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Abstract

A number of insect species infest human households and stored foods and
products, leading to their designation as pests. Until recently, little was known about
the factors driving the evolution of pests that feed on stored dry foods. Here, I review
the effects of changes in climate and species interactions on the evolution and ecology
of beetles that feed on dried seeds/grains. My review focuses on evidence that the
host utilization by part of the species in the subfamily Bruchinae (Chrysomelidae) is a
preadaptation for utilizing stored dry seeds and grains, thus leading to their status as
a pest. These and other stored product pest beetles retain a higher percentage ofwater
in their body, relative to the water content of their diet, than beetles that feed on fresh
crops. I review the studies that have documented adaptation, acclimation and
polyphenetic response to high temperatures and desiccation and/or made direct
comparisons between these traits between developmental stages, populations and
among higher taxonomic groups. Finally, I review evidence for the effects of
environmental change on insect host-parasitoid and competitor assemblages.
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Introduction

A number of insect species infest human households
and stored foods and products, leading to their designation
as pests (Marlatt, 1896; Alfieri, 1931). These animals share
a number of distinct biological characteristics which have
brought about their widespread distribution. One of the most
important characteristics is their tolerance to a wide range of
physical environments. For example, some species are able to
utilize foods that have a wide range of moisture content
(Linsley, 1944). Other characteristics include polyphagy and
aphagy (Linsley, 1944; Tuda et al., 2005). Despite the economic
and social impact of these pests (up to 9% loss in developed
countries and up to 20%, ormore, loss in developing countries:
Phillips & Throne, 2010), little is known about the factors that

drive their evolution. Here, I review the effects of species
interactions and climate on the evolution and ecology of
beetles (bruchine seed beetles, in particular; see also Labeyrie,
1981; Fujii et al., 1990; Yoshida, 1990). I also review the studies
of adaptation, acclimation and polyphenetic response to high
temperatures and desiccation and the evidence for the effects
of environmental change on host-parasitoid and competitor
assemblages.

Evolution of dry food use as a preadaptation to
becoming a stored food pest

It has been hypothesized that the human cultivation of
grains in tropical/subtropical climates promoted the evol-
ution of pests that rely on stored grains/legumes for some part
of their life cycle (Cotton, 1956). However, recent studies
suggest that changes in climate and in host plant assemblages
associated with different climates were a prerequisite for the
evolution of host utilization in insects that are now considered
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to be stored grain pests (Tuda et al., 2006b). Furthermore, there
is evidence that the species split between stored bean pests and
that the non-pest sister species occurred long before the
human cultivation of beans (Alvarez et al., 2005).

The majority of seed beetles from the subfamily Bruchinae
(Coleoptera: Chrysomelidae) utilize the seeds of the bean
family (Fabaceae) as larval hosts (Johnson, 1981). After
hatching from eggs deposited on or near seeds by their
mothers, the larvae feed and pupate inside the seeds. Partly
because of this life cycle, some members of the subfamily are
considered to be serious pests of leguminous plants.
Utilization of dry beans for larval hosts is most likely, an
ancestral trait in bruchine seed beetles (Tuda et al., 2006b).
Interestingly though, some bruchines utilize only immature,
soft seeds (Southgate, 1979; Decelle, 1981; Alvarez et al., 2005;
Tuda et al., 2006b;M. Tuda, unpublished). It is unlikely that the
evolution of the use of dry seeds was driven by the use of
cultivated legumes. Instead, this trait is likely a preadaptation
for becoming a pest of stored beans (Watanabe, 1985; Tuda
et al., 2006b). We hypothesize that this unique feeding trait
may be explained by climate (long, arid seasons) and the
associated plant taxa, not their cultivation status. The long
period of time in which seeds are available may also allow
multivoltinism (Southgate, 1981; Ishihara, 1998; Alvarez et al.,
2005). Our recent study is the first to test competing
hypotheses about the evolution of dried food pests (Tuda
et al., 2006b). Our data suggested that the length of the dry
period contributed more to the evolution of a life cycle that
incorporated the use of dry food than temperature per se. This
is probably due to the long period of food availability
associated with dry season (Tuda et al., 2006b). Although
this host-utilization phenotype may be ancestral, it is not
strictly phylogenetically constrained as it is observed spor-
adically throughout the bruchine subfamily (M. Tuda,
unpublished). Recently, several closely related species of
bruchine beetles that feed on either dry seeds or fresh seeds
were identified (Tuda, 2003; Tuda & Morimoto, 2004).
A comparison of these species affords an opportunity to test
the factor(s) driving the evolution of host-utilization traits that
are associated with stored bean pests (Tuda, 2007).

Many pest insects of stored products were already
preadapted to exploit the small quantities of naturally stored
dry or rotten plant and animal materials, including dry seeds,
fruits, pollen, dead insects, and hairs or feathers in the nests
and webs of birds, mammals, spiders and insects (Linsley,
1944). Most of these insects are scavengers or predaceous,
unlike bruchines. Therefore, the climate effect on the pre-
adaptation suggested for bruchine beetles may not be applied
to these insects. Furthermore, besides these natural causes,
humans have likely had a considerable influence on the
evolutionary processes. For example, the storage of large
amounts of grain for long periods of time, particularly during
World War I and II, may have promoted the adaptation of
potential pests to storage conditions.

Adaptation to arid climates

The tolerance for changes in temperature and humidity
varies among the developmental stages of insects, such as
Drosophila (Krebs & Loeschcke, 1995; Gilchrist et al., 1997), the
kelp fly (Klok & Chown, 2001) and Tribolium, a pest of stored,
dried foods (Oosthuizen, 1935; Mahroof et al., 2003). As such,
holometabolous insects and amphibians experience different
habitat climates at each life-history stage. The egg and adult

stages tend to be exposed to the ambient environment and
may be tolerant of severe climate extremes (Howe & Currie,
1964; Bale & Hayward, 2010). A number of behavioral and
physiological adaptations to aridity have been noted in these
life stages. For example, some bruchines lay their eggs in layers
or cover them with fecal material. This prevents the eggs from
desiccation, as well as from egg parasitoids (Teran, 1962;
Prevett, 1966; Janzen, 1971; Mitchell, 1977; Delobel et al., 1995;
Tuda, 2007). The eggs are also tolerant to a wide range of both
humidity and temperature (Howe &Currie, 1964). Adults and
larvae have a greater proportion of water in the bound form
than the pupae (Kagoshima, Ishibashi, Tuda, & Iwaya-Inoue,
unpublished). Most bruchine beetles enter diapause (repro-
ductive quiescence) as adults (Utida, 1954; Sano, 1967;
Ouedraogo et al., 1991; Amevoin et al., 2005; Appleby &
Credland, 2007; review by Bell, 1994), larvae (Donahaye et al.,
1966; Shimada & Ishihara, 1991) or both (Kurota, 2004). This
phenomenon has also been reported in other beetle species
that feed on dry, stored foods (review by Bell, 1994). The
absence of diapause during the pupal stage is common
among beetles, but not in other orders (Leather et al., 1993).
This suggests that the physiological tolerance of beetles to
extreme temperatures differs among the developmental
stages (Mahroof et al., 2003). This difference may, in part, be
a by-product of morphological reorganization, with little or
no evolutionary significance (Bowler & Terblanche, 2008).
However, there is evidence that the expression of at least one
of the genes encoding heat-shock proteins is down-regulated
during the pupal (and late larval) stages in the stored pest
beetle, Tribolium castaneum (Mahroof et al., 2005).

A classic physiological study by Robinson (1928) revealed
that stored grain pest beetles retain disproportionately high
levels of water in their body relative to the dried grains they
feed on (fig. 1). The same is true for bruchine beetles. For
example, larvae of Callosobruchus beetles feed on dry beans,
whereas those of Bruchus rufimanus feed only on immature
beans. Despite the difference in water content of the food
source, both species have a similar proportion of body water
(fig. 1). Furthermore, in these and other stored-product pests,
the majority of body water is conserved in the bound form to
minimize its loss (fig. 2) (Robinson, 1928). The cells of all living
tissues contain millions of minute colloidal particles, which
attract and bind water as a film on their surfaces. The water,
thus bound, is held by the colloidal bodies with a powerful
force (Robinson, 1928). By conserving water in this less mobile
form, the insects gain resistance against both dry and cold
environments (Robinson, 1927; Block, 1996). Similarly, heat-
resistant individuals ofC. chinensis are characterized by longer
adult life duration in very dry air (Kiyoku, 1962). This
‘side effect’ of adaptation to arid environments is seen in
Callosobruchus beetles. In some species, the use of dry beans
appears to have promoted a habitat shift (or expansion) from
subtropical to temperate regions (Tuda et al., 2006b). Further-
more, the mechanisms proposed for insect mortality at high
temperatures are the same as those for low temperatures
(Tauber & Tauber, 1986; Fields, 1992). These include
changes in membrane lipid property (Gibbs, 1998; Patel
et al., 2001), rate imbalances (Hochachka & Somero, 1984;
Fields, 1992), perturbation of ionic activities (Cloudsley-
Thompson, 1962; Mullins, 1985) and desiccation (Cloudsley-
Thompson, 1962; Fields, 1992).

Behavioral adaptation to aridity is observed in C. macula-
tus. Females mate more frequently under water deficiency,
presumably because they can obtain a water source frommale
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ejaculates (Edvardsson, 2007). They also prefer drier beans for
oviposition (Hudaib et al., 2010).

Acclimation and adaptation to high temperatures

Mellanby (1954) may have been the first author to dem-
onstrate thermal acclimation at high temperatures in insects.
Mealworm, Tenebrio molitor, larvae that were acclimated to
temperatures of 37 and 30°C died at 44 and 42°C, respectively,
supporting the ‘beneficial acclimation’ hypothesis (Leroi et al.,
1994). Using C. chinensis, Kiyoku (1960) observed acclimation
and adaptation to high temperature (35°C) in support of this
hypothesis. However, the ‘beneficial acclimation’ hypothesis
has been challenged in the latest decade. For example, thermal
adaptation (or acclimatization) to a habitat was examined by
exposing the bruchine beetle Stator limbatus to a range of tem-
peratures (Stillwell & Fox, 2005). Exposure to (and acclimation
to) high temperatures during the immature stages of several
species of bruchines leads to a general reduction in fecundity,
irrespective of the tested oviposition temperature (Ishikura,
1939; El-Sawaf, 1956; Stillwell & Fox, 2005). This reduction in
fecundity seemingly supports ‘colder is better’ hypothesis
(Huey et al., 1999), which is induced by a reduction in body
size as is typical in ectothermic organisms (Atkinson, 1994).
Overall, either ‘colder is better’hypothesis or ‘optimaldevelop-
mental temperature’ hypothesis (Cohet & David, 1978; Huey
et al., 1999 or ‘deleterious acclimation’ hypothesis (Loeschcke

& Hoffmann, 2002; Wilson & Franklin, 2002) seems to be
supported both in S. limbatus (Stillwell & Fox, 2005) and
Zabrotes subfasciatus (Howe & Currie, 1964). Acclimation of
other insects that feed on stored products depends on the
range of the highest temperatures, and this is ascribed to
thermal effect on biochemical process (Fields, 1992). Survival
at very high, sublethal temperatures (40–50°C) may be
improved by acclimation at high temperatures. However,
survival at extremely high, lethal temperatures (55–80°C) is
not affected by acclimation. Within this temperature range
(56–60°C), denaturation and inactivation of pyruvate kinase,
a key enzyme in glycolysis, is induced and is likely responsible
for mortality (Hochachka & Somero, 1984).

Effect of climate and the host plants on polyphenism,
population density and competitive/predatory

interactions

Climate does not act alone on phytophagous insects.
The host plants also alter the fitness of insect herbivores in
a predictable manner. By selecting different host plants,
C. maculatus is able to survive over a wider range of tem-
peratures and humidity than is optimal in a limited range of
climate (Howe & Currie, 1964). Stillwell et al. (2007b) noted an
increase in fitness at high temperatures for traits associated
with body size (i.e. growth rate, fecundity and body size itself)
but not for larval survival or development time. Temperature
has a significant effect on the success of small males during
intraspecific competition for mates (Moya-Larano et al., 2007).
Both temperature and the host plant type affect the size of the
nuptial gift, as seminal fluids (ejaculates), offered by the males
(Fox et al., 2006). Furthermore, it appears that there is an
interaction effect between these two variables. Variation in the
body size of S. limbatus throughout its range was attributed to
differences in host plant seed size, moisture (humidity) and
seasonality (variation in humidity, precipitation and tem-
perature), but not to mean temperature (Stillwell et al., 2007a).
Moisture also partially explains the geographic variation in
sexual dimorphism (Stillwell et al., 2007a). Conversely, in

Fig. 1. Relationship between the water content of insects and their
food (only Coleoptera are shown, modified from Robinson 1928,
with additional data). The examples on the upper side of the
broken line indicate that the water content of the insects is greater
than that of the food. Granary weevil, rice weevil (Curculionidae)
and Callosobruchus beetles (Chrysomelidae: Bruchinae) are stored
seed/grain pests, whereas the Colorado potato beetle
(Chrysomelidae), locust borer (Cerambycidae), white grub
(Scarabaeidae) (Robinson, 1928) and broad bean beetle, Bruchus
rufimanus (Chrysomelidae: Bruchinae) (Kagoshima & Tuda,
unpublished data) are pests of fresh vegetables and trees, at
one or more life stages. ., Callosobruchus chinensis (Ishii, 1952);
○, C. chinensis; ∆, C. maculatus; □, C. analis; &, C. phaseoli; + ,
Zabrotes subfasciatus (Utida, 1966). The datawere collected from the
adults of all species except for the white grub (larvae) (Robinson,
1928).

Total water content of insects (%)

45 50 55 60 65 70 75 80 85

B
ou

nd
 w

at
er

 (
%

)

55

50

45

40

35

30

25

20

15

10

5

0

Granary weevil (Sitophilus granarius)

Rice weevil (Sitophilus oryza)

Locust borer (Megacyllene robiniae)

Colorado potato beetle 
(Leptinotarsa decemlineata)

White grub (Phyllophaga spp.)

Fig. 2. Relationship between total water content and the
percentage of water bound by colloids (only Coleoptera are
shown, modified from Robinson, 1928). The species that live on
dry food and have a small percentage of water in their own tissues
retain a large percentage of water in the bound form. The data
were collected from the same developmental stages as in fig. 1 for
each species.

Evolutionary diversification of bruchine beetles 417

https://doi.org/10.1017/S0007485310000660 Published online by Cambridge University Press

https://doi.org/10.1017/S0007485310000660


C. maculatus, experiments at a constant temperature suggest
that higher temperatures induce greater sexual dimorphism
in body size (Stillwell & Fox, 2007). This is probably caused
by sexual conflicts related to fitness optimization strategies,
which may increase population fitness (Rankin & Arnqvist,
2008; Arnqvist & Tuda, 2010). Early-emerging (smaller) males
are more likely to find mates, particularly if the females are
ready to mate soon after emergence (Rönn et al., 2008) and are
reluctant, or refuse, to mate more than once (Edvardsson &
Tregenza, 2005; Sakurai & Kasuya, 2008). However, larger
females tend to take longer to develop and are more fecund
and, thus, fitter (Yanagi & Miyatake, 2002; Vamosi, 2005;
Vamosi & Lesack, 2007), especially when resource replace-
ment cycle is long (Sibly et al., 1991).

The optimal temperature for rapid development in insects
tends to be higher than the optimal temperature for survival
and reproduction (Howe & Currie, 1964; Braby & Jones, 1994).
The optimal humidity is typically high for development,
survival and reproduction. However, very high humidity
levels enhance fungus development and increase mortality
in immature beetles. The effects of temperature/humidity on
populations and/or species should, therefore, be compared on
lifetime fitness (Deutsch et al., 2008; Yanagi & Tuda, 2010).

There are two adult morphs, the flight form (or active form
in reproductive diapause) and non-flight form, in some
bruchine seed beetles. High or increased temperature, long
thermoperiods, extreme day-lengths, high seed water content
and high larval density induce the flight form of C. maculatus
(Utida, 1954, 1965, 1969; Sano, 1967; Sano-Fujii, 1984;
Ouedraogo et al., 1991). The flight form is partially heritable
(Caswell, 1960; Sano-Fujii, 1986). These environmental factors
also have a similar effect on induction of the active morph in
other species congeneric to C. maculatus (temperature effect
in C. subinnotatus (Appleby & Credland, 2007); density effect
in C. subinnotatus and C. rhodesianus (Amevoin et al., 2005;
Appleby & Credland, 2007); and seed water content in
C. chinensis (Nahdy et al., 1999)).

Most phytophagous arthropods engage in predator-prey
or parasitoid-host interactions in nature. Predictions regarding
how climate change will alter these interactions are crucial for
conservation of biological diversity and for biological control
practices. An understanding of the effects of climate change on
these interactions in wild populations relies on direct obser-
vation and analysis of field populations with the associated
climate data (Tuda & Shima, 2002; Tuda et al., 2006a).
Alternatively, demographic experiments that use model
species provide a useful tool for understanding the general
rules governing the effects of climate on whole ecosystems.

Studies have shown that just a 2°C increase in the tem-
perature reduces the population size of seed beetles via a
decrease in density-dependent rates of egg hatching and larval
survival (Tuda, 1993; Tuda & Shimada, 1993). Furthermore,
such an increase in temperature also affects the coexistence
of the seed beetle and its parasitoid populations (Tuda &
Shimada, 1995, 2005). However, the effect is highly species
specific. Both the host and the parasitoid will coexist if the
functional response of the parasitoid stabilizes the host-
parasitoid population dynamics following an increase in tem-
perature (M. Tuda, unpublished data).

Phytophagous insects also participate in competitive
interactions, although competition may occur less frequently
than predation (Jermy & Szentesi, 2003). Changes in climate
(e.g. a 2°C rise and humidity change) alter the interspecific
competitive success of two Callosobruchus beetle species,

which may be ascribed by different environmental effects
on development time and fecundity between the two species
(Fujii, 1967). Furthermore, Davis et al. (1998) showed that
allowing dispersal along temperature clines altered the out-
come of competition and species distribution in laboratory-
reared Drosophila metapopulations.

Genetics of thermal adaptation

Development time and metabolic rate of C. maculatus are
affected by temperature and by the interaction between mito-
chondrial haplotype and nuclear genotype (or mitonuclear
interaction) (Dowling et al., 2007; Arnqvist et al., 2010). Such
mitonuclear interactions (Ballard & Rand, 2005) may be
ubiquitous in insect thermal response. There is evidence that
mtDNA transmission rates ofDrosophila is temperature depen-
dent (Nagata & Matsuura, 1991) and that nuclear genome is
involved in the temperature dependency (Doi et al., 1999).
Although these studies using a model beetle shed light on the
genetic background of the thermal response in beetles, our
understanding of the genetic mechanisms controlling thermal
adaptation is poor. Thus, this area of research offers con-
siderable promise in the future.

Future directions

This review focused on climate effects on the evolution,
developmental stages, variation within and among taxonomic
groups, species interactions and coexistence in holometabo-
lous insects, particularly beetles. Genetic effects on physio-
logical plasticity and adaptation tend to be underestimated
in previous studies, except for some that have used model
organisms such as Drosophila (Hoffmann et al., 2003) and
Arabidopsis (Siomos, 2009). For well-studied laboratory model
insects, however, extra caution must be paid to eliminate
bottleneck events and artificial selection due to laboratory
conditions and rearing. Populations that were reared in a large
batch for a small number of generations (<<20) (for timescale
of selection, see Tuda (1998) and Tuda & Iwasa (1998)) or
several smaller populations with a moderate gene flow may
be used.

Recent advances in molecular methods will improve our
understanding of adaptation and acclimation to climate. On
one hand, studies on molecular mechanisms of adaptation/
acclimation to climate changes in beetles might benefit
from DNA sequence data of a stored pest beetle, T. castaneum
(Tribolium Genome Sequencing Consortium, 2008). For
example, an evolutionary process may be uncovered for the
close correlation between enzyme genotypes and the ex-
pression of a heat shock protein in a leaf beetle, Chrysomela
aeneicollis (Dahlhoff & Rank, 2000). In addition, approaches
using phylogeny-based inference may improve the ability to
distinguish between ecological plasticity and phylogenetic
signals in climate-dependent traits. Comparative methods,
such as have been used to describe the distribution of the
variation in thermal tolerance at different levels of taxo-
nomic hierarchy (Chown, 2001), may employ the molecular-
phylogeny-based hypothesis testing.

Quantification of the effects of global climate changes
will be needed to predict future changes in phenology
(Doi et al., 2010; Musolin et al., 2010), dispersal (Berg et al.,
2010; Srygley et al., 2010), their synchronization with inter-
acting species (Yukawa & Akimoto, 2006; Hance et al., 2007;
van Asch & Visser, 2007; Klapwijk et al., 2010) and their
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population-dynamic consequences (Gilg et al., 2009) at local
and regional scales (Kiritani, 2006; Tabachnick, 2010).
A number of climate models predict that several regions of
the world will experience more or more severe droughts as a
result of rises in atmospheric CO2 and global temperature
(Solomon et al., 2009; Xie et al., 2010). In these regions,
particular attention should be paid to monitor any increase in
the density and diversity of herbivorous insects, including
stored crop pests.
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