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Blanco Viel 596, Cerro Barón, Valparaı́so, Chile

(e-mail: francisco.valenzuela@pucv.cl, pancho.valenzuela.math@gmail.com)

(Received 17 February 2014 and accepted in revised form 21 December 2015)

Abstract. Let f : M→ M be a biholomorphism on a two-dimensional complex manifold,
and let X ⊆ M be a compact f -invariant set such that f |X is asymptotically dissipative
and without periodic sinks. We introduce a solely dynamical obstruction to dominated
splitting, namely critical point. Critical point is a dynamical object and captures many of
the dynamical properties of a one-dimensional critical point.
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1. Introduction
In the study of complex dynamical systems in several variables, polynomial
automorphisms of C2 are a first step in the global understanding of holomorphic dynamics
in higher dimensions.

One of the first results in this direction was presented by Friedland and Milnor in [10].
They showed that for polynomial automorphisms in C2, the only systems (modulo
conjugation by a polynomial automorphism) that exhibit rich dynamics are the so-called
generalized Hénon maps (or complex Hénon maps). These maps are obtained as a finite
composition of maps of the form (y, p(y)− ax), where p is a polynomial whose degree
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is at least two and a ∈ C∗. In the early 1990s, complex Hénon maps were the subject of
serious study, with foundational work carried out by Hubbard [12], Hubbard and Oberste-
Vorth [13, 14], Bedford and Smillie [2–4] and Bedford et al [1], among others.

In many of the studies mentioned, there are two-dimensional versions of classical one-
dimensional results for rational maps. We are interested in obtaining, if possible, a two-
dimensional version of the classic result that a Julia set of a polynomial is hyperbolic if
and only if the Julia set is disjoint from the postcritical set. We shall return to this idea
later.

In this paper we take the first steps in obtaining a result in this direction.
As in the case of rational maps, complex Hénon maps have a well-defined Julia set

J . This set is a compact invariant set that contains the support of the unique measure
of maximal entropy (see [2]). We will denote the support of the measure of maximal
entropy by J ∗. In this setting, hyperbolicity in the Julia set is the two-dimensional notion
of expansiveness on the Julia set for rational maps. Moreover, hyperbolicity in J or J ∗ is
one way to establish the equality J = J ∗ that remains as an open question.

Recently in our paper [22], several equivalences of uniform hyperbolicity, under the
hypothesis of dominated splitting for holomorphic map, were given. Therefore it is
important to determine when the function has dominated splitting.

Question. When does the set J or J ∗ have dominated splitting?

Dominated splitting in one dimension is an empty notion. However, since domination
is necessary to obtain hyperbolicity in dimension n ≥ 2, we may ‘assume’ that these
two notions are equal in dimension one. With this in mind, the answer to the previous
question is already known in the one-dimensional context. In the real setting, Mañé
showed that smooth and generic (Kupka–Smale) one-dimensional endomorphisms without
critical points are either hyperbolic or conjugate to an irrational rotation (see [17]). In
the complex case of rational maps, the Julia set J is hyperbolic if and only if J and the
postcritical set are disjoint. Hence we would say that for generic smooth one-dimensional
endomorphisms, any compact invariant set is hyperbolic if, and only if, it does not contain
or is not approximated to critical points. In other words, in one-dimensional settings,
critical points portray the dynamical obstruction for hyperbolicity.

Our main goal is to introduce the dynamical obstruction to accomplish dominated
splitting for two-dimensional biholomorphisms in complex manifolds. This will allow us
to introduce the notion of critical point for complex Hénon maps, which capture many of
the dynamical properties of their one-dimensional counterpart.

The notion of critical point was given by Pujals and Rodrigues Hertz in their paper [20],
for surfaces. The main result of [20] states that, under certain hypotheses, C2-generic
diffeomorphisms have dominated splitting if and only if the set of critical points is empty.
From Theorem B of Pujals and Sambarino in [21], the authors of [20] conclude that,
generically, an invariant set is either a hyperbolic set or a normally hyperbolic closed
curve whose dynamics is conjugated to an irrational rotation, if and only if the set of
critical points is empty. We remark that the authors of [20] prove their main result using
[21, Theorem B]. Later, Crovisier [8] gave a new proof of the main result in [20],
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independent of the Pujals–Sambarino theorem. We also remark that our definition of
critical points differs from the original one given in [20].

To introduce the notion of critical point for a polynomial automorphism f , we look for
the projective action of the derivative. Let

d fx =

(
ax bx

cx dx

)
,

and let
Fx (z)=

ax z + bx

cx z + dx

be the Möbius transformation induced by d fx . We denote the spherical norm of
the derivative of Fx at the point ξ ∈ Cx by ‖F ′x (ξ)‖. Notice that for a polynomial
automorphism their Jacobian determinant is constant. In what follows, we will assume
that f is a dissipative map, that is, |det(d fx )| = b < 1. Let β = (β−, β+) with b < β+ ≤
β− < 1. We say that x ∈ C2 is a β-critical point if there exists ξ ∈ Cx such that{

‖(F−n
x )′(ξ)‖ ≥ β−n

− for each n ≥ 0,

‖(Fn
x )
′(ξ)‖ ≥ βn

+ for each n ≥ 0.
(1.1)

We denote the set of all β-critical points by Crit(β). The preceding definition asserts that a
point is critical when there exists a (projective) direction that is expanded (in norm) to the
past by the action of F , but the possible contraction to the future is weak.

MAIN THEOREM. Let f : C2
→ C2 be a dissipative complex Hénon map, with

|det(d fx )| = b < 1. Then J has dominated splitting if and only if Crit(β)= ∅ for some
β = (β−, β+) with b < β+ ≤ β− < 1.

This theorem is a consequence of our Theorem A stated for complex linear cocycles
over a vector bundle with compact base. A hypothesis necessary both in the surfaces setting
is the absence of sinks. In our version it is only necessary that the difference between
Lyapunov exponents be greater than |log(b)|. This last fact is a direct consequence of the
absence of sinks plus dissipativity (see Lemma 2.8). Since Julia sets for complex Hénon
maps only contain periodic saddle points, this hypothesis of absence of sinks does not
appear in the statement of our main theorem.

For now, there is no Pujals–Sambarino theorem in the two-dimensional complex case.
The way to prove Theorem A is to adapt in our context the main ideas of Crovisier in [8].
However, since the definition of critical point in [20] and our definition are distinct, these
ideas, as adapted, are different from the original version in several respects.

At this point, we will explain several properties relating to the critical set. Firstly, the
critical set is a compact set. Secondly, we will introduce a partial order in the index set

1= {β = (β−, β+) : b < β+ ≤ β− < 1}.

For α, β ∈1, we say that β ≥ α if and only if α+ ≤ β+ ≤ β− ≤ α−. Then we have a
monotony property: if β ≥ α then Crit(β)⊆ Crit(α). Thirdly, we have an invariance
property. In fact, critical points remain critical both under a change of the hermitian metric
and for conjugated systems, perhaps after finite bounded iterates to the past or to the
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future. We remark that the monotony and invariance properties do not hold in the original
definition of critical points given in [20], and are the principal motive for changing the
definition of critical point†. Another consequence of changing the definition is that there
are more critical points than in the original definition. This allows us to have a real object
that denies domination.

Another property is that the critical set is far from a compact dominated, hyperbolic
or Pesin’s block set. This follows directly from compactness of the critical set. Moreover,
critical points are not a regular point in the Oseledets sense, and a more important property
is that the orbit of a tangency between the stable manifold and the unstable manifold
contains critical points.

We recall that the previous properties hold when the critical set is viewed over a compact
invariant set.

Let us now return to our initial purpose: to obtain a two-dimensional characterization
of hyperbolicity. Recall that a polynomial in C always has critical points. Moreover, the
critical points determine the global dynamics of a polynomial. In fact, we can state the
following. Let p be a polynomial over C whose degree is at least two. Then the Julia set
Jp ⊂ C is hyperbolic if and only if the postcritical set given by

PC(p)=
⋃
n≥1

pn({z : p′(z)= 0})

satisfies PC(p) ∩ Jp = ∅.
Following the previous result, we wonder if, for complex Hénon maps, there always

exist critical points, even outside the Julia set. Moreover, if these ‘critical points’ exist, we
wonder if they determine the global dynamics. Recall that our main theorem asserts that a
dissipative complex Hénon map f has dominated splitting in the Julia set J f if and only if
Crit ∩J f = ∅. Then we can formulate the following question.

Question A. Does a critical point in C2 always exist? That is, can it happen that
Crit ∩J c

f 6= ∅?

If we denote K+ = {x ∈ C2
: { f n(x)}n≥0 is bounded}, another question arises.

Question B. If K+ has an interior, is it possible that a critical point in K+ always exists?

We can answer Question B positively only in a particular case, but we do not know how
to give a positive answer in a general context. In fact, let

fδ(x, y)= (y, p(y)+ (1+ δ)y − δx),

where δ ∈ C∗ and p is a polynomial with a zero of order k + 1 at the origin with deg(p)=
d ≥ 2. Then for |δ|< 1, fδ has the origin of C2 as a semi-parabolic fixed point (also
called semi-attractive), that is, D fδ(0) has eigenvalues equal to 1 and δ. Then, (see [11,
Theorem 1.3]) for each j = 1, . . . , k, there exists an open set B j ⊂ C2 such that the sets
B j are disjoint, each B j is biholomorphic to C2, 0 ∈ ∂B j and, for each q ∈ B j , f n

δ (q)→ 0

† For example, a δ-critical point in the sense of [20] does not necessarily remain δ′-critical for any δ′ ≈ δ.
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when n→+∞. In other words, they are connected components of the basin of attraction
of 0. Therefore B j ⊂ (K+( fδ))◦ and each B j is a component of the basin of attraction of
0 ∈ C2.

On the other hand, each B = B j is endowed with a holomorphic strong stable foliation
F ss(B), whose leaves are characterized by the property that points in the same leaf
approach one another exponentially fast under iteration (see [9, Proposition 4.1]). Let
w ∈ Jδ = J fδ be a saddle periodic point. We say that B has a tangency with W u(w) if
there exists a tangency between W u(w) and some strong stable leaf of F ss(B). We recall
that the orbit of such tangency contains a critical point, and critical point accumulate on Jδ
by forward/backward iterates. Then we have the following proposition.

PROPOSITION 1.1. [9] Let |δ|< d−2 and let w ∈ Jδ be a periodic saddle point. Then each
component of the basin of attraction of 0 ∈ C2 has a tangency with W u(w).

Proof. This follows from [9, Corollary 5.7 and Proposition 5.8]. �

Moreover, it follows from [9] that if f has a semi-parabolic periodic point on J ,
and |det(D f )|< d−2, then there exist critical points x in the interior of K+ such that
dist( f n(x), J )→ 0 where n→±∞.

On the other hand, we can take p and δ such that the function fδ has dominated splitting
on Jδ . Let q(z)= p(z)+ z such that the critical points of q are far from J (q)⊂ C. Then

fδ(x, y)= (y, q(y)+ δy − δx)

and the derivative

D fδ(x, y)=
(

0 1
−δ q ′(y)+ δ

)
preserves the vertical cone

Ch
= {(u, v) ∈ C2

: |u| ≤ |v|}

over Jδ for |δ| small enough. In fact, take |δ| small enough such that if (x, y) ∈ Jδ then y
is near J (q). Hence, we may assume that if (x, y) ∈ Jδ then |q ′(y)|> 1 and

|v|

|q ′(y)v + δ(v − u)|
≤

|v|

|q ′(y)v| − |δ| · |v − u|

≤
|v|

|q ′(y)v| − |δ| · (|v| + |u|)

≤
1

|q ′(y)| − |δ| · (1+ |u/v|)
.

Therefore, for |δ| small enough, D fδ(x, y)(Ch)⊂ int(Ch) ∪ {0}. Then domination of Jδ
follows from Proposition 2.15.

The previous analysis shows that it is possible that the Julia set J does not contain
critical points; however, there are critical points approaching J under forward/backward
iterates. In this case J contains a semi-parabolic periodic point and therefore J cannot be
hyperbolic.
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On the other hand, if J is hyperbolic, it cannot contain any semi-parabolic periodic
points, but we do not know if in this case the set int(K+) contains critical points. With all
the foregoing in mind, and defining

PC( f )=
⋃
n∈Z

f n(Crit( f )),

we make the following conjecture.

CONJECUTRE. If J ∩ PC( f )= ∅, then J is hyperbolic.

The paper is organized as follows. In §2 we state preliminaries about linear and
projective cocycles. We introduce the notion of multiplier of a projective cocycle. We
also present a series of elementary tools that are used throughout the paper.

In §3 we introduce the notion of critical point and state its main properties. We will also
show that the orbit of a tangency point contains critical points.

In §4 we introduce the notion of hyperbolic projective cocycle and relate this to
dominated splitting.

In §5 we give the main tool used in the proof of our main theorem, the criterion of
domination.

In §6 we prove our main theorem.
In Appendix A we state the relation between hermitian and spherical metrics, and how

these are defined in a arbitrarily bundle.

2. Preliminaries
2.1. Bundles and cocycles. Let X be a compact metric space. We denote a complex
vector bundle over X of complex dimension 2 by TX (cf. [15]). We also denote the bundle
projection by pr : TX→ X and the fiber over z ∈ X by Tz = pr−1({z}).

Let U ⊆ X be an open set. In what follows, a section over U is a continuous function
σ :U → TX such that pr(σ (x))= x for all x ∈U . We denote the set of all sections over U
by 0(U, TX).

A projective bundle over X is a bundle π : P(X)→ X where π denotes the bundle
projection and the fiber Cz = π

−1({z}) has a Riemann surface structure biholomorphic to
the Riemann sphere C.

The following proposition establishes a bijection between linear and projective bundles.

PROPOSITION 2.1. Given a vector bundle TX, the set

P(X)=
⋃
z∈X

{z} × P1(Tz) (2.1)

has the structure of a projective bundle, called the projective bundle induced by TX.
Reciprocally, given a projective bundle P(X), there exists a vector bundle TX, such that

P(X) is the projective bundle induced by TX.

Proof. Let {(Wi , ψi ,Ui ); i = 1, . . . , n} be a system of trivialization functions for TX.
The system satisfies the following properties.
(1) pr−1(Ui )=Wi , X =

⋃n
i=1 Ui and TX =

⋃n
i=1 Wi .
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(2) For each i , the function ψi :Wi →Ui × C2 is a homeomorphism such that ψi,z =

ψi | Tz : Tz→ {z} × C2 is a linear isomorphism. Moreover, if v ∈ Tz we can write
ψi,z(v)= (z, L i (z)v).

(3) We denote Wi j =Wi ∩W j and Ui j =Ui ∩U j = pr(Wi j ). The change of coordinate
ψi j = ψ j ◦ ψ

−1
i :Ui j × C2

→Ui j × C2 satisfies ψi j (z, u)= (z, L i j (z)u) where
L i j (z)= L j (z) ◦ L−1

i (z) and L i j :Ui j →GL(2, C) is continuous.
Let P(X) defined as in equation (2.1) and let π : P(X)→ X be the projection of the first

coordinate. We claim that there exits a system of trivialization functions for P(X). More
precisely, there exists a set {(Pi , ϕi ,Ui ); i = 1, . . . , n} satisfying the following properties.
(a) π−1(Ui )= Pi , X =

⋃n
i=1 Ui and P(X)=

⋃n
i=1 Pi .

(b) For each i , the function ϕi : Pi →Ui × C is a homeomorphism such that ϕi,z =

ϕi | Cz : Cz→ {z} × C is a biholomorphism. Moreover, if ξ ∈ Cz we can write
ϕi,z(ξ)= (z, Hi (z)ξ).

(c) Denoting Pi j = Pi ∩ Pj then Ui j = π(Pi ∩ Pj ) and the change of coordinate ϕi j =

ϕ j ◦ ϕ
−1
i :Ui j × C→Ui j × C satisfies ϕi j (z, u)= (z, Hi j (z)u) where Hi j (z)=

H j (z) ◦ H−1
i (z) is a Möbius transformation whose coefficient varies continuously

with respect to z.
To prove this claim, we denote by [v] ∈ P1(Tz) the equivalence class of v ∈ Tz .

Therefore, ξ ∈ Cz = {z} × P1(Tz) if and only if it has the form ξ = (z, [v]). Defining
Pi = π

−1(Ui ), Hi (z)ξ = [L i (z)v] and ϕi : Pi →Ui × C by ϕi (ξ)= (z, Hi (z)ξ). It is not
difficult to check that the object defined above, satisfies items (a)–(c). Therefore it is a
system of trivialization functions for P(X).

For the reverse direction, we let {(Pi , ϕi ,Ui ); i = 1, . . . , n} satisfy items (a)–(c) as
above. We take i ∈ {1, . . . , n} fixed and z ∈Ui . We will induce an algebraic structure in
each set Cz . In fact we denote λi,z = H−1

i (z)(λ) for λ ∈ C. For each ξ, ζ ∈ Cz\{∞i,z} we
define: ξ + ζ by (Hi (z)ξ + Hi (z)ζ )i,z and ξ · ζ by (Hi (z)ξ · Hi (z)ζ )i,z . Now define

Ti,z = {(λi,z, 0i,z) : λ ∈ C} ∪ {(λi,z · ξ, λi,z) : ξ ∈ C\{∞i,z} and λ ∈ C}.

The set Ti,z , with vector addition operation and scalar multiplication defined in the natural
fashion, is a two-dimensional complex vector space. We define L i (z) : Ti,z→ C2 by

L i (z)(w1, w2)=

{
λ(Hi (z)ξ, 1), (w1, w2)= (λi,z · ξ, λi,z),

(λ, 0), (w1, w2)= (λi,z, 0i,z).

It is easy to see that L i (z) is a linear isomorphism.
On the other hand, for each z ∈Ui j we take the Möbius transformation

Hi j (z)u =
ai j (z)u + bi j (z)
ci j (z)u + di j (z)

.

We recall that the coefficient of Hi j (z) varies continuously with respect to z, and
ai j (z)di j (z)− ci j (z)bi j (z) 6= 0. So the map L i j :Ui j →GL(2, C) defined by

L i j (z)=
(

ai j (z) bi j (z)
ci j (z) di j (z)

)
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is continuous. We set

TX =
( ⊔

i∈{1,...,n}
z∈Ui

{z} × Ti,z

)/
∼

where ∼ is the equivalence relation given by (z, v)∼ (w, u) if and only if z = w and
L−1

j (z) ◦ L i j (z) ◦ L i (z)v = u.
Finally, we define pr : TX→ X in the natural fashion and {(Wi , ψi ,Ui ); i = 1, . . . , n}

where Wi = pr−1(Ui ) and ψi (z, v)= (z, L i (z)v). It follows from construction, that the
system above is a system of trivialization functions for TX and that P(X) is the projective
bundle induced by TX. �

Let TX ⊗ TX be the subset of TX × TX consisting of the pairs (u, v) such that u and
v are in the same fiber. A hermitian metric on TX is a continuous function (· | ·) : TX ⊗
TX→ C such that (· | ·)|Tz×Tz = (· | ·)z is a hermitian product in Tz . Since X is compact,
there exists a hermitian metric on TX (see [15]). In what follows, we denote ‖v‖z = (v|v)z .

A linear cocycle A : TX→ TX (respectively, projective cocycle M : P(X)→ P(X)) is
an isomorphism in the category of the vector bundles (respectively, projective bundles)
(cf. [15]). More precisely, A (respectively, M) is continuous, there exists f : X→ X
a homeomorphism such that pr ◦A = f ◦ pr (respectively, π ◦ M = f ◦ π ) and Az =

A | Tz : Tz→ T f (z) is a C-linear isomorphism (respectively, Mz = M | Cz : Cz→ C f (z)

is a biholomorphism). We say that the homeomorphism f is the base of the cocycle and
we write A = ( f, A∗) (respectively, M = ( f, M∗)).

Let A : TX→ TX be a linear cocycle. The projective cocycle induced by A is the
cocycle M : P(X)→ P(X) given by Mz([v])= [Azv], where [v] denotes the class of v
in the projective space P1(Tz). When M is the projective cocycle induced by A, we write
M = [A].

Remark 2.2. It is clear that given A, the cocycle M = [A] is uniquely defined. However,
there are different linear cocycles defining the same projective cocycle.

The following proposition establishes that a projective cocycle is always induced by a
linear cocycle. We recall that this linear cocycle is not necessarily uniquely defined.

PROPOSITION 2.3. Let P(X) be the projective bundle induced by the vector bundle TX. Let
M : P(X)→ P(X) be a projective cocycle. Then there exists a linear cocycle A : TX→ TX
such that M = [A].

Proof. Let {Ui : i = 1, . . . , n} be a finite open cover of X . Assume that for each i ∈
{1, . . . , n} there exist σi , σ

′

i ∈ 0(Ui , TX) such that {σi (z), σ ′i (z)} is an orthonormal base
of Tz . We let L i (z) : Tz→ C2 be the linear map such that L i (z)(σi (z))= (1, 0) and
L i (z)(σ ′i (z))= (0, 1) for each z ∈Ui . From continuity of the base of Tz it follows that
the map z 7→ L i (z) is continuous.

Define Wi = pr−1(Ui ) and ψi :Wi →Ui × C2 given by ψi (z, v)= (z, L i (z)v) where
z ∈Ui and v ∈ Tz . Therefore the set {(Wi , ψi ,Ui ) : i = 1, . . . , n} is a system of
trivialization functions for TX. The induced system of trivialization functions for P(X) is
denoted by {(Pi , ϕi ,Ui ) : i = 1, . . . , n}, and we will use the notation of Proposition 2.1.
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Let M be a projective cocycle with base f and let V (i, j)=Ui ∩ f −1(U j ). From the
definition of projective cocycles, it follows that there exists a continuous map from V (i, j)
into the Möbius transformations, z 7→ M̃i j (z), such that

M̃i j (z)= H j ( f (z)) ◦ Mz ◦ H−1
i (z),

where

M̃i j (z)u =
ãi j (z)u + b̃i j (z)

c̃i j (z)u + d̃i j (z)

and ãi j (z)d̃i j (z)− c̃i j (z)̃bi j (z)= 1. It follows from the foregoing that if z ∈ V (i, j) ∩
V (k, l) then

H−1
j ( f (z)) ◦ M̃i j (z) ◦ Hi (z)= H−1

l ( f (z)) ◦ M̃kl(z) ◦ Hk(z). (2.2)

On the other hand, for each z ∈ V (i, j) we define

Ãi j (z)=

(
ãi j (z) b̃i j (z)

c̃i j (z) d̃i j (z)

)
.

We recall that {V (i, j) : i, j = 1, . . . , n} is an open cover of X . For each z ∈ X we define
the cocycle A : TX→ TX with base f by

Az = L−1
j ( f (z)) ◦ Ãi j (z) ◦ L i (z) when z ∈ V (i, j).

From equation (2.2) it follows that

L−1
j ( f (z)) ◦ Ãi j (z) ◦ L i (z)= L−1

l ( f (z)) ◦ Ãkl(z) ◦ Lk(z).

Therefore from the equality above, we conclude that the definition of Az is not dependent
on the indices (i, j) and it is easy to see that M = [A]. Our proposition is proven. �

Given l > 0 we define the iterates of A by the equation

Al
z = A f l−1(z) ◦ · · · ◦ A f (z) ◦ Az and A−l

z = A−1
f −l (z) ◦ · · · ◦ A−1

f −2(z) ◦ A−1
f −1(z),

and A0
z = Id. We define the iterates M l

z for l ∈ Z similarly.
Choosing a hermitian metric on TX, we get an associated spherical metric on the

projective bundle P(X). We refer the reader to Appendix A for details of the construction
of this spherical metric.

2.2. Oseledets’s theorem. We denote by M(X, f ) the set of all f -invariant probability
measures. We say that z ∈ X is a regular point of A, if the fiber Tz admits a splitting Tz =

Ez ⊕ Fz into one-dimensional complex subspaces, and numbers λ−(x)≤ λ+(z) satisfying

lim
n→±∞

1
n

log ‖An
z u‖ = λ−(z) and lim

n→±∞

1
n

log ‖An
z v‖ = λ

+(z),

where u ∈ Ez\{0} and v ∈ Fz\{0}. Recall that a set S ⊂ X has total probability in X , if for
every µ ∈M(X, f ), we have µ(S)= 1.

THEOREM 2.4. (Oseledets) The set of regular points of A has total probability. Moreover,
z 7→ Ez and z 7→ Fz are measurable subbundles and the functions z 7→ λ±(z) are
measurable.
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For a proof of Oseledets’s theorem in the setting of cocycles, see [5].
We denote the set consisting of all regular points of a cocycle A by R(A). Oseledets’s

theorem asserts that if µ ∈M(X, f ) then µ(R(A) ∩ supp(µ))= 1. We denote the set
R(A) ∩ supp(µ) by R(A, supp(µ)).

In the original work of Pujals and Rodriguez Hertz (cf. [20]), an important hypothesis
is the absence of periodic sinks. In our setting, we replace this hypothesis by the following
notion.

Definition 2.5. We say that µ ∈M(X, f ) is partially hyperbolic for A, if for any z ∈
R(A, sup(µ)) the inequality λ−(z) < 0≤ λ+(z) holds.

We also say that A has no attractors (in the broad sense) if all f -invariant probability
measures are partially hyperbolic.

Definition 2.6. Given 0< b < 1, we say that A is b-asymptotically dissipative if there
exists a positive constant C > 0 such that for every z ∈ X , |det An

z | ≤ Cbn for every n ≥ 0.

Definition 2.7. We say that a measure µ ∈M(X, f ) has the exponent b-separated if for
every z ∈R(A, sup(µ)) the inequality λ+(z)− λ−(z)≥ |log(b)| holds.

We have the following lemma.

LEMMA 2.8. Let A be a b-asymptotically dissipative linear cocycle that has no attractors.
Then each µ ∈M(X, f ) has the exponent b-separated.

Proof. Note that for each z ∈R(A, sup(µ)), b-dissipativity implies that

lim
n→∞

1
n

log |det An
z | = λ

−(z)+ λ+(z)≤ log(b) < 0,

and since λ+(x)≥ 0 and λ−(x) < 0,

log(b)≥ λ−(z)+ λ+(z)≥ λ−(z)≥ λ−(z)− λ+(z). �

2.3. The multiplier. In studies of rational maps in the Riemann sphere, an important
tool to describe the dynamics near a fixed point is the notion of multiplier. By Böcher’s
theorem, the dynamics in a neighborhood of the periodic point is given (via conjugation) by
the dynamics of the map w 7→ λw, where λ is called the multiplier of the point. However,
in many cases it is important to know the value of |λ| instead of λ. So for convenience, we
refer to |λ| as the multiplier.

For a point z ∈ C which is not periodic, it is possible to define a tool similar to the
multiplier, using the spherical metric.

Definition 2.9. Let U ⊂ C be an open set and R :U → C be a holomorphic map. We
define the multiplier of R at the point z, as the spherical norm of the derivative of R at the
point z. That is,

‖R′(z)‖ = sup
{
‖R′(z)ξ‖R(z)

‖ξ‖z
: ξ ∈ TzC\{0z}

}
, (2.3)

where ‖ · ‖z denotes the spherical norm in TzC.
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Under the identification TzC with C, an explicit expression for the spherical metric is

‖ξ‖z =
2|ξ |

1+ |z|2
. (2.4)

Thus, it is not difficult to see that

‖R′(z)‖ = |R′(z)| ·
1+ |z|2

1+ |R(z)|2
. (2.5)

The following lemma gives an explicit formula to calculate the multiplier for a Möbius
transformation.

LEMMA 2.10. Let M be a Möbius transformations given by

M(u)=
au + b
cu + d

.

Then

‖M ′(z)‖ =
|δ|

‖Avz‖2
, (2.6)

where

A =
(

a b
c d

)
,

vz is a unitary vector in C2 with [vz] = z, and δ = det(A).

Proof. From equation (2.5), we have that

‖M ′(z)‖ = |M ′(z)| ·
1+ |z|2

1+ |M(z)|2
=

|δ|

|cz + d|2
1+ |z|2

1+ |M(z)|2
.

If we take vz = (v1, v2) ∈ C2 a unitary vector such that z = v1/v2, then

‖M ′(z)‖ = |δ| ·
1+ |z|2

|az + b|2 + |cz + d|2

= |δ| ·
1+ |v1/v2|

2

|a(v1/v2)+ b|2 + |c(v1/v2)+ d|2

= |δ| ·
|v1|

2
+ |v2|

2

|av1 + bv2|2 + |cv1 + dv2|2

=
|δ|

‖Avz‖2
. �

Equation (2.6) gives an explicit expression for the norm of a multiplier for a projective
cocycle M .

PROPOSITION 2.11. Let A be a linear cocycle on TX and M = [A]. Given n ∈ Z and
ξ ∈ P(X) with ξ ∈ Cz , the multiplier of Mn at the point ξ ∈ Cz is given by

‖(Mn
z )
′(ξ)‖ =

|det(An
z )|

‖An
z vξ‖

2
f n(z)

where vξ is chosen unitary and such that [vξ ] = ξ .
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Proof. The proposition follows from Definition 2.9 and Lemma 2.10. �

In what follows, we denote the multiplier of Mn at the point ξ ∈ Cz by

m(n, ξ) := ‖(Mn
z )
′(ξ)‖ =

|det(An
z )|

‖An
z vξ‖

2
f n(z)

. (2.7)

From equation (2.7) and the chain rule, it follows that

m(n + m, ξ)=m(n, Mmξ) ·m(m, ξ)

for each n, m ∈ Z. This fact is elementary and its proof left to the reader.

2.4. Pliss’s lemma. The following lemma is a remarkable result and is frequently used
in this paper.

LEMMA 2.12. (Pliss’s lemma) Given 0< γ1 < γ0 and a > 0, there exist N0 =

N0(γ0, γ1, a) and δ0 = δ0(γ0, γ1, a) > 0 such that the following results hold.
(1) For any sequence of numbers (al)

n−1
l=0 with n > N0 and a−1 < al < a, such that∏n−1

l=0 al ≥ γ
n
0 , the set

H =
{

0≤ k < n : ∀k < s < n,
s∏

l=k+1

al ≥ γ
s−k
1

}
(2.8)

satisfies #H ≥ n · δ0.
(2) For any sequence of numbers (al)l≥0 with a−1 < al < a such that

∏n−1
l=0 al ≥ γ

n
0 for

each n ≥ N0, there exists a set of natural numbers n1 < n2 < · · ·< nl < · · · with
density greater than δ0, such that

n∏
i=n j+1

ai ≥ γ
n−n j
1 ,

for each n j < n and j ≥ 1.

As a corollary, we have the following result.

COROLLARY 2.13. Let M : P(X)→ P(X) be a projective cocycle, and let 0< γ1 < γ0.
Then there exist N0 = N0(γ0, γ1, M) and δ0 = δ0(γ0, γ1, M) with the following
properties.
(1) Given z ∈ X and ξ ∈ Cz satisfying m(N , ξ)≥ γ N

0 (respectively, m(−N , ξ)≥ γ N
0 )

for some N ≥ N0, there exists 0≤ m < N such that N − m > Nδ0 and

m(n, Mm(ξ))≥ γ n
1 for every 0< n ≤ N − m,

(respectively, m(−n, M−m(ξ))≥ γ n
1 for every 0< n ≤ N − m).

(2) Given z ∈ X and ξ ∈ Cz satisfying m(n, ξ)≥ γ n
0 (respectively, m(−n, ξ)≥ γ n

0 ) for
each n ≥ N0, for some N0 ≥ 0, there exist m ≥ N0 such that

m(n, Mm(ξ))≥ γ n
1 for every 0< n,

(respectively, m(−n, M−m(ξ))≥ γ n
1 for every 0< n).
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Proof. Note that

m(N , ξ)=
N−1∏
n=0

m(1, Mn(ξ))≥ γ N
0 .

We will apply Pliss’s lemma item (1) for an =m(1, Mn(ξ)). Let n0 be the lowest
hyperbolic time. We have that N − n0 ≥ Nδ0, and for every n0 < n < N ,

γ
n−n0
1 ≤

n∏
k=n0+1

m(1, Mk(ξ))=m(n − n0, Mn0+1(ξ)).

Hence our item (1) follows, taking m = n0 + 1. The proof of item (2) is similar. �

2.5. Dominated splitting. We recall the notion of dominated splitting for linear
cocycles.

Definition 2.14. We say that a linear cocycle A : TX→ TX has dominated splitting if there
exists an A-invariant splitting TX = E ⊕ F where E and F are one-dimensional complex
planes, such that

‖Al
z |Ez‖ · ‖A−l

f l (z)|F f l (z)
‖< 1

2 (2.9)

for some l ≥ 1.

Recall that A has dominated splitting if and only if Ak has dominated splitting for every
k ∈ N. We also recall that if A has dominated splitting then the splitting TX = E ⊕ F is
unique, continuous and ∠(Ez, Fz)≥ α > 0 for all z ∈ X (cf. [6]). The following result
establishes equivalent conditions to dominated splitting.

PROPOSITION 2.15. Let A be a linear cocycle on a vector bundle TX. Then the following
statements are equivalent:
(1) The cocycle A : TX→ TX has dominated splitting.
(2) There exist an A-invariant splitting TX = E ⊕ F where E and F are one-

dimensional complex planes, a constant 0< λ < 1, and a C > 0 such that

‖An
z |Ez‖ · ‖A−n

z |F f n (z)‖ ≤ Cλn (2.10)

for every z ∈ X and all n > 0.
(3) There exist a splitting TX = Ẽ ⊕ F̃ (not necessarily A-invariant) where Ẽ and F̃ are

one-dimensional complex planes, a constant l > 0, and a cone field C = C(α, F̃),
where

C(z)= C(α, F̃z)= {u + v ∈ Ẽz ⊕ F̃z : ‖u‖ ≤ α‖v‖}

is Al -invariant, that is,
Al

z(C(z))⊂ C( f l(z))◦

and

‖Al
z | C(z)

c
‖ · ‖A−l

f l (z) | C( f l(z))‖< 1
2 , (2.11)

with C(z)◦ = int(C(z)) ∪ {0} and C(z)c = (Ẽz ⊕ F̃z)\C(z).
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Proof. (1)⇒(2). Define

8(z, n)= ‖An
z |Ez‖ · ‖A−n

f n(z)|F f n (z)‖ and C ′ = max
0≤ j<l

sup
z∈X

8(z, j).

Note that8(z, n + m)=8( f m(z), n) ·8(z, m). It follows from (2.9) that8(z, l) < 1/2.
Taking λ= (1/2)1/ l , C = C ′/λl−1 and n = sl + j , we conclude that

8(z, n)=8( f j (z), sl) ·8(z, j)≤ C ′λsl
≤ Cλn .

(2)⇒(1). This implication follows from taking n large enough.
(2)⇒(3). Define C(z)= {u + v ∈ Ez ⊕ Fz : ‖u‖ ≤ ‖v‖}. Note that property (2.10) is
equivalent to

m(An
z | Fz) ·m(A−n

f n(z) | E f n(z))≥ Cµn

where
m(L | V )= inf

v∈V ∗

‖Lv‖
‖v‖

is the minimum norm and µ > 1. Note that if L is a linear isomorphism then m(L | V )=
‖L−1

| L(V )‖−1.
Let u ∈ Ez and v ∈ Fz two unitary vectors. It is not difficult to see that for every z ∈ X

we have
‖An

z v‖

‖An
z u‖
≥m(An

z | Fz) ·m(A−n
f n(z) | E f n(z)) > 1

and therefore An
z (C(z))⊂ C( f n(z))◦ for n greater enough.

On the other hand, we claim that there exists k ≥ 1 such that, for every z ∈ X ,

m(Ak
z | C(z)) ·m(A

−k
f k (z) | C( f k(z))c) > 1,

which is equivalent to inequality (2.11). In fact, suppose to the contrary that the opposite
inequality occurs. Then for every k there would exist zk ∈ X such that

m(Ak
zk
| C(zk)) ·m(A−k

f k (zk )
| C( f k(zk))

c)≤ 1.

Take wk ∈ C(zk) and w′z ∈ C( f k(zk))c unitary vectors such that ‖Ak
zk
wk‖ =m(Ak

zk
|

C(zk)) and ‖A−k
f k (zk )

w′k‖ =m(A−k
f k (zk )

| C( f k(zk))
c). Writing wk = uk + vk and w′k =

u′k + v
′

k , from domination it follows, for k great enough, that Ak
zk
wk grow at the same

rate as Ak
zk
vk and A−k

f k (zk )
w′k grow at the same rate as A−k

f k (zk )
u′k . Then

1≥ ‖Ak
zk
wk‖ · ‖A−k

f k (zk )
w′k‖ ≈

‖Ak
zk
vk‖

‖vk‖
·

‖A−k
f k (zk )

u′k‖

‖u′k‖

≥ m(An
z | Fz) ·m(A−n

f n(z) | E f n(z))

≥ Cµk,

which is a contradiction.
(3)⇒(2). The author of [19] shows that there is a unique A-invariant splitting TX = E ⊕ F
such that Fz ⊂ C(z) and Ez ⊂ C(z)c. Moreover, such subspaces are given by

Ez =
⋂
n≥0

A−n
f n(z)C(z)

c and Fz =
⋂
n≥0

An
f −n(z)C( f −n(z)). (2.12)

Finally, the inequality

‖Al
z |Ez‖ · ‖A−l

f l (z)|F f l (z)
‖ ≤ ‖Al

z | C(z)
c
‖ · ‖A−l

f l (z) | C( f l(z))‖< 1/2

is clear. �
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3. Critical points
Critical points are the main object of study of this work. In this section we explain the
notion of critical point and we state Theorem A. In the next subsection we explain its basic
properties.

In what follows, A denotes a linear cocycle and M is the projective cocycle induced
by A.

Let 1= {β = (β−, β+) ∈ R2
: 0< β+ ≤ β− < 1} be the set below the diagonal of the

square (0, 1)× (0, 1).

Definition 3.1. Given β ∈1, we say that x ∈ X is a β-critical point for A if there exists a
direction ξx ∈ Cx such that {

m(n, ξx )≥ β
n
+ for all n ≥ 0,

m(n, ξx )≥ β
n
− for all n ≤ 0.

The direction ξx will be called the critical direction. We denote the set of all β-critical
points by Crit(β).

Our main theorem is a corollary of the following result.

THEOREM A. Let A = ( f, A∗) be a linear cocycle such that every µ ∈M(X, f ) has the
exponents b-separated. Then A has dominated splitting if and only if, for some β ∈1 such
that β+ > b, we have that Crit(β)= ∅.

This theorem is proven in §6. From Lemma 2.8 we conclude that Theorem A can be
applied to a b-asymptotically dissipative linear cocycle that has no attractors. In what
follows, we explain some properties of critical points.

3.1. Main properties of critical points. In this section we introduce new notions related
to critical points.

Definition 3.2.
(1) Let β ∈1 and n− ≤ 0≤ n+ integers. We say that x ∈ X is a β-critical point at the

times (n−, n+) for A, if there exist a direction ξx ∈ Cx such that{
m(n, Mn+ξx )≥ β

n
+ for all n ≥ 0,

m(n, Mn−ξx )≥ β
n
− for all n ≤ 0.

The direction ξx will be called the critical direction.
(2) We say that y ∈ X is a β-critical value if y is a β-critical point for the linear cocycle

A−1. We denote the set of all β-critical values by CVal(β).
(3) Given x ∈ X , we say that the orbit of x is critical if there exists a β-critical point in

the orbit of x .

We draw attention to the fact that a β-critical point at the times (0, 0) is just a β-
critical point. We also highlight that Lemma 4.8 (in the next section) asserts that the critical
direction is unique.
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Given a direction ξx ∈ Cx we denote the properties

(†)

{
m(n, ξx )≥ β

n
+ for all n ≥ 0,

m(n, ξx )≥ β
n
− for all n ≤ 0,

and

(‡)

{
m(n, ξx )≥ β

n
+ for all n ≤ 0,

m(n, ξx )≥ β
n
− for all n ≥ 0.

From the foregoing we have that

Crit(β)= {x ∈ X : ∃ξx ∈ Cx such that (†) hold}

and
CVal(β)= {x ∈ X : ∃ξx ∈ Cx such that (‡) hold}.

Definition 3.3. We say that x ∈ X is a β-postcritical point of order N ∈ Z+ for A, if there
exists n ∈ Z with |n| ≤ N such that f n(x) ∈ Crit(β).

Note that a postcritical point of order 0 is just a critical point.
In the definition above, when n is positive, it is more natural to replace the term

‘postcritical’ with ‘precritical’. For the sake of simplicity, we choose the term ‘postcritical’
given the sense that this point is an iterate (positive or negative) of a critical point.

Our following result explains that we really only have postcritical points.

THEOREM 3.4. If x ∈ X is a β-critical point at the times (n−, n+), then x is a β-
postcritical point of order N = |n+ − n−|.

Proof. Let x ∈ X be a critical point at the times (n−, n+) with critical direction ξx ∈ Cx .
Without loss of generality, in what follows we will assume that n− = 0. Let 0≤ k ≤ n+
be the minimal number satisfying m(n, Mkξx )≥ β

n
+ for every n ≥ 0. Define y = f k(x)

and $y = Mkξx . We assert that y is a critical point with critical direction $y . In fact, if
k = 0 then this is obvious. If 0< k, we claim that for each 0≤ l ≤ k we have
m(l, M−l$y) < β

l
+. Therefore, for each 0≤ l ≤ k we have

m(−l, $y) > β
−l
+ ≥ β

−l
− ,

and for each l > k we show that

m(−l, $y)=m(−k, $y) ·m(−(l − k), ξx ) > β
−k
+ · β

k−l
− ≥ β

−l
−

which implies our theorem.
Our claim remains to be proven, and this follows from an induction on 0≤ l ≤ k. This

is true for l = 1 (otherwise we contradict the minimality of k). We will assume that
our assertion is true for every 1≤ s ≤ l − 1. For l, suppose to the contrary that
m(l, M−l$y)≥ β

l
+; then if 0≤ s ≤ l would have the equality

m(l, M−l$y)=m(s, M−l$y) ·m(l − s, Ms−l$y)

which would imply

m(s, M−l$y)=m(l, M−l$y) · (m(l − s, Ms−l$y))
−1 > βl

+ · β
s−l
+ = β

s
+,
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and if s > l we would have

m(s, M−l$y)=m(l, M−l$y) ·m(s − l, $y)≥ β
l
+ · β

s−l
+ = β

s
+

which contradicts the minimality of k. �

We now explain the main properties of Crit(β). These properties justify the notion of
critical point and show how it is an intrinsic notion of the dynamics.

PROPOSITION 3.5. (Compactness) Given β ∈1, the set Crit(β) is compact.

Proof. Let (xk)N ⊂ Crit(β) such that xk→ x , and denote the critical direction of xk by
ξk ∈ Cxk . Taking a subsequence, if necessary, there exists a direction ξ ∈ Cx such that
ξk→ ξ . Since we have {

m(n, ξk)≥ β
n
+ for all n ≥ 0,

m(n, ξk)≥ β
n
− for all n ≤ 0,

then for each n ≥ 0 fixed and letting k tend to infinity, we conclude that x ∈ Crit(β). �

On 1 we define a partial order: for α, β ∈1 we say that β ≥ α if and only if β+ ≥ α+
and β−1

− ≥ α
−1
− . It follows easily from the definition that if α, β ∈1 such that β ≥ α then

Crit(β)⊂ Crit(α).

PROPOSITION 3.6. (Invariance by metric) A critical orbit remains critical under change
of metric.

More precisely, if (· | ·)0 and (· | ·)1 are hermitian metrics in TX, then for all α, β ∈1
with α < β there exists a positive number N = N (α, β) such that each β-critical point of
A in the metric (· | ·)0, is an α-postcritical point of order N of A in the metric (· | ·)1. In
other words,

Crit0(β)⊂
N⋃

j=−N

f j (Crit1(α)).

Proof. We denote by ‖ · ‖i be the spherical metric in P(X) induced by the hermitian metric
(· | ·)i (see Appendix A), and

mi (n, ξ)= ‖(Mn)′(ξ)‖i .

It is enough to show that there exists N such that every x ∈ Crit0(β) is an α-critical
point at the times (n−, n+) with |n+ − n−| ≤ N (cf. Theorem 3.4).

Let a > 1 such that a−1
‖ · ‖1 ≤ ‖ · ‖0 ≤ a‖ · ‖1. It follows from equation (2.7) that for

every x ∈ X , every ξ ∈ Cx , n ∈ Z and every w ∈ TξCx we have

m1(n, ξ)
m0(n, ξ)

=
‖(Mn)′(ξ)w‖1,Rn(ξ)

‖(Mn)′(ξ)w‖0,Rn(ξ)
·
‖w‖0,ξ

‖w‖1,ξ
.

Hence we conclude that C−1
≤m1/m0 ≤ C where C = a2, and therefore m1 ≥ C−1m0.
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Let x ∈ Crit0(β) and ξ ∈ Cx be its critical direction. We claim that there exists n− ≤ 0
such that m1(n, Mn−ξ)≥ αn

− for every n ≤ 0. In fact, since β− < α− < 1 there exists
k0 < 0 maximal such that C−1βn

− ≥ α
n
− for all n ≤ k0. Therefore for each n ≤ k0 we have

that
m1(n, ξ)≥ C−1βn

− ≥ α
n
−.

If m1(n, ξ)≥ αn
− for every n ≤ 0 our claim follows. If not, there exists k0 < n− ≤ 0

maximal such that αn−
− >m1(n−, ξ) and therefore, for every n < n− the inequality

m1(n, ξ)≥ αn
− holds. From the foregoing we conclude that for n ≤ 0 we have that

m1(n, Mn−ξ)=
m1(n + n−, ξ)

m1(n−, ξ)
≥
α

n+n−
−

α
n−
−

= αn
−.

Similarly, from the inequality α+ < β+ we let k1 > 0 minimal such that C−1βn
+ ≥ α

n
+

for all n ≥ k1 and there exists k1 > n+ ≥ 0 minimal with the property m1(n, Mn+ξ)≥ αn
+

for all n ≥ 0. Thus x is an α-critical point at the times (n−, n+) for the multiplier m1 with
|n+ − n−| ≤ N := |k1 − k0|. �

As the notion of dominated splitting is invariant by conjugation, we can expect a similar
property for the notion of critical point.

Definition 3.7. Given two linear cocycles A : TX→ TX and B : T Y → T Y , we say that
A and B are conjugated if there exists a linear cocycle L : TX→ T Y such that L ◦ A =
B ◦ L .

If we write A = ( f, A∗), B = (g, B∗) and L = (h, L∗) then the foregoing asserts that
h ◦ f (z)= g ◦ h(z) and

L f (z) ◦ Az(v)= Bh(z) ◦ L z(v) (3.1)

for every z ∈ X and v ∈ Tz .

PROPOSITION 3.8. (Invariance by conjugacy) A critical orbit remains critical under
conjugation.

More precisely, let A and B be two conjugated linear cocycles where L ◦ A = B ◦ L
with L = (h, L∗), let α, β ∈1 with α < β and let x ∈ X be a β-critical point of A. Then
there exists N = N (α, β, L) such that h(x) ∈ Y is an α-postcritical point of order N of B.

Proof. Let (· | ·)0 and (· | ·)1 be Hermitian metrics over TX and T Y , respectively. Denote
M = [A], N = [B] and H = [L] and the respective multiplier of M and N by

m0(n, ξ)= ‖(Mn
z )
′(ξ)‖0 and m1(n, $)= ‖(N n

w)
′($)‖1.

From equation (3.1) we conclude that

H f n(z) ◦ Mn
z = N n

h(z) ◦ Hz

for each z ∈ X and n ∈ Z. Since (Hz)
−1
= H−1

h(z) we deduce that (H f n(z))
−1
= H−1

gn(h(z)).
Thus

Mn
z = H−1

gn(h(z)) ◦ N n
h(z) ◦ Hz
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and therefore

m0(n, ξ) = ‖(Mn
z )
′(ξ)‖0

≤ ‖(H−1
gn(h(z)))

′(N n
h(z)(Hz(ξ)))‖0 · ‖(N n

h(z))
′(Hz(ξ))‖1 · ‖H ′z(ξ)‖1

= ‖(H−1
gn(h(z)))

′(N n
h(z)(Hz(ξ)))‖0 · ‖H ′z(ξ)‖1 ·m1(n, H(ξ)). (3.2)

Taking

C0 = sup{‖(H−1
x )′(ξ)‖0 : x ∈ X and ξ ∈ Cx },

C1 = sup{‖H ′y($)‖1 : y ∈ Y and $ ∈ Cy},

C = C0 · C1 ≥ 1 and the inequality (3.2) we obtain that m1(n, H(ξ))≥ C−1m0(n, ξ).
Then arguing in a similar fashion to the previous proposition we conclude our

assertion. �

PROPOSITION 3.9. If the exponents are b-separated, then the β-critical points with
b < β+ are not Oseledets regular points.

Proof. Let x be a β-critical point with critical direction ξ and let b < β+ ≤ β−. We assume
that x is a regular point. Let Tx = E+x ⊕ E−x be the splitting related to the Lyapunov
exponents. The next section (in particular, Lemma 4.8) asserts that ξ is the unique point
uniformly contracted by M . This implies that for all v ∈ E+x we have that [v] = ξ and
therefore

λ+(x)= lim
n

1
n

log ‖An
z v‖.

Then from equation (2.7) it follows that

lim
n

1
n

log m(n, ξ) = lim
n

1
n
(log |det An

x | − 2 log ‖An
xv‖)

= λ+(x)+ λ−(x)− 2λ+(x)

= λ−(x)− λ+(x)

≤ log(b).

However, since m(n, ξ)≥ βn
+ we conclude hat

log(b)≥ log(β+),

a contradiction. �

3.2. Tangencies of a periodic point contain a critical point. Let f be a Hénon map with
b = |det(D f )|< 1. Let p be a periodic point of f and q be a point of tangency between
the stable and the unstable manifolds of p. We assert that in the orbit of O(p) there exists
a β-critical point, when β ∈1 and b+ > b.

In fact, without loss of generality, we can assume that p is a fixed point. We denote the
local stable/unstable manifold of p of size ε by W s

ε (p) and W u
ε (p), respectively. Let λs

and λu bs the eigenvalues of D f in p. Then b = |λs
| · |λu

|.
Note that for each n ≥ 0,

m(−n, [vu
p])=

b−n

‖D f −nvu
p‖

2 =

(
|λu
|
2

b

)n

> b−n > β−n
−
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and

m(n, [vs
p])=

bn

‖D f nvs
p‖

2 =
|λu
|
n

|λs |n
=

(
|λu
|
2

b

)n

> b−n > 1> βn
+

where vσp ∈ Eσp is a unitary vector, with σ = s, u.
We can take ε > 0 small enough such that for every z ∈W s

ε (p) (respectively, z ∈
W u
ε (p)) we have that z ≈ p and Tz W s

ε (p)≈ E s
p (respectively, Tz W u

ε (p)≈ Eu
p). We can

conclude that for each z ∈W u
ε (p) (respectively, z ∈W s

ε (p)) we have that m(−n, [v])≥
β−n
− (respectively, m(n, [w])≥ βn

+) for each n ≥ 0, where v ∈ Tz W u
ε (p) (respectively,

w ∈ Tz W s
ε (p)) is a unitary vector.

Finally, let qu be the first iterate to the past of q that is inside of W u
ε (p) and let n+ > 0

such that f n+(qu) is the first iterate to the future of q that is inside of W s
ε (p). Since q

is a tangency point we have that D f n+(Tqu W u
ε (p))= T f n+ (qu)W

s
ε (p), hence we conclude

that qu is a β-critical point at the times (0, n+). From Theorem 3.4 we conclude that there
exists 0≤ n0 ≤ n+ such that f n0(qu) is a β-critical point.

4. Linear domination and projective hyperbolicity
The main goal of this section is to characterize the notion of dominated splitting for a
linear cocycle in terms of its action in the projective bundle. We introduce the notion of
hyperbolic projective cocycle. Roughly speaking, hyperbolic projective cocycle are those
that have the same dynamics as a hyperbolic Möbius transformation. In Theorem 4.2 we
prove that a linear cocycle has dominated splitting if and only if its projective cocycle is
hyperbolic. Moreover, in the same theorem we state that the continuity of the section is not
necessary to obtain domination.

The main idea is that the invariant splitting determines (in each fiber) two special points
in the sphere, and the cone fields are related to disks in the Riemann sphere that are
asymptotically contracted/expanded by the projective cocycle.

We recall that a section over X is a continuous function σ : X→ TX such that
pr(σ (x))= x for all x ∈ X , and 0(X, TX) denotes the set of all sections over X .

Definition 4.1.
(1) We say that a section σ ∈ 0(X, P(X)) is M-invariant if M(σ (z))= σ( f (z)).
(2) We say that a section σ is contractive if it is M-invariant and there exist constants

C > 0 and 0< λ < 1, such that m(n, σ (z))≤ Cλn for every z ∈ X and all n ≥ 1.
Similarly, we say that a section is expansive if it is contractive for M−1.

(3) We say that a cocycle M is hyperbolic if there exists two disjoint sections τ and σ
in 0(X, P(X)) (i.e. τ(z) 6= σ(z) for every z ∈ X ) such that τ is expansive and σ is
contractive.

THEOREM 4.2. Let A be a linear cocycle on TX and M be the projective cocycle induced
by A. Then the following statements are equivalent.
(1) The cocycle A has dominated splitting.
(2) The cocycle M is hyperbolic.
(3) There exists a contractive section for M (equivalently, there exists an expansive

section).
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(4) There exist C > 0 and µ > 1 such that for every z ∈ X there is one direction
τz ∈ Cz such that m(n, τz)≥ Cµn for every n > 0 (equivalently, σz ∈ Cz such that
m(−n, σz)≥ Cµn for every n > 0).

Theorem 4.2 will be proved in §4.4. In the following subsections we explain a series of
results necessary for its proof.

A corollary of item (4) of the previous theorem is the following result.

COROLLARY 4.3. Assume that there exist k > 0 and 0< η < 1 such that for each z ∈ X
there exists ξz ∈ Cz satisfying

m(k, Mn(ξz)) < η for each n ≥ 1. (4.1)

Then A has dominated splitting.

Proof. Let z ∈ X and let n = sk + r with 0≤ r < k. Then it is not difficult to see that

m(n, ξz)=m(r, ξz) ·

s−1∏
j=0

m(k, M jk+r (ξz)) < cηs,

where c =max0≤r<k sup{m(r, $) :$ ∈ P(X)}. Taking η0 = η
1/k and c0 = c/ηk−1

0 , we
conclude that m(n, ξz) < c0η

n
0 and hence

m(−n, ξz)≥ c−1
0 (η−1

0 )n

for every n ≥ 1. Therefore our assertion follows from Theorem 4.2 item (4). �

4.1. Equivalence of contractive sections. Denote the unit disk in C by D. Given ξ ∈ C
and r > 0, we denote the ball with center at ξ and radius r in the spherical metric by
B(ξ, r). Let L be an isometry in the Riemann sphere with L(0)= ξ ∈ C. We recall that
the set L(rD) does not depend on L . We denote the set L(rD) for any L as above by
Dr (ξ); this is called the disk of radius r centered at ξ . On the other hand, we have that for
any r , the disk Dr (ξ) is equal to B(ξ, ε) where ε satisfies the equation (cf. [7])

r
√

1+ r2
= sin

(
ε

2

)
.

PROPOSITION 4.4. Let σ ∈ 0(X, P(X)) be a M-invariant section. Then the following
statements are equivalent.
(i) Section σ is contractive.
(ii) There exist 0< η < 1 and k > 0 such that m(k, σ (z)) < η for all z in X.
(iii) There exist k > 0 and r > 0 such that Mk

z (Dr (σ (z)))⊂ Dr (σ ( f k(z))).
(iv) There exist k > 0 and R > 0 such that for all 0< r ≤ R,

Mk
z (Dr (σ (z)))⊂ Dr (σ ( f k(z))).

Proof. Clearly (i) and (ii) are equivalent and (iv) formally implies (iii). On the other hand,
from the Schwartz lemma it follows that (iii) implies (ii).
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To prove that (ii) implies (iv), we let βz = {v1(z), v2(z)} ⊂ Tz denote an orthonormal
basis such that [v2(z)] = σ(z). Using homogeneous coordinates in the basis βz , we can
identify σ(z) with 0 ∈ C. It follows from the foregoing that

Mz(ξ)=
ξ

β(z)ξ + α(z)
,

and for n ≥ 1,

m(n, σ (z))= ‖(Mn
z )
′(0)‖0 = |(Mn

z )
′(0)| =

n−1∏
j=0

|α( f j (z))|−1.

On the other hand, our hypothesis asserts that there exist constants 0< η < 1 and k ≥ 0
such that m(k, σ (z)) < η for every z in X . It follows from the foregoing that there exists
R′ > 0 such that if |ξ | ≤ R′ we can write

Mk
z (ξ)= (m(k, σ (z))+ gz(ξ))ξ

where gz is holomorphic in R′D for all z ∈ X and gz(0)= g′z(0)= 0. Notice that the map
z 7→ gz is continuous†. Let η < η′ < 1. There exists 0< R < R′ such that |m(k, σ (z))+
gz(ξ)|< η

′ when |ξ | ≤ R for all z ∈ X . We conclude that if 0< r ≤ R and |ξ |< r we have

|Mk
z (ξ)|< η

′
· r < r,

for every z ∈ X , and our assertion is proved. �

COROLLARY 4.5. Let σ and R > 0 satisfy item (iv) of Proposition 4.4. Then for all 0<
r ≤ R and ξ ∈ Dr (σ (z)) we have

lim
n→+∞

ρ(Mn
z (ξ), Mn

z (σ (z)))= 0

where ρ is the spherical metric.

We define the stable set of ξ ∈ Cz for the cocycle M as the set

W s(ξ)=
{
w ∈ Cz : lim

n→∞
ρ(Mn

z (w), Mn
z (ξ))= 0

}
and the local stable set of ξ ∈ Cz of size ε > 0 by

W s
ε (ξ)= {w ∈W s(ξ) : ρ(Mn

z (w), Mn
z (ξ)) < ε, ∀ n ∈ N}.

The unstable set is defined as the stable set of ξ for the cocycle M−1.
We can write the stable (respectively, unstable) set in terms of backward (respectively,

forward) iterates of the local stable (respectively, local unstable) sets. In fact, given ε > 0,
we have

W s(ξ)=

∞⋃
n=0

M−n
z (W s

ε (ξn)) and W u(ξ)=

∞⋃
n=0

Mn
f −n(z)(W

u
ε (ξ−n)) (4.2)

where ξn = Mn(ξ) for each n ∈ Z.

† The continuity is regarded as meaning that under a change of chart the map is continuous.
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LEMMA 4.6. Let σ be a contractive section for M. Then there exists a constant r > 0 such
that

W s(σ (z))=
⋃
n≥0

M−n
z (Dr (σ ( f n(z)))).

Proof. From Corollary 4.5 it follows that there exist 0< ε1 < ε2 such that

W s
ε1
(σ (z))⊆ Dr (σ (z))⊆W s

ε2
(σ (z))

for every z ∈ X . The lemma follows directly from the foregoing and equation (4.2). �

4.2. Uniqueness of the expansive/contractive direction. In this subsection we explain
some properties of the multiplier function m. The main goal is to establish the uniqueness
of the expansive direction.

LEMMA 4.7. If ξi with i = 1, 2 are two different directions in Cz and ui is a unitary vector
that generates the direction ξi for i = 1, 2, then

m(n, ξ1) ·m(n, ξ2)=

(
sin(](An

z u1, An
z u2))

sin(](u1, u2))

)2

,

for any n ∈ Z.

Proof. Let x, y ∈ C2 and denote the area of the polygon formed by the vertices 0, x , x + y
and y by φ(x, y). Then we have the equality

φ(x, y)= ‖x‖ · ‖y‖ · sin(](x, y))=
√

det([x y]∗ · [x y])= |det([x y])|, (4.3)

where [x y] is a column matrix and [x y]∗ denotes its transposed conjugate. Then it is easy
to see that φ(Ax, Ay)= |det(A)|φ(x, y) for any linear map A in C2.

Then from equation (4.3) we have that(
sin(](An

z u1, An
z u2))

sin(](u1, u2))

)2

=
φ(An

z u1, An
z u2)

2/‖An
z u1‖

2
· ‖An

z u2‖
2

φ(u1, u2)2/‖u1‖2 · ‖u2‖2

=
|det(An

z )|
2

‖An
z u1‖2 · ‖An

z u2‖2
.

According to equation (2.7) and the equality above, it follows that

m(n, ξ1) ·m(n, ξ2)=
|det(An

z )|
2

‖An
z u1‖2 · ‖An

z u2‖2
=

(
sin(](An

z u1, An
z u2))

sin(](u1, u2))

)2

. �

LEMMA 4.8. An expansive (contractive) direction is unique.

Proof. Let z ∈ X and ξi ∈ Cz , for i = 1, 2, such that ξ1 6= ξ2. Assume that there exist
constants C > 0 and λ > 1 with the property m(n, ξi )≥ Cλn for all n ≥ 0. If ui is a unitary
vector such that [ui ] = ξi then ](u1, u2) > 0. From the previous lemma, we conclude that

C2λ2n
≤m(n, ξ1) ·m(n, ξ2)=

(
sin(](An

z u1, An
z u2))

sin(](u1, u2))

)2

<
1

sin(](u1, u2))
,

which is a contradiction. For the case where we have expansion for the past, the same
proof holds. �
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COROLLARY 4.9. Suppose that, given a projective cocycle M, there exist C > 0 andµ > 1
such that for every z ∈ X there exists one direction τz ∈ Cz satisfying m(n, τz)≥ Cµn for
every n > 0. Then τ(z) := τz defines a section that is an expansion.

Proof. Since we have uniqueness of an expansive direction (Lemma 4.8), we conclude
that M(τ f −1(z))= τz .

Now let zn→ z in X . Then τzn → τz . In fact, by compactness there exists some
adherence point for the sequence (τzn )n , named τ ′ ∈ Cz , that is expansive for the future.
From Lemma 4.8, it follows that τ ′ is equal to τz . Therefore the map z 7→ τz is continuous
and τ is an expansion. �

4.3. Module. A double connected domain in C is a open connected set U such that
its complement has two connected components. The definition of the module of a double
connected domain is based on the following mapping theorem: every double connected
domain U is biholomorphic to a ring domain of the form

A(r1, r2)= {z ∈ C : 0≤ r1 < |z|< r2 ≤∞}

and is called a canonical image of U.
If r1 > 0 and r2 <∞ for one canonical image of U , then the ratio of the radii r2/r1 is

the same for all canonical images of U . The number

mod(U )= log
(

r2

r1

)
determines the conformal equivalence class of U and is called the module of U . Otherwise
we define mod(U )=∞, and this happens if and only if at least one boundary component
of U consists of a single point.

The following proposition will be crucial in the proof of Theorem 4.2.

PROPOSITION 4.10. Let D1, D2, D3, . . . be conformal disks in C such that for every i ≥ 1
we have Di ⊂ Di+1. If there exists κ > 0 such that mod(int(Di+1\Di ))≥ κ , then the set
D =

⋃
n Dn is biholomorphic to C.

See [16, 18] for details. As a corollary we show the following result.

COROLLARY 4.11. Let σ be a contractive section of M. Then for every z ∈ X, W s(σ (z))
is biholomorphic to C. Moreover, the complement of W s(σ (z)) is an expansive section.

A similar result holds from changing ‘contractive’ to ‘expansive’ and ‘stable set’ to
‘unstable set’.

Proof. Fix z ∈ X . Take k > 0 and r > 0 as in Proposition 4.4 item (3). Define

Dn = M−kn
z (Dr (σ ( f kn(z)))).

Then for every n ≥ 0 we have that Dn−1 ( Dn . Recall that the function Mkn
z maps

biholomorphically Dn\Dn−1 on the set

An = Dr (σ ( f kn(z)))\Mk
f (n−1)k (z)(Dr (σ ( f (n−1)k(z)))),
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so the modules mod(Dn\Dn−1) and mod(An) are equal. Taking k large enough, if
necessary, we can assume that m(k, σ (z))≤ η, for every z ∈ X and some 0< η < 1.

Notice that a Möbius transformation maps circles to circles. Therefore, in appropriate
homogeneous coordinates (see, for instance, the proof of Proposition 4.4) we can write,
for all z0 ∈ X ,

Mk
z0
(ξ)=m(k, σ (z0))ξ + o(|ξ |2).

It follows that mod(An)≈ log(1/η) and the difference between these two values is
bounded for every n ∈ N. Our assertion follows from Proposition 4.10.

To prove our second statement, note that from the foregoing and the uniformization
theorem the complement of W s(σ (z)) contains only one point. Denote such a point by
τ(z). Since W s varies continuously and is M-invariant, it follows that τ is a M-invariant
section. By definition of τ , it follows that small disks around τ are contracted uniformly
by M−1. From Proposition 4.4 it follows that τ is an expansion. �

4.4. Proof of Theorem 4.2.

Proof. We have the following claim.

CLAIM. A linear cocycle A has dominated splitting if and only if the cocycle induced by
A, M([v])= [Av], is hyperbolic.

Proof of Claim. Suppose that A has dominated splitting.
For each z ∈ X we let u(z) ∈ Ez and v(z) ∈ Fz . Since the splitting TX = E ⊕ F is

continuous and A-invariant, it follows that both τ(z)= (z, [u(z)]) and σ(z)= (z, [v(z)])
are well-defined continuous sections in P(X), which are M-invariant.

We recall that (see Proposition 2.15 and its proof) there exists l ≥ 0 such that the cone

C(z)= {u + v ∈ Ez ⊕ Fz : ‖u‖ ≤ ‖v‖}

is Al -invariant. Let D(z) be the set of all [x] with x ∈ C(z)\{0}. We recall that D(z) is a
closed conformal disk. Notice that we have:
(1) σ(z) ∈ D(z);
(2) M l

z(D(z))⊂ int(D( f l(z)));
(3) σ(z)=

⋂
n≥0 Mn

f −n(z)(D( f −n(z))).
In fact, items (1) and (2) follow directly from the foregoing. From equation (2.12) we
obtain item (3). From compactness of X there exists r > 0 such that D(σ (z), r)⊂ D(z) for
every z ∈ X . A typical compactness argument using items (2) and (3) and the continuous
dependence of the objects implies that there exists k > l such that

Mk
f −k (z)(D(σ ( f −k(z)), r))⊂ int(D(σ (z), r))

for every z ∈ X , and Proposition 4.4 implies that σ is contractive. A similar argument
applied to τ and M−1 implies the hyperbolicity of M .

On the other hand, we assume that M is hyperbolic. We need to prove that A is a linear
cocycle with dominated splitting. Let σ (respectively, τ ) be the contractive (respectively,
expansive) direction of M . For any z ∈ X we take v(z) ∈ Tz (respectively, u(z) ∈ Tz) a
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unitary vector such that [v(z)] = σ(z) (respectively, [u(z)] = τ(z)). Let Fz (respectively,
Ez) be the subspace of all vectors of the form αv(z) (respectively, αu(z)) where α ∈ C.

On the other hand, there exist k ≥ 0 and 0< η < 1 such that

m(k, σ (z)) < η and m(−k, τ ( f k(z))) < η,

and therefore
√

m(k, σ (z)) ·m(−k, τ ( f k(z))) < η. It follows from the equation (2.7) that

√
m(k, σ (z)) ·m(−k, τ ( f k(z))) =

√
|det(Ak

z )|

‖Ak
zv(z)‖2

|det((Ak
z )
−1)|

‖(Ak
z )
−1u(z)‖2

=
1

‖Ak
zv(z)‖

1
‖(Ak

z )
−1u(z)‖

=
1

‖Ak
z |Fz‖

1
‖(Ak

z )
−1|E f k (z)

‖

=
‖Ak

z |Ez‖

‖Ak
z |Fz‖

< η,

as required. �

The previous claim asserts that item (1) is equivalent to item (2). Clearly item (2)
formally implies items (3) and (4). The implication (4)⇒ (3) follows from Corollary 4.9
and (3)⇒ (2) follows from Corollary 4.11. �

5. Criterion for domination
In this section we present a criterion to establish when a linear cocycle has dominated
splitting. Recall that Theorem 4.2 asserts that a linear cocycle has dominated splitting
if, in each fiber, there exists a contractive direction. The following theorem asserts that
it is enough to assume that in each fiber there exists a direction such that the (possible)
expansion is not too strong. This criterion is essential for proving our main theorem.

THEOREM 5.1. (Criterion of domination) Let A = ( f, A∗) be a linear cocycle such that
every µ ∈M(X, f ) has the exponents b-separated. Let b < η < 1 and assume that there
exists k0 > 0 such that for all z ∈ X there exists ξz ∈ Cz satisfying

m(k0, Mm(ξz))≤ η
−k0 for every m ≥ 1. (5.1)

Then A has dominated splitting.

The following lemma is the main tool we use to prove the criterion of domination. This
establishes that if there exists one direction which is not strongly contractive, then in many
iterates this direction is strongly expansive.

LEMMA 5.2. (Strong expansion) Let A = ( f, A∗) be a linear cocycle such that each µ ∈
M(X, f ) supported in ω(x, f ) has the exponents b-separated. Let b < η0 < 1, ξx ∈ Cx

and n0 ∈ N such that
ηn

0 ≤m(n, ξx ) for each n ≥ n0.
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Then we have the following property:
(†) for each b < η1 < 1 and k ≥ 0, there exists mk ≥ 0 such that

η−n
1 ≤m(n, Mmk (ξx ))

for any 0≤ n ≤ k.

Proof. First we will prove that the property (†) is equivalent to the following property:
(‡) for each b < η2 < 1 and l ≥ 0 there exist ml ≥ 0 and kl ≥ l such that

η
−kl
2 ≤m(kl , Mml (ξx )).

Proof of the Equivalence. Clearly property (†) implies property (‡). Assuming that
property (‡) holds, we let b < η2 < η1 < 1 and denote γ0 = η

−1
2 and γ1 = η

−1
1 as in

Corollary 2.13. Let N0 and δ0 be the constants given by this corollary. Property (‡) asserts
that for every l ≥ 0 there exist constants ml ≥ 0 and kl ≥ l such that η−kl

2 ≤m(kl , Mml ξx ).
For k ≥ 0 fixed, we can take l ≥ 0 large enough such that kl ≥ N0 and klδ0 > k. It
follows from Corollary 2.13 that there exists 0≤ m ≤ kl with kl − m ≥ klδ0 > k such
that η−n

1 ≤m(n, Mml+mξx ) for each 0≤ n ≤ kl − m. Therefore, taking mk = ml + m, we
obtain property (†). �

In what follows we prove that property (‡) holds. We will use the following notation.
Given ν ∈M(P(X)), we denote ν̂ = pr∗(ν), that is, given a Borelian A ⊂ X ,

ν̂(A)= pr∗(ν)(A)= ν(pr−1(A))= ν(P(A)).

Clearly ν̂ ∈M(X, f ) when ν ∈M(P(X), M). Moreover, if ν is ergodic then ν̂ is ergodic.
Let 6 ⊂ P(X) be the set given by the ergodic decomposition theorem. Then 6 is a full
probability set, and for all $ ∈6 the measure

µ$ = lim
n→∞

1
n

n−1∑
j=0

δM j ($) (5.2)

lies in M(P(X), M) and is ergodic. Moreover, given ν ∈M(P(X), M) and h ∈ L1(ν),
the function h is µ$ -integrable for ν-almost every $ ∈6 and∫

P(X)
h($) dν($)=

∫
6

(∫
P(X)

h(ζ ) dµ$ (ζ )
)

dν($). (5.3)

If 6(ν)=6 ∩ P(R(A, supp(ν̂))) then ν(6(ν))= 1. In fact, this follows from the
facts that 6 and R(A, supp(ν̂)) have full probability and that 1= ν̂(R(A, supp(ν̂)))=
ν(P(R(A, supp(ν̂)))).

Proof of property (‡). Suppose the contrary, that is, there exists l ≥ 0 such that for each
m ≥ 0 we have that

m(n, Mm(ξx )) < η
−n
2 (5.4)

for each n ≥ l. Let ϕ(ζ )= log m(1, ζ ).
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CLAIM 1. For each $ ∈6 ∩ ω(ξx , M) the inequality

µ$ (ϕ)=

∫
ϕ(ζ ) dµ$ (ζ ) < |log(b)|

holds.

Proof of Claim 1. Let $ ∈6 ∩ ω(ξx , M) and let (nk)k ↗∞ such that Mnk (ξx )→$

when k→∞. From equation (5.4) we have that

1
n

n−1∑
j=0

ϕ ◦ M j ($) =
1
n

log m(n, $)

= lim
k→∞

1
n

log m(n, Mnk (ξx ))

< − log(η2)

< |log(b)|

and our assertion follows from equation (5.2). �

CLAIM 2. Let $ ∈6 such that z = pr($) is a regular point. Then

µ$ (ϕ)=±(λ
+(z)− λ−(z)).

Proof of Claim 2. Let v ∈ Tz such that [v] =$ and denote

λ(v)= lim
n

1
n

log ‖An
z v‖.

Recall that if Tz = Ez ⊕ Fz is the Oseledets splitting, then λ(v)= λ−(z) when v ∈ Ez and
λ(v)= λ+(z) in other cases. Then from equation (2.7) it follows that

µ$ (ϕ)= lim
n

1
n

log m(n, $) = lim
n

1
n
(log |det An

z | − 2 log ‖An
z v‖)

= λ+(z)+ λ−(z)− 2λ(v)

= ±(λ+(z)− λ−(z)). �

Note that when z = pr($),

µ̂$ = µz = lim
n→∞

1
n

n−1∑
j=0

δ f j (z).

We recall from hypotheses that µz has the exponent b-separated.

CLAIM 3. For any measure µ ∈M(P(X), M) and $ ∈6(µ), µ$ (ϕ)≤ log(b).

Proof of Claim 3. Otherwise from Claim 1 we have that

log(b) < µ$ (ϕ) < |log(b)|.

Since λ−(z)≤ λ+(z) and Claim 2 then either
(a) 0≤ µ$ (ϕ)= λ+(z)− λ−(z) < |log(b)| or
(b) log(b) < µ$ (ϕ)= λ−(z)− λ+(z) < 0.
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In both cases we conclude that λ+(z)− λ−(z) < |log(b)|, which is a contradiction with
the fact that the exponents of µz are b-separated. �

Let (µn)n ⊂M(P(X)) be the sequence given by

µn =
1
n

n−1∑
j=0

δM j (ξx )
.

Taking a subsequence, if necessary, we may assume that µn→ µ in the weak∗ topology.
Therefore µ ∈M(P(X), M) and supp(µ)⊂ ω(ξx , M).

CLAIM 4.

log(b) <
∫
P(X)

ϕ(ζ ) dµ(ζ ). (5.5)

Proof of Claim 4. Recall that from hypotheses ηn
2 ≤m(n, ξx ) for each n ≥ n0, therefore∫

P(X)
ϕ(ζ ) dµ(ζ )= lim

n

∫
P(X)

ϕ(ζ ) dµn(ζ ) = lim
n

1
n

log m(n, ξx )

≥ log(η0)

> log(b). �

To conclude our proof, it follows from equation (5.3), Claims 3 and 4 that

log(b) <
∫
P(X)

ϕ(ζ ) dµ(ζ )=
∫
6

µ$ (ϕ) dµ($)≤ log(b),

which is a contradiction. Therefore, property (‡) holds. �

�

Proof of the Criterion of Domination. Let b < η < η̃ < 1. We claim that there exist k and
m such that m(k, Mn(ξz))≤ η̃ for each n ≥ m, where ξz satisfies equation (5.1). Then our
theorem follows from Corollary 4.3 applied to M−m(ξz).

Our claim remains to be proven. In fact, suppose to the contrary that for every k there
exist zk ∈ X and nk > k such that

m(k, Mnk (ξk))≥ η̃ ≥ η̃
k,

where ξk := ξzk .
In what follows, we will construct a point z ∈ X and a direction $ ∈ Cz satisfying the

hypothesis of the strong expansion lemma.
Let 1> η̃ > η0 > η > b and let N0 := N0(̃η, η0, M) and δ0 := δ0(̃η, η0, M) be the

constants given by Corollary 2.13. For each s ≥ 1, let k(s) be the smallest nk satisfying
nk(s)δ0 > s. It follows from Corollary 2.13 item (1) that there exists 0≤ ms < nk(s) such
that

m(l, Mms+nk(s)(ξk(s)))≥ η
l
0 for every 0< l ≤ s.

Taking a subsequence, if necessary, we may assume that if s→∞ then
f ms+nk(s)(zk(s))→ z and Mms+nk(s)(ξk(s))→$ . It follows that $ ∈ Cz and

m(n, $)≥ ηn
0 for every n ≥ 1,

and then z and $ satisfy the hypothesis of the strong expansion lemma.
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On the other hand, our hypothesis asserts that for every z ∈ X we have
m(k0, Mm(ξz))≤ η

−k0 for each z ∈ X and m ≥ 1. Then there exists a constant C > 0 such
that m(n, Mm(ξz))≤ Cη−n for each n ≥ 0. This fact is shown using an adaptation of the
proof of Corollary 4.3.

Taking η > η1 > b and n0 large enough, we obtain that m(n, Mm(ξk)) < η
−n
1 for each

k ≥ 1 and n ≥ n0. Letting k go to infinity in the previous inequality implies that for all
m ≥ 1 and n ≥ n0,

m(n, Mm($)) < η−n
1 .

Strong expansion lemma item (a) asserts that there exists m0 ≥ 1 such that η−n
1 ≤

m(n, Mm0($)) for each 0≤ n ≤ n0, but from the previous inequality we have

η
−n0
1 ≤m(n0, Mm0($)) < η

−n0
1 ,

which is a contradiction. �

6. Proof of main theorem
This section is based on the ideas of Crovisier in [8] for the proof of the same result in
the context of C2 generic diffeomorphisms in compact manifolds (see [20]). Our proof
presents significant changes compared with that of Silvan, including a different critical
point definition than [20].

Here and subsequently, A = ( f, A∗) denotes a linear cocycle such that for every µ ∈
M(X, f ) has the exponents b-separated and let M be the projective cocycle induced by A.

6.1. Absence of critical points implies domination. In this subsection we will prove the
following statement.

THEOREM 6.1. If A does not have dominated splitting, then for each β = (β−, β+) ∈1
with b < β+ we have Crit(β) 6= ∅.

We begin with a notion that allows us to prove this theorem.

Definition 6.2. Given 0< β0 < 1, we say that a projective cocycle M satisfies the property
P(β0) if there exists k0 > 0, such that for every k ≥ k0 there exist xk ∈ X , ξk ∈ Cxk and
mk ≥ 0 so that:
(1) m(−n, ξk)≥ β

−n
0 , for every 1≤ n ≤ k;

(2) m(k, Mmk (ξk))≥ 1.

PROPOSITION 6.3. Let 0< β0 < 1. If M satisfies the property P(β0), then for every β ∈1
with (β0, β0)≥ β the set Crit(β) is not empty.

Proof. Let (β0, β0)≥ β = (β−, β+). Recall that β+ ≤ β0 ≤ β− so that for each 0≤ n ≤ k
we have that m(−n, ξk)≥ β

−n
0 ≥ β

−n
− , when k ≥ k0.

Let γ0 = 1, γ1 = β+ and let N0 := N0(γ0, γ1, M) and δ0 := δ0(γ0, γ1, M) be the
constants given by Corollary 2.13. Let k ≥ k0 and let s > N0 such that sδ0 > k. Since
m(s, Mms ξs)≥ 1 it follows from Corollary 2.13 that there exists 0≤ j < s such that
s − j > sδ0 > k and

m(i, Mms+ jξs)≥ β
i
+ for every 0< i ≤ s − j.
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Therefore taking yk = xs , υk = ξs and nk = ms + j , we conclude that for every k > 0 there
exist yk ∈ X , υk ∈ Cyk and nk ≥ 0 such that

m(−n, υk)≥ β
−n
− and m(n, Mnkυk)≥ β

n
+

for every 0< n ≤ k.
Arguing as in the proof of Theorem 3.4, we conclude that there exists 0≤ lk ≤ nk such

that
m(−n, M lkυk)≥ β

−n
− and m(n, M lkυk)≥ β

n
+

for every 0< n ≤ k.
Finally, if we take zk = f lk (yk) and ωk = M lk (υk), we have that for each 0< n ≤ k,

m(−n, ωk)≥ β
−n
− and m(n, ωk)≥ β

n
+.

Let (z, ω) be an adherence point of (zk, ωk). Then for n ≥ 0,

m(−n, ω)≥ β−n
− and m(n, ω)≥ βn

−,

therefore Crit(β) is non-empty as asserted. �

We denote
supp(X)=

⋃
{supp(ν) : ν ∈M(X, f )}.

LEMMA 6.4. If there exists b < β0 < 1 such that the property P(β0) is not satisfied, then
A|supp(X) has dominated splitting.

Proof. The proof proceeds via a series of claims.
We denote

H = {z ∈ X : ∃ξ ∈ Cz such that m(−n, ξ)≥ β−n
0 , for every n ≥ 0}.

CLAIM 1. Let ν ∈M(X, f ) and x ∈R(A, ν). Then x has infinitely many iterates in H.

Proof of Claim 1. Let v ∈ Fx be a unitary vector and let ξ = [v]. Then

lim
n→+∞

1
n

log m(−n, ξ) = lim
n→+∞

1
n
(log |det A−n

z | − 2 log ‖A−n
z v‖)

= −(λ+(x)+ λ−(x))+ 2λ+(x)

= λ+(x)− λ−(x)≥− log(b).

The last inequality follows from Lemma 2.8. Therefore, for n great enough we have
that m(−n, ξ)≥ b−n . Our assertion follows from Corollary 2.13 item (2) applied to the
constants b−1 > β−1

0 . �

We denote
ω(H)=

⋃
x∈H

ω(x, f ).

CLAIM 2. We have supp(X)⊂ ω(H).
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Proof of Claim 2. Let x ∈ supp(ν)=R(A, supp(ν)), let V 3 x be an open set and
let V0 = V ∪R(A, supp(ν)). We recall that ν(V0) > 0. From the Poincaré recurrence
theorem we have that the set V1 consisting of all points with infinitely many iterates on
V0 satisfies ν(V0)= ν(V1). The previous claim asserts that each z ∈ V0 has infinitely many
iterates on H , and since this holds for every point of V , we conclude that x ∈ ω(H). �

CLAIM 3. The restriction A|ω(H) has dominated splitting.

Proof of Claim 3. We will prove that every z ∈ ω(H) satisfies the hypotheses of the
criterion of domination.

Since the property P(β0) is not satisfied, then there exists k0 arbitrarily large such that
for every x ∈ X and $ ∈ Cx :
(1) either m(−n, $) < β−n

0 for some 1≤ n ≤ k0;
(2) or m(k0, Mm$) < 1 for every m ≥ 1.
Let x ∈ H and let ξ ∈ Cx such that m(−n, ξ)≥ β−n

0 , for n ≥ 0. Therefore we conclude
that m(k0, Mmξ) < 1< β−k0

0 for every m ≥ 1. Let y ∈ ω(x, f ) with f ml (x)→ y and
Mml ξ → ξy ∈ Cy . Therefore for each m ≥ 0 we have that

m(k0, Mm(ξy))= lim
l→∞

m(k0, Mm(Mml ξ))= lim
l→∞

m(k0, Mm+ml ξ)≤ β
−k0
0 .

Given z ∈ ω(H), there exist xn ∈ H and yn ∈ ω(xn, f ) such that yn→ z. From the
foregoing, for each n ≥ 0 there exists ξn ∈ Cyn such that m(k0, Mm(ξn))≤ β

−k0
0 . Taking a

subsequence, if necessary, we may assume that there exists ξz ∈ Cz such that ξn→ ξz , and
passing to the limit we conclude that m(k0, Mm(ξn))≤ β

−k0
0 as desired. �

Since the set supp(X) is a compact f -invariant and supp(X)⊂ ω(H), our lemma
follows. �

PROPOSITION 6.5. Assume that A|supp(X) has dominated splitting but A does not have
dominated splitting. Then there exists ε0 > 0 such that for all 1− ε0 < β0 < 1, the property
P(β0) is satisfied on X.

Proof. Recall that Theorem 4.2 item (4), applied to supp(X), asserts the existence of
constants C > 0 and µ > 1 such that for every z ∈ supp(X) there exists σz ∈ Cz satisfying
m(−n, σz)≥ Cµn , for every n ≥ 0. We let 0< ε0 < 1 such that µ= (1− ε0)

−1. Let
1− ε0 < β

′ < β0 < 1.
Since X does not have dominated splitting, it follows from the criterion of domination

that for every k ≥ 0 there exist xk ∈ X and mk > 0 such that for all ω ∈ Cxk we have

m(k, Mmkω)≥ 1. (6.1)

On the other hand, the α-limit of xk supports an f -invariant measure, hence there exists
z0 ∈ α(xk, f ) ∩ supp(X). From the foregoing, there exists σ0 ∈ Cz0 such that

m(−n, σ0) > C(β ′)−n for every n ≥ 1,

where 1− ε0 < β
′ < 1.

Let k ≥ 0 fixed and let (nt )t ↗∞ such that f −nt (xk)→ z0. For every s ≥ 0, there
exists a neighborhood Us ⊂ P(X) of σ0, such that for every ξ ∈Us the inequality
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m(−n, ξ)≥ C(β ′)−n holds for all 1≤ n ≤ s. Taking t ≥ 0 large enough, f −nt (xk) is
inside the projection in X of the neighborhood Us . Hence, there exists ξs ∈ C f −nt (xk )

such that m(−n, ξs)≥ C(β ′)−n for all 1≤ n ≤ s, and for s ≥ 0 large enough, m(−s, ξs)≥

C(β ′)−s
≥ β−s

0 , hence we are in the hypothesis of Corollary 2.13.
We conclude that there exist constants s ≥ 0 and ls ≥ 0 such that s − ls > k and

m(−n, M−ls ξs)≥ β
−n
0 for every 0< n ≤ s − ls;

in particular, writing υk = M−ls (ξs), we conclude that

m(−n, υk)≥ β
−n
0 for every 0< n ≤ k.

From equation (6.1), we have that there exists mk such that m(k, Mmkυk)≥ 1, so the
property P(β0) is satisfied. �

Proof of Theorem 6.1. We claim that there exists b < β0 < 1 such that the property P(β0)

holds. In fact, if we assume to the contrary that for each b < β1 < 1 the property P(β1)

does not hold, then from Lemma 6.4 we conclude that A|supp(X) has dominated splitting.
Since A does not have dominated splitting, Proposition 6.5 asserts that the property P(β1)

holds for every 1− ε0 < β1 < 1, which is a contradiction.
Therefore, from Proposition 6.3 we conclude that for each (β0, β0)≥ β the set Crit(β)

is not empty. �

6.2. Critical points do not allow domination. In this subsection we will prove the
following statement.

THEOREM 6.6. Let β = (β−, β+) ∈1 with b < β+. If Crit(β) 6= ∅, then A does not have
dominated splitting.

We begin with a notion that allows us to prove this theorem.

Definition 6.7. Let β ∈1. We say that a pair (x, y) ∈ X × X is a β-critical pair if:
(1) x ∈ Crit(β), with critical direction ξ ;
(2) y ∈ CVal(β), with critical direction $ ;
(3) there exists a sequence of positive integers lk such that

f lk (x)→ y and M lk ξ →$.

PROPOSITION 6.8. Let β = (β−, β+) ∈1 with b < β+. Then for every β-critical point x,
there exists a β-critical value y such that (x, y) is a β-critical pair.

Proof. From the strong expansion lemma applied to the critical point x , for every k ≥ 0
there exists mk ≥ 0 such that β−n

− ≤m(n, Mmk ξx ) for each 0≤ n ≤ k. Therefore

m(n, Mmk ξx )≥ β
−n
−

for each 0≤ n ≤ k and
m(−k, ξx )≥ β

−k
− > 1.
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Let γ0 = 1, γ1 = β+ and let N0 := N0(γ0, γ1, M) and δ0 := δ0(γ0, γ1, M) be the constants
given by Corollary 2.13. Let k ≥ 0 and let s > N0 such that sδ0 > k. Since m(−s, ξx )≥ 1
it follows from Corollary 2.13 that there exists 0≤ jk < s such that s − jk > sδ0 > k and

m(−n, M− jk ξx )≥ β
n
+ for every 0< n ≤ s − jk

and so for 0≤ n ≤ k.
For each k ≥ 0, take − jk ≤ lk ≤ mk maximal with the property

m(−n, M lk ξx )≥ β
n
+

for each 0≤ n ≤ k. By an induction argument, it is not difficult to see that
m(−l, M lk+lξx ) < β

l
+ for all 0≤ l ≤ mk − lk (see the proof of Theorem 3.4 for a similar

argument). Therefore, we conclude that for each 0≤ n ≤ k,

m(−n, M lk ξx )≥ β
n
+ and m(n, M lk ξx )≥ β

−n
− .

Taking a subsequence of (lk)k if necessary, there exist y ∈ X and $y ∈ Cy such that

f lk (x)→ y and M lk (ξx )→$,

and therefore y ∈ CVal(β). �

Proof of Theorem 6.6. Assume that A has dominated splitting TX = E ⊕ F . We recall that
there exists α > 0 such that for each x ∈ X the angle ∠(F(x), E(x)) > α.

Let x ∈ Crit(β) with critical direction ξ . The previous proposition asserts that there
exists a β-critical value y such that (x, y) is a β-critical pair. Let$ be the critical direction
of y. From uniqueness of the expansive/contractive direction, we conclude that there exist
vectors u ∈ Fx and v ∈ Ey such that ξ = [u] and $ = [v]. The convergence M lk (ξ)→$

implies that
α < ∠(F( f lk (x)), E(y))→ 0,

which is a contradiction. �
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Universidad Católica de Valparaı́so and the Universidad Pontificia Universidad Católica de
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A. Appendix
A.1. Hermitian and spherical metrics. This appendix is devoted to proving the
existence of a spherical metric in a projective bundle, given previously a hermitian metric.
For this purpose, it suffices to carry out this construction in C2.

https://doi.org/10.1017/etds.2016.2 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2016.2


2310 F. Valenzuela-Henrı́quez

The Riemann sphere is the projective space consisting of all one-dimensional subspaces
of C2 or complex lines. The complex line that goes through point v 6= 0 is the set [v] =
{λv : λ ∈ C\{0}}. In homogeneous coordinates the point [v] has the form [z1 : z2], where
v = (z1, z2) 6= 0. So we obtain that

C= {[z1 : z2] : (z1, z2) ∈ C2
}.

Each z ∈ C is related to [z1 : z2] if and only if [z1 : z2] = [z1/z2 : 1] = [z : 1]. The point
at infinity is related to the class [1 : 0], and we can write C= C ∪ {∞}. In these coordinates
the standard spherical metric

dρ =
2|dz|

1+ |z|2
(A.1)

and has constant Gaussian curvature +1.
The previous construction was made under the representation in homogenous

coordinates in the canonical base. Now, we will repeat this construction, but considering
an arbitrary base, and we will find the relationship between these different representations.

Let β = {v1, v2} be a base of C2 and write v = w1v1 + w2v2 = (w1, w2)β 6= 0. We
write the homogeneous coordinate in the base β of the vector v as [w1 : w2]β . Also we
relate each [w1 : w2]β to the point w ∈ C if and only if w = w1/w2. Finally, we denote

Cβ = {[w1 : w2]β : w1v1 + w2v2 ∈ C2
},

and define the spherical metric in the base β on Cβ by the equation

dρβ =
2|dw|

1+ |w|2
.

On the other hand, let L be the linear transformation satisfying Lvi = ei with i = 1, 2
and where {e1, e2} denote the canonical base. It is not difficult to see that, denoting the
Möbius transformation related to L by N , we have that N (z)= w.

Let vz = (z1, z2) such that z = z1/z2. From equation (A.1) we conclude that

dρ = 2|dz|
|(vz | e2)|

2

(vz | vz)

where (· | ·) denotes the standard hermitian metric. Similarly, if (· | ·)0 is a hermitian metric
in C2 such that β is a orthonormal bases, then

dρβ = 2|dw|
|(vw | v2)0|

2

(vw | vw)0
(A.2)

where vw = (w1, w2)β such that w = w1/w2, and this definition depends only on the
hermitian metric. In fact, we make the following claim:
(†) If β is an orthonormal base (different of the canonical base) in the standard hermitian

metric, then dρ = dρβ .
Let β be an orthonormal base standard hermitian metric. Let L be the isometry in the

hermitian metric

L =
(

b −a
a b

)
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and let N be the induced Möbius transformation by L . Then

N (z)=
bz − a
az + b

is an isometry in the standard spherical metric.
Let vz = (z1, z2) with z = z1/z2. Since N (z)= w, we can take vw = (w1, w2)β =

w1v1 + w2v2 = (bz − a, az + b)β . From the foregoing and equation (A.2) we conclude
that

dρ = 2|dz|
|(vz | e2)|

2

(vz | vz)
= 2|dz|

|z2|
2

|z1|2 + |z2|2

= 2|dz|
|z2|

2

(Lvz | Lvz)

= 2|dz|
|z2|

2

|bz1 − az2|2 + |az1 + bz2|2

= 2|dz|
1

|bz − a|2 + |az + b|2

=
2|dz|

1+ |(bz − a)/(az + b)|2
·

∣∣∣∣ 1
(az + b)2

∣∣∣∣
=

2|dz|
1+ |N (z)|2

· |N ′(z)|

= 2
|dw|

1+ |w|2
,

and note that

|(vw | v2)|
2

(vw | vw)
=

|w2|
2

|w1|2 + |w2|2
=

1
1+ |w1/w2|2

=
1

1+ |w|2
.

Hence (†) holds.
Finally, equation (A.2) allows us to define the spherical metric as an intrinsic object of

the hermitian metric (prefixing an orthonormal base, but not depending on this base). With
this, we can justify the existence of a spherical metric in a projective bundle in terms of
the hermitian metric defined in the fibre bundle.
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