8b) are solved.

Note that, in the simulations and physical experiments, the strength of the external flow,
Cal, is directly controlled rather than the bubble speed, Cab, which enters λ = α2Bo/Cab.
Therefore, an additional relationship is needed to link the two capillary numbers, which
can be obtained by balancing the flux from the external Poiseuille flow in the far field
and the cross-sectional flux in the uniform film region. Integrating the velocity profiles in
cylindrical coordinates, we have

Cab = Cal

(1 − α)2 + Bo
[
−1

2
+ 3(1 − α)2

8
+ 1

8(1 − α)2 − 1
2
(1 − α)2 log(1 − α)

]
.

(2.9)
With any two of Bo, Cal, Cab and α = b/R given, one can solve (2.7)–(2.9) for the

other quantities with numerical shooting (see § 2.3). One of the questions of interest is
the critical strength of the external downward flow needed, Cal,cr, in order to stabilize the
bubble, i.e. Cab = 0. In this scenario, the critical magnitude of external flow Cal,cr and the
corresponding film thickness α = b/R can be solved based on the two inputs – the Bond
number Bo and Cab = 0.

Typical results from a numerical solution are shown in figure 2, where the critical
downward flow Cal,cr as a function of Bo is shown as the black solid curve in figure 2(a).
For a fixed Bo, the bubble rises if the provided external flow is above the curve with
Cal > Cal,cr, and vice versa. This solution is consistent with the results for a vertically
oriented capillary in Bretherton (1961), as Cal,cr = 0 remains true for all Bo < Bocr, and
non-zero downward flow is needed to maintain the bubble stationary in the laboratory
frame otherwise. The magnitude of Cal,cr remains small for Bo ≈ 1, and rapidly increases
as gravitational effects become more dominant.
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Figure 2. Critical condition for a bubble being stabilized in the laboratory frame (Cab = 0) under an external
downward flow. (a) The critical strength of the external flow Cal,cr as a function of Bo. Consistent with results
in the literature, external downward flow is needed to keep the bubble stationary in the laboratory only for
Bo > Bocr, and, as Bo increases, a stronger downward flow is required. (b) The uniform film thickness b/R
when the critical external flow condition Cal,cr is applied, where α = b/R monotonically increases with Cal,cr.
In the limit of α → 0, expanding (2.9) shows that α ∼ (−Cal,cr/Bo)1/3, and the asymptotic scaling is shown
as the red dashed curve.

The corresponding critical film thickness is shown in figure 2(b), where the inset
is plotted in log–log scales. Note that, in the limit of α → 0, (2.9) can be expanded.
Since both the external flow and buoyancy are significant, taking the leading order of
each term and demanding Cab = 0 (a stationary bubble) leads to

α =
(

−3
2

Cal,cr

Bo

)1/3

. (2.10)

This asymptotic approximation is shown in figure 2(b) as the red dashed curve, which
is in excellent agreement with the numerical shooting solutions for α = b/R < 0.1.
Furthermore, the rapid increase of Cal,cr with Bo can thus be qualitatively explained, since
the critical film thickness increases with Bo, and the scaling shows |Cal,cr| ∼ α3Bo.

2.2. ‘Nose-down’ branch: bubble with nose pointing downwards
Equations (2.7)–(2.9) fully describe the dynamics of the bubble under an upward external
flow (Cal ≥ 0). For Bo > Bocr, the solution can be further extended towards the downward
flow regime (Cal < 0), with the bubble nose pointing upwards and Cab → Ca+

l . However,
this solution is only valid for a limited range of Cal < 0, beyond which solutions of
(2.7)–(2.9) fail to converge within the set tolerance, and thus the branch terminates. In
a physical system, the bubble responds to the stronger downward flow by changing its
morphology, so that the ‘nose’ points downwards as indicated in figure 1(c), following
the flow direction. Both experiments and simulations introduced in the next sections will
confirm this response.

The bubble profile in a downward-nose system is similar to the upward-nose case, and
therefore, when it comes to solving for the film profile, the new film equations can be
obtained by modifying (2.7)–(2.9) simply by redefining the vertical coordinate as x̃ = −x
(figure 1c). With this convention, the positive directions of Cal and Cab within the model
are redefined, while the scalar variables (e.g. α and H) remain unchanged. Furthermore,
since the gravitational direction remains vertically downwards regardless of coordinates,
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in the new coordinate system, the terms associated with Bo must change sign as well. As a
result, the film equations become

3
(H − 1)

H3 − λ(H
3 − 1)

H3 = HXXX

f 3 − 3ε2HXH2
XX

f 5 − α

1 − αH
HXHXX

f 3 +
(

α

1 − αH

)2 HX

ε2f
,

(2.11a)

Cab = Cal

(1 − α)2 − Bo
[
−1

2
+ 3(1 − α)2

8
+ 1

8(1 − α)2 − 1
2
(1 − α)2 log(1 − α)

]
,

(2.11b)

where, compared to (2.7)–(2.9), the net effects are sign changes in the terms related to
gravity only. In other words, by changing the nose direction from upwards to downwards,
the bubble only senses a sign change in the buoyancy force: instead of assisting the bubble
to rise, buoyancy effects are now acting as resistance to the bubble motion, which is now
mainly driven by the downward external flow.

When the bubble dynamics falls on this solution branch, the bubble always sinks and
the film thickness α converges to the origin as Cal → 0− (as we will confirm in § 4). Thus,
ε = ε1 is chosen when non-dimensionalizing the equations, resulting in the form of (2.11a)
similar to (2.8a).

2.3. Numerical integration
With Cal and Bo given, (2.7)–(2.9) or (2.11) can be solved for Cab, the uniform film
thickness α and the film profile H(X), with the boundary conditions

H(0) = 1, HX(0) = 0 and HXX(0) = 0, (2.12a–c)

and H(Xnose) = 1/α is demanded as the additional constraint, with X = 0 indicating
the uniform film region and Xnose the location of the bubble nose, which is yet to be
determined by the numerical integration scheme. Although the full curvature of the film
is used in (2.7)–(2.9) or (2.11), the underlying solution method is effectively the same
as the asymptotic expansion as seen in Bretherton (1961), which includes the process of
solving the film equation for the bubble ‘nose’ and matching to the static spherical cap.
The coupled equations are solved by first imposing an initial guess on α. With Cal and Bo
given, (2.9) or (2.11b) outputs the capillary number of the bubble Cab, which serves as an
input for (2.7) and (2.8) or (2.11a). The ordinary differential equation for H(X) is solved
by numerical integration with the MATLAB program ode45 from the uniform film region
towards the front spherical cap in the positive X-direction. Numerical integration ceases
when HX → ∞, where the termination location denotes Xnose and the value H(Xnose) is
compared with the constraint H(Xnose) = 1/α. The initial guess of α is then iteratively
updated until this additional constraint is met, meaning that the bubble nose is symmetric
about the tube centreline.

3. Experimental and numerical simulation methods

3.1. Experimental set-up
Experiments are performed in a refractive-index-matching set-up similar to those
described in Yu et al. (2018) and Magnini et al. (2019), with pure glycerol filling the
capillary tube as the continuous phase. The density, viscosity and surface tension of the
pure glycerol are measured as ρ = (1.29 ± 0.001) × 103 kg m−3, μ = 1.00 ± 0.04 Pa s
(Anton Parr, Physica MCG 301) and γ = 65.4 ± 1.0 mN m−1 (pendant drop), respectively.
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Bubble dynamics in vertical capillary with external flow

Glass capillaries with three different inner diameters (ID = 4.45, 4.85, 5.65 ± 0.05 mm)
are used, yielding the Bond numbers of Bo = 0.97, 1.16, 1.56, respectively. Each glass
capillary is placed within a cuboid glass box, which is also filled with pure glycerol in
order to avoid imaging distortions. The top end of the glass capillary is connected to a
liquid reservoir by a Teflon hose, and the bottom end is submerged in a bath of pure
glycerol. The experimental flow rate is adjusted by controlling the reservoir pressure using
the Elveflow� OB1 MK3 pressure and vacuum controller, and calibration between the
flow rate and controller pressure is performed for all capillary tubes used. The imaging
apparatus is composed of a Nikon D5100 DSLR camera and a Mitutoyo infinity-corrected
objective, mounted on an in-house-made tube microscope. The imaging apparatus is
aligned horizontally with a collimated LED source, which is located half-way between
the two ends of the capillary tube.

In each set of experiments with the same Bo, the capillary tube is partially filled with
pure glycerol, leaving a section of an air column in the bottom end of the capillary. The
set-up is then carefully calibrated to be vertical. A single bubble is formed by applying
vacuum to the system, providing an upward flow and assisting the formation of the thin
liquid film. For experiments corresponding to Cab > 0, experiments start by directly
setting the pressure/vacuum to a target value; for experiments with Cab < 0, on the other
hand, the target pressure value is set after the bubble rises to the top end of the capillary.
As the bubble reaches the region of interest of the imaging apparatus, the dynamics of
the bubble are recorded in the bright-field mode at 30 frames per second. After each
experiment, the bubble velocity and the film profile are analysed from the image sequence,
and the capillary number of the external flow Cal is calculated based on the calibration
between flow rate and pressure control.

3.2. Numerical simulation set-up
Direct numerical simulations of the flow of elongated bubbles in vertical capillaries
are performed utilizing the volume-of-fluid (VOF) method (Hirt & Nichols 1981)
implemented in OpenFOAM. The unsteady mass and momentum equations for an
incompressible flow and Newtonian fluid are solved, together with a transport equation
for a passive scalar that identifies the gas and liquid phases across the domain. In
this formulation, the surface tension force is implemented as a body force according
to the continuum surface force method (Brackbill, Kothe & Zemach 1992). Both
two-dimensional axisymmetric and full three-dimensional simulations are conducted, with
the latter enabling us to investigate conditions that may lead to symmetry breaking. The
simulation set-up is similar to that adopted in previous works (Magnini et al. 2017, 2019).
An elongated bubble, with the shape of a cylinder with spherical ends, is initialized at
one end of the flow domain. Bubble lengths of approximately 6D are sufficient to achieve
a uniform film region between front and rear menisci, under the conditions of interest.
At the inlet boundary, a fully developed laminar profile is set for the incoming liquid,
while no slip is set at the pipe wall. At the channel outlet, pressure is given a constant
value, together with a zero-gradient condition for the velocity. The liquid-to-gas density
and viscosity ratios are set to 1000 and 100, respectively. Each simulation is run forwards
in time until the bubble translates with a constant speed.

Numerical simulations are performed for the three values of the Bond number tested
experimentally and a wide range of Cal, for both upward and downward liquid flow. For
each value of Bo and each flow direction, a first simulation is run with the largest |Cal|
desired, until steady state. From this steady solution, |Cal| is reduced and a new simulation
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Figure 3. Comparison between lubrication theory, experiments and simulations at Bo = 0.97. (a) Plot of film
thickness b/R versus Cal. Solid curves represent the theoretical results from numerical shooting, with the
‘nose-down’ branch obtained from solving (2.11), and the ‘nose-up’ branch from solving (2.7)–(2.9). Results
from experiments (circles) and direct numerical simulations (squares) both agree with the theoretical prediction
and verify the existence of two distinct branches. Specifically, the red and blue markers represent the cases
shown in panels (b,c) and (d,e), respectively. (b,c) Bubble with nose pointing downwards, Cal = −0.8 × 10−3,
where undulations appear on the top end of the bubble. Bubble profiles are compared in (c), where the
theoretical profile (red dash-dotted curve) is plotted on the left, and the profile from numerical simulation
(green dashed curve) is plotted on the right. (d,e) Bubble with nose pointing upwards, Cal = 1.1 × 10−3,
with undulations appearing on the bottom end. Results are compared in (e) with the theoretical profile (red
dash-dotted curve) on the left, and the simulation profile (green dashed curve) on the right.

is run until a new steady bubble profile and speed are achieved. The procedure continues by
stepping towards smaller values of |Cal| to span the entire range of conditions of interest,
each time until steady state.

4. Results and discussion

The comparison between theory, experiments and numerical simulations is shown in
figure 3 for Bo = 0.97. The film thickness b/R as a function of Cal is plotted in figure 3(a),
where results from theory (solid curves), experiments (circles) and numerical simulations
(squares) show good agreement. The theoretical results from numerical shooting predict
two distinct solution branches of the film thickness: the ‘nose-down’ branch is obtained
by solving (2.11), where the bubble nose is pointing downwards; and the ‘nose-up’ branch
is obtained from solving (2.7)–(2.9), with the bubble nose pointing upwards. Note that,
since the Bond number Bo = 0.97 > Bocr, the ‘nose-up’ branch intersects with the y-axis
(stagnant fluid) at a non-zero value of the film thickness. As Cal decreases towards the
downward flow regime, the ‘nose-up’ branch extends towards b/R → 0, but only exists
in a very narrow range of downward flow before it terminates; this aspect will be more
apparent at the larger Bond numbers presented in the next section.

As displayed in figure 3, under the same magnitude of the external flow, the
film thickness on the ‘nose-up’ branch is consistently larger than that on the
‘nose-down’ branch. As an example, typical experimental images are shown for a sinking
bubble (figure 3(b,c), corresponding to the red markers in figure 3a) and a rising bubble
(figure 3(d,e), corresponding to the blue markers in figure 3a). While the sinking bubble
shown in the figure has its nose pointing downwards and undulations appear near the
top end, the rising bubble has its nose pointing upwards and undulations appear near
the bottom end. For the two cases undergoing an external flow of similar magnitude, the
sinking bubble (figure 3c) shows a film thickness of b/R = 7.6 × 10−3, which is much
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Bubble dynamics in vertical capillary with external flow

smaller than that of a rising bubble (figure 3e), whose film thickness is b/R = 5.0 × 10−2.
Furthermore, the film profiles near the bubble nose are also compared. As shown in
figure 3(c,e), the theoretical film profiles are plotted as red dash-dotted curves, overlaying
on the left half of the experimental images, and the profiles from simulations are plotted
as green dashed lines on the right. In both cases, good agreement is obtained among the
theoretical, experimental and numerical results.

4.1. Effects of Bo and the non-unique, history-dependent film profiles
Results for different Bond numbers Bo = {0.97, 1.16, 1.56} are displayed in figure 4. Note
that only the results of experiments and simulations terminating with an axisymmetric
bubble profile are included in the figure, whereas symmetry-breaking configurations will
be discussed in § 4.2. As the Bond number increases in figure 4(a,c,e), the two film
thickness branches deviate more from the classic theory (equation (1.1), shown as grey
dashed curves), and the difference between the two branches also increases. As the film
thickness on the ‘nose-up’ branch increases along with Bo, the branch intersects with the
y-axis at a larger value of b/R. The ‘nose-down’ branch, however, has the film thinning as
Bo increases, which is consistent with physical intuition. When the bubble translates with
an upward nose, buoyancy serves as the main driving force of the motion, and the external
flow acts as a side factor, assisting or hindering the bubble motion depending on the sign
of Cal. As a result, the bubble has an increased tendency to rise as Bo increases, and
thus forms a thicker film. On the other hand, the external flow serves as the main driving
force when the bubble sinks with a downward nose, while gravity remains a resistance
to the bubble motion, thus resulting in the thinning of the film thickness at higher Bo.
Meanwhile, comparing Cab and Cal at various Bo (figure 4b,d, f ) shows that the bubbles
with downward noses always sink with Cab < Cal. On the other hand, the bubbles on the
‘nose-up’ branch follow Cab > Cal over a wide range of Cal, except for a very narrow
region near the branch termination (see insets of figure 4b,d, f ).

Furthermore, we observe from both the film thickness and bubble capillary number plots
that the ‘nose-up’ branch extends towards the downward flow regime, with the extended
domain enlarging for increasing values of the Bond number, whereas the ‘nose-down’
branch always converges to the origin as Cal → 0−. These results suggest that there is a
range of downward flows where the two branches overlap for the same Bo and Cal, and
hence the bubble film profile undergoes ‘hysteresis’-like history-dependent dynamics in
the overlapping domain of the two branches.

As an example, the inset of figure 4( f ) shows the simulation results of two different
film profiles obtained under the same conditions of Bo = 1.56 and Cal = −2 × 10−3.
When the bubble profile is obtained starting from a steady-state configuration at Cal = 0,
the solution stays on the ‘nose-up’ branch (blue squares), which corresponds to a bubble
sinking at Cab = −7.5 × 10−4 (Cab > Cal) with a thick film of thickness b/R = 1.2 ×
10−1 and its nose pointing upwards. However, a distinct solution is obtained when reaching
Cal = −2 × 10−3 from a steady-state profile at a smaller (more negative) Cal, which
belongs to the ‘nose-down’ branch. The solution stays on the ‘nose-down’ branch (red
squares), and the bubble sinks at Cab = −2.1 × 10−3 (Cab < Cal) with a much thinner
film of thickness b/R = 1.5 × 10−2 and its nose pointing downwards.

To summarize the evolution of the two branches at different Bo, a phase diagram for the
axisymmetric bubble profile is generated from the theoretical results and shown in figure 5.
The classic theoretical results with Bo = 0 are plotted as black solid curves, which are
symmetric about the y-axis. When an external upward flow is applied, the bubble profile
is uniquely determined by the combination of Bo and Cal > 0, and, for the same Cal, the
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Figure 4. Overlapping solution branches and the non-unique film profiles for Bo > Bocr . Results at (a,b)
Bo = 0.97, (c,d) Bo = 1.16 and (e, f ) Bo = 1.56 are shown, comparing theory (solid curves), experiments
(circles) and numerical simulations (squares). Results corresponding to the ‘nose-down’ branch (thin film) and
‘nose-up’ branch (thick film) are coloured in red and blue, respectively. (a,c,e) Relationships between the film
thickness b/R and external flow Cal. As Bo increases, the two solution branches deviate more from the classic
Bo = 0 theory (grey dashed curves) and overlap over a larger region of downward flow. (b,d, f ) Comparisons
between Cab and Cal, with the black dashed line indicating the reference Cab = Cal. While Cab < Cal is
observed on the ‘nose-down’ branch, the ‘nose-up’ branch mainly follows Cab > Cal, except at a very narrow
region close to where the branch terminates. The insets show a close-up view of the overlapping regions of the
branches, where the history-dependent bubble dynamics are observed both theoretically and numerically.

film thickness increases with Bo. Note that, for Bo < Bocr, the film thickness converges to
the origin as Cal → 0+, which is consistent with the original work of Bretherton (1961).
For Bo > Bocr, on the other hand, the ‘nose-up’ branch extends into a limited range of
downward flow speeds. The bubble continues to rise until the ‘nose-up’ branch intersects
with the black dash-dotted curve denoting Cab = 0, and this axisymmetric solution branch
eventually terminates at the black dashed curve, beyond which the numerical shooting
method fails to converge within the set tolerance when (2.7)–(2.9) are solved.
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Figure 5. Phase diagram obtained from numerically integrating equations (2.7)–(2.9) and (2.11), showing
the film thickness b/R versus Cal and the evolution of the branches with varying Bo. The two branches
corresponding to the same Bo are labelled with the same colour code. Also shown in each regime are schematics
of the typical bubble profile. While the ‘nose-up’ branches with Bo < Bocr converge to the origin, the ‘nose-up’
branches with Bo > Bocr extend in the downward flow regime. The black dotted curve and black dashed curve
represent the critical conditions where Cab = 0 and Cab = Cal, respectively. The black dash-dotted curve
shows the conditions where the ‘nose-up’ branches terminate in the numerical shooting schemes. Note that the
‘nose-up’ branches are shown as dashed between Cab = Cal and the branch termination conditions, since no
axisymmetric bubble profiles are observed in experiments or three-dimensional numerical simulations within
this range, as will be explained in § 4.2.

If Cal is further decreased beyond the region where the ‘nose-up’ branch terminates,
axisymmetric solutions can only be found on the ‘nose-down’ branch with the bubble
nose pointing downwards, as shown in figure 5, with the colour code being the same as for
the corresponding ‘nose-up’ branch. With the external flow serving as the main driving
force, for the same value of Cal, the bubble film thickness on the ‘nose-down’ branch
decreases with the increasing resistance from Bo. Since all solutions on the ‘nose-down’
branches converge to the origin as Cal → 0−, the solution branches overlap in the
region where the ‘nose-up’ branch extends in the downward flow regime, and the overlap
region enlarges with increasing Bo, indicating the non-unique and history-dependent film
thickness solutions.

4.2. Symmetry breaking
Numerical shooting results indicate that axisymmetric bubble profiles are not available
in the downward flow region between the black solid curve (the ‘nose-down’ branch
with Bo = 0) and the black dash-dotted curve (where the ‘nose-up’ branches terminate),
where both experiments and three-dimensional simulations exhibit symmetry-breaking
profiles, as will be shown below; see sketch in figure 1(d). Note that axisymmetry-breaking
bubble profiles are known in the literature for pipe flows with Bo ≥ O(10), where the
bubble breaks symmetry in external flows with large inertial effects (Re � O(100)),
often with fragmented bottoms (see e.g. Griffith & Wallis 1961; Martin 1976; Lu &
Prosperetti 2006; Fabre & Figueroa-Espinoza 2014; Fershtman et al. 2017). In contrast, the
symmetry-breaking profiles obtained in the current work, as shown in figure 6(a,b), exist
in an inertialess regime with Bo ≤ O(1) and |Cal| ≤ O(10−2). The bubble profile thus
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Figure 6. Symmetry-breaking bubble profiles in experiments and simulations. (a) Symmetry-breaking profiles
obtained from experiments, with Bo = 0.97 and Cal = −1.7 × 10−3. Note that the ‘nose’ (shaded red) and
‘tail’ (shaded blue) of the bubble are the sections connecting to the uniform film region without and with
undulations, respectively. A thick film is shown on the left-hand side with the bubble nose pointing upwards,
and a thin film is shown on the right-hand side with the bubble nose pointing downwards. From the tube
centreline (black dash-dotted line), the bubble centreline (red dashed line) is shifted towards the side of the
thin film. (b–d) Symmetry-breaking profiles obtained from a three-dimensional numerical simulation at Bo =
1.56 and Cal = −4.0 × 10−3, started from a steady-state configuration (Cal = −3.0 × 10−3) belonging to the
‘nose-up’ branch. (b) The symmetry-breaking profiles are consistent with the image obtained from experiments,
with the colour code representing the downward fluid velocity normalized by Ul. (c) The circumferential bubble
profile approximately half-way between the bubble top and bottom (as indicated by the dashed line in panel b),
where the cross-section of the bubble is no longer circular. (d) The bubble profile in the y′–z′ plane. The black
solid circle represents the tube inner wall, and the black dashed circle and the red curve represent the initial
axisymmetric bubble profile and the asymmetric bubble surface, respectively.

preserves some features associated with the classic lubricating film in an axisymmetric
bubble.

Both experiments and three-dimensional simulations yield symmetry-breaking profiles
when the bubble attempts to transit between steady states near the ends of the two
branches, while the bubble is sinking and adapting to a new steady-state profile by thinning
the film. While the symmetry-breaking profiles are supported by both experiments
and three-dimensional simulations, we noticed that symmetry breaking occurs before
the theoretically predicted branch termination conditions are met, and no ‘nose-up’
axisymmetric profiles are observed when Cab < Cal. Though the detailed mechanism
accounting for the symmetry-breaking process is out of the scope of the current work,
the discrepancies in the critical conditions might be explained in several different ways.
First, the symmetry-breaking process is triggered near the upper spherical caps (the bubble
‘nose’ if at a ‘nose-up’ profile, or the ‘tail’ if ‘nose down’). However, the theoretical
predictions are based on an axisymmetric profile assumption, with the derivation mainly
focusing on the uniform film thickness region. Furthermore, we observed that the bubble
profile becomes more sensitive to system perturbations when the conditions are closer to
the branch termination. Therefore, while the theoretical predictions might provide an ‘ideal
boundary’, the system perturbations in experiments or finite resolutions in simulations can
account for the early trigger to the symmetry-breaking process.
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Bubble dynamics in vertical capillary with external flow

Here, we report the evidence of such profiles and provide qualitative descriptions of the
symmetry-breaking process.

4.2.1. Asymmetric bubble profiles
Two symmetry-breaking bubble profiles are shown in figure 6(a,b), with figure 6(a)
obtained from an experiment, and figure 6(b) from a three-dimensional direct numerical
simulation (see § 3 for the experimental and numerical simulation set-ups). While the
experimental figure is captured in the vertical plane, near where the maximum and
minimum film thicknesses exist, the simulation figure is plotted at the vertical plane
where y′ = 0, with x′, y′, z′ denoting the coordinates in the three-dimensional numerical
simulation. Unlike the asymmetric profiles reported in the literature (e.g. Fabre &
Figueroa-Espinoza 2014; Fershtman et al. 2017), both the top and bottom caps of the
bubble surface are present, and, because of this, distinct features are observed about the
film profile. Note that the bubble ‘nose’ and ‘tail’ are the sections connected to the uniform
film region without and with undulations, respectively. As indicated in figure 6(a,b), on
the portion of the bubble surface associated with a thick film, the bubble has its nose
pointing upwards and undulations appear at the bottom. On the portion with a thin film,
on the other hand, the bubble has its nose pointing downwards and the undulations appear
on the top. Connecting the top and bottom of the bubble forms the bubble centreline,
which lies almost vertically and is offset from the tube centreline, towards the direction
where the minimum film thickness exists (figure 6a). Based on the numerical solution in
figure 6(b), the cross-sectional profile of the bubble is shown in figure 6(c,d), with the
colour code in figures 6(b) and 6(c) representing the magnitude of the downward fluid
velocity normalized by the average fluid velocity Ul. While the simulation begins with
an axisymmetric film thickness profile (figure 6d, black dashed circle), once symmetry
breaking occurs, the cross-section of the bubble is no longer circular (red solid curve). For
each θ , an axially uniform film region still exists. The fluid reaches a larger velocity on the
bubble surface where the uniform film is thicker, as it encounters less viscous resistance.

4.2.2. Time-dependent bubble dynamics during symmetry breaking
Below, we investigate the transition of the bubble profile from a steady-state axisymmetric
shape to an asymmetric shape, resulting from a sudden change in the downward liquid
flow rate Cal, which forces the bubble to transit from one solution branch to another.

4.2.2.1. Symmetry-breaking from the ‘nose-up’ branch: from Cal = −3.0 × 10−3 to
−4.0 × 10−3. We consider the flow configuration with Bo = 1.56. According to the
results in figure 5, when moving along the ‘nose-up’ branch towards the left, the theoretical
model suggests that the branch terminates before Cal = −5.0 × 10−3 is achieved. On this
branch, numerical simulations are run starting from an axisymmetric steady-state profile
at Cal = 0.01, then gradually decreasing Cal (each time until steady state) to move along
the branch towards the left. When running three-dimensional simulations, the smallest Cal
that yields steady-state axisymmetric dynamics is Cal = −3.0 × 10−3. A further decrease
of the liquid flow rate to Cal = −4.0 × 10−3 yields a transition to an asymmetric bubble.

For Cal = −3.0 × 10−3, the three-dimensional simulation yields an axisymmetric
solution that stays on the ‘nose-up’ branch. At steady state, the bubble sinks with its
nose pointing upwards, with Cab = −2.2 × 10−3 and b/R = 0.111. This data point is in
the vicinity of the tipping point of the ‘nose-up’ branch (see figure 4e), and the related
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Figure 7. Time-dependent evolution from an axisymmetric to a symmetry-breaking bubble profile starting
from the ‘nose-up’ branch at Bo = 1.56, triggered by a change in Cal from Cal = −3.0 × 10−3 to −4.0 ×
10−3. (a) Symmetry-breaking transition: bubble profiles at different time stamps in the y′ = 0 plane. Insets
are zoomed-in views of the profiles on the right-hand side. The simulation starts at t/τ = 0, with the
steady-state profile at Cal = −3.0 × 10−3 as the initial condition. Three transitional stages are observed: (i)
axisymmetric adjustment (blue box), (ii) fast transition to asymmetry (green box), and (iii) convergence to a
steady-state asymmetric profile (red box). (b) Cross-sectional transition: circumferential film profile measured
half-way between the bubble top and bottom tips, with the circumferential angle θ measured from z′ = 0. (c)
Circumferential film thickness measurements obtained from panel (b) as a function of θ . (d) The positions of
the bubble top and bottom as a function of t/τ , where the bubble speed is significantly decreased after the
symmetry-breaking transition.

bubble profile is shown in figure 7(a) at t/τ = 0, with τ ≡ R/Ul. Using this profile
as an initial condition, the background flow rate is decreased to Cal = −4.0 × 10−3,
which triggers the transition to a symmetry-breaking profile. The bubble transits through
three different unsteady regimes as time elapses: (i) axisymmetric adjustment, (ii) rapid
transition to asymmetry, and (iii) convergence to a steady-state asymmetric profile, as
shown in figure 7(a).

As the simulation begins, at stage 1 (axisymmetric adjustment), a film-thinning wave is
generated at the bottom end of the bubble. This wave travels upwards and thins the film
by generating a new film region (see figure 7a, t/τ = 13.6, 19.2), in a manner similar
to that described in Yu et al. (2018). This newly generated film smoothly connects to
the bottom spherical cap without undulation and has a uniform thickness b/R = 0.0214,
whose value corresponds to the axisymmetric film thickness on the ‘nose-down’ branch at
Cal = −4.0 × 10−3. Thus, the bubble is attempting to transition from the ‘nose-up’ branch
to the ‘nose-down’ branch, and this film-thinning wave is adapting to the new background
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flow rate by generating a downward-pointing nose at the bottom end of the bubble. The
initial stage lasts until approximately t/τ = 23.0, with the thin film surrounding the bubble
remaining axisymmetric. However, the top end of the bubble starts to shift sideways slowly
from time t/τ = 10.0 onwards, triggering the instability that gives way to the second stage.

At stage 2 (rapid transition to asymmetry), the asymmetry at the top end triggers a
strong film-thickening wave, which travels from the top to the bottom of the bubble in less
than one time unit (see figure 7a, t/τ = 27.2, 27.8). This thickening wave only spans a
finite range of circumferential angle θ , yet strongly alters the partial profile as it sweeps
by, leaving a thick film with a nose pointing upwards and a tail pointing downwards.
The other section of the bubble remains unchanged during this process (see insets of
figure 7a), maintaining a thin film thickness at b/R = 0.0214, the same as in stage 1.
Thus, the film-thickening wave is responsible for generating the asymmetric bubble profile,
which leads to opposite arrangements of the bubble noses and tails on the thick and
thin film sides of the bubble (see figures 1d and 6a). During stage 1, the bubble sinks
at Cab = −4.2 × 10−3. From the end of stage 2 onwards, the bubble sinks more slowly at
Cab = −6.0 × 10−4 (figure 7d), and the circumferential film thickness profile is strongly
asymmetric (figure 7b,c).

At stage 3 (convergence to a steady-state asymmetric profile), capillary effects further
adjust the film profile, rounding the film profile corners left from stage 2 (see figure 7b,c,
yellow curve) and further thinning the film due to a decrease in speed. As a result, a
third thinning wave starts from the bottom of the bubble and propagates towards the top,
which is circumferentially localized in the thin film region (figure 7a, t/τ = 29.8, 47.4).
This wave propagates at a speed much slower than the previous stages, and the numerical
simulation ends before the wave reaches the top of the bubble, since the film becomes
too thin (b/R � 0.01) for the computational mesh to capture, i.e. the film eventually
de-wets. However, based on the dynamics before de-wetting, the bubble continues sinking
at a constant speed, and the bubble dynamics seems to be converging to a steady-state
asymmetric profile, with a very thin film on one side that may eventually de-wet.

4.2.2.2. Symmetry breaking from the ‘nose-down’ branch: from Cal = −4.0 × 10−3 to
−3.0 × 10−3. When moving along the ‘nose-down’ branch towards the right in figure 5,
the theoretical model yields solutions all the way to Cal = 0. On this branch, numerical
simulations start from an axisymmetric steady-state profile at Cal = −0.02, and then
Cal is gradually increased to move along the branch towards the right, each time until
steady state. While results from two-dimensional axisymmetric and three-dimensional
simulations show excellent agreement up to Cal = −4.0 × 10−3, deviations appear
when Cal is further increased to Cal = −3.0 × 10−3. The three-dimensional simulation
yields a transition to asymmetric dynamics, whereas the results of the two-dimensional
axisymmetric simulations achieve steady-state conditions that stay on the ‘nose-down’
branch, and agree well with the theory. The transition from the ‘nose-down’ branch
towards an asymmetric profile is very similar to the previous case and can be categorized
into the same three stages; more detail can be found in the supplementary material
(available at https://doi.org/10.1017/jfm.2020.1027).

5. Concluding remarks

Theoretical predictions are given for the axisymmetric film profile of an elongated
and confined bubble, translating at steady state in a vertically oriented capillary under
external flow. The theoretical results are further validated by the experiments and direct
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numerical simulations. Under the effects of buoyancy and external flow, two solution
branches of the axisymmetric film thickness are found. One solution has buoyancy effects
mainly driving the bubble motion, and admits a thick film profile with the bubble nose
pointing upwards; the other solution branch has the external flow effects mainly driving
the motion, and admits a thin film profile with the bubble nose pointing downwards.

When an external upward flow is applied, a unique shape of a bubble with its nose
pointing upwards is obtained, and the resultant film thickens with increasing Bo and/or
Cal. For Bo < Bocr = 0.842, the film thickness vanishes as Cal → 0+. For Bo > Bocr,
however, the bubble rises spontaneously in a stagnant fluid with a non-zero film thickness.
As a result, the bubble can sustain a limited amount of external downward flow and retain
the upward nose profile. The larger the Bond number, the larger the range of negative Cal
that the bubble can tolerate while maintaining this configuration.

The bubble profile with a downward-pointing nose, on the other hand, can only be
obtained by applying an external downward flow. While the film thickness increases with
the magnitude of the external flow |Cal|, it decreases with Bo, since buoyancy serves as
resistance in this case. In addition, the film thickness vanishes as Cal → 0− regardless
of Bo. Combined with the operational range of downward flow for the thick film solution
branch, the two solutions overlap for Bo > Bocr, resulting in non-uniqueness of the film
thickness.

Furthermore, both experiments and three-dimensional simulations show that, as the
bubble transits between steady states near the tipping points of the two solution branches
and attempts to form a new profile with a thinner film, axisymmetry of the bubble profile
may be broken. The resultant symmetry-breaking profile is found in the inertialess regime,
which differs from the cases documented in the literature at large Bond numbers, as
it preserves smooth bubble caps with many of the features that can be described by
the classic lubrication theory. Further investigation of this profile can provide valuable
insights, enhancing the current understanding of multiphase flows in vertical pipes, and
bridging the gap in the literature regarding the dynamics and stability of a bubble in a
capillary over a wide range of Bond numbers.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2020.1027.
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