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SUMMARY
In this paper, an online self-gain tuning method of a PD computed torque control (CTC) is used
for a 3UPS-PS parallel robot. The CTC is applied to the 3UPS-PS parallel robot based on the robot
dynamic model which is established via a virtual work principle. The control system of the robot
comprises a nonlinear feed-forward loop and a PD control feedback loop. To implement real-time
online self-gain tuning, an adjustment method based on the genetic algorithm (GA) is proposed.
Compared with the traditional CTC, the simulation results indicate that the control algorithm pro-
posed in this study can not only enhance the anti-interference ability of the system but also improve
the trajectory tracking speed and the accuracy of the 3UPS-PS parallel robot.

KEYWORDS: 3UPS-PS parallel robot; Dynamics; Computed torque control; PD control; Genetic
algorithm.

1. Introduction
Parallel robots have effective stiffness and a high load-to-weight ratio.1–3 These advantages explain
why they are widely used in industrial fields, such as machine tools,4 high-speed sorting,5, 6 and
motion simulators.7, 8 With an improvement in the industrial level, the requirements of high accu-
racy and speed tasks for parallel robots have improved considerably. In recent years, some scholars
have carried out several studies on the control algorithm design of parallel robots to promote the
performance of the trajectory tracking control of parallel robots to fulfill higher demands.

The controller of parallel robots can be divided into two categories: kinematic controllers and
dynamic controllers.9 Kinematic controllers are based on the kinematic model of parallel robots.
Apart from the advantage of having simple structures, kinematic controllers are easy to implement.10

Unlike the kinematic controllers, the control law of dynamic controllers is designed based on the
dynamic model. Moreover, dynamic controllers have better control performance when high speed
and greater accuracy are required as a result of the strong coupling, nonlinear dynamic characteris-
tics of parallel robots.11–13 Belonging to the dynamic controller, the computed torque control (CTC)
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Fig. 1. 3UPS-PS parallel robot structure diagram.

has the advantages of a high tracking accuracy, simplicity, and low energy consumption,14 and it
is widely used in the field of the parallel-robot control.15–17 However, this controller is sensitive to
uncertainties such as modeling errors, frictional losses, and external disturbances because the tra-
ditional CTC depends on the accurate dynamic model.18 To eliminate the effects of uncertainties
in the control system, some extensive adaptive and robust control methods have been incorporated
with the conventional CTC. Chen et al.19 combine the conventional CTC and the adaptive control to
eliminate the effects of uncertainties in the control system of a 3-DOF serial manipulator. Findings
indicate that the proposed control scheme has higher convergence and stability than the traditional
CTC. Zhu et al.20 aim to reduce the effects of the uncertainties from the friction force and unknown
disturbance of 3-DOF pneumatic muscles driven parallel manipulator with the adaptive robust con-
trol approach based on the traditional CTC. The simulation and experimental results reveal that this
control method can guarantee transient performance and final tracking accuracy. Otherwise, the tra-
ditional CTC is based on the PD control; simply put, it is difficult for this controller to have a better
performance with the fixed gain.21 To solve this problem, the GA is used because it is easy to imple-
ment and because it is unnecessary to provide a set of valid input target pairs in the training set.22

The study aims to propose a GA-based CTC controller which can be implemented by incorporating
a conventional CTC controller and a self-gain tuning method based on the GA. In this paper, the PD
gains of the controller proposed are implemented with online auto tuning by using the GA to promote
the robustness and accuracy of the control system of the 3UPS-PS parallel robot.

This paper is arranged as follows: In Section 2, the dynamic model of the 3UPS-PS parallel robot
is established by using the virtual work principle, and the seventh-order polynomial is used for tra-
jectory planning. In Section 3, the CTC for the 3UPS-PS parallel manipulator with online self-gain
tuning based on the GA is proposed. In Section 4, based on theoretical analysis, the simulation of the
control system via MATLAB� is provided. Finally, a conclusion is drawn in Section 5.

2. 3UPS-PS Dynamic Analysis

2.1. Kinematics analysis
2.1.1. Position analysis. The 3UPS-PS parallel robot consists of a base platform, a moving platform,
and four kinematic limbs which are connected with the base platform and the moving platform. The
central limb is the PS limb, and three external limbs are the UPS limb. Here, the U, P, and S denote
universal, prismatic, and spherical joints, respectively. The moving platform can implement a one-
dimensional movement and a three-dimensional rotation in the workspace by adjusting the length of
the four limbs. This kind robot has advantages of high load-to-weight ratio, so it can be adopted to
develop a rehabilitation appliance, motion simulator, and so on. Figure 1 depicts the 3UPS-PS parallel
robot. The coordinate system is established as follows: The reference coordinate system B0 − xyz and
the moving coordinate system A0 − uvw are located at the center of mass of the base platform and
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Fig. 2. The local coordinate system of the ith limb.

the moving platform, respectively. The orientation of the moving platform can be described by the
rotation matrix B0 RA0 as shown in Eq. (1)

B0 RA0 = Rot(z, φz)Rot(y, φy)Rot(x, φx) (1)

where φx , φy , and φz are the Euler angles of rotation of the moving platform on the fixed x-axis,
y-axis, and z-axis, respectively.

The linear velocity, angular velocity, and angular acceleration of the moving platform can be
expressed as follows:23, 24

v = q̇0 (2a)

ω = [
φ̇x φ̇y φ̇z

]T
(2b)

ω̇ = [
φ̈x φ̈y φ̈z

]T
(2c)

The generalized position, velocity, and acceleration of the moving platform can be defined as
follows:

x = [
q0 φx φy φz

]T
(3a)

ẋ = [
v ω

]T
(3b)

ẍ = [
v̇ ω̈

]T
(3c)

To describe the orientation of each limb, the coordinate system Bi − xi yi zi is established at point
Bi as illustrated in Fig. 2. The rotation matrix B0 RBi , which describes the relationship between the
coordinate system Bi−xi yi zi and the coordinate system B0 − xyz, can be written as follows:

B0 RBi = Rot(z, φi )Rot(y′, ϕi ) (4)

The position equation associated with the ith limb can be written as follows:

q0w0 + ai = bi + qi wi i = 1, 2, 3 (5)

where q0, qi , w0, wi , ai , and bi represent the length of central limb, the length of the ith limb, the unit
vector along the central limb, the vector along the ith limb, the vector A0 Ai , and the vector B0 Bi ,
respectively.

From Eq. (5), the following equation is obtained:

qi =
√

(q0w0 + ai − bi)T (q0w0 + ai − bi) (6)
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2.1.2. Velocity analysis. Taking the time derivative and both sides dot product with wi of Eq. (5) and
writing it in the matrix form, the linear velocity of the ith limb can be written as follows:

q̇i =
[

q̇0 q̇1 q̇2 q̇3
]T = J

[
v

ω

]
= Jẋ (7)

J =

⎡
⎢⎢⎢⎢⎣

1 03×1

wT
1 w0 (a1 × w1)

T

wT
2 w0 (a2 × w2)

T

wT
3 w0 (a3 × w3)

T

⎤
⎥⎥⎥⎥⎦ (8)

Taking the time derivative of Eq. (5) and both sides cross product with wi of the equation and then
simplifying it, the angular velocity in the coordinate system B0−xyz of the ith limb can be obtained
as follows:

ωi = 1

qi
S(wi )(v + S(ω)ai ) (9)

where S(wi ) and S(ω) are skew-symmetric matrices.

S(wi ) =
⎡
⎣ 0 −wi z wiy

wi z 0 −wi x

−wiy wi x 0

⎤
⎦ (10a)

S(ω) =
⎡
⎣ 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

⎤
⎦ (10b)

Taking the product of both sides of the Eq. (9) with Bi RB0 and writing it in the matrix form, the
angular velocity of the coordinate system Bi−xi yi zi of the ith limb can be expressed as follows:

Bi ωi = 1

qi

[
S
(

Bi wi
)

Bi RB0 − S
(

Bi wi
)

S
(

Bi ai
)

Bi RB0

] [ 02×4

E4×4

] [
v

ω

]
(11)

= Jiω

[
v

ω

]
i = 1, 2, 3

B0ω0 = J0ω

[
v

ω

]
= 03×1 (12)

The linear velocity of the center of mass ci1 in the ith limb can be described in the coordinate system
Bi−xi yi zi as follows:

Bi vci1 = −Bi ei1 × Bi ωi (13a)

Bi vci1 = −S
(

Bi eci1

)
Jiω

[
v

ω

]
= Jvci1

[
v

ω

]
i = 1, 2, 3 (13b)

B0 vc01 = Jvc01

[
v

ω

]
= 03×1 (14)

Jci1 = [
Jvci1 Jiω

]T
(15)

where Bi eci1 = eci1
Bi wi .
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The linear velocity of the center of mass ci2 in the ith limb can be described in the coordinate
system Bi − xi yi zi as follows:

Bi vci2 = Bi v + Bi ω × Bi ai − Bi ωi × Bi eci2 (16a)

Bi vci2 =
([

Bi RB0 −S
(

Bi ai
)

Bi RB0

] [ 02×4

E4×4

]
+ S

(
Bi eci2

)
Jiω

) [
v

ω

]
(16b)

Jvci2 = [
Bi RB0 −S

(
Bi ai

)
Bi RB0

] [ 02×4

E4×4

]
+ S

(
Bi eci2

)
Jiω i = 1, 2, 3 (17)

Bi vc02 = q̇w0 = Jvc02

[
v

ω

]
(18)

2.1.3. Acceleration analysis. Taking the second derivative of Eq. (5) with respect to time and both
sides dot product with wi of the equation and rewriting it in the matrix form, the acceleration of the
ith limb can be calculated as follows:

q̈i =

⎡
⎢⎢⎢⎢⎢⎣

q̈0

q̈1

q̈2

q̈3

⎤
⎥⎥⎥⎥⎥⎦= J

[
v̇

ω̇

]
+

⎡
⎢⎢⎢⎢⎢⎢⎣

0

q1
(
ωT

1 ω1
)+ (

wT
1 ω
) (

ωT a1
)− (

wT
1 a1

) (
ωT ω

)
q2
(
ωT

2 ω2
)+ (

wT
2 ω
) (

ωT a2
)− (

wT
2 a2

) (
ωT ω

)
q3
(
ωT

3 ω3
)+ (

wT
3 ω
) (

ωT a3
)− (

wT
3 a3

) (
ωT ω

)

⎤
⎥⎥⎥⎥⎥⎥⎦

(19)

Taking the second derivative of the right side of Eq. (5) with respect to time and taking the
cross product of both sides of the equation with Bi wi and substituting Bi wT

i
Bi ωi = Bi ẇT

i
Bi ωi = 0 into

the function, the angular acceleration in the coordinate system Bi − xi yi zi of the ith limb can be
computed as follows:

Bi ω̇i = Jiω

[
v̇

ω̇

]

+ 1

qi

((
Bi ωT Bi ai

) (
Bi wi × Bi ω

)
− (

Bi ωT Bi ω
)
(Bi wi × Bi ai ) − 2q̇i

Bi ωi

)
(20)

Since the central limb is fixed on the base platform, B0ω̇0 = 03×1.
Taking the derivative of Eq. (13a) with respect to time and substituting Eq. (20) into the equation,

the linear acceleration of the center of mass ci1 in the ith limb described in the coordinate system
Bi−xi yi zi can be expressed as follows:

Bi v̇ci1 = Jvci1

[
v̇

ω̇

]
− 1

qi

⎛
⎜⎜⎝
((

Bi ωT Bi ai
) (

Bi eT
i1

Bi ω
)− (

Bi ωT Bi ω
) (

Bi eT
i1

Bi ai
))

Bi wi

+ei1
(− (

Bi ωT Bi ai
)

Bi ω + (
Bi ωT Bi ω

)
Bi ai

)
+2q̇i

(
Bi ωi × Bi ei1

)

⎞
⎟⎟⎠ (21)

− (
Bi ωT

i
Bi ωi

)
Bi ei1 i = 1, 2, 3

Taking the time derivative of Eq. (16a) and substituting Eq. (20) into the equation, the linear acceler-
ation of the center of mass ci2 in the ith limb described in the coordinate system Bi − xi yi zi is written
as follows:

Bi v̇ci2 = Jvci2

[
v̇

ω̇

]
+ Bi ω × (

Bi ω × Bi ai
)− Bi ωi × (

Bi ωi × Bi ei2
)

+ 1

qi
S
(

Bi ei2
) ((Bi ωT Bi ai

) (
Bi wi × Bi ω

)
− (

Bi ωT Bi ω
) (

Bi wi × Bi ai
)− 2q̇i

Bi ωi

)
(22)
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Bi v̇ci2 = [
wi0 03×3

] [ v̇

ω̇

]
= Jvc02

[
v̇

ω̇

]
(23)

2.2. Dynamic analysis
According to the D’Alembert’s principle, the following equation represents the resultant
force/moment acting on the center of mass of the moving platform:

F =
[

f

n

]
=
[

f e + mg − mv̇c

ne − B0 Iω̇ − ω × (B0 Iω)

]
(24)

where f and n denote the external force and moment exerted at the barycenter of the moving platform,
respectively. B0 I = B0 RA0

A0 IB0 R−1
A0

is the inertia matrix of the moving platform about the barycenter
in the coordinate system B0 − xyz, and v̇cis the acceleration of the center of mass of the moving
platform.

The following equation is the resultant force/moment exerted on the center of mass ci1 and ci2:

Bi Fci j =
[ Bi f ci j

Bi nci j

]
=
[

mci j
Bi RB0 g − mci j v̇ci j

−Bi Ici j
Bi ω̇i − Bi ωi × (

B0 Ici j
Bi ωi

)
]

i = 0, 1, 2, 3 j = 1, 2 (25)

where mci1, mci2
Bi Ici1, and Bi Ici2 denote the mass of the cylinder, the mass of the piston of the ith

limb, the inertia matrix of the cylinder, and the inertia matrix of the piston of the ith limb in the
coordinate system Bi − xi yi zi , respectively.

The following equation is obtained according to the virtual work principle:

δxT JcF +
3∑

i=1

(
δxT JT

ci1

Bi Fci1

)+
3∑

i=0

(
δxT JT

ci2

Bi Fci2

)+ δxT JTτ = 0 (26a)

where δx is the rotational virtual displacement of the moving platform and the virtual displacement
of the point of the joint A0. Because the Eq. (26a) is valid for any virtual displacement δx. It must be
as follows:

JcF +
3∑

i=1

(
JT

ci1

Bi Fci1

)+
3∑

i=0

(
JT

ci2

Bi Fci2

)+ JTτ = 0 (26b)

Substituting Eqs. (7), (11), (20)–(22), (24), (25) into the Eq. (26b) and rewriting the equation in
the matrix form, the dynamic model of the 3UPS-PS parallel robot can be written as follows:

JTτ = M(x) ẍ + C(x, ẋ) + G(x) (27)

where

M(x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

JT
c

⎡
⎣mE3×3 03×3

03×3
B0 I

⎤
⎦ Jc

+
3∑

i=1

(
JT

vci1mci1Jvci1 + JT
iω

Bi Ici1Jiω
)

+
3∑

i=0

(
JT

vci2mci2Jvci2 + JT
iω

Bi Ici2Jiω
)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(28)

Jc =
[

w0 03×3

03×1 E3×3

]
(29)
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G(x) = −

⎛
⎜⎜⎜⎜⎜⎝

(
JT

c

[
mg

03×1

])
+

3∑
i=1

(
JT

ci1

[
mci1

Bi RB0 g

03×1

])

+
3∑

i=0

(
JT

ci2

[
mci1

Bi RB0 g

03×1

])

⎞
⎟⎟⎟⎟⎟⎠ (30)

2.3. Trajectory planning
The purpose of trajectory planning is to make the moving platform of the 3UPS-PS parallel robot
reach the specified orientation along a smooth curve without a flexible and rigid impact. The seventh-
order polynomial planning method is a common planning method, which can satisfy the condition
that the initial/final speed, acceleration, and jerk of the moving platform of the robot are 0. The
specific constraints are as follows:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

φx0 = cx0, φx f = cx f , φ̇x0 = φ̇x f = 0

φy0 = cy0, φy f = cy f , φ̇y0 = φ̇y f = 0

φz0 = cz0, φz f = cz f , φ̇z0 = φ̇z f = 0

z0 = czt0, zf = cz f 0, ż0 = żf = 0

(31a)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

φ̈x0 = φ̈x f = 0 ,
...
φ x0 = ...

φ x f = 0

φ̈y0 = φ̈y f = 0 ,
...
φ y0 = ...

φ y f = 0

φ̈z0 = φ̈z f = 0 ,
...
φ z0 = ...

φ z f = 0

z̈0 = z̈f = 0 ,
...
z 0 = ...

zf = 0

(31b)

where φx0, φx f , φy0, φy f , φz0, φz f are the initial/final Euler angles of rotation of the moving platform
on the fixed x-axis, y-axis, and z-axis, respectively. z0, z f represent the initial/final displacement of
the moving platform along the z-axis. The moving platform moves from initial orientation to final
orientation through the seventh-order polynomial interpolation which can be written as follows:

P(t) = a0 + a1t + a2t2 + a3t3 + a4t4 + a5t5 + a6t6 + a7t7 (32)

Substituting Eq. (31) into Eq. (32), the trajectory of the 3UPS-PS parallel robot can be obtained as
follows. The simulation results are shown in Fig. 3.⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

φx = (
0.035t4 − 0.0084t5 + 7 × 10−4t6 − 2 × 10−5t7

)× π/180

φy = (
0.035t4 − 0.0084t5 + 7 × 10−4t6 − 2 × 10−5t7

)× π/180

φz = (−10 + 0.035t4 − 0.0042t5 − 3.5 × 10−4t6 − 10−5t7
)× π/180

z = 0.313 + 3.5 × 10−5t4 − 8.4 × 10−6t5 − 7 × 10−7t6 − 2 × 10−8t7

(33)

3. Control System Structure
The CTC is applied to control the 3UPS-PS parallel robot based on the dynamic model. The control
system consists of a nonlinear feedforward loop and a PD control feedback loop with an online
self-gain tuning approach based on the GA. Figure 4 illustrates the control system structure.

3.1. Computed torque control
3.1.1. Control law design. Given the disturbance in the control process, the dynamics model of the
3UPS-PS parallel robot can be expressed as follows:

JT τ = M(x)ẍ + C(x, ẋ) + G(x) + τ B (34)

where τ B = Jcτ b, τ b is the disturbance force.
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Fig. 3. Trajectory planning for 3UPS-PS robot.
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polynomial 

trajectory planning
generator 

Fig. 4. 3UPS-PS control system structure diagram.

By allowing e to be the deviation between the actual orientation and the desired orientation of the
moving platform, the following equation is obtained:

e = xd(t) − x(t) (35)

Taking the derivative of the Eq. (34) with respect to time, the equation is as follows:

ė = ẋd(t) − ẋ(t) (36)

ë = ẍd(t) − ẍ(t) (37)

Substituting Eq. (34) into Eq. (37), the equation is as follows:

ë = ẍd + M(x)−1
(
C(x, ẋ) + G(x) + τ B − JT τ

)
(38)

The control input function is defined as follows:

u = ẍd + M(x)−1
(
C(x, ẋ) + G(x) − JT τ

)
(39)

The control law of the system can be obtained using Eq. (39).

JT τ = M(x)(ẍd − u) + C(x, ẋ) + G(x) (40)
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Fig. 5. Self-gain tuning algorithm.

Substituting Eq. (34) into Eq. (40), the equation is as follows:

ë = u + M(x)−1τ B (41)

3.1.2. Feedback loop design. The feedback loop adopts the mature theory of the PD control, and the
feedback law is defined as follows:

u = −Kd ė − K pe (42)

where Kd = diag(Kd1 Kd2 Kd3 Kd4) and K p = diag(K p1 K p2 K p3 K p4) denote the differ-
ential coefficient matrix and the proportional coefficient matrix, respectively, and both of Kd and K p

are diagonal matrices.
Substituting Eq. (42) into Eq. (40), the control input of the moving platform of the robot is written

as follows:

JT τ = M(x)(ẍd + Kd ė + K pe) + C(x, ẋ) + G(x) (43)

Substituting Eq. (42) into Eq. (41), the closed-loop system error equation can be expressed as
follows:

ë + Kd ė + K pe = M(x)−1τ B = N (44)

Defining the state variable of the control system as Q = [
e ė
]T

, the error equation can be
expressed in form of the state equation.

d

dt

[
e

ė

]
=
[

04×4 E4×4

−K p −Kd

] [
e

ė

]
+
[

04×4

E4×4

] (
M(x)−1τ B

)
(45)

3.2. PD gain self-tuning algorithm
The 3UPS-PS parallel robot is a highly nonlinear coupled time-varying system. A lot of uncertainties
can affect the stability and accuracy of the control system, such as model errors and frictional losses.
To improve the performance of the traditional CTC, the GA is used to implement the online self-gain
tuning of proportional parameters and differential parameters of PD controllers. The computation
process is divided into four steps, and the algorithm flowchart is shown in Fig. 5.
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Table I. The parameters of the moving platform (m).

Parameters 0 1 2 3

xBi 0 0.1040 −0.0520 −0.0520
yBi 0 0 0.0901 −0.0901
zBi 0 0 0 0

Table II. The parameters of the based platform (m).

Parameters 0 1 2 3

xAi 0 0.1813 −0.0907 −0.0907
yAi 0 0 0.1570 −0.1570
z Ai 0 0 0 0

Table III. The parameters of the control system.

Parameters z φx φy φz

K p 5000 5000 5000 5000
Kd 2000 2000 2000 2000
e0 0.001 0.001 0.001 0.001

(1) Initialization: The evolutionary algebraic counter is set to 0, and 50 individuals associated with
kdi and kpi are randomly generated as the initial population.

(2) Error equationsolution: The individuals that involve kdi and kdi in the last step are substituted
into the differential equations and then the error equation and the fitness value are solved.

(3) Fitness value evaluation: The fitness value is assessed by the following fitness value evaluation
function:

min Z = |xdi − xi | = |ei | (46)

(4) Generating a new population: If the condition (Kdi > 0, K pi > 0) is satisfied (when the
Kd and K p are positive definite matrices, the error system of the 3UPS-PS parallel robot is
asymptotically stable25), the fitness value meets the accuracy requirement, and the most optimal
individuals are outputted. If not, the new populations are generated by selection, crossover, and
mutation and then step 2 and step 3 are repeated.

4. Simulation
According to the theoretical analysis, the performance of the CTC based on the GA is compared
with the traditional CTC by simulation. The structural parameters of the 3UPS-PS parallel robot are
shown in Tables I and II. The parameters of the traditional CTC are shown in Table III. The mass of
the moving platform, the mass of the piston of the ith limb, and the mass of cylinder of the ith limb
are 5.5, 0.15, and 0.15 kg, respectively. The initial error is e0. The trajectory of moving platform is
given in Eq. (33). The trajectory tracking abilities of moving platform of traditional CTC and the
control algorithm proposed in this paper along x-axis, y-axis, and z-axis, respectively, are compared
and analyzed under uncertain disturbance. The simulation is lasting 10 s. The simulation results are
shown in Figs. 6–9.

By analyzing the trajectory tracking image (a) in Figs. 6–9, the CTC based on the GA has a higher
trajectory tracking accuracy and speed than the traditional CTC. When the CTC based on the GA
is applied, the tracking speed and the anti-jamming ability of the robot system can be improved,
the tracking error is less than 10−4, and the error fluctuation is reduced (see image b in Figs. 6–9).
The optimal value of Kd is between 0 and 300, and the optimal value K p is between 0 and 18,000
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Fig. 6. Tracking error analysis along axis z (a) trajectory tracking, (b) tracking error, (c)Kd1, (d)K p1.

time (s)time (s)

time (s)time (s)

CTC
GaCTC
Design

(a)

(c) (d)

(b)

Fig. 7. Tracking error analysis along axis x rotation, (a) trajectory tracking, (b) tracking error, (c)Kd2, (d)K p2.
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Fig. 8. Tracking error analysis along axis y rotation, (a) trajectory tracking, (b) tracking error, (c)Kd3, (d)K p3.
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time (s) time (s)

time (s) time (s)
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Design

(a) (b)

(c) (d)

Fig. 9. Tracking error analysis along axis z rotation, (a) trajectory tracking, (b) tracking error, (c)Kd4, (d)K p4.

(see images c and d in Figs. 6–9). Sangdani et al.22 applied similar methods to vision-based tracker
robot and achieved good tracking results in the experiment.

5. Conclusion
This paper presents the CTC method based on the GA to improve the trajectory tracking accuracy
and convergence speed of the 3UPS-PS parallel robot. The dynamic model of the 3UPS-PS parallel
manipulator is established according to the virtual work principle. The seventh-order polynomial
trajectory planning method is applied to make the moving platform achieve the specified orientation
without a flexible and rigid impact along the smooth curve. Composed of a nonlinear feed-forward
loop and a self-gain tuning PD control feedback loop based on the GA, the control system of the
robot is constructed. After analyzing the performance of the proposed control algorithm and the
traditional CTC, the simulation results reveal that the control method proposed in this paper can
not only enhance the anti-jamming ability of the control system and improve the trajectory tracking
speed and accuracy of the 3UPS-PS parallel robot but also reduce the error fluctuation of the control
system. Meanwhile, this control method has a simple structure and is suitable for other kinds of
parallel robots.
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