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Abstract
The need to choose among alternatives instead of allowing the market to make choices has led health
care professionals to rely on scientific information as an aid in decision making. Mathematical modeling
is one of the increasingly common tools used over the past three decades to produce new information.
But we have used almost exclusively noncomplex models to help analyze complex systems problems.
The need to integrate the complexity of the interactions of clinical, quality of life, and economic
attributes into such models can no longer be ignored. The opportunity is available to use existing
complex systems modeling techniques for health care questions to improve the quality of study
outputs, which can, in turn, help produce more rational decisions.
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We do not allow impersonal economic market forces to make most decisions on
efficient use of health care resources for reasons of equity, distributive justice, and
market failure (i.e., insufficient information to make rational choices). But resource
limitations still compel us to choose among alternatives. We rely instead on informa-
tion derived from scientific study as a substitute for the economic market to help
us make health system quality/cost trade-offs. This method of decision making is
being used at the level of individual patients and physicians, even with limited
knowledge of population-based probabilities and confidence limits, and with uncer-
tainty of outcome when applying population statistics to individual patients. These
data, when available, focus primarily on efficacy and safety, and then occasionally
on other outcomes, such as effectiveness, cost, and quality of life.

Even the availability of best information does not guarantee the best (or even
a good) decision. Nor does sound information necessarily lead to improved health,
more equitable distribution of resources, economically more efficient allocation of
medical care processes, or greater patient satisfaction. Using good data only in-
creases the likelihood of the desired outcome. Uncertainty in health care is a
particular problem because benefits, risks, and costs are often unknown; one simply
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cannot estimate with confidence the likely health, economic, and quality-of-life
consequences for populations or individuals of alternative combinations of resource
inputs without large quantities of good data. There are usually both clinical (effects
on clinical outcomes) and economic (effects on cost and quality of life) uncertainty
in health care decision making, and thus many decision analyses estimate value,
i.e., quality and cost outcomes and trade-offs among likely alternative interventions.
Finally, even the best information is only a tool, helping decision makers choose
among options given social, political, and economic environments and preferences.

DECISION ANALYSIS MODELS

Decision analytic modeling expresses in mathematical terms a description of known
or expected reality, whether of a disease state, treatment process, or entire episode
of illness and care. It allows us to estimate a range of expected outcomes by
varying assumptions about the relationship among population, disease, health care
processes, and attendant probabilities of events occurring. Decision analysis, like
every research tool, works best when assumptions and inputs are grounded in fact.
In both Bayesian and classical contexts, the accuracy of prediction is dependent
upon assumptions concerning: a) the current state of reality and the interaction of
factors bearing importantly on that reality; and b) stated or inherent probabilities
of events occurring.

This tool has been used increasingly in health care during the past three decades.
Its two basic uses are to predict outcomes from described or assumed reality and
influences on it (e.g., comparing health care strategies or interventions) and to
generate new hypotheses for further study.

THE ISSUE

There are two main components of any decision analysis model: the logic system
and assumptions that describe the reality or problem being studied, and the probabil-
ities of discrete events occurring. The goal of this paper is to focus on issues related
to describing reality (first principles), for it is here that we are currently most
deficient in health services research.

It is our contention we in health services research too frequently make predic-
tions based on oversimplified models. This oversimplification leads to additional
uncertainty in the level of confidence that we can have in the results. Other fields
such as physics, astronomy, economics, meteorology, and chemistry have for decades
constructed very complex nonlinear models of complex systems; biology and medi-
cine as well now frequently use complex systems models, for example, in explaining
how the brain works. The complex models used in these fields also simplify reality,
but not nearly as much as in health services research. The development of modeling
tools combined with increased, easily accessible computational power means health
services researchers no longer need be restricted to noncomplex models with a
relatively small number of descriptors or processes and input-output relationships
of a simple mathematical form.

Complex systems models can be used in exactly the same manner as noncomplex
systems decision analytic models. They are tools to integrate or synthesize informa-
tion. Their ultimate purpose is to assist decision makers by reducing uncertainty,
whether one physician for his or her patients or a medical care system for its popu-
lation.
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DEFINITIONS

Complex Systems
A complex system is one in which the relationships between inputs and outputs are
nonlinear and in which the interactions are complicated and convoluted. Such
systems are usually characterized by an enormous number of inputs and an even
larger number of interactions, making it difficult to predict accurately all impor-
tant outcomes.

Examples of complex systems would include:

1. Predicting the weather
Inputs: Historic and current temperature, humidity, barometric pressure, time past vernal

equinox, etc., at many locations.
Output: Weather at a specific time and place.

2. Treatment outcomes
Inputs: Patient and family characteristics, diagnoses, medical history, diagnostic test re-

sults, treatment options, type of payer, quality of life, personal preferences, em-
ployment characteristics, cost, etc., over time.

Output: Effects on disease, adverse reactions, changes in quality of life, function, cost at
a specific time after treatment.

Linear
A relationship between inputs and outputs is linear if the output is a sum of constant
multiples of the inputs. For example, the equation

output 5 a*input1 1 b*input2 1 c*input3

describes a linear relation in which parameters a, b, and c are constants, each
constant multiplies an input, and the results are summed. The effect on the output
of changing an input is easily predictable.

Nonlinear
Nonlinearity is used to describe any relationship between inputs and outputs that
is not linear. For example, the equation

output 5 a(time)*input1 1 b(time)*input2*input3
c(time)

is nonlinear, where a, b, and c do not have to be constants but can be variable,
e.g., as a function of time, and the coefficients can be squares, cubes, square roots,
logarithms, etc. Results are not restricted to being summed but can be combined
in any way. It might not be possible even to express the output as a function of
the inputs in one equation. Nonlinear input–output relations can be complex or
noncomplex. For example, the interactions among patient and family characteristics,
diagnoses, medical history, test results and treatment options, and their effects on the
course of a disease such as breast cancer are nonlinear and probably a combination of
noncomplex and complex components.

THE TOOLS

Use of complex systems is well under way in microbiology, genetics, and medical
research. New paradigms have been developed to address issues of complex systems
in diverse areas of basic biology and clinical medicine (Table 1).
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Table 1. Examples of Use of Complex Systems Modeling in Medicine

Paradigm Learning by example
Technique Neural networks
Application Predict 5- and 10-year survival of people with carcinoma of the breast

or colorectal carcinoma
Example Complex systems model that included the same variables as the

standard predictive model (TNM), gave significantly more
accurate predictions than the TNM staging system. Adding
anatomic and demographic variables to the complex systems
model gave even more accurate predictions (3).

Paradigm Nonlinear rates of change
Technique System of nonlinear differential equations
Application Simulating the dynamics of HIV in humans to predict immune

response and viral load changes in lymphocytes and long-lived
infected cells after treatment.

Example Complex systems model predicted the time scales in which
combination therapy would reduce plasma viral loads by three
logs and clear HIV from the body (21).

Paradigm Rule-based reasoning dependent on nearest neighbor interaction
Technique Cellular automata
Application Estimate effect of myocardial infarction and ischemia on induction

of ventricular fibrillation
Example Complex systems model showed that ischemia can cause ventricular

fibrillation and then death, even when ischemia involves only limited
parts of the myocardium (2).

Other complex systems models in medicine include using neural networks
for improved prediction of risks in pregnancy (16), ranking perinatal variables
influencing birthweight (13), and 1-year recurrence and patient survival for
esophago-gastric junction cancer (19). Neural networks have also been applied in
radiology and laboratory medicine for image analysis and signal processing (10;17),
and gerontology and physiologic aging (14). Models using cellular automata de-
scribed how capillary sprout network forms in response to tumor angiogenesis
factors (4), and predicted phenotypic characteristics of HIV strains in lymph tissue
reservoirs (18;28). Process theory has been adapted in psychiatry to explain normal
personality development and psychopathology (15;24). Thermodynamic models and
bifurcation processes have been used to explain bipolar disease (25). Chaos theory
in cardiology determined cardiovascular health by predicting heart rate dynamics
and power (12;23).

Insufficiencies of Existing Noncomplex Models
The need to enlarge our methodological armamentarium is compelling because
exclusive reliance on noncomplex models is insufficient to understand the simulta-
neous and multiple interaction effects of medical interventions, delivery systems,
and payment mechanisms with individuals and populations. For example, all clinical
and cost-effectiveness models of alternative treatment strategies for eradicating
Helicobacter pylori to cure peptic ulcer disease (PUD) have been noncomplex
(linear) models. Nearly all ignored comparison of empirical treatment strategies of
general physicians with those of directed diagnostic and treatment algorithms of
specialist gastroenterologists, and thus were applicable to only a small percentage
of all patients, and ignored that patients who visit general physicians with symptoms
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suggestive of PUD are likely different than those who are referred to the specialist
(11;29). In addition, these noncomplex models incorrectly assumed that curing
disease also cured symptoms, as an important number of patients continue to have
symptoms after ulcer cure and H. pylori eradication. Only one set of models even
included symptoms as a motivation for patient and physician behavior and began
the analysis with the initial visit, thus capturing a fuller array of processes, costs,
and outcomes over time (8;9). Integrating factors that bear on symptoms from all
related upper gastrointestinal diseases in any PUD model is likely to lead to better
outcome estimates. Additionally, none of the models integrated any aspects of
delivery systems, physician payment and patient out-of-pocket expenses, or willing-
ness to pay for diagnosis and care, factors that likely have as much power to
influence as specific medical modalities.

Much of the current U.S. breast cancer screening policy rests on a series of
greatly detailed noncomplex (linear) models flowing from clinical studies of varying
quality (5;6). Even though there have been declines of breast cancer mortality in
young subpopulations for 4 years (1), it is difficult to relate reliably these declines
to increased screening and early diagnosis, simply because the current models do
not describe or integrate accurately the nonlinear, and likely complex, interactions
among changing definitions of disease, improved technology to diagnose disease,
population awareness, insurance payment policies, service availability, screening,
genetic predisposition, biology of disease, environmental factors, and changing
treatment effects. If prevention, diagnosis, and treatment of breast cancer are as
complex a problem as we suspect, then accurately predicting outcomes will require
complex systems analysis. We cannot know, a priori, whether models that include
these factors and allow for more complex interactions among factors would give
more accurate predictions, but we would expect them to do so.

Use of Complex Systems Modeling in Health Services and
Systems Research
A few complex systems models have been used in health services research. Examples
include the health manpower planning model by Yett et al. (31) and the national
forecasting model of Feldstein and Roehrig (7) in the U.S. health system. Both
were inaccurate in prediction. Another example is the use of frontier analysis in
the generally successful work of Schinnar et al. (26;27) in predicting utilization and
cost in the delivery of mental health services. Finally, catastrophe/complexity theory
was used in the clinical/epidemiologic area to show that anorexia nervosa and
bulimia were the same disease but occurred at different times during its natural
history (20).

Potential Use of Complex Systems Modeling in Decision Making
Expanding knowledge of multiple risk factors for coronary artery disease (CAD)
provides an opportunity to examine the usefulness of complex systems models in
improving the understanding of the important effects of social, medical, and eco-
nomic changes related to CAD on disease outcomes, especially considering the
hundreds of risk factors identified. In fact, the large number of associated risk
factors may make many models including all such risk factors difficult to interpret,
if not altogether meaningless. In their most basic forms, many models from the last
three decades tested the link among CAD, the risk of disease complications such
as myocardial infarction or stroke, and effects of treatment to modify risk factors
so as to improve clinical and economic outcomes. All were (noncomplex) linear
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models, although many made use of nonlinear risk functions such as those from
the Framingham Heart Study. Re-estimating outcomes using other potentially im-
portant risk factors, such as changing homocystine levels, the role of chronic infec-
tion, and C-reactive protein, while also accounting for improving or worsening of
other risk factors, such as hypertension, insulin-dependent diabetes, unstable angina,
and heart failure, compliance with multiple medication regimens, availability of
diverse treatments, role of incentives used by managed care organizations or Medi-
care, and others, will make prediction even more complicated. Further, any CAD
model would need to include multiple disease states of the most important risks
such as hypertension and diabetes, and the fullest possible group of important inter-
active effects of prevention, treatment (including adverse side effects), and rehabili-
tation on clinical, quality-of-life, and economic outcomes. At the very least, non-
complex and linear models cannot adequately examine these interactive effects (30).

CONCLUSION

While the underpinning of all modeling is simplification, the key to successful
modeling is defining the simplest models that give accurate and useful predictions.
A noncomplex, even linear, model can be extraordinarily useful in health services
research if it gives good predictions. However, it is the nature of the problem that
determines the model used. Complex systems modeling approaches and analytic
techniques provide alternatives for increasing the level of complexity, and hence,
of accuracy of prediction. This is not to suggest that complex systems modeling
guarantees correct prediction, but rather that it can increase the likelihood of
correct prediction.

Noncomplex models are limited for many reasons (28). First, the observed
(macroscopic) phenomena are assumed to be caused by a single or small set of
variables (microscopic), and there is assumed to be a simple relationship between
cause and effect. While this assumption is valid and useful for understanding some
conditions, such as Down’s syndrome, a form of mental retardation caused by a
specific genetic change, the relationship, for example, between carcinoma of the
breast and genetic mutations, is not so simple. Environment, diet, age, and other
risk factors, along with payment policies and access to specific services, and their
complex interactions, may have equal or greater importance than family history
and genetic factors in disease development and successful outcome of treatment.

A second reason that noncomplex models can be limiting is that reducing the
description of reality to a low order set of (deterministic) equations can be insuffi-
cient to ensure predictability of the system. Too simplified a model can lead to a
loss of complex interaction among variables that has an important effect on model
results. Variability of results among studies thus may not be due to sampling error
or environmental differences, but rather to ignoring an important nonlinear rule of
the system’s behavior. Complex nonlinear models allow us to examine large sets
of variables with multiple and complex interactions so as to ensure predictability
of the system. Predictability is a prerequisite, of course, for increasing the likelihood
that a policy will have the desired effects.

In the 18th century, the French economist François Quesnay developed the
first economic input–output model describing a complex system (22). We in health
services research and technology assessment have been slow to adopt and diffuse
new methods of information production and dissemination to improve effectiveness
and efficiency of decision making. The need for greater accuracy of prediction is
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arising now at the same time as our understanding of problem complexity increases.
We are further slowed by decision makers, such as legislators and formulary commit-
tees, who do not have the knowledge to interpret and apply the research and policy
results. Wider use of complex systems models should be our next methodological
adaptation, along with educating users of research results. The ultimate test of the
value of complex models in health care will be determined by the quality of their
output. If their predictions are materially better than those of noncomplex models,
their use is more likely assured.
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