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We study the local and global well-posedness of a full system of
magnetohydrodynamic equations. The system is a coupling of the incompressible
Navier—Stokes equations with the Maxwell equations through the Lorentz force and
Ohm’s law for the current. We show the local existence of mild solutions for
arbitrarily large data in a space similar to the scale-invariant spaces classically used
for Navier—Stokes. These solutions are global if the initial data are small enough. Our
results not only simplify and unify the proofs for the space dimensions 2 and 3, but
also refine those in [8]. The main simplification comes from an a priori L?(LS®)
estimate for solutions of the forced Navier—Stokes equations.

1. Introduction

The purpose of this paper is the study of the full magnetohydrodynamics (MHD)
system
v .
E—F’U'VU—VAU-FV}?:] X B,
OE —curl B = —j,
B+ curl E =0, (1.1)
dive =divB =0,

o(E+wvx B)=j,

subject to the initial data
Vg0 = 0°, Bli—o = B, Eli—o = E°.
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Here, v, E, B: R} x RY — R? are vector fields defined on R¢ (d = 2 or 3). The
vector field v = (v1,...,v4) is the velocity of the fluid, v is its viscosity and the
scalar function p stands for the pressure. The vector fields ' and B are the electric
and magnetic fields, respectively, and j is the electric current given by Ohm’s law
(the fifth equation of the system, where o is the electric resistivity). The force
term j x B in the Navier—Stokes equations comes from the Lorentz force under a
quasi-neutrality assumption of the net charge carried by the fluid. Note that the
pressure p can be recovered from v and j x B via an explicit Caldéron—Zygmund
operator (see, for example, [4]). The second equation in (1.1) is the Ampeére-Maxwell
equation for an electric field F. The third equation is simply Faraday’s law. For a
detailed introduction to MHD, we refer the reader to [2,7].

Note that in the two-dimensional case, the functions v, F, B and j are defined
on the whole space R? with values in R3. In this case, the operator V is given by

v = (8131381270)T'

Thus,
div v := Oy, v1 + Op,va, Vp = (0z,p, Ou,D, 0)T

and
curl F := (9, Fy, =0y, F3, 0, Fy — 0, F1)T.

In the following, we take 0 = v =1 to simplify the notation.

Multiply the Navier—Stokes equations in (1.1) by v and the Ampere-Maxwell
equations by (B, E)T and integrate (using the divergence-free condition on the
velocity); this gives the formal energy identity

1d
55[\@”%2 +IBlI22 + 1E]1Z2] + lill72 + [[Vol|72 = 0.
This identity shows that the energy is dissipated by the viscosity and the electric
resistivity. It also suggests that one should be able to construct a global finite-energy
weak solution (& la Leray) for data lying in L?(R¢). However, this intuitive expecta-
tion remains an interesting open problem for (1.1) in both the dimensions d = 2, 3.
Indeed, given a standard approximating scheme, it is hard to obtain the compact-
ness of the solutions, especially for the magnetic field due to the hyperbolicity of
Maxwell’s equations. In dimension 2, the equation is energy critical, but running a
fixed-point argument for the data (v°, E°, B%) only in L?(R%)? seems very difficult
due to the term E x B, which appears after writing j x B=0(E + v x B) x B.
Existence results are known in the case where more regularity is imposed on the
initial electromagnetic field. Recently, for the initial data (v°, E°, B%) € L?(R?) x
(H*(R?))? with s > 0, Masmoudi [11] proved the existence and uniqueness of
global strong solutions to (1.1). His proof relied on the use of the energy inequality
combined with a logarithmic inequality that enabled him to upper estimate the
L*-norm of the velocity field by the energy norm and higher Sobolev norms. It
is also interesting to note that the proof in [11] does not use the divergence-free
condition of the magnetic field or the decay property of the linear part coming from
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Maxwell’s equations, namely,

%—f —curlB+ F = f,
% emp=0, (12)

V-B=0.

Another line of research was pursued by Ibrahim and Keraani [8], who consid-
ered the data (vg, Fo, By) € B;/lz(R?’) x (H'Y2(R3))? in dimension d = 3, and
(vo, Eo, Bo) € Bg’l(RQ) X (Lﬁ)g(RQ))2 in dimension d = 2 (see below for the defini-
tion of these functional spaces). These authors built up strong solutions by using
parabolic regularization arguments giving control of the L*°-norm of the velocity
field of the solution. More recently, Ibrahim and Yoneda constructed a local-in-time
solution for non-decaying initial data on the torus. See [9] for more details.

In this paper, we follow up on the work of Ibrahim and Keraani by running
a fixed-point argument to obtain mild solutions, but taking the initial velocity
field in the natural Navier-Stokes space H%2~1. Our main theorem extends the
aforementioned earlier results in many respects: the regularity of the initial velocity
and electromagnetic fields is lowered, and we unify the proofs in the cases of space
dimensions 2 and 3. One of the key ingredients will be to use an L?L>-estimate on
the velocity field, which greatly simplifies the fixed-point argument.

Before stating our main result, we need a few definitions.

DEFINITION 1.1. First, let P denote the Leray projection on divergence-free vector
fields.

A function I' := (v, E, B), with div(v) = div(B) = 0, is said to be a mild solution
on a time interval [0, T] of the full MHD problem (1.1) if I € C([0, T], H¥/?>~') and
satisfies the integral equation

[(t) = e Ar(0) + /t AN () at,

0
with
A 0 0
A=10 —I  curl
0 —curl O

and N(I') = (P(-V(v®v) + E x B+ (v x B) x B),—v x B,0)T.
We use the following functional analytic framework.

DEFINITION 1.2. Let A, denote the dyadic frequency localization operator defined
in §2. For s,t € R and « > 0 define the space HS! by its norm

11%0 =Y 22| Ag@l T2 + D q*2° (| Agl[72-
g<0 q>0

We also use the shorthand notation

rs 5,8 TS . ITS,S ‘rs,t . 7St
H*=Hy*,  Hi,:=H" and H*':=Hy"
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Finally, define i%H 5% by its norm
1612, e = 3 2P NAg013 12 + 3 027 A0l 10,
q<0 >0

with obvious generalizations to Lk H?, etc

The space H10 is articulated on the standard homogeneous Sobolev space Hs
with an extra logarlthrmc weight for the high-frequency part. The space Hst i
nothing but the usual Sobolev space H? for high frequencies, while it behaves hke
H* for low frequencies. If s > ¢, it is not difficult to see that H** = H® + H'. The
L spaces were first used by Chemin and Lerner [6].

Our main result can be stated as follows.

THEOREM 1.3.

(i) In dimension 2, and for any
Y= (v, B% B°) € L*(R?) x Li,,(R?) x L, (R?),
there exist T > 0 and a unique mild solution I' = (v, E, B) of (1.1) with
initial data I'° and
ve L®0,T;L*) N L*(0,T; H* N L*),
E € L>(0,T; L},,) N L*(0,T; L},,),
B e L>*(0,T;L},,) N L*(0,T; HY).
Moreover, the solution is global (i.e. T = oo) if the initial data is sufficiently
small in L? x L, x L.
(ii) In dimension 3, and for any
r':= (" E% B%) € H'?(R®) x H'/*(R®) x H'/*(R?),
there exist T > 0 and a unique mild solution I' = (v, E, B) of (1.1) with
initial data I'° and
ve L®0,T; H/?) N L2(0,T; H/? 0 L™),
E e L>®(0,T; H'/?) N L*(0,T; H'/?),
B e L>(0,T; H'?) N L*(0,T; H*/*1/?).
Moreover, the solution is global (i.e. T = 00) if the initial data is sufficiently
small in HY/? x HY? x H'/2.

In dimension 2, the extra logarithmic regularity is needed to estimate the term
E x B appearing in the Navier—Stokes equations.

In dimension 3, the control of B in L2(0,T; H3/%1/2) is not needed to close the
fixed-point estimate, but we added it for completeness.

The paper has the following structure. In § 2 we define some further tools needed
in the proof. In § 3 we detail the linear (parabolic regularity) and nonlinear (product
law) estimates needed in the proof of the main theorem. The main theorem is
then proved in §4. Finally, the proofs of some technical estimates are given in the
appendix.
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2. Notation and functional spaces
Throughout this work we use the following notation.

1. For any positive A and B the notation A < B means that there exists a
positive constant C' such that A < CB.

2. ¢ always denotes an absolute constant 0 < ¢ < 1.

3. For any tempered distribution u, both 4 and Fu denote the Fourier transform
of w.

4. For every p € [1,00], || - ||L» denotes the norm in the Lebesgue space LP.

5. For any normed space X, the mixed space-time Lebesgue space L?([0,T], X)
denotes the space of functions f such that, for almost all ¢ € (0,7), f(t) € X
and || f(¢)||x € LP(0,T). The notation L”([0,T], X) is often shortened to L7.X.

We recall the well-known Littlewood—Paley decomposition and the corresponding
cut-off operators. There exists a radial positive function ¢ € D(R%\ {0}) such that

Y w279 =1, VEeR\ {0},

qEZ
supp ©(279) Nsuppp(277-) =0, Vg —j| > 2.

For every ¢ € Z and v € S'(R?), we set

qg—1
Ago=Fp(279%)0(¢)] and S, = > A;

Jj=—00
Bony’s decomposition [3] consists of splitting the product uv into three parts:
wo = Tyv + Tyu + R(u,v),

with

1
T,v = Z Sq—1uA v, R(u,v) = Z Aqquv and Aq = Z Agys.

q q 1=—1

(It should be said that this decomposition is true in the class of distributions for
which > quAq = I. For example, polynomial functions do not belong to this class.)
For (p,r) € [1,+00]* and s € R, we define the homogeneous Besov space Bj . as
the set of u € §'(R?) such that u = 37 Aju and

g, = 1% Agullze)aezlle-zy < oo.

In the case p = r = 2, the space 3572 turns out to be the classical homogeneous
Sobolev space H*. Finally, the definition of L7.Bj ,. is given by distributions u such
that

lullgg gy = 121 Agul g o )aczller) < 0.
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3. Linear and nonlinear estimates

We make extensive use of Bernstein’s inequalities (see, for example, [4]).

LEMMA 3.1 (Bernstein’s lemma). There exists a constant C such that, for any
¢, k€N, 1<a<bandfec LR,

sup [|0%S, flly < CF20EHA A5, £l 1,
|| =k

CR 2| Ay flze < s 10 A fllze < C*27[[AgflLe-

The parabolic regularity result we need reads as the following lemma.

LEMMA 3.2 (parabolic regularization [1]). Let u be a smooth divergence-free vector
field solving

dwu — Au+ Vp = f,

U= = u
on some time interval [0,T]. Then, for everyp>r>1and s€ R and j > 1,
0
”“HC([O,T];B;,j)nif;ggj;?/p S llu HB;]. + \\f||593232+2/r-

The following result is an L% L>°-estimate, which was originally proved in [5,10]
in dimension 2.

LEMMA 3.3 (L?L>®-estimate). Let d = 2,3 and let u be a smooth divergence-free
vector field solving

Opu — Au+ Vp = fi + fo,

uli—o = u
on some time interval [0,T]. Assume that f1 € LlTHd/Q’l and fy € i%33{12_2
Then,
ollzg e S Nuollsraras + il gy froras + 152l g parems: (3.1)
Proof. Due to lemma 3.2, and using the embeddings
L2Bg? < L*By} < L*L™,
we can assume that fo = 0. Duhamel’s formula gives that
t
u(t) = e®ug + / AP () at,
0
and thus
T
lu(®)ll 2. < lle"uol| Lz L +/ 1P f1(¢)]] 2. L A2 (32)
0
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Using the embedding H%/2~1 — B;Olz and the characterization of Besov spaces of
negative regularity (see, for example, [1]),

lull =, ~ e ull o 220,00y
thus we obtain (3.1), as desired. O
We now focus on Maxwell’s equations. The first result is an energy-type estimate.
LEMMA 3.4. Let a >0, let Gy € L%Hﬁf”‘l and let (E, B) be a smooth solution of

OFE —curl B+ E = G,
0¢B + curl E = 0,
(E, B)|t=0 = (Eo, Bo)

on some time interval [0, T]. The following estimate then holds (with constants
independent of T'):

HE”i%ng/Z—lﬂLzTHg/?—l + ||B\|i%cgg/2—1 S 1(Eo, Bo)|l garz-1 + ||G||L2TH;“2‘1' (33)
Moreover, B satisfies the decay estimate
1Bl 2 grarz.arz—1 S | (Eo, Bo)ll gasa—1 + |Gl 1z prarz—- (34)
2o HE L3.Ha

We emphasize that, for the existence and uniqueness part of theorem 1.3, in
dimension 3, estimate (3.4) is irrelevant.

Proof. Only the estimate of ||BHL2Hg/2,d/2—1 requires a proof, which is given in
the appendix. All other estimates can be derived by a standard energy estimate:
apply A, to the system, derive an energy inequality, multiply both members of that
inequality by 29(4/2=1) /max(1, ¢®) and take the ¢£2(Z)-norm. O

The following is a series of nonlinear estimates needed for the contraction argu-
ment.

PROPOSITION 3.5. For all smooth functions u, E and B defined on some interval
[0,T], we have the following estimates, with constants independent of T. In space
dimension 2,

[V(u® U)||L1TL2(R2) S ||U||L;;(Loo(R2)mH1(R2))HU||L§(L°<>(R2)0H1(R2))7 (3.5)
I1E x B||E§B';}(R2)+L1TL2(R2) S ”E”L%leog(]R?)HB”f@S’Ll?Og(R?)OLQTHLOv (3.6)
[Ju % BHL%L%Qg(R’A’) S ||u||L2(L°C(R2)ﬁH1(]R2))||B||£%°L120g(]R2)' (3.7)

In space dimension 3,
[V(u® ”)HLlTHW(Rs) < \|U||L2T(Lw(R3)nH3/2(RS))|\U||L2T(Lm(R3)mHS/2(R3))7 (3.8)

|1E % B”pTgﬁ/?(RS) < HEHL2TH1/2(R3)||BH£%°H1/2(JR3)» (3.9)

[Ju % BHLQTH1/2(R3) < HU||L§(L°<>(R3)HH3/2(R3))HB”igsHl/z(RSy (3.10)
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Estimates (3.5) and (3.8) enable us to control the advection term in the Navier—
Stokes component of the system in dimensions 2 and 3, respectively. Estimates (3.6)
and (3.9) are needed to control the Maxwell part in the Navier—Stokes component.
To estimate the term (u x B) x B, we use (3.6), (3.7) in two space dimensions and
(3.9), (3.10) in three space dimensions.

REMARK 3.6. Ignoring the time variable, (3.9) is a particular case of the product
law
H* (RY) - B (RY) = By~ (RY),

with s1, 89 €]—d/2,d/2[ and s; + s2 > 0. Indeed, it corresponds to the admissible

choice s1 = s9 = % However, this product law becomes critical in two space
dimensions. Estimate (3.6) shows that an extra logarithmic loss is needed in this
case.

We give the proof of the above proposition in the appendix.

4. Proof of theorem 1.3

4.1. Small data and global existence

Let a =1if d =2 and let a = 0 if d = 3. Let Z be the set of I" := (u, E, B)T such
that

we 2% = L2(0, 00, %2 0 L) A L(0, 00, Y21,
B e 28 = (1N 12)(0, 00, HY* ),
B € 2% := L*(0,00, HY*™1) N L*(0, 00, HY/>27).
Endow Z, 2%, ZF and Z®” with the natural norms. Recall that we seek a solution

to (1.1) in the integral form

I'(t) = o) + /t U=OAN(D()) dt,

0
with
A 0 0
A=10 —I  curl
0 —curl O

and N(I') = (P(-V(u®u) + E x B+ (u x B) x B),—u x B,0)T. Let B; be the
ball of the space Z,, centred at 0 and with radius 6 > 0 to be chosen. Define the
map ¢ on that ball as

$:BsCZ—Z
t

I'— &) = / AN (AT + D(t)) dt'. (4.1)
0

Cram 4.1. If HFO”Hd/Q_lXHg/?—lXI_'Ig/Q—l < kO, with 6 > 0 and k > 0 sufficiently

small, then the map @ is a contraction on Bs.
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The theorem follows immediately from the claim: Picard’s theorem gives the
existence of a fixed point of @; call it I". Then, e*AI'° + I'(t) is the desired solution.

Proof of the claim. First, note that &(—eAI) = 0, while, by lemmas 3.2-3.4,

e ATs)lz < C|1o <Cr6 < 30 (4.2)

||H:i/2—1 ><H§/2_1 XH'Z/Z—I

for k small enough. On the other hand, we prove below that if I} and I's belong to
B(Sa

|(I) — D(I2)||z < 3|11 — Iz (4.3)

under the assumptions of the claim.
The estimates (4.2) and (4.3) easily yield the claim.
To prove (4.3), let I := (uj, E;, B;)T € Bs for j = 1,2. Further, write

A0+ (1) = (uy, By, By)T,
set ' := I — Iy = (u,E,B)TNaqd let &(I3;) = fj = (ﬂj,Ej, )T be given

N u )
by (4.1). Let I' := I'y — I, := (@, E, B)T. We decompose @ into @ = a™° +aM, with
NS accounting for the convection term

t
aNs = —/ ADPY (y @ 1y + Gy ® u) dt,
0

and @M accounting for the Lorentz force
t
aM = / AP(E x By + Ey x B)dt’
0
t ! — — — —
+/ e=AD((u x By) x By + [y X B] x By + [tig x By] x B)dt'.
0

Moreover, the electromagnetic field (E, B) satisfies

OWE —curl B+ E =u x By + 1y x B,
OB +curl E =0

with 0 data. First, by lemmas 3.2 and 3.3 and the embedding
LYFrd/2—1 o f1prd/2-1

we have that
[aS|

zv S|PV(u® 1y + U2 ® U)HL1H(1/271
and
[oAgl[ER

5 ||P<E X By + E3 % B)Hizgg/12f2+L1Hd/271

+ [|[P((u x By) x By + [tig X B] x By + [tig X By] % B)||E2BS’/12’2+L1H¢1/2—1'
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Second, applying (3.5) and (3.8), we obtain for the convection term that
1502 S ull o poenirorsy S 15 o zenizors
j=1,2
STz Y (ITyllz + €470 2), (4.6)
j=1,2

whereas the Lorentz force term can be estimated by (3.6), (3.7), (3.9) and (3.10):

15"z S NE 2 garz—s | Bull peo ggarz—10 2 grass.ases

1Bz 2 grare-1 1Bl poo grar1 2 prasars

-+ ||u X BlHL2 7d/2=1 ||B1||£ng/2flmL2Hd/2,d/271
+ ||ﬂ2 x BHngg/?*l ||Bl ||L00Hg/2flmL2Hd/2,d/2—l
+ [tz x Bal| 2 gyase-1[| Bl joc arz—

SIElzzBillze + 1Bzl 25| Bllz= + |lul

Bil|z5|Billz»

Z’u,
+ |2l 2« | Bllzz | Bl z2 + G2l z+]| Bell 221 B]| 22
SITlz D0 N0z + 1400 + 15l + 1 151 %): (4.7)

j=1,2

It remains to estimate the electromagnetic field components of I'. Applying the
energy and the decay estimates (3.3) to the system (4.4), we get that

2
IElze + 1Blze STz Y (e 10z + Iyl 2)- (4.8)

j=1
Gathering the estimates (4.6)—(4.8) gives that
1Tz S ITNz(le TPl z + 14 T1% + I1Tyllz + 1151%)- (4.9)

Choosing ¢ small enough gives (4.3). O

4.2. The local existence
Decompose the initial data (u°, EY, BY) = (u2, E?, BY) + (u?, E?, B?), where
(u?, B2, BY) is regular (say, in H?) and (u?, E?, BY) is small in
Hd/271 x Hg/271 x Hg/271
(this can be done using a Fourier cut-off). We look for a solution I" of (1.1) of the
form (u, E, B) = (us, Es, Bs) + (u,, B, B,.), with

ou,
ot

+u, - Vu, — Au, + Vp, = jr X By,
O E, —curl B, = —j,,
0:B, + curl E, = 0, (4.10)
divu, =divB, =0,
(E’I" + up X Br) = jr
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subject to the initial data
ur|t:O = uga Br‘t:O = Bga ET|t:O = ETO

Arguing as in [9], we know that (4.10) has a unique regular solution. We now solve
for (us, Es, Bs). We have

Oug
ot

4+ us - Vug — Aug + us - V. + Uy - Vug + Vps = j X B — j,. X By,
Opbls — curl By = j — jr, (4.11)
0¢Bs + curl E; = 0,
divu, =divB, =0
subject to the initial data
Ug|i—0 = u, Bli—o = BY, Eli— = EY.
Proceeding in a similar way as for the small data result, set
t . .
B(I) = / S(t-1)A (’P[—us -Vus —us - Vu, —Ur - Vus+j X B—j, X BT]> ar’,
0 J = Jr
where I is defined by
(usv B, ES)T = etA(u(sJ7 Bgv ES)T + I

Applying the same proof as for the small data existence, we can show that the
map P is a contraction if we choose a time of existence T sufficiently small. The
main difference is that new linear terms (in I') appear in @. These linear terms
need to be small (as linear maps) for @ to be a contraction; this can be achieved
by using the smoothness of B and by choosing 7" small enough.

For instance,

S HEs X BTHL%Hd/2—1

t
H / AP E B, dt’
0 Z%

SNl e grase s 1By e
SNl 2 1Bl - (4.12)

The key point is, of course, that || B;[[1 g> can be made arbitrarily small by choos-
ing T small enough.
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Appendix A. Proof of the decay for B and proposition 3.5

Recall the main part of lemma 3.3. We emphasize the fact that this property is
extra information about a weak decay that the magnetic field satisfies, and it has
no impact on the well-posedness result.

cd/2—1

LEMMA A.l. Let « >0, let G € L%Hg and let (E, B) be a solution of

OF —curl B+ E = G,
OB +curlE =0

on some time interval [0, T]. The following estimate then holds with constants not
depending upon time:

1Bl 2 grarzare= S | (Eos Bo)ll grare=s + Gl 2 grara=1- (A1)
Proof. Because of the divergence-free property of B, we have that
0B — AB + 0,B = curl G, (B,0;B)|i=0 = (B°, B}). (A2)

Thus, the magnetic field B satisfies an inhomogeneous damped wave equation (A 2).
In the following we denote by L£1(t) and Lo(t), respectively, the propagators asso-
ciated with the Fourier multiplier functions

h 1 2¢
@ (t, &) = e /% cosh (mt)7 Bolt,€) = o sm (m

L-leP

T

A direct computation gives the Duhamel-type formula

B(t,x) = L1(t)B°(x) + Lo(t)(B°/2 + BY) / Lo(t — s)curl(G)(s, z) ds,
with B! = §;B(t = 0) = —curl(E(t = 0)) = —curl(E"). As this was observed
n [8], there exists 0 < ¢ < 1 such that we have the following bounds.

e For [£| > 2

7ct

[P1(8,9)] Se™, D28 S W'

D1 (8, €)| + |D2(t,6)| S e
o For 2071 < [¢] < 29%1, with ¢ < -3,
|®1(, )] < @;(t) := e %2 cosh (t\/m),

_ij28inh(tv/1 — 226-D)
(§] .

% — 92(¢g—1)

[®2(t,€)] < Py(t) ==
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On the one hand, for ¢ > —1, one has that

[8¢B®)]|z2 S e |AgB° L2 +e 274 (|AgB®|| 2 + |AgB'[| )
t
+/ e A, G 1> ds. (A 3)
0

Multiplying both sides of (A 3) by 29(4/2=1) "applying Young’s inequality (in time)
and summing in ¢ yields

~

I(Z = 80)Bll 5 grar2-1 S (I = S0) B jrarz=1 + (I = S0) B | yasa-=
(T~ S0l - (A4)
On the other hand, for ¢ < 0, one has that

[A¢B(t)]|2 < P(t)|AgB|| 2 + PL(1)([|Ag B |2 + [[Ag B 2)
t
+ 2Q/O B2(t — )] AgG(s)|[ 2 ds.

Taking the LZ-norm in time and applying Young’s inequality we get that
180Bllzaze S 1881 a e 144 Bl 2
D5l L2ty (18 B[22 + | Ag B 2)
+ 2q||915§||L1(R+)||AqGHL2TL?-
But since, for every ¢ < 0 and r € [1,400], @Z satisfies
H@;L']HLT‘(R-F) < 2—2q/r’ 1=1,2,
multiplying both sides by 29%/2¢%/2 and taking the ¢2-norm gives

1S0Bll 2 frar2 S NS0 Bl jrar—1 + 1S0B | gasz-= + 150Gl 15 grara-1- (A5)

[
Putting together (A4) and (A 5) gives (3.3), as desired. O

Proof of proposition 3.5. The proof is based on the paraproduct decomposition. We
choose to prove only (3.6) and (3.7) in detail. The other estimates are easier, or
classical, and left to the reader.

Proof of (3.6). We decompose EB into
EB =TgB + TsE + S3R(E, B) + (I — S2)R(E, B),

and show the following estimates:

ITeB + TpE| ;2 p-1gey S 1Bl 2 22®2) Bl po 12(R2)» (A6)
#B5 1 (R?) FL2(

192R(E, B)|[ .12 S I EllLz p22) Bl 1z g0 re) (A7)

I(I = S2)R(E, B)l| 2 851 r2) S 1B llLz ez, @) 1 Blligere - (A8)
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First, we prove (A 6). Since the term TpE can be treated in a very similar way, we
focus on T B. First,

A,(TpB) = Z A (AgBS;E).

l[G—q|<1

Since A, is uniformly bounded on L?, we have that

Y 2 ATEB) |z S 27 Y [A¢BSE |z Lo
q q

lg—ql<1

We are going to deal with the term ¢ = ¢ only (the two other terms § = g+ 1 can be
estimated similarly). Successively applying Holder’s inequality (in the variables ¢
and ), Bernstein’s lemma, Young’s inequality (in the variable ¢) and Holder’s
inequality (in the variable ¢) gives that

D 2 ABSEllrare <27 AGBl g 12154 Bl 3.1

q q

<277 IABllLg 2|2 Ell g e

q J<q

<Y Y UABlg L2 1A Bl g

q Jj<gq

1/2 1
< (S8 ) (0510
q j

/2

We next prove (A 7). Applying Bernstein’s lemma (see lemma 3.1) and the Cauchy—
Schwarz inequality (in j) gives that

1S2R(B, E)ll g2 S D I1AGR(B, E)| 13 12

q<0

S D 2AGR(B, E)|py e

<0

SY 27 Y 14 Bllzz 2| Az 12

g<0  j=g-2

<SS 29A;Bll 118l g e

J q<inf(0,j+2)

SO 2NABllra 218 Bl s 12
j<0

+ Z 18;Bllpz. 218 Ell L2 12
j=0

< ||E||L2TL2||BHL2TH1»0'
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To estimate (A 8), Holder’s inequality (in ¢, z) and the Cauchy—Schwarz inequality
(in j) give that

I = S2)R(E. B)llzar S Y 1A Elpzr21A;Bl g1

q=205>2q—2

S Y 2Bl lA;Blg.s

7>—20<a<j+2
S D max(f, A B 302145 Bll g 2
i>-2

S BNz ez, 1Blligrs, -

log

O

Proof of (3.7). As for the proof of (3.6), we split uB following the paraproduct
decomposition
uB =Tpu+T,B + R(u, B).

We only estimate Tgu here, the estimate of R(u, B) being similar, and that of T,,B
being easier. By Holder’s inequality,

ITsulfs o = max(1,q)l|S,BAGul7s 12
q

S Zmax(l, Q)HAqU“i?TL?HSqBH%%OLoc-
q

Now observe that Bernstein’s lemma and the Cauchy—Schwarz inequality (in j) give
that

I1SBllrgre S D218 Bl e

J<q
- 92 1/2 . , 1/2
N <Z max(l,j)) (Z maX(laJ)||AjB|L%°L2>
1<q i<q
24
S ———||Blljcr2 -
S e P,
Coming back to the bound for |Tpul|rz 2 ,» this gives that
”TBUHL2 L3, S Z22q”A U||L2 L2||B||LocL2 .
O
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