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Two stochastic knapsack problem (SKP) models are considered: the static broken knapsack
problem (BKP) and the SKP with simple recourse and penalty cost problem. For both
models, we assume: the knapsack has a constant capacity; there are n types of items and
each type has an infinite supply; a type i item has a deterministic reward vi and a random
weight with known distribution Fi. Both models have the same objective to maximize
expected total return by finding the optimal combination of items, that is, quantities of
items of each type to be put in knapsack. The difference between the two models is: if
knapsack is broken when total weights of items put in knapsack exceed the knapsack’s
capacity, for the static BKP model, all existing rewards would be wiped out, while for
the latter model, we could still keep the existing rewards in knapsack but have to pay a
fixed penalty plus a variant cost proportional to the overcapacity amount. This paper also
discusses the special case when knapsack has an exponentially distributed capacity.

1. INTRODUCTION

The knapsack problem is a classic and widely studied one in the field of combinatorial opti-
mization (see Kellerer, Pferschy, and Pisinger [12]). In its original form, there are multiple
items whose weights and values are given in advance, and we want to choose a subset of
these items to maximize their total values with the constraint of their total weights under a
preset ceiling. Knapsack problems arise naturally in forms of resource allocation or budget
planning problems where one aims to extract the maximum economic value from candidate
projects while keep resource/budget in check.

For a knapsack problem, in its optimization formulation, each item has a decision vari-
able, either 1 or 0, indicating whether an item is selected or not to be included in the
subset which would later be put to the knapsack. Knapsack problem is NP-hard even in its
deterministic version where items’ weights and values are all known. Fortunately, for deter-
ministic knapsack problems, dynamic programming (see Toth [29]) and the branch and
bound algorithm (see Kolesar [16]) both provide efficient ways to locate problem solutions
in pseudo-polynomial time.

In real-life circumstances, however, the deterministic assumption on items’ weights and
values is often violated due to the fact that an item’s weight and value information may not
be available before making any decision. For instance, when we decide to enroll a project,
its true budget requirement cannot be given in advance and we would rather assume the
final value has certain distribution patterns. The reward from completing the project may
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also vary due to uncertain factors in the execution process. Stochastic knapsack problems
(SKP) were introduced to accommodate these practical constraints where either or both of
items’ weights and values are randomly distributed. For the two models discussed in this
paper, the static broken knapsack problem (static BKP) and the SKP with simple recourse
and penalty, we assume tems’ weights to be randomly distributed and their values to be
deterministic.

There are two groups of stochastic knapsack problems: adaptive and static. In adaptive
problems, items are put in the knapsack one by one and decisions are made sequentially
to take advantage of the information feedback from the system. Ilhan & Daskin [10] con-
sidered the adaptive SKP with random rewards, which only become known when items are
put in the knapsack, and deterministic weights, with the objective being to maximize the
probability of reaching a predetermined reward target. Derman, Lieberman, and Ross [6]
and Dean, Goemans, and Vondrdk [5] considered the adaptive SKP with random weights
but deterministic rewards with the objective to maximize the total values in the knapsack
before it is broken. Kleywegt and Papastavrou [14,15] discussed a version of adaptive SKP
in which items arrive to the system sequentially in time, with each arriving item having a
value and weight which is assumed to have a specified joint distribution. Upon an item’s
arrival, its value and weight become known, and the decision maker has to decide whether
to accept or reject the item, with the objective being to maximize the expected total value
earned over a given time period. Some other papers dealing with adaptive stochastic knap-
sack models include Ross and Tsang [25], Van and Young [30], Lin Lu, and Yao [19], Lu,
Chiu, and Cox [20]s.

In the static SKP, one decides at the beginning of the problem which subset of items to
put in the knapsack. After putting in the selected set of items, outcome would be evaluated
based on revealed information on items’ values and weights. There exist at least two direc-
tions in studying the static SKP: to maximize the probability of achieving a given reward
target while the capacity constraint is strictly satisfied; or to maximize the total rewards
while the overload probability is restricted to a certain level, or there is a penalty incurred
by any overload.

Problems on the first direction assume stochastic rewards and deterministic weights.
Steinberg and Parks [28] and Sniedovich [27] considered the problems where all weights are
integral numbers. A preference ordering was proposed on the distributions of the selected
items’ rewards, and this preference ordering was used in conjunction with dynamic program-
ming to facilitate the search for the optimal solution. Henig [9] presented a search policy to
locate the optimal solution given random rewards and known weights. Morton and Wood
[22] used a new dynamic programming method and an integer programming method in the
case of normally distributed rewards and deterministic weights, and provided a simulation
based procedure to approximate the optimal solution in the case of more general reward
distributions.

Problems on the second direction assume items’ weights are stochastic with known
distributions. They usually impose no assumption on items’ rewards since only the mean
rewards play a role when the objective is to maximize the total (expected) reward subject
either to a bound on the probability of overload or the incurrence of penalty costs when the
capacity is exceeded. One example of this is the SKP with recourse model, which supposes
that a penalty cost proportional to the amount of overload is incurred. Kosuch and Lisser
[17,18] gave a good review on the SKP with recourse model as well as chance constrained
knapsack problems. They proposed stochastic methods that provide upper and lower bounds
as a way to solve the problems using branch and bound techniques, similar to what Cohn and
Barnhart did in [4]. Concerning approximation methods, Kleinberg, Rabani, and Tardos [13]
proved that there exist polynomial time approximation schemes in static SKP models which
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return total values at least as good as the optimal one when the overload constraint is relaxed
in a small fractional manner. Goel and Indyk [8] presented approximation schemes for static
SKP models when the items’ weights follow Poisson, exponential or Bernoulli distributions
respectively. Merzifonluoğlu Geunes, and Romeijn [21] considered a static SKP model with
normally distributed items’ weights where penalty cost is proportional to overflow amount
and salvage value is allowed for unused capacity. Ağralı & Geunes [1] considered a model
with a fixed overflow penalty cost and items’ weights follow Poisson distributions. Both
papers develop customized branch-and-bound algorithms for optimal solutions respectively.
They also provide heuristics to solve relaxations and prove high-quality. Fortz et al. [7]
discussed several classes of capacity-constraint problems which can be solvable in pseudo-
polynomial time.

Static SKP models either avoid breaking the knapsack by assuming deterministic
weights, or tolerate the knapsack being broken within a certain probability, or suppose
that a penalty cost is incurred in the event of overflow. This paper considers two model
settings: the static BKP model where if the knapsack is broken, all the items’ values in
the knapsack will be wiped out; and the SKP with simple recourse and penalty model,
where any overflow incurs a fixed penalty cost c plus a variant cost proportional to the
overcapacity. We discuss the unimodality of the expected return (ER) function and the
monotonicity of the marginal optimal decision function for these models. In Section 2,
we define the static BKP and prove these two properties. In Section 3, the SKP with
simple recourse and penalty is defined. We show that the two properties hold either if
c = 0 or if all weight distributions are exponential. In Section 4, we consider for both
models the case when the knapsack capacity is exponentially distributed. For the first
model, we show that with exponential capacity, the two properties hold for general distri-
butions on items’ weights. For the second model, we give a sufficient condition and similar
results as in constant capacity model. In Section 5, we present a search algorithm for the
optimal solutions based on these properties. We show the performance of our algorithm
by giving numerical examples in Section 6. Further remarks and the conclusion are in
Section 7.

2. THE STATIC BKP MODEL

2.1. Problem Definition

Consider a knapsack with a deterministic capacity w. There are n types of items and each
type has infinite supply of items available. For a type i item, 1 ≤ i ≤ n, its weight is a non-
negative random variable with a known distribution function Fi; its value is vi, a positive
deterministic number given in advance. We want to determine in the beginning of the
problem the quantities on each type of items to be put to the knapsack. The total weights
of items in the knapsack are revealed only after our decision has been executed. We assume
that the weights of the items put in the knapsack are independent. If the knapsack is not
broken after we execute our decision, we take all the values in the knapsack; otherwise, we
get nothing. The aim is to maximize the expected total returns. In this paper for the static
BKP model, we make the following assumption:

All Fi, 1 ≤ i ≤ n, have decreasing reversed hazard rate (DRH), that is, if Fi is a con-
tinuous (discrete) distribution, then (fi(x))/(Fi(x)) ((fi(k))/(Fi(k))) is non-increasing in
x for x ≥ 0 (in k for k ∈ N) where fi(x) (fi(k)) is the probability density (mass) function
w.r.t. Fi.
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Remark 1: If a distribution function is log-concave, then it is obviously DRH. As shown
in An [2] and Bagnoli and Bergstrom [3], examples of continuous log-concave distributions
include normal, exponential, uniform over convex domain, gamma with shape parameter
≥1, etc.; examples of discrete log-concave distributions include Bernoulli, binomial, Poisson
and geometric.

Mathematical Notations

A decision vector, denoted as (k1, k2, . . . , kn), is the instruction to put ki type i items,
i = 1, . . . , n, in the knapsack.

The ER by choosing (k1, k2, . . . , kn) is

R(k1, . . . , kn) =

(
n∑

i=1

kivi

)
P

(
n∑

i=1

ki∑
h=1

Wih ≤ w

)
,

where Wih, h = 1, . . . , ki, i = 1, . . . , n are independent and Wih∼Fi.
The marginal optimal decision function is defined as follows:

h(k1, . . . , kj−1, ·, kj+1, . . . , kn) = arg max
k∈N

R(k1, . . . , kj−1, k, kj+1, . . . , kn),

which decides the quantity of type j items to be put to the knapsack in order to maximize
the ER while fixing quantities of all other types. (The function returns the smallest one if
there are multiple integers that maximize the ER function.)

2.2. Solution Structures

We first want to delete the types that will never be used in the optimal decision. A natural
criteria is to filter out any type which has both lower value and stochastically larger weight
at the same time compared with another type. The following proposition, whose proof is
immediate, shows the validity of this criteria.

Proposition 1: For two types i and j, if vi ≤ vj, and Fi �st Fj, then type i is dominated
by type j, that is, replacing a type i item by a type j item does not decrease the ER.

The preceding proposition says that the optimal decision never puts in any dominated
types. In the following discussions, we assume that none of the n types falls into the domi-
nated types category. To start exploring solution structures for the static BKP, we need the
following observation based on the assumption that all weight distributions are DRH.

Lemma 1: Suppose {Xi} is a sequence of independent non-negative DRH random vari-
ables, and let Sm =

∑m

i=1
Xi, ∀m ≥ 1. Then for any constant c > 0, the conditional random

variable [Sm|Sm ≤ c] is stochastically increasing in m.

Proof: Follows directly from Theorem 1.C.12 (p47) and the equation 1.B.43 (p37) in
Shaked and Shanthikumar [26]. �

Theorem 1 Unimodality of the ER function: Assume that all Fi, 1 ≤ i ≤ n, are DRH. For
any j, and fixed values ki, i �= j, the function R(k1, . . . , kj−1, k, kj+1, . . . , kn) is unimodal in
k, first increasing and then decreasing in k.
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Proof: We have to prove that if

R(k1, . . . , kj−1, k, kj+1, . . . , kn) ≥ R(k1, . . . , kj−1, k + 1, kj+1, . . . , kn),

then

R(k1, . . . , kj−1, k + 1, kj+1, . . . , kn) ≥ R(k1, . . . , kj−1, k + 2, kj+1, . . . , kn).

Let us define

S(k) =
k∑

h=1

Wjh +
∑
i�=j

ki∑
h=1

Wih,

v(k) = kvj +
∑
i�=j

kivi,

where Wih ∼ Fi ∀ i ∈ [1, n], and all these random variables (r.v.s) are independent. Here
S(k) and v(k) are the total items’ weights and values respectively by applying the decision
(k1, . . . , k, . . . , kn).

Now,

R(k1, . . . , k, . . . , kn) ≥ R(k1, . . . , k + 1, . . . , kn)

⇔ v(k)P (S(k) ≤ w) ≥ v(k + 1)P (S(k + 1) ≤ w)

⇔ v(k)
v(k + 1)

≥ P (S(k + 1) ≤ w|S(k) ≤ w) .

Hence, if R(k1, . . . , k, . . . , kn) ≥ R(k1, . . . , k + 1, . . . , kn), then

v(k + 1)
v(k + 2)

≥ v(k)
v(k + 1)

≥ P (S(k + 1) ≤ w|S(k) ≤ w) ≥ P (S(k + 2) ≤ w|S(k + 1) ≤ w) ,

where the first inequality follows because (v(k))/(v(k + 1)) increases in k and the final
inequality follows from Lemma 1. �

Corollary 1: For any j ∈ [1, n], fixed ki for all i �= j, there exists k∗ < ∞ such that:

R(k1, . . . , kj−1, k
∗, kj+1, . . . , kn) ≥ R(k1, . . . , kj−1, k

∗ + 1, kj+1, . . . , kn).

Proof: From Theorem 1, it suffices to show:

R(k1, . . . , kj−1, 1, kj+1 · · · , kn) ≥ lim
m→+∞R(k1, . . . , kj−1,m, kj+1, . . . , kn).

Because the left-hand side is non-negative, the above inequality can be proved by showing:

lim
m→+∞R(k1, . . . , kj−1,m, kj+1, . . . , kn) = 0, (1)

for which the proof is in the Appendix. �
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Remark 2: The unimodality property does not hold for the static BKP model under general
weight distributions. For instance, suppose n = 1, v1 = 1, w = 3, and that W, the weight of
a type 1 item is such that

W =

{
1 with probability

√
17
6 ,

3 w.p. 1 −
√

17
6 .

Then

R(1) = 1, R(2) =
17
18

, R(3) =
17
18

√
17
4

.

Because R(1) > R(2) < R(3), the unimodality property is violated.

Proposition 2 Monotonicity of the marginal optimal decision function: For any r =
(k1, . . . , kn−1), the marginal optimal decision function for type n items is defined as

h(r) = arg max
k∈N

R(r, k),

where
R(r, k) � R(k1, . . . , kn−1, k).

Then, h(r) is non-increasing in r.

Proof: Let Ii be the unit vector whose ith element equals 1 and others equal 0 for i =
1, . . . , n − 1. By Theorem 1, it suffices to show:

R(r,m) ≥ R(r,m + 1) ⇒ R(r + Ii,m) ≥ R(r + Ii,m + 1).

The proof of the preceding implication is similar to the proof in Theorem 1 and it
immediately follows by the fact that:

[S(r + Ii,m)|S(r + Ii,m) < w] ≥st [S(r,m)|S(r,m) < w],

where S(r + Ii,m) and S(r,m) are the total weights by taking decisions (r + Ii,m) and
(r,m), respectively. �

Note that as there is no specific assumption on the order of the n types imposed on
Proposition 2, it follows that the above monotonicity property holds for the marginal optimal
value function of any type. An immediate result from Proposition 2 bounds the search space
for the optimal solutions.

Corollary 2 Bounded search space: Let (k∗
1 , . . . , k∗

n) be the optimal solution for the static
BKP with n types available, and k1

i be the optimal solution if only type i items are available.
Then,

k∗
i ≤ k1

i , ∀i = 1, . . . , n.

Proof: From Proposition 2. �

With Corollary 2, we know there are at most
∏n

i=1
(k1

i + 1) decision vectors to check
for the optimal solutions. Indeed, combining the results in Theorem 1 and Proposition 2, a
great portion of all these vectors can be skipped in the search process to locate one optimal
solution. We describe a search scheme in Section 5.
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3. THE SKP WITH SIMPLE RECOURSE AND PENALTY MODEL

3.1. Problem Definition with Preliminaries

This model has the same problem setting as for the static BKP model. However, after we
decide the quantity for each type and put them to the knapsack, instead of losing everything
when the knapsack is broken as in static BKP, in SKP with simple recourse and penalty,
any overflow incurs a recourse cost that is proportional to the amount of overcapacity with
a constant factor d, as well as a constant penalty c ≥ 0. Therefore, given a decision vector
k = (k1, . . . , kn), we have the following ER function for this model:

R(k) = R(k1, . . . , kn) =
n∑

i=1

kivi − d · E[(Wtotal − w)+] − c · P (Wtotal > w), (2)

where Wtotal =
n∑

i=1

ki∑
h=1

Wih, and Wih ∼ Fi.

Remark 3: When c = 0, the above model is called SKP with simple recourse model. Prob-
lems of SKP with simple recourse under different problem settings were discussed in Cohn
and Barnhart [4]; Kosuch and Lisser [17].

Proposition 1 is still true for this model: if one type has less value but stochasti-
cally greater weight, then it should never be used. We also have the following immediate
observation.

Proposition 3: Let wi be the mean weight of a type i item. If d <maxi(vi/wi) then

sup
k

R(k) = ∞.

Proof: Suppose (v1/w1) =maxi(vi/wi) > d. Then,

R(n, 0, . . . , 0) ≥ nv1 − dE[Wtotal] − c = n(v1 − dw1) − c.

Hence, limn→∞ R(n, 0, . . . , 0) = ∞. �

We will assume in this paper that d>maxi(vi/wi) .
Now, for a fixed j, we shall assume in the following that the decision vector is

(k1, . . . , kj−1, k, kj+1, . . . , kn), where values ki, i �= j are fixed. Define

S(k) �
k∑

h=1

Wjh +
n∑

i=1,i �=j

ki∑
h=1

Wih, (3)

v(k) � kvj +
n∑

i=1,i �=j

kivi,

where Wih ∼ Fi ∀i, h. S(k) and v(k) are the total weight and the total items’ values respec-
tively by putting k type j items with the fixed number of items in other types. We want to
see whether R(k1, . . . , k, . . . , kn) is unimodal in k.
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Using the notation IA to be the indicator variable of the event A, note that

R(k1, . . . , k, . . . , kn) ≥ R(k1, . . . , k + 1, . . . , kn)

⇔ E[v(k) − d · (S(k) − w)+ − c · IS(k)>w] ≥ E[v(k + 1)

− d · (S(k + 1) − w)+ − c · IS(k+1)>w]

⇔ d · E[(S(k + 1) − w)+ − (S(k) − w)+] + c · E[IS(k+1)>w − IS(k)>w] ≥ vj . (4)

The following is the equivalent of Corollary 1 for the current model, which implies the
existence of marginal optimal values given fixed quantities of all types except one.

Corollary 3: In the SKP with simple recourse and penalty model, for any j ∈ [1, n], fixed
ki for all i �= j, there exists k∗ < ∞ such that:

R(k1, . . . , kj−1, k
∗, kj+1, . . . , kn) ≥ R(k1, . . . , kj−1, k

∗ + 1, kj+1, . . . , kn).

Proof: Because d>maxi∈[1,n](vi/wi), it follows that

lim
n

R(k1, . . . , kj−1, n, kj+1, . . . , kn) = −∞.

�

3.2. Unimodality and Monotonicity

Theorem 2: If c = 0, the ER function in SKP with simple recourse and penalty has the
unimodality property.

Proof: Given c = 0, from the equivalence relation (4), we only have to show:

d · E[(S(k + 1) − w)+ − (S(k) − w)+] ≥ vj ⇒ d · E[(S(k + 2) − w)+

− (S(k + 1) − w)+] ≥ vj .

Let us assume two r.v.s W1 ∼ Fj ,W2 ∼ Fj , where W1,W2, S(k) are independent. Since
the function g(x) = x+ is a convex function, we have:

g(S(k) + W2 + W1 − w) − g(S(k) + W2 − w) ≥ g(S(k) + W1 − w) − g(S(k) − w), (5)

where W1, W2 are always non-negative by our assumption on Fj . Hence,

d · E[(S(k + 2) − w)+ − (S(k + 1) − w)+]

= d · E[(S(k) + W1 + W2 − w)+ − (S(k) + W2 − w)+]

≥ d · E[(S(k) + W1 − w)+ − (S(k) − w)+]

= d · E[(S(k + 1) − w)+ − (S(k) − w)+],

which concludes the proof. �

Proposition 4: When c = 0, the marginal optimal decision function has the monotonicity
property.

Proof: The proof is similar to that of Theorem 2. �
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The following example shows that the unimodality property need not hold when c > 0.
Counter Example: Assume that n = 1, v1 = 1, w = 199.9 and that W, the weight of an

item, is such that

W =

{
1 with probability 1−10−4,

100 with probability 10−4.

With d = 1 and c = 200, we have:

R(100) ≈ 100, R(101) ≈ 98, R(199) ≈ 193.

which contradicts unmodality.
We now prove that the unimodality property holds for the SKP when Fi is exponential

with mean wi, i = 1, . . . , n.

Theorem 3: If all Fi, i = 1, . . . , n, are exponential, then the ER function in the SKP with
simple recourse and penalty model has the unimodality property.

Proof: First we need to define a discrete random variable N as follows:,

N =

{
0 if S(0) > w,

k if S(k − 1) ≤ w < S(k), for all k ≥ 1,
(6)

where S(k) is defined in equation (3).
Let

fN (k) = P (N = k), k ≥ 0.

Note,

P (S(k) > w) =
k∑

h=0

fN (h), and
∞∑

h=0

fN (h) = 1.

Given all items’ weights are exponentially distributed, from the equivalence relation
(4), we have

R(k1, . . . , k, . . . , kn) ≥ R(k1, . . . , k + 1, . . . , kn)

⇔ d · E[(S(k + 1) − w)+ − (S(k) − w)+] + c · E[IS(k+1)>w − IS(k)>w] ≥ vj ,

where

E[(S(k + 1) − w)+ − (S(k) − w)+] = wj (P (S(k) > w) + P (S(k) ≤ w,S(k + 1) > w)) ,

E[IS(k+1)>w − IS(k)>w] = P (S(k) ≤ w,S(k + 1) > w).

Therefore, the preceding inequality is equivalent to

dwjP (S(k) > w) + (dwj + c)P (S(k) ≤ w,S(k + 1) > w) ≥ vj

⇔ dwj

k+1∑
h=0

fN (h) + cfN (k + 1) ≥ vj .

To prove the theorem, we only need to show

dwj

k+1∑
h=0

fN (h) + cfN (k + 1) ≥ vj ⇒ dwj

k+2∑
h=0

fN (h) + cfN (k + 2) ≥ vj . (7)
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Let us define:

ku � min

{
k ≥ 0 : dwj

k+1∑
h=0

fN (h) − vj ≥ 0

}
,

k0 � min

{
k ≥ 0 : dwj

k+1∑
h=0

fN (h) + cfN (k + 1) − vj ≥ 0

}
.

Because
∑∞

h=0
fN (h) = 1, dwj > vj and c > 0, we know ku must exist and k0 ≤ ku.

We want to show the claim (7) holds for all k ≥ k0. When k ≥ ku − 1, the claim (7) follows
from the definition of ku. If ku = 0 or k0 = ku, the claim (7) obviously holds. Now we only
have to check the claim (7) when k ∈ [k0, ku − 1) given ku > 0 and k0 < ku.

For any k ∈ [k0, ku − 1) given ku > 0 and k0 < ku, because

dwj

ku∑
h=0

fN (h) < vj ≤ dwj

ku+1∑
h=0

fN (h),

we have

dwj

k+1∑
h=0

fN (h) + cfN (k + 1) ≥ vj

⇔ c ≥
vj − dwj

∑k+1

h=0
fN (h)

fN (k + 1)

⇒ c >
dwj

∑ku

h=0
fN (h) − dwj

∑k+1

h=0
fN (h)

fN (k + 1)
;

on the other hand,

c ≥
dwj

∑ku+1

h=0
fN (h) − dwj

∑k+2

h=0
fN (h)

fN (k + 2)

⇒ c ≥
vj − dwj

∑k+2

h=0
fN (h)

fN (k + 2)

⇔ dwj

∑k+2

h=0
fN (h) + cfN (k + 2) ≥ vj .

Therefore, to prove the claim (7) for k ∈ [k0, ku − 1), we only need to show:

dwj

∑ku

h=0
fN (h) − dwj

∑k+1

h=0
fN (h)

fN (k + 1)
≥

dwj

∑ku+1

h=0
fN (h) − dwj

∑k+2

h=0
fN (h)

fN (k + 2)
,

which is equivalent to show:

fN (k + 2)
fN (k + 1)

≥
∑ku+1

h=k+3 fN (h)∑ku

h=k+2 fN (h)
,
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and this inequality follows if we can show:

fN (k + 2)
fN (k + 1)

≥ fN (k + 3)
fN (k + 2)

, ∀k ≥ 0. (8)

The inequality (8) indeed says that the discrete random variable [N |N > 0] is log-concave,
which is showed in Lemma 2 below. �

Lemma 2: The discrete random variable [N |N > 0] where N is defined in (6) is log-concave.

Proof: See the proof in the Appendix. �

Proposition 5: When c > 0 and items’ weights are exponentially distributed, the marginal
optimal value function has the monotonicity property.

Proof: The proof is similar as for Theorem 3. �

4. WITH EXPONENTIALLY DISTRIBUTED CAPACITY FOR THE TWO MODELS

In the preceding discussions, we assumed that the knapsack capacity is a known constant. In
this section, we show the same results still hold when the knapsack has exponential capacity
for the two models. Since the proof of monotonicity of the marginal optimal decision function
applies the similar logic as in the proof for the unimodality property, in the following, we
only sketch the arguments for the unimodality.

4.1. The Static BKP Model

With exponential capacity W , the ER function for the static BKP model is

R(k1, . . . , kn) =

(
n∑

i=1

kivi

)
P

(
n∑

i=1

ki∑
h=1

Wih ≤ W

)

=

(
n∑

i=1

kivi

)
n∏

i=1

ki∏
h=1

P (Wih ≤ W ),

where Wih∼Fi.
With exponential capacity, a result similar to Lemma 1 holds with no need of assuming

DRH rate on items’ weights.

Lemma 3: Suppose {Xi} is a sequence of independent non-negative random variables, and
let Sm =

∑m

i=1
Xi, ∀m ≥ 1. Then the conditional random variable [Sm|Sm ≤ W ] is stochas-

tically increasing in m, where W is an exponential random variable that is independent with
X1,X2, . . ..
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Proof: We want to prove

[Sm|Sm ≤ W ] ≤st [Sm+1|Sm+1 ≤ W ],

which is equivalent to

P (Sm ≤ s|Sm ≤ W ) ≥ P (Sm+1 ≤ s|Sm+1 ≤ W ), ∀s ≥ 0.

⇔ P (Sm ≤ s, Sm ≤ W )
P (Sm ≤ W )

≥ P (Sm+1 ≤ s, Sm+1 ≤ W )
P (Sm+1 ≤ W )

⇔ P (Sm+1 ≤ W )
P (Sm ≤ W )

≥ P (Sm+1 ≤ s, Sm+1 ≤ W )
P (Sm ≤ s, Sm ≤ W )

(let H(W ) = min{s,W} and X = Sm+1 − Sm, )

⇔ P (Sm+1 ≤ W |Sm ≤ W ) ≥ P (Sm+1 ≤ h(W )|Sm ≤ h(W ))

⇔ P (W ≥ X) ≥ P (X ≤ h(W ) − Sm|Sm ≤ h(W )).

Let Wh =st h(W ) − Sm|h(W ) ≥ Sm, where we use the notation V =st, if random vari-
ables V and U have the same distribution. Now from the preceding equivalent inequality,
it suffices to show

W ≥st Wh,

which is from

Wh =st min{W − Sm, s − Sm}|W ≥ Sm, s ≥ Sm

≤st W − Sm|W ≥ Sm, s ≥ Sm

=st W.

�

With the above lemma, as in Section 2.2, the following theorem is immediate.

Theorem 4: In the static BKP model with exponential capacity, for any Fi, 1 ≤ i ≤ n, both
unimodality of the ER function and monotonicity of the marginal optimal decision function
hold.

4.2. The SKP with Simple Recourse and Penalty Model

When the knapsack capacity W is an exponential random variable and it is independent
with items’ weights, the ER function for the SKP with simple recourse and penalty model is

R(k1, . . . , kn) =
n∑

i=1

kivi − d · E[(Wtotal − W )+] − c · P (Wtotal > W ), (9)

where Wtotal =
∑n

i=1

∑ki

h=1
Wih, and Wih ∼ Fi.

We still have to assume that d>maxi(vi/wi). For the general model with no constraints
on c and no specific assumptions on Fi, there exists a sufficient condition for the unimodality
property, which as well implies the monotonicity property.
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Proposition 6: Let Xi ∼ Fi, 1 ≤ i ≤ n, where wi = E[Xi]; and the capacity W is an
exponential r.v. and independent with all Fi. A sufficient condition for the unimodality
is:

c ≤ min
1≤i≤n

dwi − d · E[(Xi − W )+]
P (Xi > W )

. (10)

Proof: Using the same notations as in equation (4), for any j ∈ {1, . . . , n}, given

d · E[(S(k + 1) − W )+ − (S(k) − W )+] + c · E[IS(k+1)>W − IS(k)>W ] ≥ vj , (11)

to prove the unimodality, we have to show

d · E[(S(k + 2) − W )+ − (S(k + 1) − W )+] + c · E[IS(k+2)>W − IS(k+1)>W ] ≥ vj . (12)

Let Xj ∼ Fj , wj = E[Xj ], then

d · E[(S(k + 1) − W )+ − (S(k) − W )+] + c · E[IS(k+1)>W − IS(k)>W ]

= dwj · P (S(k) ≥ W ) + d · E[(S(k + 1) − W )+|S(k) < W ] · P (S(k) < W )

+ c · P (S(k + 1) > W |S(k) < W ) · P (S(k) < W )

= dwi · P (S(k) ≥ W ) +
(
d · E[(Xj − W )+] + c · P (Xj > W )

) · P (S(k) < W ).

Similarly, the left-hand side of the inequality (12) is equal to

dwi · P (S(k + 1) ≥ W ) +
(
d · E[(Xj − W )+] + c · P (Xj > W )

) · P (S(k + 1) < W ).

Now with condition (10),

dwi · P (S(k + 1) ≥ W ) +
(
d · E[(Xj − W )+] + c · P (Xj > W )

) · P (S(k + 1) < W )

− dwi · P (S(k) ≥ W ) − (d · E[(Xj − W )+] + c · P (Xj > W )
) · P (S(k) < W )

= dwi · P (S(k + 1) ≥ W,S(k) < W )

− (d · E[(Xj − W )+] + c · P (Xj > W )
) · P (S(k) < W,S(k + 1) ≥ W )

=
(
dwi − d · E[(Xj − W )+] − c · P (Xj > W )

) · P (S(k) < W,S(k + 1) ≥ W ) ≥ 0.

�

Remark 4: When c = 0, condition (10) in Proposition 6 holds because the left-hand side of
condition (10) is always non-negative.

When c > 0 but items have exponential weights, we can prove the unimodality similarly
as in Theorem 3: by re-defining N in definition (6) with W replacing w, the new r.v. N
satisfies Lemma 2, for which we need to observe the fact that the r.v. Y (in Proof of Lemma 2
in the Appendix), for Y = W − S(0), still has log-concave probability density function (pdf)
when W is an exponential r.v.

Theorem 5: In the SKP with simple recourse and penalty model with exponential capacity,
when c = 0 or all types have exponential weights, both the unimodality and the monotonicity
properties hold.
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5. SEARCH SCHEME FOR THE OPTIMAL SOLUTION

In the following, we assume that the unimodality property holds for the ER function and
the monotonicity property holds for the marginal optimal decision functions. We use these
two properties to design a search algorithm for the two static SKP models described in
this paper.

Given distribution Fi of item’ s weight, ∀i ∈ [1, n], and all other parameters, the value
of R(· · · ) on a decision vector is difficult to compute for most distributions (The case of
normal distribution has been discussed in other papers, see the Introduction.). We will use
simulation to approximate ER value for a decision vector input.

To facilitate the simulation process, a large set of random variables for each type of
distribution are generated in the beginning of the program. Then whenever random variables
are needed on each iteration of the simulation, they can be randomly selected from these
sets respectively.

For type i, if Fi has well-defined inverse function F−1
i , then the set corresponding to

the type i items’ weights can be generated through stratified simulation, that is, choose
a large enough integer N , then the set is: {F−1

i ((i − (1/2))/N) : i = 1, 2, . . . , N}. For the
cases where all Fi, i ∈ [1, n], are exponential distributions or normal distributions, we only
have to generate one large set of standard random variables instead of n sets for every type,
then whenever an instance of an item’s weight is needed, we randomly select one from the
set and transform the standard r.v. to our desired one. In the following, given a decision
vector, the ER function R(· · · ) represents the simulation-generated value.

As shown in Corollary 2, we first have to find all these k1
i , ∀i ∈ [1, n] to bound our

search space. If only one type of items available, say type i, we compute R(2l) for l =
0, 1, 2, . . . , respectively, until the first l, denoted as lu, such that R(2lu−1) > R(2lu). From
the unimodality property of the function R(·), 2lu must be an upper bound of the optimal
solution. Then we can take a bisection search in [0, 2lu ], which applies the unimodality
property, to find the optimal solution k1

i .
For general n, a heuristic search algorithm similar to simulated annealing is pre-

sented. In this heuristic algorithm, for each i ∈ [1, n], we start with the decision vector
(0, . . . , k1

i , . . . , 0). For each of the n starting vectors, on the first round, we try to find the
best marginal decision for the first element while keeping the remaining n − 1 elements fixed.
We update each vector respectively by replacing the first element with the calculated best
marginal decision on the first element. Then on the next round, we find the best marginal
decision on the second element of each updated vector while keeping other elements fixed,
update the vector, and move to the next round so that on the rth round, we consider the
element on position (r − 1)mod n + 1. The update process for each vector stops when no
more improvement can be made after n rounds. The decision vector that has the highest
ER among the n final vectors is selected to be returned by the program.

Search Algorithm

Compute k1
i for each i ∈ [1, n]. Let S be an empty set.

For i from 1 to n.
Set di = (0, . . . , k1

i , . . . , 0).
Set ci = 0, and pos = 0.
While ci ≤ n.

Update pos = pos ( mod n);
Keep all elements in decision vector di fixed except for that in position
pos + 1; apply the unimodality property in bisection search to find the local
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optimal decision for type pos + 1 in the range [0, k1
i ].

If the newly-found quantity differs the old one for type pos + 1 in di,
set ci = 0; otherwise ci = ci + 1.
Update pos = pos + 1.

End While.
Add (di, R(di)) to the set S.

End For.
In the set S, find (d, R(d)) which has the largest R(d), output d.

The decision vector returned by the above search algorithm is not guaranteed to be the
optimal vector; however, as we will show in the following numerical examples, the ER from
our solution is very close to the optimal ER.

6. NUMERICAL EXAMPLES

In this part, we give numerical examples to illustrate the implementation of the search
algorithm presented this paper for the two models with constant capacity. The programs
are written in C + + codes, and the value of the ER function on each decision vector is
approximated by Monte Carlo simulation.

6.1. Example for the Static BKP Model

We assume that the items’ weights are absolute values of normal r.v.s. (note: the r.v.s are
in DRH ). The parameters of the distributions are randomly generated, that is, for each
type i ∈ [1, 3], we set vi = u1, Fi ∼ |N(0, u2

2)| where u1, u2 are independent uniform r.v.s in
(0, 1).

On Table 1 of n = 3, the running time (RT) in our algorithm (ALG) becomes an even
smaller percentage of RT in the exhaustive search (ES) as the problem size goes up in terms
of the increasing knapsack capacity. The computation efficiency achieved by the algorithm
for n = 3 is evident compared with ES. As we can see in this example, with capacity 20,
our algorithm runs nearly a thousand times faster than in purely ES without compromising
the result. All the ERs from our algorithm under different problem sizes in this example
are close to the optimal values computed from ES.

6.2. Example for the SKP with Simple Recourse and Penalty Model with c > 0 and
Exponential Items’ Weights

We consider an example of n = 3 and for a type i item, ∀i ∈ [1, 3], its weight is expo-
nentially distributed with mean wi. In this example as shown in Table 2, we set d = 20

Table 1. n = 3, with parameters: v1 = 0.305025, σ1 = 0.313816, v2 = 0.334888,
σ2 = 0.466047, v3 = 0.68152, σ3 = 0.562881

Capacity (w) RT (ALG) RT (ES) ER (ALG) ER (ES)

1 0.013508 0.016692 0.858716 0.868598
5 0.05416 1.08355 4.95937∗ 4.94351
20 0.244282 236.822 23.0249 23.0105

∗ER from our algorithm is higher than the optimal one due to the sample errors in simulation processes.
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Table 2. n = 3, with parameters: c = 5.0, d = 20.0, v1 = 2.0,
w1 = 0.32, v2 = 3.0, w2 = 0.40, v3 = 4.0, w3 = 0.52

Capacity (w) RT (ALG) RT (ES) ER (ALG) ER (ES)

5 0.405688 5.35432 25.3228 25.3396
10 0.936152 124.067 58.5908 59.033

15 2.03097 � 103 92.3793 NA

where d > maxi{vi/wi}. When the total capacity equals 15, the ES runs more than 15 min
compared to less than 4 s in our heuristic algorithm. The performance and efficiency of
the presented algorithm which takes advantage of the unimodality property for the second
model is illustrated on Table 2.

7. CONCLUSION

This paper discusses two static SKP models: the static BKP and the SKP with simple
recourse and penalty. In both models, there are n types of items with each type having
infinite supply; an item’s value is deterministic and its weight is stochastic; only one decision
has to be made in the beginning on the quantities of each type of items to be put to the
knapsack; the objective is to achieve the highest ER. The difference is that the event of
overflow, that is, broken knapsack, wipes out all the existing values in the static BKP
model; whereas in the SKP with simple recourse and penalty, the overflow incurs a fixed
penalty plus a variant cost proportional to the overcapacity amount. When the knapsack
capacity is constant, we explored the solution structures of the static BKP by showing
the unimodality property of the ER function under the assumption that all items’ weights
have DRH rate . We proved the unimodality property always holds even without the DRH
assumption if the knapsack capacity is exponentially distributed. In the second model, the
SKP with simple recourse and penalty, we showed the unimodality property always holds
for the SKP with simple recourse but no fixed penalty. We also proved that this property
holds for the general model when all items’ weights are exponentially distributed. With
exponential capacity, we gave a sufficient condition of the unimodality property and proved
the same results hold in this case. Based on the unimodality and monotonicity properties,
we develop a search algorithm in the two models. The advantage of the search algorithm
compared to the ES in performance and efficiency is manifested in numerical examples.

Acknowledgement

This material is based upon work supported by the U.S. Army Research Laboratory and the U.S. Army
Research Office under grant number W911NF-11-1-0115.

References
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APPENDIX

Proof for inequality (1) in Corollary 1.
Denote:

S =
∑
i�=j

ki∑
h=1

Wih,

v =
∑
i�=j

kivi,

where Wih ∼ Fi ∀ i ∈ [1, n], that is, S and v are the total weights and the total values of all other
types excluding type j. We also assume:

E[S] = μ, V ar(S) = σ2.

Because,

R(k1, . . . , m, . . . , kn) = (v + mvj)P

(
S +

m∑
h=1

Wjh ≤ w

)
,

after applying the central limit theorem, we have:

lim
m→+∞R(k1, . . . , m, . . . , kn) = lim

m→+∞(v + mvj)Φ

⎛
⎝w − v − mwj√

σ2 + mw2
j

⎞
⎠

= lim
m→+∞(v + mvj)Φ(−√

m)

= lim
m→+∞mvjΦ(−√

m),

where Φ(·) is the cdf for the standard normal distribution N(0, 1).
We have the following upper-bound for the term Φ(−√

m):

Φ(−√
m) = 1 − Φ(

√
m)

=

∫ ∞
√

m

1√
2π

e−
x2
2 dx

≤
∫ ∞
√

m

1√
2π

x√
m

e−
x2
2 dx

=
e

−m
2√

2πm
.

Therefore,

lim
m→+∞mvjΦ(−√

m) ≤ lim
m→+∞mvj

e
−m
2√

2πm
= 0.

Proof of Lemma 2.

Denote: Y = w − S(0); {Wh}h≥1 is a sequence of i.i.d exponentially distributed random
variable with mean wj . We can rewrite the definition of the random variable N as follows:

N =

⎧⎨
⎩

0 if Y < 0,

k if
∑k−1

h=1
Wh ≤ Y and

∑k

h=1
Wh > Y . ∀k ≥ 1

Let us denote N̂ = [N |N > 0], let f(y) be the pdf of Y , and f̂(y) as the pdf for [Y |Y ≥ 0].
If S(0) ≡ 0, then N̂ is a Poisson distribution which implies the log-concavity of N̂ . Otherwise,
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S(0) is the sum of some independent exponentially distributed random variables whose pdf are
all log-concave, from the fact that the convolution of log-concave distributions preserves the log-
concavity (see Theorem 7 in Prekopa [24]), we know f(y) must be log-concave in the domain
(−∞, w]. Therefore, f̂(y) is log-concave in [0, w]. Now we want to show N̂ is log-concave, which
follows Lemma 4 below.

We now want to prove Lemma 4. The idea of the proof here is from Nanda and Sengupta [23].
The authors in that paper proved that: the number of events which arrive according to a Poisson
process during a stochastic time period is in discrete DRH if the distribution of the length of this
time period is in continuous DRH. In Lemma 4, we prove: the distribution of the number of events
is discrete log-concave if the distribution of the time length is continuous log-concave.

Lemma 4: If {N(t), t ≥ 0} is a Poisson process with rate λ and is independent of T , a positive
continuous log-concave random variable, (It is required that the pdf of T has first-order derivative
in its domain.) then the discrete random variable N(T ) is log-concave.

Proof: Let p(k), k ∈ N, be the pmf of N(T ). To prove N(T ) is log-concave, it is equivalent to
show: ((p(k + 1))/p(k)) is non-increasing for k ≥ 0.

Assuming the continuous r.v. T has pdf f(t), and denote:

w = sup
t≥0

{t : f(t) > 0}.

Let us define the following functional for k ≥ 0,

Γ(λ, g, k) =

∫ w

0
e−λx (λx)k

k!
g(x)dx,

where g is any function which makes the above integration well defined.
It is easy to verify:

p(k) = Γ(λ, f, k), ∀k ≥ 0.

Let f ′(t) be the first derivative of f(t) on t, then for k ≥ 0, we have:

Γ(λ, f ′, k) = C(k) + λΓ(λ, f, k) − λΓ(λ, f, k − 1),

where C(k) = e−λw (λw)k

k! f(w) − f(0)Ik=0, and Γ(λ, f,−1) = 0. Hence,

p(k + 1)/p(k) is non-increasing in k for k ≥ 0

⇔ Γ(λ, f, k + 1)/Γ(λ, f, k) is non-increasing in k for k ≥ 0

⇔ (Γ(λ, f, k) − Γ(λ, f, k − 1)) /Γ(λ, f, k) is non-increasing in k for k ≥ 1

⇔ (
Γ(λ, f ′, k) − C(k)

)
/Γ(λ, f, k) is non-increasing in k for k ≥ 1

⇐ Γ(λ, f ′, k)/Γ(λ, f, k) is non-increasing in k for k ≥ 1,

andC(k)/Γ(λ, f, k) is non-decreasing in k for k ≥ 1.

Now we only have to prove the following two claims:
(A1) Γ(λ, f ′, k)/Γ(λ, f, k)is non-increasing in k for k ≥ 1;
(A2) C(k)/Γ(λ, f, k) is non-decreasing in k for k ≥ 1.
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Let us first prove the claim (A2), for k ≥ 1:

C(k)/Γ(λ, f, k) is non-decreasing in k

⇔ e−λw (λw)k

k!
f(w)/

∫ w

0
e−λx (λx)k

k!
f(x)dx is non-decreasing in k

⇔
∫ w

0
e−λx (λx)k

(λw)k
f(x)dx is non-increasing in k

⇐ (λx)k

(λw)k
is non-increasing in k for all x ∈ [0, w].

To prove the claim (A1), we will utilize the log-concave property of f(y) on [0, w]. Because
f(t) is log-concave on [0, w], ((f ′(t))/f(t)) is monotone deceasing (see Remark1 in Bagnoli and
Bergstrom [3]). Therefore, for any θ > 0, f ′(t) − θf(t) changes sign at most once from positive to
negative as t goes from 0 to w. Denote

K(x, k) = e−λx (λx)k

k!
,

then K(x, k) is TP2 (total positivity of order 2) over [0, w] × N. From Chapter 5 in Karlin [11],
the variation diminishing property of K(x, k) implies that Γ(λ, f ′, k) − θΓ(λ, f, k) changes sign at
most once from positive to negative as k goes from 0 to ∞, which implies that Γ(λ, f ′, k)/Γ(λ, f, k)
is monotone decreasing. Therefore, we have proved the claim (A1). �
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