
Robotica (2008) volume 26, pp. 323–330. © 2007 Cambridge University Press
doi:10.1017/S0263574707003931 Printed in the United Kingdom

Evolutionary design of modular robotic arms
O. Chocron†,∗

†Laboratorie de recherche en mécatronique, Ecole nationale d’ingénieurs de Brest, Technopôle Brest-Iroise,
CS 73822 Brest Cedex 3, France

(Received in Final Form: September 5, 2007. First published online: October 10, 2007)

SUMMARY

This paper proposes a method for task based design of
modular serial robotic arms using evolutionary algorithms
(EA). We introduce a 3D kinematics and a global
optimization for both topology and configuration from
task specifications. The search features revolute as well
as prismatic joints and any number of DOF to build up a
solution without using any design knowledge. A study of
the evolution dynamics gives some keys to set evolution
parameters that enable artificial evolution. An adapted
algorithm dealing with the topology/configuration search
tradeoff is proposed, descibed, and discussed. Illustrations of
the algorithms results are given and conclusions are drawn
from their analysis. Perspectives of this work are given,
extending its reach to control and complex system design.

KEYWORDS: Modular robots; Task-based design; Kin-
ematic synthesis; Evolutionary optimization.

1. Introduction

Because the trend in robotics is that missions are growing
in diversity, complexity and constraints, new solutions are
necessary to answer the issue of adaptation. Modular Robotic
Systems (MRS) have been proposed for adapting robot
morphologies to given tasks.1−3 MRS are minimal systems,
able by recombining their modules, to adopt a task qualified
morphology. The paradigm used here is that task diversity
is answered by modular configuration diversity.4 Some
important contributions have been made to describe these
systems in computer programs using a design process,5 an
incidence matrix,6 or a generative representation allowing
open-ended design.7

The task-based design problem raised is to find the
right assembly of modules that fits the desired task.
Both deterministic and stochastic methods have been
investigated to address this combinatorial optimization
problem known as NP complete.8 Combinatorial explosions
and irregularities of functions representing the assembly
(topology) and task specifications (configuration) make
deterministic methods uneasy if not unworkable.9 The main
failing of a deterministic method is that it exploits heuristics
that think locally (module features) but act globally (whole
robot). As a consequence, for a given problem the rule-based
optimization always yields to the same set of solutions,10

making it very problem dependent.

* Corresponding author. E-mail: chocron@enib.fr

Methodologies based on stochastic optimization search
for best solutions with at least partially random operators.
When considering multiobjective optimization; progressive,
partial, or global methods are proposed. Progressive methods
try to match sequentially different constraints, to reach
partially optimized solutions.11,12 Unfortunately, strongly
coupled constraints involve some backtracking, thus severely
slowing down the search process. Partial methods consist in
applying optimization only on some parts of the problem as
the inverse kinematics,13 or the degrees of freedom (DOF)
minimization,14 leaving other design parameters to the user.
The problem with this second approach is that there is no
guarantee that the user-computer interaction is beneficial.
Global methods consist in trying to match simultaneously
all constraints while optimizing some criteria.15 This last
approach is the most difficult but represents a more promising
one because of the exploration capabilities brought by the
association of random operators and parallel optimization.
Latest works based on this approach yield to very interesting
results since it has been applied to physical robots and thus,
proved that the gap between simulation and reality can be
stepped across.16

Our approach which is stochastic, global and with no
fundamental restrictions has been explored with promising
results for evolutionary solving of robotic problems as the
inverse kinematics problems (IKP) or synthesis of general
manipulators.17−20

We propose a complete frame of task based synthesis
and three evolutionary algorithms to address the problem of
kinematic design for serial modular manipulators from task
specification and under nonexplicit constraints (obstacles).
In the following sections, we first layout the problem
statement and propose an adapted modular kinematics as
well as evaluation criteria. Three implementations of artificial
evolution for the synthesis problem and their results are
proposed that give an insight about involvement of field
knowledge in the success of evolutionary design.

2. Synthesis Problem

The synthesis problem consists in finding the fittest modular
robot constructed from an assembly of links and joints
(topology) as well as sets of joint parameters (configurations)
according to given manipulation tasks. In our work, we
considered serial topologies and joint configurations (poses)
which cover most of industrial needs. Revolute or prismatic
joints and under-actuated or redundant manipulators are
allowed.

https://doi.org/10.1017/S0263574707003931 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574707003931

324 Modular robotic arms

Subtasks

Obstacles

x

y

z

Ja
vi

er

Fig. 1. Task specification and a PUMA solution.

2.1. Task specification
The global task is specified as a set of n subtasks which
are 3D end-effector poses including position and orientation.
For our synthesis implementations, the global task area is a
tetrahedron (Fig. 1).

The workspace is cluttered with no obstacles (represented
by spheres) to be avoided by the robot segments. The
topology has undergone evolution to perform the global task
that is evaluated through a multi-objective function relying
on four objectives:

� Reaching each subtasks with end-effector
� Avoiding collisions with obstacles
� Avoiding kinematic singularities
� Minimizing the manipulator

2.2. Modular kinematics
The manipulator is constituted by two classes of modules:
structural (links) and articular (joints). The mobility of
the mechanism is given by the total number of DOF. Two
1-DOF joint types (R for revolute and P for prismatic) and
one 0-DOF joint (F for fixed) are available, as well as a set
of links of different lengths. The links geometry is chosen
linear since more complex geometries (as elbows) can be
obtained by combination of links and F-joints. Table I shows
the available modules with their given features.

As we consider only serial manipulators, assembly is made
with successive segments (S). Each segment is constituted by
a joint (R, P, or F) and by a link (L). Before connecting a
new segment, it is possible to rotate it by a quarter turn

Table I. Robotic modules.

Modules Class DOF Features

Link structural NA set of lengths Li

R-joint articular 1 2π rotation range
P-joint articular 1 Li translation range
F-joint articular 0 –

Fixed

Segment 1

Segment 2

Segment 3

Joint 1

Link 1
Joint 2

Link 2

Joint 3
Link 3

A 3-DOF Manipulator

Rz’

x

y

z

Rx

Ry

Rz

Id

y’
x’

z’

y’’

x’’
z’’

x’’’

y’’’

z’’’

Revolute

Prismatic

x’

y’

z’

Tx’

Tx’’

16 Links3 Joints4 Orientations x x

Fig. 2. Module assembly.

Table II. Design parameters for a segment.

Parameter Domain Symbol Values

Orientation topology α Rx Ry Rz Id

Joint type topology λ R, P or F
Joint value configuration θ variable
Link length topology l variable

(+90 degrees) about any basis axis (x, y, or z). The segment
and manipulator assembly is illustrated in Fig. 2 and the
design parameters are described in Table II.

The basic transformation from a link to the following is
given by the 4 × 4 homogeneous matrix:

T i+1
i = (

R90
x,y,z or Id

) × (
Rθ

z or P θ
x or Id

) × P l
x (1)

Rb
a : 4 × 4 matrix for rotation about axis a with angle b

P b
a : 4 × 4 matrix for translation along axis a with offset b

Id : 4 × 4 identity matrix

The structure equation of the whole mechanism may be
computed as follows:

T e
0 =

i=n∏
i=1

T i+1
i (2)

where the matrix T e
0 represents the end-effector pose.

The concatenation of segment parameters are the design
parameters for the synthesis problem. That specifies how
the robotic modules can be combined to constitute segments
and thus, the robot. This kinematics enables a wide range
of diverse topologies (Fig. 3), thus matching any serial
manipulator.

https://doi.org/10.1017/S0263574707003931 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574707003931

Modular robotic arms 325

Fig. 3. Various serial modular manipulators.

2.3. Evaluation
Evaluation is the key point of optimization since it drives the
whole search process through candidates toward solutions
and thus, deserves a particular attention. Evaluation in
optimization uses an objective function F to be maximized
(or minimized). F has to be computable and relevant for any
candidate the algorithm is able to generate. The evaluation
computing time is a critical point in optimization since it is
performed a large number of times.

There are three kinds of functional criteria that need to be
answered specifically:

� objective : has to be achieved eventually;
� constraint : has to be respected at all cost;
� preference : has to be sought as best as possible.

The objectives give rise to main objective function F and
are usually selective all over the search. The constraints can
be handled two ways. The first consists in eradicating any
solution that violates them. Is it rather brutal but represents a
good way when we know that studying such a solution is just
a waste of time. The second way is to penalize (decreasing F)
the violating candidate according to the degree of violation.
It is useful when there is reasons to think the candidate will
yield a good solution further in the search. Hard constraints
are preferably handled with eradication and soft ones with
penalization. Eradication activity is high at the beginning of
the optimization (massively rejecting ill candidates), then
decreases to near zero very fast. Penalization activity is
moderate during the whole optimization depending on the
level of severity of the penalty function. To finish, preferences
are considered as secondary objectives and should be sought
when the main objective is achieved. The problem is that it is
not always clear whether or not the preferences are intimately
coupled with the objectives. Actually, it is possible that it
could be drastically improved with a very small loss on the
primary objectives or of time. From task specifications, we
can define:

� Objectives
� Linear distance from subtask (L)
� Angular distance from subtask (A)

� Constraints
� Reachability (R)
� Obstacle Proximity (O)
� Dexterity Measure (D)

� Preferences
� Minimizing mass and actuators (I)

2.3.1. Linear and angular distances. Linear and angular
distances are used to assess the end-effector configuration,
according to the considered subtask. The Euclidean norm of
position vector is used for linear distance and the L1 norm of
a difference matrix is computed for angular distance. L for
linear and A for angular distances are dimensionless criteria
defined as:

L = ‖Xd − Xe‖
‖Xd‖ ≥ 0

A = ‖Rd − Re‖1

‖Rd‖1
≥ 0

Xd : subtask position vector
Xe: end effector position vector
Rd : desired orientation matrix
Re: effector orientation matrix

‖M‖1 = ∑
ij |Mij |: L1 matrix norm of M

2.3.2. Reachability. Reachability is defined as the max value
of missing reach to get any subtasks. If it is positive, then
the objective function (F) is set to zero. In this way, the
optimization can go on with other manipulator topologies.
This means that R is checked first before any other criteria
since a failure here means eradication.

R = max
i=1..nt

(
dj −

n∑
i=1

li

)
(3)

li : length of ith link (doubled if prismatic)
dj : distance of j th task position from base
n: maximum number of DOF
nt : number of goal frames (subtasks)

2.3.3. Obstacle proximity. An approximation had to be
designed so the computation time is not prohibitive. We check
whether each link is interacting or not with each obstacle
by using a security ellipsoid defined by the link and a user
defined security distance (Fig. 4). If the obstacle is inside
the security ellipsoid, there is interaction and the penalty
function O is increased by an amount proportional to the

Link

Not Interacting Obstacles

a
b

Interacting
Obstacle

real distance

Security Ellipsoid

Security Distance

Starting Point Ending Point

Fig. 4. Obstacle avoidance and security ellipsoid.

https://doi.org/10.1017/S0263574707003931 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574707003931

326 Modular robotic arms

penetrating distance.

if Obstacle /∈ SEi ⇒ cpij = 0

if Obstacle ∈ SEi ⇒ cpij = (sd − dij)

sd

O =
n∑

i=1

no∑
j=1

cpij ≥ 0

SEi : security ellipsoid for ith link
dij : distance of ith link from j th obstacle

cpij : collision penalty for ith link and j th obstacle
sd : security distance
no: number of obstacles

2.3.4. Dexterity. The dexterity D is evaluated with the
Yoshikawa manipulability index.21 This index represents
a distance of the joint configuration from a kinematic
singularity. Singularities are avoided with minimizing D

defined by:

w =
√

Det(JJ t)

D = 1

1 + w
≥ 0

w: manipulability index
J : manipulator Jacobian matrix

2.3.5. Involved modules. The involved module criterion I is
based on total link lengths as well as the number and type
of joints. Each active joint is weighted according its mass
(based on link length for prismatic joints). I is defined as

I =
∑n

i=1 l∗i + ma ∗ λi

dj

≥ 0 (4)

λi : set to 0, 1 or 2 if ith joint is F, R, or P
l∗i : length li of ith link (or 2li for P-joints)

ma: unit mass of revolute joint actuators
dj : end effector distance from base frame

2.3.6. Objective function. All evaluated criteria are
minimized since they are positive penalty functions. A
positive (and bounded by 1) fitness function F to be
maximized is designed from these criteria and used to
evaluate candidate solutions. Each criteria is associated to a
weight ki which is user defined and allows to adjust priorities
among the criteria. If R is negative, F is defined as

F = e−(k1∗L+k2∗A+k3∗I+k4∗O+k5∗D) (5)

ki : Weight of ith criterion (let free)

The optimization goal is then to find a set of design
parameters (DP) which maximizes F according to the
priorities (ki).

Pose
Evolution

Lower GA

EVALUATION

SELECTION

CROSSOVER

MUTATION

Manipulator
Population

UPPER GA

ConfigurationsTopologies

MAXIMUM DOF
TASKS SPECIFICATIONS

EVOLUTION PARAMETERS
CRITERION WEIGHTS

MANIPULATOR TOPOLOGIES + SUBTASK CONFIGURATIONS

Fig. 5. A two-level genetic algorithm (TGA).

3. Adapting an Evolutionary Algorithm

The first idea coming using genetic algorithms (GA) is to use
them as what they were made for: parameter optimization.
Since we dispose of two kinds of design parameters
(configuration and topology) and we need to solve the first
ones to evaluate the others, we have designed a two-level
genetic algorithm (TGA) to solve the two problems (Fig. 5).

The upper genetic algorithm evolves manipulator
topologies and calls a lower level GA (searching subtask
configurations) for evaluation. The basic problem in
gathering all the genotype (structure and configurations) on
a single binary chromosome is the inefficiency of genetic
operators for long strings (more than 300 bits for our
application). Longer the chromosome is, less effective is the
crossover for instance, because it annihilates a large part
of the genotype ordering for changing just one small part.
When the algorithm tries to improve a task configuration for
instance, others are likely to be discarded by a global action
whatever their evolution achievement.

To avoid this problem, we propose to dispatch the genotype
over several chromosomes. Each chromosome gathers some
highly linked informations which so, are not disturbed by a
global crossover. Figure 6 shows how genotype, evaluation
and genetic operators are distributed over the robot. The
topology and base position is considered as having a global
range over the robot and is evaluated using the global fitness.
Each configuration has its own chromosome and is not
concerned with what happens to others.

Each chromosome undergoes its own local evaluation on
which are based its genetic operators. In some ways, each
chromosome can evolve with its own dynamics since it
possesses its own operators. Global evaluation is based on all
local evaluations and is used to select the overall candidate
solution. This global selection is maintained because we want
the algorithm to converge toward a coherent solution. The
Multi-Chromosome Algorithm (MEA) includes only one
evolution loop ans thus, is much faster than the TGA.

https://doi.org/10.1017/S0263574707003931 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574707003931

Modular robotic arms 327

MANIPULATOR TOPOLOGIES + TASK CONFIGURATIONS

MAXIMUM NUMBER OF DOF

TASKS SPECIFICATIONS

REFERENCE EVOLUTION PARAMETERS

REFERENCE CRITERION WEIGHTS

Topology

Config no 4
Config no 3
Config no 2
Config no 1

Base Position

Manipulator Population Global Fitness

Topology Fitness

Base Position Fitness

Config no 1 Fitness

Config no 3 Fitness
Config no 2 Fitness

Config no 4 Fitness

SELECTION

GLOBAL

EVALUATION

LOCAL

EVALUATION

ADAPTATIVE

GENETIC

OPERATORS

MUTATION

CROSSOVER

Topology Variations

Base Pos Variations

Config Variations

Fig. 6. Multiple-chromosome evolutionary algorithm (MEA).

3.1. Evaluation
Evaluation must be adapted to the new different chromo-
somes. We define thus three objective functions
corresponding to three evaluations:

Ftopology = e−kR∗R−kI ∗I (or 0 if R > 0) (6)

F
j

cfg = e−kL∗Lj −kA∗Aj −kO∗Oj −kD∗Dj

(7)

Fglobal = Ftopology ∗ F̃cfg (8)

F̃cfg: mean fitness of subtasks configurations

The evaluation of topology includes the global criteria
R and I but includes the base position evaluation since R

depends on it. The configuration evaluation concerns only
the joint-values dependent criteria (L, A, O, and D) for
each subtask and a mean evaluation is computed. These
evaluations are used to adapt the action of the genetic
operators to their chromosomes. The global fitness is used to
select the robot (topoly and configuration) during evolution.

3.2. Encoding
Binary coding is used for topologies and real number coding
for base position and configurations (Fig. 7). These choices
have been made because non-valued parameters (as joint
type) can be easily described by discrete values but float
numbers allows to encode the configuration parameters
without the loss of precision involved in discretization.

The topology chromosome does not change and keeps its
operators and fitness function (based on R and I). The base
position has been added to the genotype, to optimize the
placement of the robot with regard to the subtasks. The base
and joint configurations are encoded with real valued genes
and put in separate chromosomes (Fig. 7). Using 6-digit floats
numbers, we have 256n × 106n∗nt+18 candidate solutions for
the global genotype.

1
0

1
0

0
1

1
0

X
Y
Rz

q1

.

.

.

.

q2
q3

qn

q1

.

.

.

.

q2
q3

qn

q1

.

.

.

.

q2
q3

qn

.......
Float

Joint Values

nt Pose Configurations

Joint Type (0 ; R ; P)

Joint Orientation (0 ; Rx ; Ry ; Rz)

Link Lenght (0 ; 1/15 ; 2/15 ;.....;15/15)

Segment_1 Segment_n 256 MANIPULATORS
n

Base Position

Float
Coordinates

TOPOLOGY

CONFIGURATION

Fig. 7. Multiple-chromosome genotype.

3.3. Adaptive genetic operators
Genetic operators are successively applied to all chromo-
somes for each generation in a process similar to canonical
GA.22 The difference lies in the fact that the operators
are adapted to the piece of genotype they manipulate.
Each chromosome can be evaluated separately and then be
modified according to its specific fitness. Since operators are
specific to each chromosome, it becomes possible to adapt
them to the evolution of their chromosome population. This
dynamic adaptivity aims at giving the genetic operators an
awareness about the local effect of their actions. In some
ways, it is similar to replace optimization heuristics with
closed loop control since the goal will not be to apply rules,
but to control some criteria to maintain evolvability.

Selection pressure is relevant to the well known exploita-
tion versus exploration dilemma of optimization. If a quick
convergence, toward a single solution is needed we insist
on exploitation, but if an extensive search, with numerous
different solutions is necessary we advantage exploration. A
good evolvability will be maintained if the selection pressure
assures dynamically a good balance between exploitation and
exploration. Increasing or decreasing the selection pressure is
made by smoothing or emphasizing the fitness discrepancies.
We designed an adaptive selection pressure that acts upon the
fitness function with a hardness coefficient λ, controlled by
the fitness standard deviation σ f (Fig. 8).

If the solutions are widely scattered on the fitness land-
scape (large σf), we need to select more thoroughly and so, a
hard selection pressure is required (large λ). In the other way,
if most solutions are tightly clustered near a mean value, we

Fig. 8. Selection adaptation to diversity.

https://doi.org/10.1017/S0263574707003931 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574707003931

328 Modular robotic arms

let other individuals a better chance to survive and so, the fit-
ness function is softened by decreasing λ. Thus, this adaptive
scaling will help the selection operator to keep a diversified
population which means a good evolvability. Meanwhile,
this strategy has to be modified to force convergence toward
high fitnesses to spend last resources on known solutions for
ultimate improvements. So, we use also the mean fitness to
harden the fitness function for high mean fitness.

λ = λo(f̃ + σf) and f m = f λ (9)

λo: Reference selection pressure
f̃ : Population mean fitness

f m: Modified individual fitness

To avoid the disruptive effects on crossover, we separated
genotypes in several chromosomes, but we can do more.
A uniform crossover is selected instead of the simple one
point crossover for binary strings to allow exchange of
middle pieces of genetic code. This allows to exchange
only parts of the manipulator as a joint or a link length
without breaking the rest of the code. For real encoding,
the uniform crossover consists in exchanging genes (floats
numbers) between both parents chromosomes. To prevent
the configuration crossover to be too disruptive, we modify
the permutation probability (initially 0.5) according to the
local fitness of each configurations to reduce the highly fit
parameters migration. Each manipulator is

f i
α = F i

α

F̃α

(10)

pi
αβ = 0.5

f i
α ∗ f i

β

(11)

F i
α: Fitness of configuration i for robot α

F̃α: Fitness of configurations for robot α

f i
α: Relative fitness of configuration i for robot α

pi
αβ : Permutation probability for ith configuration

Adaptation of binary mutation is made by adjusting the
mutation probability to according the topology fitness.

For float value chromosomes, a normally distributed
random variable z of zero mean value is added to the float
number according to evolution strategy principles.23 This
mutation is controlled by modifying the standard deviation
σ of z according to the local fitness fi .
� Binary Mutation

pm = pm0

F
(12)

� Float Mutation

σi = σo

fi

, z = N(0, σi) (13)

pm0: Minimum binary mutation probability
σo: Minimum mutation standard deviation
σi : Local mutation standard deviation
fi : Local Fitness value
z: Normal random variable

3.4. Evolution parameters
Once genetic operators are designed, we have to tune
the reference evolution parameters before the optimization.
Evolution parameters are:

� λo: Reference selection pressure
� pco: Reference crossover probability
� pmo: Reference mutation probability
� S: Size of population
� T : Maximum number of generations

We based the choice of evolution parameters on theory and
experiments. For adaptive operators, it is very important the
reference parameters make them stable and meaningful. So,
we consider the actions of operators with these parameters at
the beginning and at the end of the evolution. When fitness
is low, operators favors exploration and the population is
kept scattered. When fitness is high, the population should
have converged near optimal solution (low diversity). These
considerations based on non-adaptive boundary cases drive
us to chose:

λo = 100, pco = 0.6, σo = 0.001,

pmo = 0.0001, S = 20, T = 50

4. Simulation Results

We compared the algorithms for a 3D position/orientation
with obstacles task. These algorithms are the TGA; the
MEA and the Adaptive Multi-Chromosome Evolutionary
Algorithm (AMEA).

We authorized up to 8 segments to allow redundant
kinematics in order to avoid obstacles and/or singularities.
Design parameters are the topology (16 link lengths) and the
four joint configurations (no base positioning). The features
of the algorithms are presented in Table III.

The task specifications are those described by the
tetrahedron organization of section 2.1. Four goals have
been defined on its vertices and six obstacles on the middle
of its edges (see Table IV). The manipulator is evolved to
reach these goals, while optimizing all performance criteria
and avoiding obstacles. The security distance (or obstacles
diameter) is set to 0.1 m and the mass unit of actuators (as
well as linear mass of links) is set to 1 kg.

Figure 9 shows the evolution of the best fitness versus
generations with the TGA, the MEA and the AMEA. The
results have to be scaled because of the difference of time
processing between the TGA (6 h) and the new algorithms
(3 min) to perform the 20 × 50 evolution (SUN/SPARC5).

Table III. Three evolutionary algorithms.

Area TGA MEA AMEA

Coding all binary binary/float binary/float
Evolution separate global global
Operators blind blind adaptive
Solutions 10116 10211 10211

Evaluations 100000 1000 5000
Computation time 6 h 3 min 3.5 min

https://doi.org/10.1017/S0263574707003931 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574707003931

Modular robotic arms 329

Table IV. Task specifications.

Object X Y Z Rx Ry Rz

Task 1 1 1 1 90 0 0
Task 2 2 1 1 0 180 0
Task 3 1.5 2 1 0 0 270
Task 4 1.5 1.5 2 20 90 45
Obstacle 1 1.5 1 1
Obstacle 2 1.75 1.5 1
Obstacle 3 1.25 1.5 1
Obstacle 4 1.25 1.25 1.5
Obstacle 5 1.75 1.25 1.5
Obstacle 6 1.5 1.75 1.5

Fig. 9. Best fitness comparison.

The reason comes from MEA and AMEA do only one
IKP evaluation for each topology while TGA does one full
IKP evolution. It clearly appears that not only the multi-
chromosome algorithms are, at least, 100 times quicker,
but also that the optimized best solution is far better (more
significant for AMEA).

Figure 10 shows the mean population fitness for the TGA,
MEA, and AMEA. The differences here are more striking as
we see that the population is much more improved with MEA
and AMEA. Moreover, it is suggested the adaptive algorithm
continues the improvement of the whole population as long
as the best fitness is not reached for all (no flat in the AMEA

Fig. 10. Mean fitness comparison.

Table V. Best manipulator design parameters.

DOF 1 2 3 4 5 6 7 8

α Ry Rz Ry Rz Rx Rz Rz Ry
λ R P R R R F R R
l 12 2 8 3 12 5 8 1

Table VI. Satisfaction of criteria for best manipulator.

Criteria L A I O D

ki 0.5 1 2 0.5 1
Best 0.125 0.114 0.404 0 0
Performance 5 cm 18◦ 21.8 kg max max

evolution). TGA and MEA will always keep a constant
gap between best and mean fitness because of the constant
mutation rate while the AMEA will decrease the mutation
noise with increasing fitness allowing a more complete
convergence. This is similar to the Simulated Annealing
temperature that decreases with time, allowing less and less
variations and eventually drives all individuals toward a
single solution.24

The best solution is a redundant manipulator (7DOF)
and design parameters (Table V) include joint relative
orientations α, joint types λ and link lengths l. We can see
that the last link is much smaller than the others. This solution
tends toward the particular design of a concurrent axis wrist
that is known to be very helpful.

Criteria satisfaction for this manipulator are given in
Table VI. Constraints are verified since all subtask
configurations are out of obstacles (O = 0) and without
kinematic singularities (D = 0). The primary objectives are
not completely achieved but near enough to hope a fully
valid pose after small joint adjustments. This have been done
using ACT robot design software (by Aleph Technologies)
for subtasks matching from evolved configurations (Fig. 11).
Finally, the preference I has been respected well enough
considering the distance of subtasks.

5. Conclusions

The algorithms we presented are progressive adaptations
of evolutionary computations to task-based robot synthesis.
They include a representation based upon a 3D modular
kinematics. The multiobjective optimization is quickly
performed with regard to the total search space and the
complex problem. The TGA is a simple approach of the
synthesis problem since it considers the IKP as an uncoupled
subproblem. By including knowledge of the IKP inference
MEA, and the actions of adaptive operators in AMEA,
we introduced important bias in the search, improving
the optimization. We used no database or robotic design
experience to give rise to solutions from random seed.
Evolved topologies have rather good performance criteria
and represent some making sense options for this kind
of design. The method is very flexible and adaptable as
we can chose through the fitness function any criteria to
optimize whatever its form and relations with the encoded
solutions. It is important to notice that the whole manipulator
and its configurations have been optimized in parallel. This

https://doi.org/10.1017/S0263574707003931 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574707003931

330 Modular robotic arms

Fig. 11. A 7-DOF manipulator genetically evolved.

guarantees a global optimization of both structure (topology)
and behavior (configurations). Here, the behavior were
reduced to joint static values, but it can easily move to
control systems which could be evaluated through a dynamic
simulation for complex tasks.

Since technical auto reconfigurable solutions has been
proposed and proven,25 it is obvious than evolutionary optim-
ization may be applied to these systems. Meanwhile, the main
difficulty lies in the control distribution among the modules.
The evolutionary process may work on the global system
with a better result than locally because of its own qualities.
Integrating the global decision process of reconfiguration
into distributed modular systems is still a challenge for
researchers throughout the world as outlined recently 26.

References
1. T. Fukuda and S. Nakagawa, “Dynamically reconfigurable

robotic system,” IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), Philadelphia, PA, USA
(1988) pp. 1581–1586.

2. C. Paredis and P. Khosla, “A rapidly deployable manipulator
system,” IEEE International Conference on Robotics and
Automation (ICRA), Minneapolis, MN, USA (1996) pp. 1434–
1439.

3. M. Yim, “A reconfigurable modular robot with many modes
of locomotion,” Proceedings of International Conference on
Advanced Mechatronics, Tokyo, Japan (1993) pp. 283–288.

4. D. Rus and G. S. Chirikjian, “Self-reconfigurable robots,”
Auton Rob 10(1), 5–5 (2001).

5. R. O. Ambrose, Design, construction and demonstration of
modular, reconfigurable robots Ph.D. Thesis (Austin, USA,
University of Texas, 1991).

6. I. M. Chen and J. Burdick, “Determining task optimal
modular robot assembly configurations,” IEEE International
Conference on Robotics and Automation (ICRA), Nagoya,
Japan (May 1995) pp. 132–137.

7. S. Hornby, H. Lipson and J. B. Pollack, “Generative
representations for the automated design of modular physical
robots,” IEEE Trans. Robot. Automat., 19(4), 703–719 (2003).

8. C. H. Papadimitriou and K. Steiglitz, Combinatorial
Optimization- Algorithms and Complexity (Prentice-Hall,
Englewoods Cliffs, NJ, USA, 1982).

9. J. S. Arora, O. A. Elwakeil and A. I. Chahande, “Global
optimization methods for engineering applications: a review.”
J. Str. Opt. 9(3-4), 137–159 (1995).

10. S. N. Shen, M. Chew and G. F. Issa, “Kinematic structural
synthesis of mechanisms using knowledge-based systems,” J.
Mech. Des. 117, 96–10 (1995)].

11. J. O. Kim and P. Khosla, “A multi-population genetic algorithm
and its application to design of manipulators,” IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS) Raleigh, NC, USA (1992) pp. 279–286.

12. C. Paredis and P. Khosla, Kinematic design of serial link
manipulator from task specification. International Journal of
Robotics Research, 12(3), 274–287, (1993).

13. A. A. Khwaja, M. O. Rahman and M. G. Wagner, “Inverse
kinematics of arbitrary robotic manipulators using genetic
algorithms,” In: Advances in Robot Kinematics: Analysis and
Control. (J. Lenarcic and M. L. Husty, eds., (Kluwer Academic
Publishers, 1998).

14. G. Yang and I.-M. Chen. Task-Based Optimization of Modular
Robot Configurations—MDOF Approach. Mechanism and
Machine Theory, 35(4), 517–540 (2000).

15. P. Chedmail and E. Ramstein, “Robot mechanism synthesis
and genetic algorithms,” IEEE International Conference on
Robotics and Automation (ICRA), Minneapolis, MN, USA
(April, 1996) pp. 3466–3471.

16. J. Pollack, H. Lipson, S. Ficici, P. Funes, G. Hornby and
R. Watson. “Evolutionary techniques in physical robotics,”
Proceedings of the Third International Conference on
Evolvable Systems, Edinburgh, UK (April, 2000) pp. 175–186.

17. O. Chocron and Ph. Bidaud, “Genetic design of 3d modular
manipulators,” IEEE International Conference on Robotics
and Automation (ICRA), Albuquerque, NM, USA (April 1997)
pp. 223–228.

18. O. Chocron and Ph. Bidaud, “Evolutionnary algorithms in
kinematic design of robotic systems,” IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS),
Grenoble, France (September 1997) pp. 1111–1117.

19. F. Chapelle, O. Chocron and Ph. Bidaud, “Genetic
programming for inverse kinematics problem approximation,”
International Symposium on Robotics (ISR), Montreal, Canada
(May 2000) pp. 5–11.

20. S. Sakka and O. Chocron, “Optimal design, configurations
and positions for a mobile manipulation task using genetic
algorithms,” TENTH IEEE International Conference on
Robot and Human Communication (ROMAN), Paris-Bordeaux,
France (September 2001) pp. 268–273.

21. T. Yoshikawa. Foundations of robotics: analysis and control
(MIT Press Cambridge, MA, USA, 1990).

22. D. E. Goldberg, Genetic Algorithms in Search, Optimization
and Machine Learning (Addison-Wesley Longman Publishing
Co., Inc. Boston, MA, USA, 1989).

23. T. Bäck, Evolutionary Algorithms in Theory and Practise
(Oxford University Press, New York, NY, USA 1996).

24. A. C. Thornton, “Genetic algorithms versus simulated
annealing: satisfaction of large sets of algebraic mechanical
design constraints,” Proceedings of Artificial Intelligence in
Design, Lausanne, Switzerland (August 1994) pp. 381–400.

25. E. Yoshida, S. Murata, K. Tomita, H. Kurokawa and S. Kokaji.
Distributed formation control for a modular mechanical
system. IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Grenoble, France (1997)
pp. 1090–1097.

26. M. Yim, W.-M. Shen, B. Salemi, D. Rus, M. Moll, H. Lipson,
E. Klavins, and G. S. Chirikjian, “Modular self-reconfigurable
robot systems—challenges and opportunities for the fiture,”
IEEE Robot. Automat. Mag. 14(1), 43–52 (2007).

https://doi.org/10.1017/S0263574707003931 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574707003931

