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Abstract

We apply an Eulerian Vlasov code to study the amplification of an ultra-short seed pulse via stimulated Raman and
Brillouin backscattering of energy from a long pump pulse, assumed at constant amplitude, in a plasma embedded in
an external magnetic field. Detailed analysis of the spectra developed during the amplification process are presented,
together with the evolution showing the pump depletion, accompanied by the counter-propagating seed-pulse
amplification, compression and increased steepness of the waveform. In addition to the problem of the amplification of
ultra-short seed pulses, there is an obvious academic interest in the study of problems of amplification of
electromagnetic waves observed in many situations in laboratory plasmas and in the magnetosphere and other
geophysical situations, such as in the environments of planets, where important variations in the presence and strength
of magnetic fields are observed. The numerical code solves a one-dimensional relativistic Vlasov–Maxwell set of
equations for a plasma in a magnetic field for both electrons and ions. We also apply the code to the problem of
wakefield acceleration. The absence of noise in the Eulerian Vlasov code allows one to follow the evolution of the
system with an accurate representation of the phase-space structures of the distribution functions.
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1. INTRODUCTION

Especial attention has been given recently, both theoretically
and experimentally, to the idea of plasma-based laser am-
plifiers for their application to the direct amplification of
ultra-short laser pulses. This process has been extensively ex-
amined in un-magnetized plasmas (see, for instance, Malkin
et al., 1999; Malkin & Fisch, 2014; Andreev et al., 2006;
Lancia et al., 2010; Wang et al., 2010; Trines et al., 2011;
Mourou et al., 2012; Riconda et al., 2013). This problem in-
volves the interaction in a plasma of the ultra-short seed
pulse with a long pump pulse, generally of low intensity,
to amplify the counter-propagating seed-pulse intensity by
several orders of magnitude. In this process, there is an
energy transfer through stimulated scattering mediated by a
resonant plasma wave, from the long pump electromagnetic
(EM) wave with frequency and wavenumber (ω0P, �k0P), to
the initially low-intensity ultra-short seed pulse with freq-
uency and wavenumber (ω0s, �k0s). The resonant plasma
wave can be either an electron plasma wave (ωe, �ke), as in

the case of the stimulated Raman scattering (SRS), or an
ion wave (ωion, �kion) as in the case of the stimulated Brillouin
scattering (SBS). The energy transfer requires the coupling
of these waves through the momentum and energy conserva-
tion conditions �k0P = �k0S + �ke,ion and ω0P= ω0S+ ωe,ion.
For high energies, Raman and Brillouin processes might
be even mixed (Lehmann et al., 2012; Riconda et al.,
2013). Lehmann and Spaschek (2013), and Weber et al.
(2013) have discussed the advantages and disadvantages of
amplification of ultra-short laser pulses by Brillouin back-
scattering in plasmas, compared with Raman processes. Bril-
louin backscattering can amplify and compress pulses of
extremely short duration.

It has recently been suggested that the addition of a mag-
netic field to the plasma can improve the confinement and the
plasma performance, as suggested for instance by Grulke
et al. (2015) for problems of wakefield accelerators. We pre-
sent in this work some sample studies of the problem of
plasma-based laser amplifiers when the plasma is embedded
in an external magnetic field. Besides the academic impor-
tance of the problem and the laboratory interest of EM
waves in many experimental situations, they are also ob-
served in many geophysical situations, especially in our
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neighborhood in the environments of planets where the pres-
ence and strength of magnetic fields can have wide varia-
tions. The ionosphere is an upper atmospheric layer of
plasmas, which results from the ionization of neutral atoms
under the influence of solar radiation and energetic particles
of the solar wind, and couples to the magnetosphere through
strong field-aligned currents (see the review article by
Briand, 2015). In the past several years, important theoretical
and numerical simulation works have been published to un-
derstand the nonlinear growth of magnetospheric whistler-
mode waves (see, for instance, the recent work by Summers
et al., 2013). Very low-frequency emissions have been artifi-
cially triggered in the magnetosphere by narrow whistler
wave-trains of sufficient duration (Denavit & Sudan, 1975).
See also the recent work of Tejero et al. (2015). It is not
our intention to review these problems, we only point out
the relevance of our work. We mention in addition the
recent interest of imposing an axial magnetic field in inertial
confinement fusion indirect-drive hohlraum plasmas, which
could reduce SRS instabilities which affect coupling and
cause preheat, and could improve laser–energy coupling in
hohlraum targets (Montgomery et al., 2015; Strozzi et al.,
2015).
Eulerian Vlasov codes have been successfully applied to

the problem of the plasma-based laser-pulse amplifiers in
the absence of an external magnetic field, for the problems
of the backward SRS and SBS (Lehmann et al., 2012,
2013; Shoucri et al., 2014, 2015; Toroker et al., 2014).
They have also been successfully applied to the problem of
wakefield accelerators in an un-magnetized plasma (Shoucri,
2008b). The results compared favorably to those obtained
with the particle-in-cell (PIC) codes. In the PIC simulation
results for seed-pulse amplification presented by Andreev
et al. (2006) for instance, the length of the plasma amplifier
had to be restricted due to the intrinsic numerical noise, be-
cause otherwise the pump would have been depleted by Bril-
louin scattering on the thermal noise, which is intrinsic in
PIC simulations. Subsequently, Humphrey et al. (2013),
studying the same problem, showed that the undesirable
noise effects can be reduced by adding the collisions in the
PIC simulations, as these damp the effects of thermal
noise. The parameters of Humphrey et al. (2013) were used
in a simulation with a Vlasov code by Shoucri et al.
(2015), who showed the Vlasov code produced much more
favorable results. Lehmann and Spatschek (2013) have also
shown the difficulty of studying the SBS problems for laser-
pulse amplification with PIC codes, because of the intrinsic
numerical noise associated with these codes. The Eulerian
Vlasov code we use for the present problem solves the one-
dimensional (1D) relativistic Vlasov–Maxwell’s equations
for a plasma in a uniform external magnetic field for both
electrons and ions. The code is fully kinetic along the direc-
tion of the magnetic field, and uses fluid equations in the di-
rection normal to the external magnetic field. This code has
been previously successfully applied for instance to the prob-
lem of beat-wave current drive (Ghizzo et al., 1992). The

code and the relevant equations are presented in Section 2.
In Section 3, we test the code by studying the response of
the code for a large amplitude perturbation. In Sections 4
and 5, we study respectively the SRS and SBS amplification
of seed pulses, and in Section 6 we present a case of wake-
field acceleration.

2. THE RELEVANT EQUATIONS OF THE
EULERIAN VLASOV CODE AND THE
NUMERICAL METHOD

The relevant equations for the problem we are studying have
been presented previously (see, for instance, Appendix B in
Ghizzo et al., 1992 for more details). We rewrite these equa-
tions in order to fix the notation. Time t is normalized to the
inverse electron plasma frequency ω−1

pe , velocity and momen-
tum are normalized respectively to the velocity of light c and
toMec,whereMe is the electron mass, length is normalized to
l0 = cω−1

pe , and the electric field is normalized to E0=Me

ωpec/e. The 1D Vlasov equations for the electrons and
ions distribution functions fe,i(x, pxe,i, t) verify the relation:

∂ fe,i
∂t

+ pxe,i
me,iγe,i

∂ fe,i
∂x

∓ (Ex + (�u⊥e,ix�B⊥)x)
∂ fe,i
∂ pxe,i

= 0, (1)

where γe,i≈ (1+ ( pxe,i/me,i)
2)1/2. The upper sign in Eq. (1)

is for the electron equation and the lower sign for the ion
equation, and subscripts e and i denote electrons and ions, re-
spectively. In our normalized units me= 1, and mi=Mi/
Me= 1836 is the ratio of ion to electron masses. In this 1D
model, the transverse velocity �u⊥e,i(x, t) is assumed non-
relativistic and is calculated from a transverse “fluid” equa-
tion, but the kinetic features of the plasma are fully preserved
along the external magnetic field in the longitudinal direction
x. The transverse momentum �p⊥e,i(x, t) = me,i�u⊥e,i is ob-
tained through the introduction of the generalized canonical
momentum defined by �P⊥e,i(x, t) = �p⊥e,i(x, t)∓ �a⊥(x, t) (�A
is the vector potential of the wave, and �a = e�A/Mec is the
normalized vector potential), which obeys the “fluid”
equation:

∂
∂t

+ uxe,i
∂
∂x

( )
�P⊥e,i = �P⊥e,ix�Ωce,i ± �a⊥x�Ωce,i (2)

with uxe,i =
�+∞
−∞

pxe,i
me,iγe,i

fe,id pxe,i.

�Ωce,i = Ωce,i�ex, where Ωce,i is the electron (ion) cyclotron
frequency, and �ex is the unit vector in the direction of the ex-
ternal magnetic field.
We adopt the Coulomb gauge ∇.�a = 0, where the vector

potential is in the perpendicular plane. The longitudinal elec-
tric field Ex is calculated either from the gradient of a poten-
tial Ex=−∂φ/∂x or from the Ampére’s law:

∂Ex

∂t
= −Jx, Jx =

∫+∞

−∞

pxi
miγi

fid pxi −
∫+∞

−∞

pxe
meγe

fed pxe. (3)
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The transverse electric field E
⇀
⊥ is calculated from the

relations:

E
⇀

⊥ = − ∂a⇀⊥

∂t
. (4)

The transverse EM fields Ey, Bz and Ez, By for the circularly
polarized wave obey Maxwell’s equations. Defining E±=
Ey± Bz and F±= Ez± By we have the following equations:

∂
∂t

±
∂
∂x

( )
E± = −Jy

∂
∂t

∓
∂
∂x

( )
F± = −Jz, (5)

which are integrated along their vacuum characteristics
x=±t. In our normalized units, we have the following ex-
pressions for the normal current densities:

J
⇀

⊥ = J
⇀

⊥e + J
⇀

⊥i; J
⇀

⊥e,i

= ∓ne,i(x, t)�u⊥e,i(x, t); ne,i(x, t) =
∫+∞

−∞
fe,id pxe,i.

(6)

The numerical scheme applies a direct solution method of the
Vlasov equation as a partial differential equation in phase
space. This method has become an important method for
the numerical solution of the Vlasov equation. In Eq. (1),
γe,i≈ (1+ ( pxe,i/me,i)

2)1/2 is a function px only, which
allows us to apply a time-splitting scheme with the separation
of x and px variables by a method of fractional steps, as dis-
cussed for Eulerian Vlasov codes in several publications
(Shoucri & Storey, 1986; Ghizzo et al., 1990, 1992; Shoucri,
2008a).

3. TESTING THE CODE: PROPAGATION OF A
LARGE AMPLITUDE WAVE

In this section, the response of the code is tested for large am-
plitude waves, in order to evaluate its precision and perfor-
mance. Small amplitude perturbations of these waves will
be used in Sections 4 and 5 for the SRS and SBS seed-pulse
amplification problems.

3.1. The case of a forward scattering with a frequency of
the laser pump ω0P = 2.17, the electron cyclotron
frequency Ωce= 1.4 and a vector potential for the
pump a0P = 0.09

We first test the code for a forward Raman scattering prob-
lem, where the forward injected large amplitude pump
wave decays into another forward propagating wave and a
plasma wave. We consider initially a Maxwellian plasma
for the electrons and ions, with respective temperatures
Te= 0.3 keV and Ti= 0.02 keV. The ions do not play any
role in the present physics, but have been included for the
possible control of the small sheath at the edges. The linear
dispersion relation for this problem is given by:

k2 = ω2

c2
1− ω2

pe

ω(ω∓Ωce)

[ ]
. (7)

The upper sign is for a right-hand circularly polarized wave
(RCP), and the lower sign for a left-hand circularly polarized
wave (LCP). The frequency of the EM wave is ω, and k the
wavenumber. We consider a plasma such that the ratio of the
electron cyclotron frequency Ωce to the electron plasma fre-
quency ωpe is Ωce/ωpe= 1.4, and the ratio of the laser
pump frequency ω= ω0P to the electron plasma frequency
is ω0P/ωpe= 2.17. In the remaining of the text, we will use
only normalized values and write Ωce= 1.4 and ω0P=
2.17. The corresponding wavenumber for the RCP wave cal-
culated from Eq. (7) equals to 1.376, and equals to 2.025 for
the LCP.

For the case of the forward Raman scattering problem
under consideration, we have a forward propagating circu-
larly polarized laser beam entering the system at the left
boundary (x= 0), and the forward propagating fields of
the circularly polarized constant amplitude pump are
given at x= 0 by E+= 2E0P cos (ω0Pt) and F−= 2E0P

sin (ω0Pt), where ω0P= 2.17 and E+ and F− are defined
in Eq. (5). A characteristic parameter of high-power laser
beams is the normalized vector potential or quiver momen-

tum
∣∣∣a⇀⊥

∣∣∣ = ∣∣∣eA⇀⊥/Mec
∣∣∣ = a0, where �A⊥ is the vector poten-

tial of the wave. For a circularly polarized wave 2a20 = Iλ20/
1.368 × 1018, where I is the intensity in Wcm−2 and λ0 the
laser wavelength in microns. We take the amplitude of the
vector potential of the pump to be a0P= 0.09, which is
sufficiently high to excite the possible Raman scattered
modes without having to add a perturbation for a stimula-
tion. We have in our normalized units E0P= ω0Pa0P. We
use a system of length L= 800. The number of grid
points in space is N= 120 000, so Δx= Δt= 0.00667.
The extrema of momentum for the electrons are ±0.6,
with 1300 grid points used in velocity space.

Figure 1 shows the forward EM wave E+ at the time of the
arrival of the signal precursor at the right boundary at t=
800. The wave consists of the initial injected pump (see the
constant amplitude pump at the left in Fig. 1), beating with
the forward Raman scattered modes (these modes will be an-
alyzed in Figs 4 and 5 below). The pump appears to deplete
(see the lighter part of the graphic around x= 600) and then
grow again (darker part of the graphic after x= 700). Figure 2

Fig. 1. The spatial profile of the forward wave E+ at t= 800.
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shows the electron density and the electric field profiles at t=
800, and Figure 3 shows the phase-space contour plots of the
electron distribution function at t= 800, at different position
along the axis.
We present in Figure 4 the dominant spatial modes associ-

ated with the solution we present in Figures 1–3, by taking
the Fourier transform in space for the forward wave E+,
the backward wave E− and the longitudinal electric field
Ex in the domain x= (133, 570) at t= 800. Figure 5 presents
the corresponding frequency spectra calculated by taking the
temporal Fourier transform of the respective quantities in the
time interval t= (266, 704), recorded at the position x= 200.
Figure 5 shows for E+ the dominant frequency of the laser at
ω0P= 2.1704, which is essentially the frequency 2.17 at
which the pump is injected as we mentioned above. The
wavenumber for E+ in Figure 4 corresponding to this fre-
quency is k0P= 2.0123, in close agreement with the value
of 2.025, which we calculated from Eq. (7) for ω0P= 2.17
for a LCP [note that in the present simulation we are injecting
a large amplitude wave, and the temperature effect has been
neglected in the derivation of Eq. (7)]. So the injection of a
laser pump with ω0P= 2.17 at x= 0 has resulted in the exci-
tation of a LCP wave with a wavenumber k0P= 2.0123. We
see in Figure 5 for the forward wave E+ additional modes at
frequencies 1.1786, 3.1622 and 4.154.
In free space, the forward wave E+ and the backward wave

E− are decoupled. In a nonlinear medium like the plasma,
there is a weak coupling between E+ and E− independent
of the scattering process. This is the reason we observe in
Figure 5 in the spectrum of E− peaks at the frequencies
1.1786, 2.1704, and 3.1622 at a much lower level compared
with the level observed in E+, and in Figure 4 we observe in
the spectrum of E− peaks at the wavenumbers 0.967, 2.0123,
and 3.076 at a much lower level compared with E+.
The mode at ω0F= 1.1786 in the frequency spectrum of

E+ in Figure 5 results from the forward Raman scattering
of the pump according to the selection rule ω0P= ω0F+ ωe

(where ωe is the excited plasma frequency normalized to
the electron plasma frequency ωpe), from which we get for
the excited plasma frequency ωe= ω0P− ω0F= 2.1704−

1.1786= 0.9918, which is essentially the value of 1.00 we
see in Figure 5 for the frequency spectrum of the electric
field Ex (we note that the difference 1.00–0.9918= 0.0082
is below the resolution of the Fourier transform, which is
dω= 0.0144 in the present calculation). From Figure 4 the
corresponding wavenumber of the forward scattered mode
is k0F= 0.963, in close agreement with the value of 0.965,
we can calculate from Eq. (7) for ω0F= 1.1786. It obeys
the selection rule for the forward Raman scattering k0P=
k0F+ ke, from which ke= 2.0123− 0.963= 1.0493, very
close to the value of 1.063 calculated in Figure 4 in the spec-
trum of the electric field Ex. From the plasma wave disper-
sion relation ω2

e = ω2
pe + 3k2eυ

2
t , written in normalized form

as ω2
e = 1+ 3k2e (υ2t /c2), where υt is the thermal velocity

given in our normalized units for a temperature Te expressed
in keV by υt/c = 0.04424

			
Te

√
, and Te is 0.3 keV in the pre-

sent calculation. We get for the plasma frequency ωe=
1.000, which is the result we see in Figure 5 in the frequency
spectrum of the electric field Ex. Note that the backward
Raman scattering k0P=−k0F+ ke is also possible, from
which ke= 2.0123+ 0.967= 2.979, close to the harmonic
at 3.191 in Figure 4. The corresponding frequency is ωe=
1.00, which obeys the selection rule ω0P= ω0F+ ωe as
discussed above. But the mode at 0.967 in the spectrum of
E− in Figure 4 remained an order of magnitude smaller
than the dominant modes in the spectrum of E+. There is
no other backward scattered mode excited by the pump.
Two more forward waves are excited for E+, at the fre-

quencies 3.1622 and 4.154 in Figure 5. This is essentially
a cascade of LCP anti-Stokes resonance ω0A1= 3.1622 and
ω0A2= 4.154. They obey the selection rule ω0A1=ω0P+ωe,
from which ωe= 3.1622− 2.1704= 0.9918, which is essen-
tially the value of 1.0 we see in the frequency spectrum of the
electric field in Figure 5. In a similar way ω0A2= ω0A1+ ωe,
from which ωe= ω0A2− ω0A1= 4.154− 3.1622= 0.9918.
For the corresponding wavenumbers for the anti-Stokes
modes, we can calculate from the dispersion relation for
the LCP wave in Eq. (7) for ω0A1= 3.1622 the wavenumber
3.05, very close to the value of k0A1= 3.076 observed in
Figure 4 for the spectrum of E+ [note we are solving with

Fig. 2. Electron density and longitudinal electric field profiles at t= 800.
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a large amplitude mode and in the presence of a thermal
spread, while Eq. (7) is a linearized dispersion relation]. It
also obeys the selection rule k0P= k0A1+ ke, from which
the plasma mode wavenumber ke= k0P− k0A1= 3.076−
2.0123= 1.0637, which is essentially the value we can
read in Figure 4 in the electric field spectrum frame. In a sim-
ilar way for ω0A2= 4.154, we get from Eq. (7) the wavenum-
ber 4.063, very close to the value of k0A2= 4.139 observed in
Figure 4 for the spectrum of E+. It obeys also the selection

rule k0A2= k0A1+ ke, from which the plasma mode wave-
number ke= k0A2− k0A1= 4.139− 3.076= 1.063, which
is again the value we can read in Figure 4 in the electric
field frame. We finally point out for the electric field in
Figure 4 the harmonic structure of the wavenumber spectrum
at 2.1273, 3.191, and 4.2834, and in Figure 5 the harmonic
structure of the frequency spectrum at 1.998, 2.96, and 3.97.
This is due to the large amplitude a0P= 0.09 of the constant
laser pump. Figure 2 shows large amplitude plasma waves.

Fig. 4. Spatial Fourier transform in the domain x= (133,570) of the forward wave E+, the backward wave E−, and the longitudinal elec-
tric field Ex at t= 800.

Fig. 3. Phase-space contour plots of the electron distribution function at different position in space at t= 800.

Fig. 5. Temporal Fourier transform, calculated in the time interval t= (266,704), for the forward wave E+, the backward wave E−, and the
longitudinal electric field Ex, taken at the position x= 200.
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3.2. The case of a forward scattering with a frequency of
the laser pump ω0P= 3.2, the electron cyclotron
frequency Ωce= 0.5, and a vector potential for the
pump a0P= 0.07

We use the same parameters as in Section 3.1, except that for
the pump laser beam we use a frequency ω0P= 3.2 and a
vector potential a0P= 0.07, and we consider a plasma such
that the normalized electron cyclotron frequency Ωce= 0.5.
The corresponding wavenumber for the RCP wave calculated
from Eq. (7) equals to 3.01, and equals to 3.062 for the LCP.
Note the close values for these two wavenumbers for this
lower value of Ωce= 0.5. Details of the injection of the
pump at x= 0 are the same as in the previous section.
Figure 6 shows the forward EM wave E+ at t= 533.3, and

at the time of the arrival of the signal precursor at the right
boundary at t= 800. The wave consists of the initial injected
pump (see the constant amplitude pump at the left), beating
with the forward scattered modes, which are excited without
perturbation due to the high amplitude of the pump a0P=
0.07 (these modes will be analyzed in Figures 7 and 8
below). The pump appears to deplete (see the lighter parts of
the graphic) and then grow again (darker part of the graphic).
These oscillations appear to be more regular at t= 533.3,
with respect to what is presented at t= 800. Spatial Fourier
transforms for E+, E−, and the longitudinal electric field at
the early stage at t= 533.3 are presented in Figure 7, and pro-
vides the information about the modes which develop at this
early stage. These transforms are calculated by Fourier trans-
forming the signal in the interval x= (67,504) at t= 533.3.
Figure 8 presents the corresponding frequencies calculated
by a temporal Fourier transform of the signal at the position
x= 200, in the time interval t= (233,452).
Figure 8 shows the dominant frequency for E+ calculated

by the code is at ω0P= 3.205, which is essentially the fre-
quency 3.2 at which the pump is injected as we mentioned
above. The wavenumber for E+ in Figure 7 corresponding
to this frequency is k0P= 3.061, in agreement with the
value of 3.061 which can be calculated from Eq. (7) for
ω0P= 3.2 for a LCP. So the injection of a laser pump with
ω0P= 3.2 at x= 0 has resulted in the excitation of a LCP

wave with k0P= 3.061. We see in Figure 8 for the forward
wave E+ additional modes at frequencies 2.199, 4.197, and
5.19. The mode at ω0F= 2.199 results from the forward
Raman scattering of the pump according to the selection
rule ω0P= ω0F+ ωe, from which we get for the excited
plasma frequency ωe= ω0P− ω0F= 3.205− 2.199= 1.006,
which is essentially the value of 1.00 we see in Figure 8
for the frequency spectrum of the electric field. From Figure 7
the corresponding wavenumber of the forward scattered
mode is k0F= 2.012, in close agreement with the value of
2.006, which can be calculated from Eq. (7) for ω0F=
2.199. It obeys the selection rule for the forward Raman scat-
tering k0P= k0F+ ke, from which ke= 3.061− 2.012=
1.049, which is essentially the value calculated in Figure 7
in the electric field spectrum. From the plasma wave disper-
sion relation ω2

e = 1+ 3k2e (υ2t /c2), where υt is the thermal ve-
locity given in our normalized units by υt/c = 0.04424

			
Te

√
,

and Te is 0.3 keV in the present calculation. We get for the
plasma frequency ωe= 1.00 for ke= 1.049, which is the
result we see in Figure 8 in the frequency spectrum of the lon-
gitudinal electric field Ex.
As explained in the previous section, there is a weak cou-

pling between E+ and E− in the nonlinear medium indepen-
dent of the scattering process. This is the reason we observe
in Figure 8 in the spectrum of E− peaks at the frequencies
2.199, 3.205, and 4.197 at a much lower level compared
with E+, and in Figure 7 we observe in the spectrum of E−

peaks at the wavenumbers 0.948, 2.012, 3.061, and 4.11 at
a much lower level compared with E+.
In Figure 7, the pump E+ at the wavenumber k0P= 3.061

and the plasma mode at ke= 1.049 give the anti-Stokes mode
at 4.11= 3.061+ 1.049, which is the value observed in
Figure 7 in the spectrum of E+. The corresponding frequen-
cies in Figure 8 are 3.20+ 1.00= 4.20 (very close to the
peak at 4.197 we see in Figure 8). Note that the wavenumber
calculated from Eq. (7) for a frequency of 4.197 is 4.09, very
close to the value of 4.11 we see in Figure 7. We also note in
Figure 7 a second cascade of anti-Stokes in the spectrum of
E+ at 4.11+ 1.049= 5.159, which is the peak appearing in
5.15 in Figure 7. And the corresponding frequency resonance
for this second anti-Stokes cascade in the spectrum of E+ in

Fig. 6. The forward wave E+ at t= 533.3 (left frame) and t= 800 (right frame).
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Figure 8 is 4.197+ 1.00= 5.197, very close to the value of
5.19 we see in Figure 8. We see also in Figure 7 for E+ a
re-scattering in the forward direction 2.012= 0.948+ ke,
from which the wavenumber of the plasma mode ke=
1.064, very close to the value of 1.049 in the spectrum of
the electric field in Figure 7, and the corresponding frequen-
cies for this re-scattering in Figure 8 are at 2.199 and 1.20
(the small peak not marked in Figure 8), from which the se-
lection rule 2.199= 1.20+ ωe, that is, ωe= 0.999 which is
essentially the value of 1.00 we see in Figure 8 in the spec-
trum of the longitudinal electric field. Indeed for ke= 1.064,
the relation ω2

e = 1+ 3k2e (υ2t /c2) gives ωe= 1.0. From these

results, we see that there is no backward scattered wave excit-
ed by the laser pump at this stage at t= 533.3.

We present in Figure 9 the plots of the electron density at
t= 533.3 and 800. Figure 10 presents the plots of the longi-
tudinal electric field at t= 533.3 and 800. We now study the
wavenumber spectra at a later time at t= 800. Figure 11 pre-
sents the frequency spectra for the signal recorded at x= 200,
in the time interval t= (233,671). The frequency spectrum of
E+ shows the dominant frequencies presented in Figure 8,
with the pump frequency appearing at ω0P= 3.205, which
is essentially the frequency 3.2 at which the pump is injected
as we mentioned above. The wavenumber spectra response in

Fig. 7. Spatial Fourier transform in the domain x= (67,504) of the forward wave E+, the backward wave E−, and the longitudinal electric
field Ex at t= 533.3.

Fig. 8. Temporal Fourier transform, calculated in the time interval t= (233,452), for the forward wave E+, the backward wave E−, and the
longitudinal electric field Ex, taken at the position x= 200.

Fig. 9. The electron density at t= 533.3 (left frame) and t= 800 (right frame).
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the domain x= (100,537) are presented in Figure 12 at t=
800, slightly different from what we present in Figure 7.
The wavenumber for E+ in Figure 12 corresponding to the
frequency ω0P= 3.205 is k0P= 3.061, in agreement with
the value of 3.061 which can be calculated from Eq. (7)
for ω0P= 3.2 for a LCP. The forward re-scattered mode at
1.20 in Figure 11, which results from the forward re-
scattering of the mode at the frequency 2.199 according to
the selection rule 2.199= ω0F+ 1.00, from which ω0F=
1.199, as discussed in Figure 8 in the spectrum of E+, is

now more developed in Figure 11. The wavenumber for
E+ in Figure 12 corresponding to frequency ωs= 1.2 is at
k= 0.891, very close with the value of 0.8568, which can
be calculated from Eq. (7) for ωs= 1.2 for a LCP. The
peaks in Figure 11 are the same frequencies as in Figure 8,
although more developed, and we note in Figure 11 the im-
portant harmonic response for the plasma frequency in the
spectrum of the longitudinal electric field. The wavenumbers
response to these frequencies in Figure 12 shows the spectra,
which are broad around the peaks, in contrast to what we see

Fig. 10. The longitudinal electric field at t= 533.3 (left frame) and t= 800 (right frame).

Fig. 11. Temporal Fourier transform, calculated in the time interval t= (233,671), for the forward wave E+, the backward wave E−, and
the longitudinal electric field Ex, taken at the position x= 200.

Fig. 12. Spatial Fourier transform in the domain x= (100,537) of the forward wave E+, the backward wave E−, and the longitudinal
electric field Ex, at t= 800.
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in Figure 7. In the present nonlinear stage, this points to a
coupling with a RCP wave, which results in the broadening
of the peaks in Figure 12. At the frequency 3.2 in Figure 11,
Eq. (7) gives a wavenumber response of 3.061 for the LCP
wave, and 3.01 for the RCP wave, well within the broad spec-
trum we see in Figure 12 around 3.061. Similarly at the fre-
quency of 2.2 in Figure 11, Eq. (7) gives the wavenumber
value of 2.006 for the LCP mode, and 1.90 for the RCP
mode, within the broad peak we see around (1.983,2.04) in
Figure 12. In addition to the scattering previously discussed
in Figures 7 and 8 for the LCP modes, we have now cou-
plings with the RCP modes, which explain the broadening
we see in the wavenumber spectra in Figure 12. The fre-
quency of the anti-Stokes resonance at 4.197 in Figure 11
leads from Eq. (7) to a wavenumber response at 4.09 for
the LCP wave and 4.06 for the RCP wave. This RCP wave
at wavenumber 4.06 can couple to the RCP wave at 3.01 to
give the plasma response at the wavenumber 4.06–3.01=
1.05, well within the broad peak we see in Figure 12
for the plasma response of the electric field around
(1.035,1.135). Similarly the RCP wave at the wavenumber
of 3.01 can couple with the RCP wave at the wavenumber
1.9 to give the plasma response in the electric field spectrum
at the wavenumber 3.01–1.9= 1.11, well within the broad
peak around (1.035,1.135) we see in Figure 12 for the longi-
tudinal electric field. So the broad peaks for the wavenumber
harmonics in the spectrum of the longitudinal electric field in
Figure 12 result from the coupling of LCP and RCP waves
excited due to the high amplitude pump E+. Finally, we ob-
serve in the spectrum of E− in Figures 11 and 12 peaks at the
same frequencies and wavenumbers, but at a much lower
level compared with E+, due to the coupling in the nonlinear
plasma medium as explained before. However, there is no
backward scattered wave excited by the laser pump.
Finally, we present in Figure 13 the phase-space contour

plots for the electron distribution function at t= 800, from
x= 240 to 480. Between x= 400 and 440 we note the pres-
ence of about seven peaks, which leads to a wavelength of
about 40/7 or 5.7. We get a close result if we consider the

dominant wavenumber of the longitudinal electric field in
Figure 12 at the average peak of 1.1, which leads to a
wavelength≈ 2π/1.1= 5.7.

4. THE CASE OF THE BACKWARD RAMAN
AMPLIFICATION OF A SEED PULSE

We consider a plasma where the electron cyclotron frequency
is Ωce= 1.4, and the laser pump frequency is ω0P= 3.2.
From Eq. (7), the corresponding wavenumber for a LCP
wave is 3.089, and for a RCP wave the corresponding wave-
number is 2.909. For the seed pulse, we take the frequency
ω0S= 2.17, which is the frequency we used in Section 3.1,
and which from Eq. (7) corresponds to a wavenumber
2.025 for the LCP wave and 1.376 for the RCP wave.

The length of the system is L= 600. There is a uniform
plasma slab of length Lp= 572.5, and a vacuum region of
length Lvac= 12.5 on both sides of the slab, and a transition
from vacuum to the plasma at the plasma edge of length
Ledge= 15 on both sides, for a total length of 600. N= 120
000 grid points are used in space, and in our normalized
units Δx= Δt= 0.005. The extrema of momentum for the
electrons are ± 0.5, and with 1000 grid points in velocity
space, we have a grid size of Δυ= 10−3. Ions were allowed
to move in order to fix the small sheath at the edge of the
plasma, but have otherwise no effect on the results. The
units of time ω−1

pe and space c/ωpe we use can be easily trans-
lated into units of ω−1

0P and c/ω0P by dividing them by the
factor, ω0P/ωpe= 3.2.

For the case considered for the problem of the Raman am-
plification of a seed pulse, we have a forward-propagating
circularly polarized laser beam entering the system at the
left boundary (x= 0) at the t= 0, and the forward-
propagating fields of the circularly polarized constant ampli-
tude pump are given at x= 0 by E+= 2E0P cos (ω0Pt) and
F−= 2E0P sin (ω0Pt), E

+ and F− are defined in Eq. (5).
We have in our normalized units E0P= ω0Pa0P. The pump
precursor reaches the right boundary x= 600 at t= 600,
since in our normalized units x= t. The seed pulse is injected

Fig. 13. Phase-space contour plots of the electron distribution function at different position in space at t= 800.
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at the right boundary x= 600 in the backward direction
just before the arrival of the pump, in the time interval
540< t< 600, with E−= 2E0SPr(t) cos(ω0S(t− 540)) and
F+=−2E0SPr(t) sin(ω0S(t− 540)), with E0S= ω0Sa0S. We
take the amplitude of the vector potential of the pump and
the seed to be a0P= a0S= 0.04. The initial distribution func-
tions for electrons and ions are Maxwellian with temperatures
Te= 0.35 keV for the electrons and Ti= 0.1 keV for the ions.
The shape factor Pr(t) for the injected seed pulse has a Gauss-
ian time dependence:

Pr(t) = exp (−0.5(t − 570)/tp)2; 540< t < 600; tp = 10. (8)

The backward-propagating seed pulse behaves as a Gaussian
pulse in time for 540< t< 600, which reaches its peak at t=
570, and has completely penetrated the plasma at t= 600,
that is, at the time the pump precursor reaches the right
boundary.
We present in Figure 14 the wavenumber spectra in the

domain x= (450, 532) at t= 600, before the arrival of the in-
jected backward seed pulse in this domain, which at t= 600
has penetrated to reach the point x= 540, according to the
discussion of the previous paragraph. The spectrum for the
pump E+ shows a dominant peak at k0P= 3.068, very
close to the value of 3.089 calculated from the dispersion

relation in Eq. (7) for the LCP wavenumber response to the
injected pump at ω0P= 3.2. It shows also a small forward
scattered wave at 2.07, satisfying k0P= 2.07+ ke, from
which we have for the plasma wave ke= 3.068− 2.07=
0.998, which is essentially the value ke≈ 1 we see in
Figure 14. We see indeed a low intensity and large peak in
Figure 14 around the value of 1.0 in the spectrum of the lon-
gitudinal electric field. Due to the lower amplitude level of
the laser pump (a0P= 0.04) in the present calculation, the
level of the excited forward scattered wave remained very
low. As discussed in the previous section, the spectrum of
E− shows essentially the same peaks as for E+ due to the
coupling in the nonlinear plasma medium, but remained
much lower than E+. No backward scattered wave
developed.
We present in Figure 15 the frequency spectrum corre-

sponding to the results presented in Figure 14. The temporal
Fourier transform of E+ is taken at the position x= 450 in the
time interval t= (545,632), before the arrival of the back-
ward seed pulse injected at the right of the domain. The
peak frequency of the injected pump E+ at the frequency
3.2 is appearing in Figure 15 at 3.22. The frequency of the
forward scattered mode appears at 2.147 [the corresponding
wavenumber calculated from the dispersion relation in Eq.
(7) gives for the LCP wave the value of 2.00, close to the

Fig. 14. Spatial Fourier transform of the forward wave E+ and the electric field Ex in the domain x= (450,532) at t= 600.

Fig. 15. Temporal Fourier transform of the forward wave E+ (full curve) and the electric field Ex for time interval t= (545,632) at the
position x= 450.
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value of 2.07 calculated in Figure 14]. From the plasma wave
dispersion relation ω2

e = 1+ 3k2e (υ2t /c2), and Te is 0.35 keV
in the present calculation, we get for ke= 1.0 the plasma fre-
quency ωe= 1.00, which is the result we see in Figure 15 in
the frequency spectrum of the longitudinal electric field.
The evolution of the incident pump wave E+ (full curve)

and the backward seed pulse E− (dashed curve) are shown
in Figure 16 at: (a) t= 700, (b) t= 825, (c) t= 975, (d) t=
1150. We note the growth and compression of the seed
pulse E−, propagating toward the left, together with an in-
crease in the waveform steepness. The modulation we see
behind the front pulse of the growing seed are due to the
fact that when the pump depletes, the seed pulse will act as
a source for the pump, which results in a modulation
behind the growing seed. The constant amplitude full-curve
at the left in Figure 16 is for the injected constant amplitude
pump. At t= 1150, the backward seed pulse is about 25
times its original amplitude, and about eight times higher
than the pump amplitude.
In what we present next, we will follow at different time

the growth of the backward propagating seed pulse in differ-
ent sections of the domain. In the results we analyze, we will
show the dominance of a backward Raman scattering in the
process of the amplification of the backward seed pulse all
over the domain.
We present in Figure 17 the wavenumber spectra at the

time t= 720 in the same domain x= (450, 532) as in

Figure 14, that is, after the arrival in this domain of the
seed pulse injected with ω0S= 2.17 from the right boundary.
In Figure 17, we see a dominant wavenumber for the back-
ward wave E− at k0S= 2.07. The corresponding frequency
spectra are given in Figure 18, calculated by taking a tempo-
ral Fourier transform in the time interval t= (685,767), by
monitoring the signal at the position x= 450. We see for
the backward wave E− a dominant broad peak at ω0S=
2.147, very close to the injected value of 2.17. The corre-
sponding wavenumber to the frequency 2.147 calculated
from the dispersion relation in Eq. (7) is 2.00, very close to
the value of 2.07 calculated for the wavenumber of E− in
Figure 17. We see the trace of the backward mode at 2.07
in the spectrum of E− appearing in the spectrum of E+ in
Figure 17 at 2.07, together with the wavenumber of the for-
ward propagating pump wave E+ at k0P= 3.068. The corre-
sponding frequency of the forward pump E+ in Figure 18 is
ω0P= 3.22.

The plasma wavenumber ke and frequency ωe must satisfy
the selection rule for the momentum and energy conservation
relations for the backward wave k0P=−k0S+ ke, and ω0P=
ω0S+ωe. We get ωe= 1.07, and ke= 5.138, which is the
peak value we see in Figure 17 for the spectrum of the electric
field, which shows the value of 5.138 and its harmonics. From
the plasma wave dispersion relation ω2

e = 1+ 3k2e (υ2t /c2), we
get for the plasma frequency ωe= 1.0267 for Te= 0.35 keV,
with the value ke= 5.138, close to the value of 1.07

Fig. 16. The evolution of the incident pump wave E+ (full curve) and the backward seed pulse E− (dashed curve) at: (a) t= 700,
(b) t= 825, (c) t= 975, (d) t= 1150.
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calculated from the selection rule. We note a broad spectrum
around 1.0 in Figure 18 for the plasma wave frequency. Note
also the harmonic structure associated with the plasma
frequency.
We note also in Figure 17 the plasma wave at 1.07 and the

pump wave at the wavenumber 3.068 will combine to excite
the anti-Stokes at 4.138, close to the value of 4.141 we see in
the spectrum of E+ in Figure 17. The corresponding frequen-
cies in Figure 18 of 1.00 and 3.22, excite the anti-Stokes at
the frequency 4.22 (a very small bump, not marked in the fre-
quency spectrum of E+ in Figure 18). The corresponding
wavenumber to the frequency 4.22 calculated from Eq. (7)
for the LCP wave is 4.12, very close to the value of 4.141
in Figure 17.
In addition to the backward scattering k0P=−k0S+ ke,

ω0P= ω0S+ ωe, which is exciting the backscattered mode
in E− at ω0S= 2.147 (see Figure 18) and k0S= 2.07 (see
Figure 17) we have a weak forward scattered mode at the
same wavenumber and frequency k0P= k0S+ ke, from
which ke= 3.068− 2.07= 0.997 (close to the value of
1.07 we see in Figure 17), and ωe= ω0P− ω0S= 3.22−
2.147= 1.073 (see the broad peak around 1.0 in Figure 18).
We follow again the backward Raman scattering amplifi-

cation in another domain closer to the left boundary. We pre-
sent in Figure 19 the wavenumber spectra close to the left
boundary, in the domain x= (30, 112) at t= 900, before
the arrival of the injected backward seed pulse which, at

t= 900, has only reached around the point x= 240. The
spectrum for the pump E+ shows a dominant peak of the for-
ward pump at k0P= 3.068. As we mentioned above, E+ and
E− are strictly decoupled in vacuum, a very small backward
wave E− at the same wavenumber 3.068 results from the cou-
pling with E+ in the nonlinear plasma medium; otherwise no
other backward or forward scattered wave is present, before
the arrival of the backward seed pulse.
We present in Figure 20 the frequency spectrum corre-

sponding to the results presented in Figure 19, calculated
by monitoring the signal at the position x= 80, and
making a temporal Fourier transform of the signal in the in-
terval of time t= (500,582), before the arrival of the back-
ward seed pulse. The peak frequency of the injected pump
E+ at 3.2 is appearing in Figure 20 at 3.22. So only the for-
ward pump is present before the arrival of the backward
signal. Again, as explained before, there is a small back-
ward wave E− at the same frequency, which results from
the coupling in the nonlinear plasma medium with E+,
but no other backward or forward scattered wave is present
before the arrival of the counter-propagating backward seed
pulse.
In Figure 21, we present a plot for the electron density pro-

file at t= 975 (left frame). The right frame in Figure 21 zoom
on the front edge of the profile, in x∈ (200, 250), which
shows clearly the regular oscillations of the dominant
growing mode with wavenumber ke= 5.138, and wavelength

Fig. 17. Spatial Fourier transform of the incident pump wave E+, the backward wave E−, and the longitudinal electric field Ex, calculated
in the domain x= (450,532) at time t= 720.

Fig. 18. Temporal Fourier transform of the incident pump wave E+, the backward wave E−, monitored at the position x= 450, in the time
interval t= (685,767).
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λe= 2π/ke= 1.22. Figure 22 presents a plot for the electron
density profile at t= 1150 (left frame). The right frame in
Figure 22 zoom on the front edge of the profile, in x∈ (30,
80). Figure 24 below shows the dominant mode at that
time has shifted to ke= 5.292, with the corresponding wave-
length λe= 2π/ke= 1.18. So the growth of the pulse is con-
tinuing, as verified from Figure 16, as long as the front part of
the pulse is maintaining its coherent structure. In the domain
besides the front part, the fusion of the vortices in phase-

space due to the competing modes creates a chaotic structure
(see Figure 25 below).

We present in Figure 23 the frequency spectrum at the
front part of the growing pulse, by monitoring the signal at
the position x= 80, calculated by taking the temporal Fourier
transform in time in the interval t= (1100,1192) after the ar-
rival of the backward signal. Figure 16 shows the steepening
of the profile. We see again the peak frequency of the forward
pump E+ at 3.2 is appearing in Figure 23 at 3.22. The

Fig. 19. Spatial Fourier transform of the incident pump wave E+, the backward wave E−, in the domain x= (30,112) at t= 900.

Fig. 20. Temporal Fourier spectrum of the incident pump wave E+, the backward wave E−, monitored at the position x= 80, in the time
interval t= (500,582).

Fig. 21. Plot of the electron density profile at t= 975.
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backward wave E− shows now dominant frequencies over a
broad peak extending from 2.147 to 2.301 (the backward
seed was injected at the right boundary at the frequency
2.17). This same frequencies (2.147, 2.301) are appearing
in the spectrum of E+ due the coupling in the nonlinear
plasma medium. The backward seed pulse arrived at the po-
sition x= 80 at about t= 1120. So the frequency spectrum of
the electric field is still at its early development and did not
have the time to develop a harmonic structure as in Figure 18.
It shows a broad peak around 1.0.

We present in Figure 24 the wavenumber spectra at the
front part of the growing pulse, by taking the spatial Fourier
transform in the domain x= (30, 112) at t= 1150. Slightly
broader peaks are appearing in the wavenumber spectrum
for E− at 1.994 and 2.147 corresponds to the frequencies
for E− at 2.147 and 2.30, respectively in Figure 23 [from
Eq. (7), for a LCP wave, for a frequency 2.147 corresponds
a wavenumber 2.00, and for a frequency 2.30 corresponds
a wavenumber 2.16, very close to the peak values of 1.994
and 2.147 we see in Figure 24 for E−]. For E+, we have in

Fig. 22. Plot of the electron density profile at t= 1150.

Fig. 23. Temporal Fourier transform for the incident pump wave E+, and the backward wave E−, monitored at the position x= 80, in the
time interval t= (1100,1192).

Fig. 24. Spatial Fourier transform of the forward wave E+, the backward wave E− and the longitudinal electric field Ex, in the domain
x= (30,112) at t= 1150.
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Figure 24 the wavenumber 3.068, corresponding to the fre-
quency 3.22 in Figure 23 (the injected pump frequency for
E+ is 3.2 as previously mentioned).
The plasma wavenumber ke and ωe must satisfy the selec-

tion rule for the momentum and energy conservation rela-
tions for the backward wave k0P=−k0S+ ke, and ω0P=
ω0S+ ωe. With k0P= 3.068 and k0S= 2.147 we get ke=
5.215, which is very close to the value we see in Figure 24
for the spectrum of the electric field Ex which shows the
peak at 5.292 and its harmonics. From the plasma wave dis-
persion relation ω2

e = 1+ 3k2e (υ2t /c2), we get for the plasma
frequency ωe= 1.028 for Te= 0.35 keV, with the value ke=
5.292, close to the value of 1.07 calculated from the selection
rule. Note in the spectrum of E+ the presence of a weak for-
ward coupling with the mode at the wavenumber 1.994, fol-
lowing the selection rule 3.068= 1.994+ 1.074 (see the
plasma mode at 1.073 in Figure 24).
The left frame in Figure 25 shows the contour plot of the

electron distribution function at t= 1150 at the front edge in
x∈ (30, 60). It shows in the left frame the regular oscillations
of the dominant growing mode of the steep pulse with the
wavelength λe= 2π/ke= 1.18, corresponding to dominant
value of ke= 5.292 we see in Figure 24. In the right frame,
the phase-space contour plot of the distribution function at
t= 1150 in x∈ (60, 90) shows a tendency to become more
chaotic, as it is also apparent in the density plot of Figure 22.
In the results we have presented in this section, we have

followed at different positions and time the growth of the
backward propagating seed-pulse in different section of the
domain. In the results we analyzed we have shown the dom-
inance of a backward SRS in the process of the amplification
of the backward seed-pulse all over the domain. We have also
shown that before the arrival of the counter-propagating
backward seed pulse, no backward SRS was present in the
domain.

5. THE CASE OF THE BRILLOUIN
AMPLIFICATION OF A SEED PULSE

We consider a plasma such that the electron cyclotron fre-
quency is Ωce= 1.4, and the laser pump frequency is
ω0P= 2.17. From Eq. (7), the corresponding wavenumber
for a LCP wave is 2.025, and for a RCP wave the correspond-
ing wavenumber is 1.376. The SBS produces a very small
frequency downshift in the scattered wave ω0P= ω0S+
ωion. We neglect this small downshift ωion≪ 1 and set
the seed frequency ω0S≈ ω0P= 2.17 for a LCP wave
(and hence k0S≈ k0P= 2.025). The SBS is backward-
propagating, so the selection rule is k0P=−k0S+ kion, and
hence the wavenumber of the ion wave kion≈ 2k0P= 4.05.
We also take for the vector potentials of the waves a0S=
a0P= 0.04, and the parameters of the counter-propagating
seed pulse injected at the right boundary are the same as in
Eq. (8). We have the same length L= 600 as in the previous
section.

For the electron distribution function, the extrema of mo-
mentum for the electrons are ± 0.5, and with 1000 grid
points in velocity space, we have a grid size of Δυ= 10−3.
For the ions the extrema of momentum are ± 1.46 × 10−3,
and with 500 grid points in velocity space, we have a grid
size of Δυ= 5.85 × 10−6. The initial distribution functions
are Maxwellian with temperatures Te= 0.3 keV for the elec-
trons and Ti= 0.02 keV for the ions. The parameters of the
plasma slab are the same as in Section 4, with Δx= Δt=
0.005.

We present in Figure 26 the wavenumber spectra in the
domain x= (30, 224) at t= 600, before the arrival of the in-
jected backward seed-pulse, which at t= 600 has only pene-
trated to the point x= 540, according to the discussion for
Eq. (8) of the previous section. The spectrum for the pump
E+ shows a dominant peak at k0P= 2.0325, very close to

Fig. 25. Contour plot of the electron distribution function at t= 1150, for 30< x< 60 and 60< x< 90.
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the value of 2.025 calculated as mentioned above from Eq.
(7) for the LCP wavenumber response to the injected pump
at ω0P= 2.17. Figure 26 shows also for the frequency spec-
trum of the pump (in the right frame) the value of 2.186, very
close to the injected value of 2.17. The frequency spectrum is
calculated by taking the temporal Fourier transform of the
signal, recorded at the position x= 90 in t= (100,294).
The forward pump is the only wave present, the backward
seed pulse did not reach the domain x= (30, 224) at t=
600. So the spectrum of E− is essentially the same as in
Figure 26, due to the coupling of E− and E+ in the non-
linear plasma medium, with E−much smaller than E+ as pre-
viously mentioned. There is no backward scattered mode.
Figure 26 shows also a small forward excited wave at
0.997, satisfying k0P= 0.997+ ke1, from which we have
for the plasma wave of the longitudinal electric field ke1=
2.0325− 0.997= 1.0355, and the corresponding frequency
calculated from the plasma wave dispersion relation ω2

e1 = 1+
3k2e1(υ2t /c2), from which ωe1= 1.00. The spatial spectrum of
the longitudinal electric field shows indeed a small peak at
1.0738, and the temporal spectrum shows indeed a peak at
1.00. This will be discussed in more details in Figures 28
and 29. In Figure 26, we have also a very small trace of the
anti-Stokes at 3.1063, resonating with a plasma wave at the
wavenumber 1.0738= 3.1063–2.0325, with a corresponding
plasma frequency of 1.00. The frequency resonance is

2.186+ 1.00= 3.186. The wavenumber for the anti-Stokes
calculated from Eq. (7) for the frequency 3.186 is 3.075,
close to the value of 3.1063 in Figure 26. There is no back-
ward seed pulse injected at the right boundary which has yet
arrived in the domain x= (30, 224).
The evolution of the incident pump wave E+ (full curve)

and the backward seed pulse E− (dashed curve) are shown
in Figure 27 at: (a) t= 1000, (b) t= 1225. We note the
growth and contraction of the seed pulse, propagating
toward the left. The modulation we see behind the front
pulse of the growing seed are due to the fact that when the
pump depletes, the seed pulse will act as a source for the
pump, which results in a modulation behind the growing
seed. The constant amplitude full-curve at the left in
Figure 27(a) is for the constant amplitude incident pump.
The original amplitude of the seed was equal the amplitude
of the pump. At the end at t= 1225 in Figure 27, the back-
ward seed pulse is about two times of its original amplitude.
In Figure 28, the wavenumber spectra associated with the

forward wave E+, the backward wave E−, the longitudinal
electric field Ex, and the ion density, are calculated by Fourier
transform of the corresponding signal in the domain x=
(200,394), which has been reached by the backward seed
pulse at t= 1000. The spectrum of the electron density is es-
sentially the same as the one presented for the longitudinal
electric field in Figure 28. The spectrum of E+ in Figure 28

Fig. 26. Spatial Fourier spectrum of the incident pump wave E+ in the domain x= (30,224) at t= 600 (right frame), and temporal Fourier
spectrum of the incident pump wave E+ in the time interval t= (100,294) at the position x= 90 (left frame).

Fig. 27. The evolution of the incident pump wave E+ (full curve) and the backward seed pulse E− (dashed curve) at: (a) t= 1000,
(b) t= 1125.

M. Shoucri330

https://doi.org/10.1017/S0263034616000185 Published online by Cambridge University Press

https://doi.org/10.1017/S0263034616000185


shows the peak of the forward pump at 2.0325, as we men-
tioned in Figure 26, and the same mode appearing as a back-
ward mode in the spectrum of E− in Figure 28. The presence
of these two modes will result in the appearance of a back-
ward Brillouin scattering as discussed above, with an ion
wavenumber kion≈ 2k0P= 4.065, which is indeed appearing
the spectrum of the ion density in Figure 28. We also note in
the spectrum of E+ in Figures 26 and 28 the presence of the
forward scattered mode at 0.958, with the plasma mode at
1.074 apparent in the spectrum of the electric field Ex in
Figure 28, such that 2.032= 0.958+ 1.074. The correspond-
ing frequencies we see in Figure 29, calculated by taking the
temporal Fourier transform of the signal recorded at x= 300,
between t= (1000,1194), give a frequency ω0P= 2.186 for

the pump and ω0S= 1.186 for the forward scattered mode.
The corresponding wavenumbers calculated from Eq. (7)
are respectively 2.042 (very close to the value of 2.032 in
Figure 28) and 0.973 (very close to the value of 0.958 in
Figure 28). This gives a plasma wavenumber 1.069=
2.042–0.973, close to the value of 1.074 calculated in
Figure 28 in the spectrum of Ex. The corresponding plasma
frequency is calculated from the plasma wave dispersion re-
lation ω2

e = 1+ 3k2e (υ2t /c2). We get for ke= 1.069 the
plasma frequency ωe= 1.00, in good agreement with the
value in Figure 29 in the spectrum of Ex, satisfying the fre-
quency selection rule 2.186–1.186= 1.00.

We have also in the spectrum of E− a backward scattered
mode at 0.985 in Figure 28, which is dominating the

Fig. 28. Spatial Fourier transform of the forward pump wave E+, the backward seed pulse E−, the longitudinal electric field Ex and the ion
density in the domain x= (200,394) at t= 1000.

Fig. 29. Temporal Fourier transform of the signal recorded at x= 300, in the time interval t= (1000,1194), for the forward pump wave
E+, the backward wave E−, and the longitudinal electric field Ex.
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spectrum of E−, such that k0P=−k0S+ ke, that is
2.0325=−0.985+ 2.9905. We see indeed the mode at
2.991 in the spectrum of the electric field in Figure 28.
The forward scattered mode at 0.985 in E+ and the backward
mode in E− at 0.985, will couple through Brillouin scattering
to give another Brillouin scattered mode at kion≈ 2 ×
0.958= 1.916, which appears at 1.917 in the spectrum of
the ion density in Figure 28. So we have two Brillouin scat-
tering events, one at kion≈ 2k0P= 4.065 through direct scat-
tering from the pump E+ and the backward seed pulse, and
the second one through an intermediate step of forward and
backward Raman scattering of the pump, which produced
the modes at 0.958 in E+ and − 0.958 in E−, from which
the ion mode wavenumber≈ 2 × 0.958= 1.916. Other reso-
nances are also present. We can identify in the spectrum of
E+ the anti-Stokes at 3.0679 obtained by the coupling of
the plasma mode at 1.074 and the pump E+ at the wavenum-
ber at 2.0325 such that 3.1065= 2.0325+ 1.074, close to the
value of 3.0679 we see in the wavenumber spectrum of E+ in
Figure 28. From Figure 29 the corresponding longitudinal
plasma frequency is ωe= 1.00, the corresponding frequency
to the anti-Stokes mode is 3.186, which verifies the selection
rule for the frequencies 3.186= 2.186+ 1.00. The wave-
number for the anti-Stokes calculated from Eq. (7) for the fre-
quency 3.186 is 3.075, close to the value of 3.0679 in
Figure 28.
The modes in E+ in Figure 28 at 2.035 and 3.95 will com-

bine with the mode at 1.917 in the longitudinal electric field
such that 3.95= 2.0325+ 1.917, with the corresponding fre-
quencies in Figure 29 satisfying the selection rule 3.18+
1.01= 4.19 (the unmarked small peak in Figure 29 in the
spectrum of E+).
The forward mode at 4.985 in E+ and the backward mode

at – 0.985 in E− in Figure 28 will couple to produce the mode
in the longitudinal electric field 4.985= – 0.985+ke, from
which the plasma wavenumber ke= 5.94, which appears in
the spectrum of Ex in Figure 28. The ion mode at 5.98 will
couple with the two ion modes at 4.065 and 1.915,
4.065+ 1.915= 5.98, and the ion mode at ten couples
with two ion modes 4.065+ 5.98= 10.045, and with the
two ion modes 8.09+ 1.917= 10.007. The corresponding
ion acoustic frequencies for these ion modes with the

dispersion relation ω= kCs, where Cs is the ion acoustic
speed, will automatically satisfy the selection rules, because
of the linear dependence of ω and k in the dispersion relation
of the ion acoustic waves.
We note the harmonic structure associated with the plasma

wavenumber of 2.991 in the wavenumber spectrum of the
longitudinal electric field in Figure 28 at 5.94, 8.935,
11.89, 14.89, 17.87, and the harmonic structure with the
plasma frequency in Figure 29. We also note the harmonic
structure associated with the ion mode at the wavenumber
4.065 at 8.09, 11.92, 15.91, and the harmonic structure asso-
ciated with the ion mode with the wavenumber 5.98 at 11.92
and 17.94 in Figure 28.
Figure 30 presents a plot for the electron density profiles at

t= 900, 1000, and 1225. Similar plots are presented in
Figure 31 for the ion density profiles, and in Figure 32 for
the electric field profiles. In Figure 33, we zoom on the
front edge of the profiles in x= (30, 80), which shows at
t= 1225 the regular oscillations of the dominant growing
mode with wavelength λe= 2π/2.99= 2.1 for the electron
density and the longitudinal electric field, and λi= 2π/
4.065= 1.54 for the ion density profile (Figs 33–35).
In the results, we have presented in this section, two back-

ward Brillouin scattering events are present. The first one re-
sults directly from the pump and the counter-propagating
seed pulse, both injected at the same frequency ω0S≈
ω0P= 2.17. The second backward Brillouin scattering
event takes place via the intermediate step of two Raman
scattering processes, which create the counter-propagating
modes in E+ and E− at the wavenumber 0.958, and a result-
ing SBS mode at the wavenumber 2 × 0.958= 1.916, which
we see in Figure 28 in the spectrum of the ion density.

6. THE CASE OF THE WAKEFIELD
ACCELERATOR IN A MAGNETIZED PLASMA

A solution of this problem in an un-magnetized plasma using
an Eulerian Vlasov code has been given by Shoucri (2008b).
The application of an external magnetic field in the problem
of wakefield acceleration has been suggested by Grulke et al.
(2015) to stabilize the plasma column. We consider a plasma
such that the ratio of the electron cyclotron frequency to the

Fig. 30. Plot of the electron density profiles at: (a) t= 900, (b) t= 1000, (c) t= 1225.
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Fig. 31. Plot of the ion density profiles at: (a) t= 900, (b) t= 1000, (c) t= 1225.

Fig. 32. Plot of the longitudinal electric field Ex at: (a) t= 900, (b) t= 1000, (c) t= 1225.

Fig. 33. Zoom on the front edge of the profiles in x= (30,80) at t= 1225.

Fig. 34. Phase-space contour plot of the electron distribution function at t= 1225, at different positions.
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electron plasma frequency Ωce= 0.1, and the ratio of the
laser pump frequency to the electron plasma frequency
ω0P= 10≫ 1. We use Nx= 50 000 grid points in space for
a total length of the plasma L= 50. The extrema of the elec-
trons momentum are ± 20, with a number of grid points
Npe= 5000, and for the ions momentum extrema we have
± 1.25 × 10−4, with a number of grid points Npi= 400.
The electron and ion temperatures are Te= 0.2 keV and
Ti= 0.01 keV. The length of the vacuum region is 0.166
on each side, and the length of the transition region for the
zero density to the flat density of 1 is 1.0 on each side of
the slab, hence a total transition region of 1.166 on each
side of the plasma slab. The system is initially neutral
(ne= ni), with the density in the flat neutral part equal to 1
in our normalized units. We note the ions density remained
equal to 1 in the flat central part, the ions however showing
a modulation in the phase-space contour plots.
The forward propagating circularly polarized laser pulse is

penetrating from the vacuum at the left boundary at x= 0,
and propagate toward the right, and is written in our normal-
ized units as:

E+ = 2E0 sin(πξ/Lx) sin(k0Pξ), (9)

F− = 2E0 sin(πξ/Lx)cos(k0Pξ), (10)

for 1< t< 2π+ 1, and for −Lx< ξ<0, ξ= x− t, and E0=
0 otherwise. The time delay 1 corresponds approximately to
the length 1.166 of the vacuum and transition region as men-
tioned above. This allows the pulse to develop close to the
edge of the flat part of the density profile. Lx is the length
of the pulse envelope. In vacuum, we have for the EM
wave k0P= ω0P. So in our normalized units the vacuum
wavelength λ= 2π/k0P= 0.628. We have ten oscillations
for the EM wave in the length Lx= 2π of the pulse envelope.
Note that the wavenumber inside the plasma can be cal-
culated from Eq. (7), and for Ωce= 0.1 and ω0P= 10 gives
k0P≈ 9.95, close to the vacuum value of 10. We choose
for the amplitude of the potential vector a0P= 0.8, so that

E0= ω0Pa0P= 8. From Eqs. (9) and (10) the amplitude of
E+ and F− are equal to 2E0. Since the envelope is very
slowly varying, we can write for the corresponding vector
potential for 1< t< 2π+ 1:

ay = −a0P sin(πξ/Lx)cos(k0Pξ), (11)

az = a0P sin(πξ/Lx)cos(k0Pξ), (12)

At t= 2π+ 1, most of the entire envelope of length ≈ 2π of
the forward propagating pulse has developed on the flat den-
sity part and is left to evolve self-consistently according to
Eq. (5). Figure 36 shows the results for the laser pulse at
t= 50 (broken curve, divided by 5 to allow visibility for
the longitudinal electric field Ex), after crossing the domain
and reaching the right boundary. It is followed by the wake-
field Ex (full curve). There is little deformation of the EM
pulse for the present set of parameters. Figure 37 shows the
plot of the electron density (full curve), and the ion density
(dashed curve). The modulation of the electron density is

Fig. 35. Phase-space contour plot of the ion distribution function at t= 1225, at different positions.

Fig. 36. Laser pulse E+/5 at t= 51 (broken curve, divided by 5 to allow vis-
ibility for the longitudinal electric field Ex), after crossing the domain and
reaching the right boundary. It is followed by the wakefield Ex (full curve).
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following the modulation of the wakefield in Figure 36. The
ion density remains constant (if we accept a small deforma-
tion at the left of the domain due to the formation of a local
sheath at the left edge). The longitudinal electric field Ex

reaches in Figure 36 a peak of about 0.6.
Figure 38 shows the phase-space plots for the electrons (left

frame) and the ions (right frame) at t= 51, in the domain
22.5< x< 37.5. Bunches of electrons detach from the bulk
and are accelerated as beams around the peaks of the electric
field (note that the contour levels of these accelerated beams
are artificially enhanced in Figures 38 (left frame), in order
to make them more visible). The ions density remained
equal to 1 as mentioned in Figure 37, but are showing a mod-
ulation in phase space in Figure 38 (right frame), which fol-
lows the modulation of the electrons in Figure 38 (left frame).

7. CONCLUSION

Plasma-based laser amplifiers have received considerable at-
tention for their application to the direct amplification of

ultra-short laser pulses. A plasma-based amplifier approach
benefits from the fact that a plasma can sustain much
higher intensities than a solid-state amplifier. Most of the
work being investigated by several groups in the study of
these novel techniques for amplifying laser light to ever
higher intensities has been essentially carried out in un-
magnetized plasmas (see the references presented in the Intro-
duction). In the present work, we have extended the study of
plasma-based amplifiers to the case of magnetized plasmas. It
has recently been suggested that the addition of a magnetic
field can improve the plasma confinement and performance,
as suggested for instance by Grulke et al. (2015), for prob-
lems of wakefield accelerators. This problem can also have
important applications to understand the nonlinear growth
of waves in the magnetosphere and other geophysical situa-
tions (see the review article by Briand, 2015), and in many
other situations where a magnetic field is imposed on the
plasma, as recently studied for the case of a magnetic field im-
posed in inertial confinement fusion indirect-drive hohlraum
plasmas (Montgomery et al., 2015; Strozzi et al., 2015).

Fig. 37. Plot of the electron density (full curve) and the ion density (dashed curve) at t= 27 (left frame) and t= 51 (right frame).

Fig. 38. Phase-space contour plot in x= (22.5,37.5) of the electron distribution function (left frame) and the ion distribution function
(right frame) at t= 51.
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We have presented in the present work an Eulerian Vlasov
code to study the problem of the one-dimensional (1D)
plasma-based seed-pulse amplifier for a plasma in a magnetic
field. The code has been previously applied to study for in-
stance the problem of beat-wave acceleration for a plasma
in a magnetic field (Ghizzo et al., 1992). The numerical sim-
ulations we present in Sections 4 and 5 on the application of
backward SRS and SBS for seed-pulse amplification when a
magnetic field is applied to the plasma are, to our knowledge,
the firsts on this subject. The code applies a method of frac-
tional step (Shoucri & Storey, 1986; Ghizzo et al., 1990,
1992; Shoucri, 2008a) for the solution of the 1D relativistic
Vlasov–Maxwell set of equations for a plasma in a magnetic
field. We have first tested the performance of the code by
studying its performance and response in Section 3 to a
large amplitude laser wave. For the application to the prob-
lem of plasma amplifiers presented in Sections 4 and 5, we
have studied the energy transfer through scattering mediated
by a resonant plasma wave, for a long pump EM wave, to an
initially counter-propagating short seed pulse. In Section 4,
the resonant plasma wave is an electron plasma wave in a
case of backward SRS. We have followed in this case the am-
plification of the backward seed pulse at different positions
and different times, and we have shown that the backward
SRS was the dominant mechanism in the amplification pro-
cess. In Section 5, the resonant plasma wave is an ion wave in
a case of SBS. We have shown that in addition to the ion
wave excited by the direct SBS of the pump and the seed
pulse, there is another ion wave excited by SBS through an
intermediate step involving a SRS. It has been shown for in-
stance by Shoucri et al. (2015) in an un-magnetized plasma,
that the problem of a SBS can only be solved by a Vlasov
code, because of the intrinsic numerical noise associated
with PIC codes. Finally, we have also presented in Section
6 an example of the application of this code to the problem
of a wakefield accelerator in a magnetized plasma.
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