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New characterisations of bicentric quadrilaterals

MARTIN JOSEFSSON

Introduction
A bicentric quadrilateral is a convex quadrilateral that can have both an

incircle (it is tangential) and a circumcircle (it is cyclic), see Figure 1. We
know of only a dozen characterisations of bicentric quadrilaterals published
before. In all of them the starting point is either a tangential or a cyclic
quadrilateral, which then must satisfy some condition in order also to be of
the other type. Before we proceed to prove seven new such necessary and
sufficient conditions for bicentric quadrilaterals, we review one
characterisation and one property of tangential quadrilaterals that we will
apply later.

A
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C

FIGURE 1:A bicentric quadrilateral with its incircle and circumcircle

It is quite well known that a convex quadrilateral  admits an
incircle if, and only if, its sides satisfy the equation ,
a condition called Pitot's theorem. The proof for the necessary condition is a
direct consequence of the fact that the two tangents to a circle through an
external point have equal lengths, sometimes called the two tangent
theorem. If the incircle is tangent to , , ,  at
respectively, then , ,  and

. Hence we get

ABCD
AB + CD = BC + DA

AB BC CD DA W , X, Y , Z
ZA = AW ≡ e WB = BX ≡ f XC = CY ≡ g

YD = DZ ≡ h

AB + CD = e + f + g + h = BC + DA.
The converse theorem is harder to prove and much more interesting. There
have been about ten different proofs published over the last two centuries,
for most of which references were given in [1]. A few months after the
publication of that note we were contacted by Alan Beardon, who suggested
another proof based on a dynamic argument. A variant of his proof will be
given here, where we use his main idea of applying the cosines rule, which
we have not seen among the previously published proofs. Thus, starting with
a convex quadrilateral whose sides satisfy

https://doi.org/10.1017/mag.2022.114 Published online by Cambridge University Press

http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/mag.2022.114&domain=pdf
https://doi.org/10.1017/mag.2022.114


NEW CHARACTERISATIONS OF BICENTRIC QUADRILATERALS 415

AB + CD = BC + DA,
we shall prove that all four sides are tangent to an internal circle. First draw
the angle bisectors to two adjacent vertex angles. They intersect in a point
that is equidistant to three of the sides (see Figure 2). We shall prove that
this point has the same distance, let us call it , to the fourth side . Let a
circle with centre  and radius  be tangent to ,  at , ,
respectively. By the two tangent theorem we have  and ,
so (1) is reduced to . This means that there is a point  on

 such that  and . Now label  as ,  as  and
the angle  as .

I

r CD
I r DA AB, BC E F G

EA = AF FB = BG
CD = GC + DE H

CD DH = DE CH = CG DE u CG v
DHI ϕ

r

u
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v
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FIGURE 2: Proving the converse of Pitot's theorem

Applying the Pythagorean theorem and the cosine rule in triangles
and  yields

DEI
DHI

r2 + u2 = DI2 = u2 + HI2 − 2u.HI cos ϕ.
In the same way, in triangles  and  we haveCGI CHI

r2 + v2 = CI2 = v2 + HI2 + 2v.HI cos ϕ
since . From these equalities we deducecos (π − ϕ) = − cos ϕ

2u.HI cos ϕ = HI2 − r2 = −2v.HI cos ϕ,
which we rewrite as

2 (u + v) HI cos ϕ = 0.
The only possible solution to this equation is . Hence ,
which implies . This means that the fourth side  is tangent to the
circle at . We assumed in the proof that  did not intersect the circle, but
even if it does, the proof holds as long as the circle is tangent to  between

 and  and tangent to  between  and . If both of the tangency points
lie on the extensions of  and , then (1) is reduced to

, which is clearly impossible, so this case cannot
happen (see the left part of Figure 3). If one tangency point lies on an
extended side, as in the right part of Figure 3, (1) implies ,

cos ϕ = 0 ϕ = π
2

HI = r CD
H CD

BC
B C DA D A

BC DA
CD = − (GC + ED)

CL = CD + DL
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where  is a point on the extension of  such that  is tangent to the
circle. This equality violates the triangle inequality, so that case is not
possible either. This concludes the proof of the converse of Pitot's theorem.

L AD CL

A B

D C

E G

A B

C

D

L

FIGURE 3: Two impossible cases

A property shared by all tangential quadrilaterals that is perhaps not so
well known to all readers, is the concurrency of the two diagonals and the two
tangency chords. The latter are the line segments connecting opposite points of
tangency of the incircle with the sides. This property can be proved in several
different ways; our proof (which is not original) uses Menelaus' theorem. We
only consider the case when opposite sides intersect. Let  and  intersect
at , and  and  intersect at . Suppose the incircle is tangent to , ,

,  at , , , Z respectively, and that the tangency chords  and
intersect diagonal  in  and  respectively. Applying Menelaus' theorem in
triangle  with transversal  (using non-directed distances), and also in
triangle  with transversal  (see Figure 4), we get

BC AD
K BA CD J AB BC

CD DA W X Y WY ZX
BD P1 P2

BDK ZX
BDJ WY

DP2

P2B
 · 

BX
XK

 · 
KZ
ZD

= 1 =
DP1

P1B
 · 

BW
WJ

 · 
JY
YD

.

Since , ,  and  according to the
two tangent theorem, this is reduced to

BW = BX WJ = JY YD = ZD XK = KZ

DP2

P2B
=

DP1

P1B
,

A B

C

D

J

K

W

X

Y

Z P1

P2

FIGURE 4: The diagonals and the tangency chords are concurrent
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which means that  and  divide  in the same ratio. Thus , so
,  and  are concurrent at that point. In the same way it can be

proved that ,  and  are concurrent. Hence all four of , ,
and  are concurrent at the diagonal intersection.

P1 P2 BD P1 = P2
WY ZX BD

WY ZX AC WY ZX AC
BD

Seven new characterisations
We only consider convex quadrilaterals in all theorems. The first

characterisation of bicentric quadrilaterals is a simple condition about angles
related to the tangency chords.

Theorem 1
In a tangential quadrilateral, the tangency chords are angle bisectors to

the angles between the diagonals if, and only if, the quadrilateral is also
cyclic.

C

A

D

BW

X

Y

Z P

δ γ

α

ε γ

β2

β1

FIGURE 5: Tangential  is also cyclic if, and only if, ABCD α = β2

Proof
Besides that the diagonals and the tangency chords are concurrent, we

use the well-known necessary and sufficient condition that a quadrilateral is
cyclic if, and only if, the angle between one side and a diagonal is equal to
the angle between the opposite side and the other diagonal. With notations
as in Figure 5, the tangential quadrilateral is also cyclic if, and only if,

ε = δ ⇔  α = β1 ⇔  α = β2,
which is equivalent to saying that the tangency chord  is an angle bisector of
angle . We used the fact that the two angles marked by  are equal, which is
true since they are exterior angles to the base angles of an isosceles triangle

, where  is the point where the extensions of  and  intersect.

WY
APB γ

WYJ J AB CD
By symmetry the same result holds for the other tangency chord .XZ

Now we prove a necessary and sufficient condition for a cyclic
quadrilateral to be tangential that involves the angle between the diagonals.
To prove that this formula is valid in bicentric quadrilaterals was given as a
problem in [2, p. 30].
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Theorem 2
The angle between the diagonals that is opposite side  in a cyclic

quadrilateral with consecutive sides , , ,  satisfies
a

a b c d

tan
θ
2

=
bd
ac

if, and only if, the quadrilateral is also tangential.

x

yz
C
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D
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d
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w

�

FIGURE 6: The diagonal parts in a cyclic quadrilateral

Proof
In a convex quadrilateral  with sides , , ,

 and with diagonal parts , , , ,
where  is the intersection of the diagonals, we have by the cosine rule (see
Figure 6)

ABCD a = AB b = BC c = CD
d = DA w = AP x = BP y = CP z = DP

P

a2 = w2 + x2 − 2wx cos θ,
b2 = x2 + y2 + 2xy cos θ,
c2 = y2 + z2 − 2yz cos θ,
d2 = z2 + w2 + 2zw cos θ,

whence

a2 − b2 + c2 − d2 = −2(wx + xy + yz + zw) cosθ = −2pq cosθ (2)
where  and  are the lengths of the
diagonals. Next we use the formula

w + y = p = AC x + z = q = BD

tan2 θ
2

=
1 − cos θ
1 + cos θ

=
2pq − 2pq cos θ
2pq + 2pq cos θ

.

In a cyclic quadrilateral we apply Ptolemy's theorem , as well
as (2), to get

pq = ac + bd

tan2 θ
2

=
2 (ac + bd) + (a2 − b2 + c2 − d2)
2 (ac + bd) − (a2 − b2 + c2 − d2) =

(a + c)2 − (b − d)2

(b + d)2 − (a − c)2
.
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If the quadrilateral is also tangential, then Pitot's theorem
applies, giving

a + c = b + d

tan2 θ
2

=
(b + d)2 − (b − d)2

(a + c)2 − (a − c)2
=

4bd
4ac

,

which simplifies to .tan
θ
2

=
bd
ac

Conversely, if the formula  holds in a cyclic quadrilateral,

then we get

tan
θ
2

=
bd
ac

(a + c)2 − (b − d)2

(b + d)2 − (a − c)2
=

bd
ac

,

which can be factorised as

(ac + bd) (a + c + b + d) (a + c − b − d) = 0.
This equality has only one possible solution, , which
according to the converse of Pitot's theorem implies that the quadrilateral is
also tangential, completing the proof.

a + c = b + d

Let us consider what would happen if the cyclic and tangential
quadrilateral were to change roles in the previous theorem. From Pitot's
theorem we have , which when used together with (2)
yields

(a − d)2 = (b − c)2

2 (bd − ac) = a2 − b2 + c2 − d2 = −2pq cos θ.
Thus

tan2 θ
2

=
pq + bd − ac
pq − bd + ac

.

Inserting Ptolemy's theorem , we havepq = ac + bd

tan2 θ
2

=
2bd
2ac

,

which again gives the formula in the theorem (as expected, since this
formula is valid in bicentric quadrilaterals). For the converse, however,
solving the equation

pq + bd − ac
pq − bd + ac

=
bd
ac

we get

(bc − ac) (ac + bd − pq) = 0.
The second solution gives  and according to the converse of
Ptolemy's theorem (a proof can be found in [3, pp. 20-21]), then the
quadrilateral is cyclic. But the first solution  combined with Pitot's

ac + bd = pq

bd = ac
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theorem  (remember this time we started with a tangential
quadrilateral) yields

a + c = b + d

b (a + c) = b2 + ac ⇔  (a − b) (b − c) = 0

with the solutions  and thus , or  and then also . In
both of these cases we get a kite, which is always tangential but in general
not cyclic. We conclude that it is not possible for the cyclic and tangential
condition to be reversed.

a = b c = d b = c a = d

Next we have a characterisation regarding the distances from the
incentre to the vertices. The direct part of this theorem was proved in March
2003 at the geometry forum Hyancinthos (message number 6762) by
Nikolaos Dergiades as a response to Juan Carlos Salazar, who stated that it
is both a necessary and sufficient condition. However, neither he nor
anybody else gave a proof of that claim.  That forum is no longer available.

Theorem 3
In a tangential quadrilateral  with incentre , ABCD I

1
AI2

+
1

CI2
=

1
BI2

+
1

DI2

if, and only if, the quadrilateral is also cyclic.

r
r A C

I

W, X

I

A

C

B

D

W

X

r

FIGURE 7: Creating triangle AIC

Proof
In a tangential quadrilateral  that is not cyclic, we have

 and  where  is the deviation
from being cyclic. Suppose the incircle is tangent to the sides  and  at

 and  respectively. We make a new triangle  by joining  and
along the inradius  (see Figure 7). In this new triangle, the angles
are ,  and , where  and  refer to the vertex angles at
and  in the tangential quadrilateral. Then

ABCD
∠A + ∠C = π + ε ∠B + ∠D = π − ε ε

AB BC
W X AIC AIW CIX

IW = IX
1
2∠A 1

2∠C ∠AIC ∠A ∠C A
C

∠AIC = π − (∠A
2

+
∠C
2 ) = π −

π + ε
2

=
π
2

−
ε
2

.
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Calculating the area of triangle  in two different ways yieldsAIC
1
2

r (AW + CX) =
1
2

AI · CI sin (π
2

−
ε
2)

where  is the inradius; hencer

AW + CX =
AI · CI

r
cos

ε
2

. (3)

Next we apply the cosine rule in triangle  to getAIC

(AW + CX)2 = AI2 + CI2 − 2AI · CI cos (π
2

−
ε
2)

and using (3) yields

1
r2

 · AI2 · CI2 cos2 ε
2

= AI2 + CI2 − 2AI · CI sin
ε
2

,

which we rewrite as

1
r2

cos2 ε
2

=
1

CI2
+

1
AI2

−
2

AI · CI
sin

ε
2

.

In the same way we have

1
r2

cos2 ε
2

=
1

DI2
+

1
BI2

+
2

BI · DI
sin

ε
2

.

Equating the last two expressions, we get

1
AI2

+
1

CI2
−

1
BI2

−
1

DI2
= 2 sin

ε
2 ( 1

BI · DI
+

1
AI · CI )

which holds in all tangential quadrilaterals. Then

1
AI2

+
1

CI2
=

1
BI2

+
1

DI2
⇔ sin

ε
2

= 0 ⇔ ε = 0,

since . Thus  is equivalent to  being cyclic.0 ≤ ε < π ε = 0 ABCD

We note that in a bicentric quadrilateral the inradius  satisfiesr
1
r2

=
1

AI2
+

1
CI2

=
1

BI2
+

1
DI2

,

so just two opposite of the four distances from the incentre to the vertices
are needed to calculate the inradius. In a tangential quadrilateral, all four of
these distances are needed, and the formula is

r = 2
(σ − uvx) (σ − vxy) (σ − xyu) (σ − yuv)

uvxy (uv + xy) (ux + vy) (uy + vx)
where , , ,  and .
This was derived in [4].

u = AI v = BI x = CI y = DI σ = 1
2 (uvx + vxy + xyu + yuv)

That the formula in the following theorem is valid in bicentric
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quadrilaterals was proved as Theorem 5 in [5]. Now let us prove that it is in
fact both a necessary and sufficient condition for a tangential quadrilateral to
be cyclic.

Theorem 4
A tangential quadrilateral  with incentre  has the areaABCD I

K = AI · CI + BI · DI
if, and only if, it is also cyclic.

Proof
We start by deriving a similar formula for the area  of a tangential

quadrilateral. Using the idea in the previous proof to form triangle , and
in the same way also a triangle , we get

K
AIC

BID

K = 2TAIC + 2TBID

= AI · CI · sin (π −
A + C

2 ) + BI · DI · sin (π −
B + D

2 )
= (AI · CI + BI · DI) sin

A + C
2

,

where  denote the area of  and in the last step we used the angle sum
in a quadrilateral. As a direct consequence, we have

TAIC AIC

K = AI · CI + BI · DI ⇔ ∠A + ∠C = π,
which is equivalent to the quadrilateral being cyclic.

The next characterisation was suggested to hold in [6], but no complete
proof was given. An orthodiagonal quadrilateral is a quadrilateral with
perpendicular diagonals.

Theorem 5
The intersections of the external angle bisectors to a tangential

quadrilateral  create another quadrilateral , which is
orthodiagonal if, and only if,  is also cyclic.

ABCD W ′X′Y ′Z′
ABCD

Proof
First we prove that the diagonals of  intersect at the incentre  of

a tangential quadrilateral , where the internal angle bisectors intersect.
Draw the line segments ,  and . The quadrilaterals , ,

 are cyclic due to each having two opposite right angles (an internal
angle bisector is perpendicular to the external angle bisector at the same
vertex of ). We get  (see Figure 8)
and similarly for angles in  and . Thus

W′Y ′X′Z′ I
ABCD

IW ′ IZ′ IY ′ AIBW ′ DIAZ′
CIDY ′

ABCD ∠AIW ′ = ∠ABW ′ = 1
2 (π − ∠B)

DIAZ′ CIDY ′

∠Y ′IW ′ =
π − ∠C

2
+

π − ∠A
2

+
π − ∠D

2
+

π − ∠B
2

= π,

https://doi.org/10.1017/mag.2022.114 Published online by Cambridge University Press

https://doi.org/10.1017/mag.2022.114


NEW CHARACTERISATIONS OF BICENTRIC QUADRILATERALS 423

I

A

C

B

D

W′

X′

Y ′

Z′

FIGURE 8: Tangential  is also cyclic if, and only if, ABCD W ′Y ′⊥X′Z′

which proves that  lies on the diagonal . By symmetry,  also lies on
. We further have

I W ′Y ′ I
Z′X′

∠Y ′IZ′ =
π − ∠C

2
+

π − ∠A
2

= π −
∠A + ∠C

2
.

Hence

∠Y ′IZ′ =
π
2

⇔ ∠A + ∠C = π

and the conclusion that  is perpendicular to  if, and only if,
is cyclic.

Y ′W ′ Z′X′ ABCD

Using similar formulas as in the previous proof, it is an easy calculation
to verify that  is always a cyclic quadrilateral for all convex
quadrilaterals , which is a quite well-known property.

W ′X′Y ′Z′
ABCD

The next theorem has a close connection to Theorem 5 in [7].

Theorem 6
In a tangential quadrilateral  where the incircle is tangent to the

sides , , ,  at  respectively, let the external angle
bisectors intersect outside of these sides at  respectively. The
line segments , , ,  create a quadrilateral , which is a
rectangle if, and only if,  is also cyclic.

ABCD
AB BC CD DA W , X, Y , Z

W ′, X′, Y ′, Z′
WY XZ W ′Y ′ X′Z′ GHIJ

ABCD

Proof
Suppose the extensions of  and  intersect at . Let us first prove

that the points , , ,  are collinear in all tangential quadrilaterals with
incentre  (see Figure 9). The external angle bisectors of  and  intersect at

. Then  is the angle bisector of the angle at  since the three angle
bisectors in triangle  are concurrent at a point. Also  is the bisector of

AB CD E
E Z′ I X′

I A D
Z′ EZ′ E

ADE EI
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angle  since  is the incentre in triangle . Thus , ,  are collinear. In
the proof of the previous theorem we concluded that , ,  are collinear.
Hence so are all four of , , ,  since there is only one line through the
points  and . In the same way, points , , ,  are collinear, where  is
the intersection of the extensions of  and .

E I BCE E Z′ I
Z′ I X′

E Z′ I X′
Z′ I F W ′ I Y ′ F

BC DA

I

A

C

D

B

X
Y

Z

F

H

JG

E
W

Z′

Y′

X′

W′

FIGURE 9: Tangential  is also cyclic if, and only if,  is a rectangleABCD GHIJ

Next we conclude that  is perpendicular to  since it is an angle
bisector in the isosceles triangle . In the same way,  is perpendicular
to . Thus quadrilateral  always has right angles at  and . Then it
is a rectangle if, and only if, one of the other two angles is a right angle.
According to the previous theorem, the angle at  is a right angle if, and only
if,  is also cyclic, completing the proof.

EI WY
EWY FI

X′Z′ GHIJ H J

I
ABCD

The last necessary and sufficient condition is an extension of problem 3
on day 1 for grade level 10 from the All-Russian Olympiad in 2004 [8],
which was about proving the necessary condition. Two solutions to that
problem can be found at [9].

Theorem 7
In a tangential quadrilateral  where the incircle is tangent to the

sides , , ,  at , , ,  respectively, let the external angle
bisectors intersect outside of these sides at , , ,  respectively. Then

, , ,  are concurrent if, and only if,  is also cyclic.

ABCD
AB BC CD DA W X Y Z

W ′ X′ Y ′ Z′
WW ′ XX′ YY ′ ZZ′ ABCD
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FIGURE 10: In search of isosceles triangles

Proof
We will use the following logic to prove this theorem: , , ,

 are concurrent at a point, say , which is equivalent to saying that the
points in each of the triplets , , ,

 are collinear. This is equivalent to that the two pairs of triangles
,  and ,  each being homothetic, which in turn is

equivalent to the corresponding sides in these pairs of triangles beind
parallel, this being equivalent to having two pairs of isosceles triangles,
which finally is equivalent to  also being cyclic. Thus the proof is
reduced to proving this final equivalence; this is enough since it is trivial by
simple angle properties that ,  and ,

 in all tangential quadrilaterals (see Figure 10). So what isosceles
triangles are we referring to?

WW ′ XX′ YY ′
ZZ′ Q

{W , W ′, Q′} {X, X′, Q} {Y , Y ′, Q}
{Z, Z′, Q}
WXY W ′X′Y ′ WXZ W ′X′Z′

ABCD

WX // W ′X′ XY // X′Y ′ YZ // Y ′Z′
ZW // Z′W ′

We consider one of these pairs, the other being an identical argument
with other letters. If the extensions of  and  intersect at , then triangle

 is isosceles since , both being tangents to the incircle. For
the second triangle, let the line segment  intersect  and  at  and

 respectively. We will prove that  (triangle  being
isosceles) if, and only if,  is cyclic (this is the same as saying that

 if, and only if,  is cyclic). Since

AB CD E
WYE WE = YE

W ′Y ′ AB CD E1
E2 E1E = E2E E1E2E

ABCD
WY // W ′Y ′ ABCD

∠BE1I = ∠BAI + ∠W ′IA =
∠A
2

+ ∠W ′BA =
∠A
2

+
π
2

−
∠B
2

and

∠CE2I = ∠CDI + ∠Y ′ID =
∠D
2

+ ∠Y ′CD =
∠D
2

+
π
2

−
∠C
2
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we find that  if, and only if,E1E = E2E

∠BE1I = ∠CE2I ⇔ ∠A − ∠B = ∠D − ∠C.
This is equivalent to

∠A + ∠C = ∠B + ∠D ⇔ ∠A + ∠C = π,
by the angle sum in a quadrilateral, concluding the proof of this
characterisation concerning four concurrent line segments.
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