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Abstract: The development of algorithms for agile science and autonomous exploration has been pursued in
contexts ranging from spacecraft to planetary rovers to unmanned aerial vehicles to autonomous underwater
vehicles. In situations where time, mission resources and communications are limited and the future state of
the operating environment is unknown, the capability of a vehicle to dynamically respond to changing
circumstances without human guidance can substantially improve science return. Such capabilities are
difficult to achieve in practice, however, because they require intelligent reasoning to utilize limited resources
in an inherently uncertain environment. Here we discuss the development, characterization and field
performance of two algorithms for autonomously collecting water samples on VALKYRIE (Very deep
Autonomous Laser-powered Kilowatt-class Yo-yoing Robotic Ice Explorer), a glacier-penetrating cryobot
deployed to the Matanuska Glacier, Alaska (Mission Control location: 61°42′09.3″N 147°37′23.2″W). We
show performance on par with human performance across a wide range of mission morphologies using
simulated mission data, and demonstrate the effectiveness of the algorithms at autonomously collecting
samples with high relative cell concentration during field operation. The development of such algorithms will
help enable autonomous science operations in environments where constant real-time human supervision is
impractical, such as penetration of ice sheets on Earth and high-priority planetary science targets like
Europa.
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Introduction

The VALKYRIE vehicle

VALKYRIE (Very deep Autonomous Laser-powered
Kilowatt-class Yo-yoing Robotic Ice Explorer) is a prototype
cryobot (heat-based ice-penetrating robot) developed by Stone
Aerospace under NASAASTEP grant NNX11AJ89G to dem-
onstrate technology for descending through the icy crust of
worlds such as Europa or Enceladus. VALKYRIE was de-
ployed to the Matanuska glacier in Alaska during the summer
2014 and 2015 field seasons. There, it conducted a series of mis-
sions that penetrated into the glacier and collected science data
to demonstrate operations similar to a future icy world pene-
tration mission.
VALKYRIE is powered by a surface-based 5 kW laser,

which is shot down a fibre optic cable to the robot and is dis-
persed in the form of heat at the nose by a set of optics. The
heat generated by the laser melts the ice in front of the vehicle,
causing it to slide downwards by the force of gravity. There are
pumps near the front of the vehicle that may optionally draw

meltwater past a heat exchanger and then fire heated water out
jets at the nose of the vehicle. These jets may be directed
straight ahead to effect faster melting, or towards one side to
allow the vehicle to melt an off-vertical trajectory through
the ice, for example, to avoid obstacles or target areas of scien-
tific interest such as sub-glacial lakes. An ice-penetrating syn-
thetic aperture radar was developed and successfully field
tested in parallel with VALKYRIE, and future integration
on the vehicle will allowVALKYRIE to identify such obstacles
and targets during descent. VALKYRIE may also melt using
only passive thermal contact (no water-jetting) when conduct-
ing sensitive scientific sampling. VALKYRIE is equipped with
a deep ultraviolet fluorescence flow cytometer that allows it to
spectrographically measure protein and mineral concentration
in the meltwater in real time during descent. It also carries on-
board a meltwater sampling system that allows it to collect
samples for further scientific analysis in a surface-based la-
boratory (Stone et al. 2015). More information about the en-
gineering and characterization of VALKYRIE’s scientific
payload may be found in Bramall et al. (2016), and a
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microbiological analysis of the sample contents collected by
VALKYRIE may be found in Christner et al. (2016).
Any true cryobot penetrator mission to Europa would likely

use an onboard radioisotope thermal generator as a heat
source instead of laser delivery from the surface because of
power density and efficiency requirements. On Earth, however,
this is not practical due to governmental regulations and envir-
onmental concerns, so VALKYRIE’s laser-based heat source
was designed as a stand-in replacement for the nuclear heat
source. Laser was chosen over electricity as the method of ther-
mal delivery because trade studies and laboratory testing
showed that when the end product is heat, laser can achieve
higher power densities and lower losses. For more details on
the design of VALKYRIE’s laser-based heat delivery system,
see Stone et al. (2014). Figure 1 shows VALKYRIE and the
VALKYRIE field team deployed on the Matanuska Glacier
in 2015.

Motivations for autonomous sampling

Two challenges facing scientific robots operating in remote en-
vironments are the difficulty of real-time control by a human
operator and the limitations of finite resources aboard the
robot. Because VALKYRIE carries a limited number of sam-
ple bags (12 maximum) and the ice profile encountered during
the descent is unknown a priori, these challenges manifest
themselves in the question of how to intelligently choose
when to take water samples. Because the presently observed
sample water will mix with the contaminated water trailing
VALKYRIE’s descent and the sample bags are one-time-use
to prevent contamination, the decision to take a sample is irrev-
ocable. VALKYRIE can neither backtrack to take a high value

sample it saw in the past, nor give up a sample it has already
taken if it sees something better in the future.
During the field campaign, most water samples were remotely

triggered by a human science team monitoring science telemetry
for signals of interest from the surface.During planetarymissions
ormissions in extreme environments on Earth, however, time de-
lays, sparse communication windows and limited human endur-
ance preclude such supervision. In order to maximize science
return, it is necessary for the robot to make intelligent autono-
mous decisions about how and when to expend its resources.
The algorithm responsible for making these decisions must be
adaptive enough to account for great uncertainty about what
will be encountered in a fundamentally unknown environment.
This paper discusses the development of two algorithms for

intelligent autonomous water sampling aboard the
VALKYRIE cryobot. The first algorithm presented
(Algorithm 1) was developed during the 2015 field campaign
and was used to autonomously collect a suite of water samples
in real time during an active mission. The second algorithm
(Algorithm 2) improves upon the first algorithm given lessons
learned from the field. The performance of both algorithms is
compared using both simulated data and real data from the
field, and is shown to be on par with human performance.
Finally, we discuss applications of the VALKYRIE autono-
mous sampling algorithm and address implications of our re-
sults to autonomous and agile science applications in general.

Related work

The development of algorithms for agile science and autono-
mous exploration has been pursued with much interest in

Fig. 1. The VALKYRIE cryobot (black cylinder) and the 2015 field team deployed on the Matanuska Glacier, Alaska (61°42′09.3″N 147°37′
23.2″W) from 9 June to 10 July 2015.
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contexts ranging from spacecraft to planetary rovers to un-
manned aerial vehicles to autonomous underwater vehicles,
and these algorithms have been shown to substantially improve
science return (Thompson et al. 2012). Yet truly autonomous
behaviour remains challenging to achieve in operational situa-
tions because such capacities require deep systems-level inte-
gration and high confidence in proper behaviour of the
algorithm in the face of inherently unknown environments.
Successes have been reported for Earth observing spacecraft
(Chien et al. 2015), spacecraft performing flybys of primitive
bodies (Chien et al. 1999, 2014), planetary rovers on Earth
and Mars (Gulick et al. 2001; Wagner et al. 2001; Castano
et al. 2007b; Woods et al. 2009) and autonomous underwater
vehicles (Smith et al. 2011; Girdhar et al. 2013). In many cases,
the vehicles were able to actively modify their trajectory to im-
prove observations or facilitate direct interactions with their
environment as new science opportunities were discovered,
while still maintaining high-level mission directives from
ground control.
When striving towards intelligent autonomy for robotic sci-

ence, the question naturally arises:What constitutes valuable sci-
ence? Many previous works concentrate on implementing
onboard intelligence for a single, well-focused science task.
Examples include a vision-based Bayesian classification system
for identifying rock types observed by a planetary rover (Sharif
et al. 2015), and a support vector machine trained to taxonomic-
ally identify plankton cells passing through an imaging flow cyt-
ometer deployed at a cabled coastal ocean observatory (Sosik &
Olson 2007). These observations could then be used to guide sci-
ence directives for the vehicle or other deployed science assets.
Other works take a more generalistic approach, guiding sci-

ence directives with the ‘principle of most surprise’ – that is, the
idea that what is most scientifically interesting in an environ-
ment is also what is most surprising, and the vehicle should ac-
tively seek this out. Kaeli (2013) describes a methodology for
categorizing visual observations of the environment into topics
based on semantic descriptors and provides a quantitative
framework for the metric of surprise. Girdhar et al. (2013)
extend these ideas by implementing an online topic modelling-
based algorithm in an autonomous underwater robot, continu-
ously computing the surprise score of the current observation,
and executing an intelligent traversal strategy including hover-
ing over surprising observations while moving quickly over
corals and rocks similar to those previously seen. Castano
et al. (2007a) tackle the problem of novelty detection on rock
images acquired by awheeled rover through several strategies –
k-means clustering on rock properties, a probability-based
Gaussian mixture model, and a discrimination-based single
classifier approach – and incorporate these capabilities into a
closed-loop system for autonomous rover science including op-
portunistic investigation of science targets and online replan-
ning subject to vehicle resource constraints.

Problem formulation

VALKYRIEmay continually measure the protein andmineral
concentrations of the meltwater during descent using its flow

cytometer, and at any time choose to collect the meltwater
into a limited number of sample bags or sample filters. We as-
sume in the following sections that VALKYRIE is configured
pre-mission with 12 empty sample bags (the maximum it can
hold). The objective of the autonomous sampling algorithm
is to enable VALKYRIE to collect the most scientifically valu-
able water samples without human guidance. VALKYRIE
may choose to take a sample only in the present moment – it
may not go back to retrieve a sample it has seen in the past,
or discard a sample it has already taken and replace it with a
better sample it sees in the future.
Because science ‘value’ is entirely subjective on the desires of

the mission scientists for each particular campaign, we do not
attempt to pass judgement on science value within the autono-
mous sampling algorithms themselves. Instead we assume that
the scientists have implemented a ‘score function’ that provides
a mapping from robot sensor readings to the expected scientific
value of collecting a sample. More specifically, the score func-
tion performs sensor fusion and outputs a scalar representing
the expected scientific merit of collecting a sample at the cur-
rent timestep according to the science objectives. We require
the output of this mapping as a pre-requisite input to the au-
tonomous sampling algorithms.
Given a score function mapping, the sampling problem re-

duces to picking the twelve globally highest scoring samples
while the score function output is gradually revealed as themis-
sion progresses, under the constraints that samples may be trig-
gered only at the present timestep and each sample takes a
discrete amount of time to complete. After a mission, once
the whole score function has been observed, the optimal sam-
pling times may be calculated by brute force. Generally speak-
ing, the metric for measuring performance of an online
algorithm is called the competitive ratio (Manasse &
McGeoch 1988), defined as the ratio of between the score of
the solution found by the online algorithm and the score of
the optimal a posteriori solution. We calculate the competitive
ratio of a single run of the autonomous sampling algorithm as
the sum of sample scores picked by the autonomous sampling
algorithm, divided by the sum of optimal sample scores com-
puted with a fully observed score function. We compare the
performance of the two candidate algorithms using aggregate
statistics of their competitive ratios when tested against an
identical set of 2000 simulated missions, and against human
performance on a smaller subset of these simulated missions.

Water sampling system specifications

When VALKYRIE is not using its water jets to assist melting,
it may sample an uncontaminated meltwater pocket generated
immediately in front of its nose during the descent (Clark et al.
2017). In non-jetting mode, VALKYRIE passively melts
through the ice using thermal inequilibrium. Because there
are no disturbances, the physical tolerances between the ice
shaft and the vehicle body are very tight. Because the down-
wards passage of the vehicle constantly generates new melt-
water, the meltwater pocket is under positive pressure
proportional to the descent rate of the vehicle and remains
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uncontaminated by the contents of the water column higher up
or impurities from the surface. So long as the intake rate is less
than the rate of meltwater generation, the vehicle may sample
water representative of the slice of ice that it is currently passing
through using a sampling inlet at the nose. If the intake rate ex-
ceeds the rate of meltwater generation, the vehicle will begin
pulling in dirty ‘bathtub’ water that has already been contami-
nated by its passage and mixed with the rest of the water
column.
A custom-made Leiden Measurements Technologies deep

ultraviolet fluorescence flow cytometer enables VALKYRIE
to analyse the protein and mineral concentrations in the melt-
water in real time during descent. A sampling pump draws
water from the uncontaminated meltwater pocket via the sam-
pling inlet, and passes it through a quartz window.As the water
passes through the window, it is energized by a ultraviolet light
source. A series of photomultiplier tubes (PMTs) tuned to dif-
ferent frequencies measure the fluorescence response of any
material suspended in the water, and software performs
least-squares chemometric fitting based on a series of prede-
fined basis sets to quantify the concentration of chlorophyll
A and various other proteins and minerals and logs the data
in real time.
Once the meltwater passes through the quartz window for

analysis by the cytometer, VALKYRIE has the options of let-
ting the water pass out the back of the vehicle uncollected or
redirecting it into a bank of ThermoScientific HyClone
Labtainer BPC 100 ml sample bags (overfilled to 120 ml) or
Pall 0.2 µm pore-size 90 mm diameter filters loaded into a
Savilex filter holder. Upon post-mission recovery of the vehicle
to the surface, the sample media are extracted for intensive la-
boratory analysis. There exists a 137 ml delay line between the
quartz window and the sampling valve, so it is possible to view
the entire contents of a 120 ml sample bag before deciding to
collect it. A 40 µm ‘gunk filter’ is present at the sampling inlet
to prevent ingestion of large particulates and a ‘bubble trap’
containing a 150 µm filter and an air escape pathway is incor-
porated to prevent air bubbles from entering the sample lines.
The sampling pump is a magnetically coupled magnetic gear
pump that was chosen tomaximally isolate the sample contents
from pump mechanicals while still satisfying the performance
demands of the downstream system in terms of pressure.

Candidate algorithms

Algorithm 1 (field campaign algorithm)

The autonomous water sampling algorithm used in the
VALKYRIE 2015 field campaign (Algorithm 1) uses an adap-
tive sample threshold to adjust its standards of what constitutes
an ‘interesting’ sample during a mission and determine good
moments to collect water samples. First, the sample threshold
is initialized to a baseline value. During the field campaign, this
baseline was anecdotally chosen to be slightly higher than the
average steady-state score function value observed at the start
of recent previous missions in nearby melt holes. Whenever the
sample score surpasses the sample threshold, the algorithm

commits to collecting a sample. It does not take the sample im-
mediately, but waits to trigger sampling until a peak is reached
in the score function in order to maximize the local score while
the score function is still increasing. At the moment of trigger-
ing, the sample threshold is raised to twice the current sample
score, and a depth threshold is put in place. Further sample
triggering is prevented until the robot depth surpasses the
depth threshold. Once the depth threshold is passed, sample
triggering is re-allowed. After this, the sample threshold decays
exponentially at a rate proportional to the time since the last
sample and the number of samples remaining, and inversely
proportional to the depth remaining before the end of the mis-
sion, down to the initial threshold value, or the score function
exceeds the threshold again. If the algorithm reaches a point
where there is less time remaining in the mission than the min-
imum amount of time needed to fill the remaining empty sam-
ple bags, then it immediately attempts to fill all remaining bags
by sampling continuously.
At a high level, the idea behind Algorithm 1 is that the sam-

pling threshold quickly adjusts upwards to a ‘reasonable’
threshold by exponential doubling whenever a sample is
taken, and also adjusts downwards through exponential
decay if high scores were seen in the past, but are no longer
being seen. In essence, the algorithm is adjusting its expectation
of what constitutes an interesting sample based on the score of
the last sample and the amount of time that has passed since
taking it. Pseudocode for Algorithm 1 is presented in
Appendix I.

Algorithm 2 (improved algorithm)

A second autonomous sampling algorithm (Algorithm 2) was
designed as an improvement over Algorithm 1, given the les-
sons learned from the 2015 field campaign. One major limita-
tion of Algorithm 1 is that good performance requires tuning of
several parameters such as initial sampling threshold and
threshold decay rate. During the 2015 field campaign,
Algorithm 1 could be tuned anecdotally because an environ-
mental baseline was known ahead of the autonomous mission
from previous missions conducted nearby. In environments
with a truly unknown baseline, Algorithm 1 may perform
poorly because these parameters are set inappropriately.
Algorithm 2 is designed to be parameterless to avoid this
major weakness of Algorithm 1.
The VALKYRIE sampling problem may be seen as a vari-

ation on the famous secretary problem in optimal stopping the-
ory. Algorithm 2 draws heavily on inspiration from prior work
on this subject. Simply stated, the secretary problem is as fol-
lows: suppose that you manage a company, and you wish to
hire the best secretary from a pool of n applicants.
Unfortunately, you cannot tell how good each applicant is
until you interview them, and you must decide whether or
not to make an offer immediately upon conclusion of the inter-
view. Assume that all applicants will accept your offer, thus the
hiring process halts as soon as you make your first offer.
Because your decision is irrevocable, youwill have to hire a sec-
retary before observing the quality of applicants that have not
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yet been interviewed. What is the best strategy to choose which
applicant to hire?
In 1961, Lindley suggested the following approach: Given n

applicants, interview the first n/e applicants as a calibration
period without hiring anyone. Then hire the first applicant
who is as good or better than the best applicant from the cali-
bration period. If you reach the last applicant without hiring
anyone, hire that applicant no matter what (Lindley 1961).
Papers by Chow & Robbins (1963) and Dynkin (1963) proved
that the probability of selecting the best applicant using this
strategy asymptotically approaches 1/e as n grows large, and
that the generalized strategy is optimal, yielding the best
possible guarantee.
Further work in this field has explored variations on the sec-

retary problem including picking different numbers of secretar-
ies (the k-choice secretary problem), selecting multiple
secretaries such that their individual strengths and weaknesses
create the best team (thematroid secretary problem) and select-
ing a secretary when the value of that secretary is also partially
dependent on the time it took to arrive at that decision (the
time discounting secretary problem). Babaioff et al. (2008) pre-
sents a comprehensive review on approaches to these problems,
and observes surprisingly strong constant factor guarantees on
the expected value of solutions obtained from generalized on-
line secretary algorithms.
For the VALKYRIE sampling algorithm, the most relevant

variation is the k-choice secretary problem. Given a scoring
function that continuously measures the anticipated utility of
taking a sample at any given point in time, the VALKYRIE
sampling problem may be approximately reduced to the
k-choice secretary problem, except that the scores of the secre-
taries are no longer independent of the secretaries that came be-
fore them, and after picking a secretary you must wait for a
constant number of candidates before choosing the next.
Babaioff et al. describe a simple and intuitive algorithm for

the k-choice secretary problem that is e-competitive as n ap-
proaches infinity, meaning it selects the best k applicants
with probability 1/e for large n (Babaioff et al. 2007).

Kleinberg presents a more complicated recursive algorithm
that is 1− 5/

��

k
√

competitive, which provides a better competi-
tive ratio for large k (Kleinberg 2005). We draw upon ideas
from both these algorithms as inspiration for Algorithm 2.
At a high level, Algorithm 2 recursively divides the mission

into smaller and smaller sub-missions and attempts to select a
portion of its total samples from each smaller sub-mission.
Like Algorithm 1, Algorithm 2 keeps track of a sampling
threshold, but in this case, the sampling threshold is set as
the mean value of all sub-missions that came before. As in
Algorithm 1, Algorithm 2 commits to collecting a sample
once the threshold is passed, but waits until a peak is reached
in the scoring function to actually trigger the sample. Similarly,
Algorithm 2 immediately takes all samples needed to fill its
quota for a given sub-mission if it senses it is about to run
out of time. Pseudocode for Algorithm 2 is presented in
Appendix II.
Figure 2 shows a visualization of the execution of both algo-

rithms on the same simulated mission example, as well as the
optimal sampling times computed post-mission when the en-
tire score function is known. It can be seen that the setting of
the exponential decay rate is very important to the perform-
ance of Algorithm 1, and that Algorithm 1 is good at picking
peaks of local spikes in the score function, but usually misses
the opportunity to takemultiple samples in a drawn-out region
of high score function values. In this example, Algorithm 2 out-
performs Algorithm 1, with a competitive ratio of 0.911 versus
0.800, respectively.

Analysis of performance

Performance comparison on simulated data

In order to investigate algorithm performance with statistically
significant sample sizes, Algorithm 1, Algorithm 2 and human
performance were compared against each other when run
against the same suite of 2000mission simulations (human per-
formance was tested on a smaller subset of these simulations).

Fig. 2. Illustration of execution of both autonomous sampling algorithms on identical simulated mission data. The solid blue line represents the
score function. Gold stars show optimal samples computed with a priori knowledge of the score function for the entire mission. Red triangles show
samples picked by Algorithm 1 and green dots show samples picked by Algorithm 2. Dashed lines represent the sampling threshold for each
algorithm. Shaded regions show times when the sampler is sampling.
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Individual mission simulations were generated by modelling
the score function as a randomized Gaussian mixture model
under the assumption that events of interest have a physical re-
gion of influence in the ice (which may overlap with other
events of interest), and as the robot descends through these
physical regions, the interestingness of the events it is passing
through will be reflected in the score function. The parameters
for the Gaussian mixture model generating the mission simula-
tions were maximum event amplitude amax, number of
Gaussian events n, maximum event width σmax (standard devi-
ation) and length of mission L. For exact methodology of si-
mulated mission generation, see Appendix III.
To gauge the effects of diverse mission morphologies on al-

gorithm performance, one parameter of the Gaussian mixture
model generating the mission simulations was varied at a time,
and the algorithms were tested on resultant mission simula-
tions (e.g. How does the mission length affect the algorithm’s
ability to pick the optimal samples?). Although not part of the
Gaussian mixture model, the number of samples to collect s
was also varied. Fifty trials were performed per parameter con-
figuration for Algorithms 1 and 2, and five trials for humans in
the interest of practicality of human testing. Parameter values
when being held constant were n= 50 events, s= 12 samples,
σmax = 25, mission length L= 500. When varying mission
length, the number of events was instead scaled to maintain
the default proportion 50/500 in order to correspond to what
would happen in real life. Maximum event amplitude amax

was not varied and was arbitrarily fixed at 50 because the
score function is unitless.
Algorithm performance was measured using the competitive

ratio – the ratio of total sample score picked by the algorithm
over the optimal score. Optimal samples were estimated using
a priori knowledge of the entire score function using a greedy
algorithm (see Appendix IV). Because we are interested in
studying best-case performance, parameters for Algorithm 1
(baseline sampling threshold m and threshold decay rate r)
were tuned by hand to produce the best aggregate results, but
were not modified across mission simulations. Human per-
formance was measured by gradually revealing an animated
plot of the score function to a human user and having them
press a computer keywhenever they desired to collect a sample.
The animation frequency of score function updates during
human trials was 5 Hz.
Both algorithms performwell on simulated datawith a one σ

competitive ratio range of 0.6–0.85 formostmission configura-
tions. They show performance on par with human perform-
ance and would likely significantly exceed human
performance on long missions when a human’s attention will
inevitably wander (the longest simulated missions tested took
about 5 min to complete by humans per trial – during the
VALKYRIE field deployment, missions could stretch upwards
of 16 h). Both algorithms exhibit good stability when run
against diverse missions morphologies constructed from simu-
lation parameters with a wide range of the number of Gaussian
events, maximum event width, number of samples and mission
length – that is, their performance stays relatively constant as
these parameters are varied.

Some variation is observed, however. For conciseness, let
the phrase ‘all algorithms’ include human performance. The
performance of all algorithms is relatively flat as the number
of Gaussian events is varied, except it is worse at very low num-
bers of Gaussian events. This is likely because when the num-
ber of Gaussian events is similar or smaller than the number of
samples, there is a higher penalty for mistakenly skipping a
good event. By the pigeonhole principle, there are not enough
other decent events to make up for it, so the algorithm is forced
to spend a sample at an inopportune time. All algorithms per-
form better as the number of samples increases. This is likely
because the more samples are available, the better coverage
the algorithm canmake of the mission, regardless of its morph-
ology. If an algorithm was able to achieve 100% sampling
coverage of a mission, by definition it would achieve an opti-
mal sampling routine. Having more samples available drives
the algorithms towards this scenario. Algorithm 2 and humans
show poor performance at very small maximum event width.
Humans perform poorly because their reflexes are not fast en-
ough to catch very narrow events going by. Algorithm 2 per-
forms poorly because the narrowness of these events means
they have a small integral, so they do little to influence the sam-
pling threshold, thus Algorithm 2 has a hard time initializing
its threshold well. Algorithm 1 does decently in this scenario,
but with the caveat that it has the unfair advantage of prior in-
formation due to the manual pre-initialization of its sampling
threshold. Beyond a certain small maximum event width, all
algorithms perform decently and performance flattens out.
This is likely because very wide events essentially contribute
a constant offset to the background baseline of the score func-
tion, and constant offsets do not affect the algorithms (beyond
the initialization of Algorithm 1), because score functions are
unitless. Finally, Algorithm 2 performs markedly better than
Algorithm 1 as the missions get longer. This is likely because
the sampling threshold decay rate in Algorithm 1 becomes
poorly tuned for the longer mission lengths. This illustrates
the benefits and flexibility of Algorithm 2’s parameterless
nature.
Overall, Algorithm 2 slightly outperforms Algorithm 1 in al-

most all cases, and has the major advantage that it requires no
tuning to achieve good performance. Figure 3 shows the results
of the sensitivity analysis investigating varied mission simula-
tion parameters on the performance of the algorithms.

Autonomous collection of VALKYRIE field samples

The science objective for sampling during the VALKYRIE
field campaign was to gather water samples during descent
from regions in the ice with the largest concentration of bio-
signals, for which cytometer fluorescence signal was utilized
as a proxy. The autonomous sampling score function used
was the sum of the six cytometer PMT channel count rates
computed at each timestep, convolved with a 120 ml box filter
sampling window – the idea being that this number measured
the total amount of fluorescent material that would end up in a
sample bag if a water sample was triggered at the current mo-
ment in time.
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Algorithm 1 was used to collect ten 120 ml sample bags au-
tonomously during the final mission of the VALKYRIE 2015
field deployment. A networking error caused the algorithm to
reset after the second sample, so the adaptive threshold was ab-
normally low for the third and fourth samples as the algorithm
re-learned the environment. Despite the networking error, the
algorithm collected a series of samples representing high score
function values starting with no a priori knowledge of what
would be encountered during the descent (competitive ratio
0.518). Cell concentrations for each sample bag were measured
post-mission after the bags had been returned to the surface
using the methodology described in Christner (2006). Only a
modest correlation (r2 = 0.23) was observed between the
score function value and the laboratory-processed cell concen-
tration, implying that the score function used did not provide a
reliable translation between sensor readings and actual concen-
tration present in the water samples. The discrepancy is due to
a sub-optimal choice of score function, not the performance of
the algorithm itself, and is not wholly unexpected given that the
score function consisted simply of a naivemeasurement of total
fluorescent signal contained in each water sample (the sum of
all PMT channels across a 120 ml window). The poor correl-
ation may have had to do with non-biological sources of fluor-
escence in the sample water or high concentrations of cells

passing through the cytometer in clusters instead of well
mixed in the sample water, among other factors. Future
work will address this discrepancy by analysing the
VALKYRIE data to determine a more appropriate sensor fu-
sion that accurately represents the sample’s cell concentration.
The improved score function may use more sophisticated tech-
niques such as chemometric fitting to extract the concentra-
tions of particular biomarkers of interest instead of just
generic fluorescent activity. An important contribution of the
VALKYRIE vehicle was to gather this baseline dataset from a
representative field environment, so that these analyses may be
completed and a more accurate score function can be con-
structed in the future for this and other scientific objectives.
Figure 4 shows the autonomous samples collected by the
VALKYRIE vehicle during the 2015 field campaign and the
correlation between score function value and sample cell con-
centration as measured in the sample water post-mission upon
retrieval of VALKYRIE from the borehole.

Algorithm performance comparison on VALKYRIE field data

Because Algorithm 2 was not developed until after the
VALKYRIE 2015 field campaign, both Algorithm 1 and
Algorithm 2 were run after the fact on historical 2015 field
deployment data (and parameter settings, in the case of

Fig. 3. Aggregate performance of Algorithm 1, Algorithm 2 and humans on a suite of 2000 simulated missions generated by a Gaussian mixture
model (humans were tested on only a subset). Mission simulation parameters were number of Gaussian events, number of samples, maximum
event width and mission length. One parameter of the mission simulation was varied at a time to investigate the effect of different mission
morphologies on algorithm performance. Shaded area shows one standard deviation.

An intelligent algorithm for autonomous scientific sampling with the VALKYRIE cryobot 253

https://doi.org/10.1017/S1473550417000313 Published online by Cambridge University Press

https://doi.org/10.1017/S1473550417000313


Algorithm 1) to compare performance. Figure 5 shows the
performance of both algorithms on 1 July and 5 July 2015
mission data. The samples, chosen by Algorithm 1 during
the re-run, are not exactly the same as those chosen during
the field mission because of the networking error in the
field mission that caused Algorithm 1 to reset midway
through the mission. Both algorithms performed better on
the July 1 mission data than the July 5 mission data, which
is to be expected because the July 1 mission was back-loaded
(had its highest score function values near the end), whereas
the July 5 mission was front-loaded (had its highest score
function values near the beginning). If a mission is
front-loaded, the algorithm can have little certainty that the
high scores it sees near the beginning are the best in the mis-
sion, because it has yet to observe the remainder of the

mission. If a mission is back-loaded, it can have better cer-
tainty that high scores near the end are indeed the best
thing it will see, which leads to better performance.
Algorithm 2 outperformed Algorithm 1 in the July 1 mission
because it was better able to sample broadly across the large
late high-scoring event, instead of only picking out the peaks
like Algorithm 1. Algorithm 1 did better on the July 5 mis-
sion because it sampled frequently early in a front-loaded
mission, whereas Algorithm 2 waited for something better
to come along, then was forced to desperately take five poorly
scoring samples at the end to fill its quota. Probabilistically,
Algorithm 2 made the better choice to wait as evidenced by
its superior aggregate performance on large collections of si-
mulated missions. However, in the case of the July 5 mission,
it turned out that the large early score function spike was the

Fig. 4. Plot showing the response of the water sampling algorithm during the 5 July 2015 autonomous mission on the Matanuska Glacier (left).
Ten sample bags were collected autonomously during this mission and were retrieved for laboratory analysis upon resurfacing of the vehicle at the
conclusion of the mission. Correlation between score function and cell concentration was r2 = 0.23 (right). The data point representing the third
sample was thrown out because the communications error with VALKYRIE caused the sampling pump to stop and be reset, which mixed sample
water from different depth layers in the ice.

Fig. 5. Plot showing the response of the autonomous water sampling algorithms run on data from VALKYRIE 2015 field deployment to the
Matanuska Glacier. The solid blue line represents the score function. Gold stars show optimal samples computed with a priori knowledge of the
score function for the entire mission. Red dots are samples picked by Algorithm 1 and green dots show samples picked by Algorithm 2. Dashed
lines represent the sampling threshold for each algorithm. Shaded regions show times when the sampler is sampling.
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best available region for sampling. Anecdotally, both algo-
rithms were more reliable and precise than human operators,
who could not constantly monitor the science telemetry dur-
ing the entire 7+ hour duration of these missions.

Conclusions

Two algorithms were developed to solve the challenge of au-
tonomous scientific water sampling aboard the VALKYRIE
cryobot during descent through a glacier. The first algorithm
(Algorithm 1) was used to autonomously collect ten water sam-
ples with high relative cell concentrations during the final mis-
sion of the VALKYRIE 2015 field campaign. The second
algorithm (Algorithm 2) was developed after the field cam-
paign and improved upon Algorithm 1 given lessons learned
in the field. The performance of both algorithms was charac-
terized and compared over a wide range of mission morpholo-
gies using simulated data, and found to have good
performance and stability across different mission types. The
algorithms perform on par with human performance during si-
mulated missions, and would perform better than humans on
longmissions in the field due to the algorithms’ ability to moni-
tor tirelessly and indefinitely. Algorithm 2 outperforms
Algorithm 1 and is more robust to varied mission morpholo-
gies because it is parameterless and requires no tuning. The da-
taset gathered during the VALKYRIE 2015 field campaign
will assist in the formulation of more accurate score functions
(sensor fusions) that map instrument data to scientific value to-
wards mission objectives.
The development of autonomous sampling algorithms opens

upmany operational possibilities for VALKYRIE or its techno-
logical descendants to perform long-duration science operations
in environments too extreme for continuous human oversight.
Examples include missions that penetrate Greenlandic or
Antarctic ice sheets to access sub-glacial lakes, or eventually
planetary missions to icy ocean worlds like Europa or
Enceladus. The ideas developed in Algorithms 1 and 2 are not
limited to application on cryobots, but are applicable to any
situation requiring intelligent utilization of limited resources
with an uncertain future. These ideas could be extended to
other robotic exploration platforms, selective data return in
bandwidth limited situations, sports betting, stock trading and
more.

Acknowledgements

This work was supported by NASA ASTEP programme
grant NNX11AJ89G, PI Bill Stone. The authors would
like to thank the NASA ASTEP programme for making
this work possible.

References

Babaioff,M., Immorlica, N., Kempe, D. &Kleinberg, R. (2007).AKnapsack
Secretary Problem with Applications. Approximation, Randomization, and
Combinatorial Optimization. Algorithms and Techniques, Lecture Notes in
Computer Science. Springer, Berlin, Heidelberg, pp. 16–28.

Babaioff, M., Immorlica, N., Kempe, D. & Kleinberg, R. (2008). Online
auctions and generalized secretary problems. SIGecom. Exch. 7(2), 7:1–
7:11.

Bramall et al. (2016). Unpub. data.
Castano, R. et al. (2007a). Oasis: onboard autonomous science investigation

system for opportunistic rover science. J. Field Robot. 24(5), 379–397.
Castano, R. et al. (2007b). Onboard Autonomous Rover Science. In 2007

IEEE Aerospace Conf., pp. 1–13.
Chien, S., Knight, R., Stechert, A., Sherwood, R. & Rabideau, G. (1999).

Integrated planning and execution for autonomous spacecraft. In
Aerospace Conf., 1999. Proc. 1999 IEEE, vol. 1, pp. 263–271.

Chien, S. et al. (2014). Agile Science: Using OnboardAutonomy for Primitive
Bodies andDeep Space Exploration (SpaceOps). http://sensorweb.jpl.nasa.
gov/public/papers/chien_isairas2014_agile.pdf.

Chien, S. et al. (2015). Using autonomy flight software to improve science return
on earth observing one. J. Aerosp. Comput. Inf. Commun. 2, pp. 196–216.
http://www-aig.jpl.nasa.gov/public/planning/papers/chien_JACIC2005_Using
Autonomy.pdf.

Chow, Y.S. & Robbins, H. (1963). On optimal stopping rules. Z
Wahrscheinlichkeitstheorie Verwandte Geb. 2(1), 33–49.

Christner, B.C. (2006). Limnological conditions in Subglacial Lake Vostok,
Antarctica. Limnol. Oceanogr. 51(6), 2485–2501.

Christner et al. (2016). Unpub. data.
Clark, E.B. et al. (2017). VALKYRIE: Field Campaign Results and

Autonomous Sampling for a Laser-powered Cryobot. In Astrobiology
Science Conf. 2017. http://www.lpi.usra.edu/meetings/abscicon2017/pdf/
3706.pdf.

Dynkin, E.B. (1963). The optimum choice of the instant for stopping a
Markov process. Soviet Math. Dokl. 4, pp. 627–629.

Girdhar, Y., Giguère, P. & Dudek, G. (2013). Autonomous adaptive
exploration using realtime online spatiotemporal topic modeling.
Int. J. Robot. Res. 33(4), pp. 645–657. doi: 10.1177/0278364913507325.

Gulick, V.C., Morris, R.L., Ruzon, M.A. & Roush, T.L. (2001).
Autonomous image analyses during the 1999 Marsokhod rover field test.
J. Geophys. Res. 106(E4), 7745–7763.

Kaeli, J.W. (2013). Computational strategies for understanding underwater
optical image datasets. Dissertation, Massachusetts Institute of
Technology. http://hdl.handle.net/1721.1/85539.

Kleinberg, R. (2005). A Multiple-choice Secretary Algorithm with
Applications to Online Auctions. In Proc. of the Sixteenth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA ‘05. Society for
Industrial and Applied Mathematics, Philadelphia, PA, USA, pp. 630–
631.

Lindley, D.V. (1961). Dynamic programming and decision theory. J. R. Stat.
Soc. Ser. C, Appl. Stat. 10(1), 39–51.

Manasse, M.S. & McGeoch, L.A. (1988). Competitive Algorithms for
On-line Problems. In Proc. ACM Symposium on Theory of Computing,
pp. 322–333.

Sharif, H., Ralchenko, M., Samson, C. & Ellery, A. (2015). Autonomous
rock classification using Bayesian image analysis for Rover-based
planetary exploration. Comput. Geosci. 83, 153–167.

Smith, R.N. et al. (2011). Persistent ocean monitoring with underwater
gliders: Adapting sampling resolution. J Field Robot. 28(5), 714–741.

Sosik, H.M. & Olson, R.J. (2007). Automated taxonomic classification of
phytoplankton sampled with imaging-in-flow cytometry. Limnol.
Oceanogr. Methods 5(204), e216.

Stone, W.C., Hogan, B., Siegel, V., Lelievre, S. & Flesher, C. (2014). Progress
towards an optically powered cryobot. Ann. Glaciol. 55(65), 1–13.

Stone, W.C. et al. (2015). VALKYRIE: Field Campaign Results for a
Laser-Powered Cryobot. AbSciCon 2015 (Universities Space Research
Association). http://www.hou.usra.edu/meetings/abscicon2015/pdf/7203.pdf.

Thompson, D.R. et al. (2012). Agile science operations: a new approach for
primitive bodies exploration. In Proc. of SpaceOps 2012 Conf

Wagner, M.D. et al. (2001). The Science Autonomy System of the Nomad
robot. In Robotics and Automation, 2001. Proc. 2001 ICRA. IEEE
International Conf. on, vol. 2, pp. 1742–1749.

Woods, M. et al. (2009). Autonomous science for an ExoMars Rover-like
mission. J. Field Robot. 26(4), 358–390.

An intelligent algorithm for autonomous scientific sampling with the VALKYRIE cryobot 255

https://doi.org/10.1017/S1473550417000313 Published online by Cambridge University Press

http://sensorweb.jpl.nasa.gov/public/papers/chien_isairas2014_agile.pdf
http://sensorweb.jpl.nasa.gov/public/papers/chien_isairas2014_agile.pdf
http://sensorweb.jpl.nasa.gov/public/papers/chien_isairas2014_agile.pdf
http://www-aig.jpl.nasa.gov/public/planning/papers/chien_JACIC2005_UsingAutonomy.pdf
http://www-aig.jpl.nasa.gov/public/planning/papers/chien_JACIC2005_UsingAutonomy.pdf
http://www-aig.jpl.nasa.gov/public/planning/papers/chien_JACIC2005_UsingAutonomy.pdf
http://www-aig.jpl.nasa.gov/public/planning/papers/chien_JACIC2005_UsingAutonomy.pdf
http://www.lpi.usra.edu/meetings/abscicon2017/pdf/3706.pdf
http://www.lpi.usra.edu/meetings/abscicon2017/pdf/3706.pdf
http://www.lpi.usra.edu/meetings/abscicon2017/pdf/3706.pdf
http://hdl.handle.net/1721.1/85539
http://hdl.handle.net/1721.1/85539
http://www.hou.usra.edu/meetings/abscicon2015/pdf/7203.pdf
http://www.hou.usra.edu/meetings/abscicon2015/pdf/7203.pdf
https://doi.org/10.1017/S1473550417000313


Appendices

Appendix I: Algorithm 1

Appendix II: Algorithm 2

Appendix III: generation of mission simulations

Mission simulations were generated using a Gaussian mixture
model – a sum of Gaussians, where each Gaussian’s amplitude
a, centre (mean) μ and width (standard deviation) σ were cho-
sen uniformly randomly fromwithin a pre-set range. The para-
meters for the Gaussian mixture model are: maximum event
amplitude amax, number of events n, maximum event width
(standard deviation) σmax and mission length L. The thinking
behind this model is that as VALKYRIE descends through the
glacier, it randomly encounters impurities in the ice that con-
tribute to the cytometer fluorescence signal. The amplitude and
duration of each impurity’s contribution is unknown, so the re-
gion of influence is modelled as Gaussian. The regions of influ-
ence of the impurities can overlap, so the aggregate
fluorescence measured by the VALKYRIE cytometer is the
sum of these Gaussian regions of interest. This approach
proved to be a decent model for generating realistic mission si-
mulations, and was able to produce a rich morphological var-
iety of mission simulations that were anecdotally similar to
measurements gathered from the 2015 VALKYRIE field cam-
paign. One weakness of the model is that in the field, impurities
were generally observed to be somewhat clustered instead of
uniformly distributed. The pseudocode for generating a single
mission simulation given the parameters of the Gaussian mix-
ture model is shown below.

Fig. A1. Pseudocode for Algorithm 1, the autonomous sampling
algorithm used during the 2015 VALKYRIE field campaign.

Fig. A2. Pseudocode for Algorithm 2, the improved algorithm
designed after the field campaign.

Fig. A3. Pseudocode for generation of mission simulations using a
Gaussian mixture model.
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Appendix IV: greedy algorithm for estimating
optimal samples post-mission

The calculation of competitive ratio requires knowledge of the
optimal sampling score, so an algorithm is needed that can
compute the optimal sampling score, given a priori fully ob-
served mission. Although it is difficult to compute a truly op-
timal score, especially for long missions because the number of
sampling permutations that would have to be tried is large, the
following greedy algorithm presented in Fig. A4 correctly cal-
culates the optimal samples in almost all cases. One example
where the optimal sample estimation fails is shown in
Fig. A5. In this case, the optimal sample estimation underesti-
mates the optimal score, which would lead to an overesti-
mation of the competitive ratio. Although this is possible in
theory, in practice it is highly unlikely to occur and is therefore
lost to noise when averaged across many trials as were con-
ducted during the performance analysis of the algorithms.

Fig. A4. Pseudocode for estimating optimal samples from a mission
when the entire mission is observable a priori.

Fig. A5. Example where the greedy optimal sample estimation algorithm fails. When a score function peak is close to twice the width of the
sampling period, it may be more advantageous to take two sub-optimal samples on either side of the peak than one optimal sample at the peak and
one very poor sample much below it.
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