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Lubrication flows appear in many applications in engineering, biophysics and nature.
Separation of surfaces and minimisation of friction and wear is achieved when the
lubricating fluid builds up a lift force. In this paper we analyse soft lubricated contacts
by treating the solid walls as viscoelastic: soft materials are typically not purely elastic,
but dissipate energy under dynamical loading conditions. We present a method for
viscoelastic lubrication and focus on three canonical examples, namely Kelvin–Voigt,
standard linear and power law rheology. It is shown how the solid viscoelasticity
affects the lubrication process when the time scale of loading becomes comparable to
the rheological time scale. We derive asymptotic relations between the lift force and
the sliding velocity, which give scaling laws that inherit a signature of the rheology.
In all cases the lift is found to decrease with respect to purely elastic systems.
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1. Introduction
The ‘art’ of lubrication by thin liquid layers has been known since ancient

times (Dowson 1998), permitting motion between adjacent solid surfaces at low
friction and wear. Lubrication is of paramount importance to the safe, reliable and
controlled operation of many key elements in engineering applications ranging from
very-large-scale (planes, wind turbines) to microfluidic devices. Synovial joints in
mammals are the archetype of this mechanism in nature. From a theoretical point of
view, the flow of a liquid within a narrow gap can be described by the lubrication
approximation of Stokes equations, first developed by Reynolds more than a century
ago (Reynolds 1886). Since then, lubrication theory has been used to understand a
wide range of phenomena like moving bubbles in a tube (Bretherton 1961), motion
of red blood cells in capillaries (Fitz-Gerald 1969; Secomb et al. 1986; Feng &
Weinbaum 2000), biomechanics of articular cartilage (Hou et al. 1992; Mow, Ateshian
& Spilker 1993) or the physics of the ‘Kugel fountain’ (Snoeijer & van der Weele
2014), to name a few examples.
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Due to the reversibility of Stokes flow in a lubricating layer between rigid solids,
the lift force

L=−
∫

T zjnj dA'
∫

p dA (1.1)

on the sliding or rotating bodies vanishes: in a non-cavitating liquid a lubricated
contact could not support any load if the bodies were entirely rigid. Here, the
T zj are the components of the total stress tensor in fluid, which in the lubrication
approximation is dominated by the isotropic part (given by the fluid pressure p) nj is
the outward normal to the solid surface, and A is the area of the solid boundary.
However, usually the counter-moving bodies are deformable. Importantly, the
deformation has been found to break the reversibility of Stokes flow in the lubricating
layer, which generates a lift force L> 0 between the bodies (Hooke & O’Donoghue
1972; Bissett 1989; Sekimoto & Leibler 1993; Snoeijer, Eggers & Venner 2013).
Motivated in part by novel biological or bio-inspired engineering applications, this
problem has been addressed on many occasions in the last decade. Subjects range
from ‘soft lubrication’ (Martin et al. 2002; Skotheim & Mahadevan 2004, 2005),
motion of lubricated eyelid wipers (Jones et al. 2008), sticking of particles on
lubricated compliant substrates (Urzay 2010; Mani, Gopinath & Mahadevan 2012) to
translating spinning particles near soft boundaries (Urzay, Llewellyn Smith & Glover
2007; Salez & Mahadevan 2015; Saintyves et al. 2016).

In most studies, the deformation of elastic materials has been assumed to adapt
instantaneously to the stresses at their boundaries. In practice, however, most soft
materials like gels, elastomers or cartilage behave viscoelastically: due to dissipation,
their relaxation behaviour is time-dependent, and deformation requires finite time
to adapt to changes in the loading. For example, recent experiments show the
viscoelastic nature of articular cartilage during osteoarthritis (Trickey, Lee & Guilak
2000; Desrochers, Amrein & Matyas 2012). Hence, the coupling between lubrication
pressure and viscoelastic deformation is crucial in understanding these systems (Hooke
& Huang 1997; Scaraggi & Persson 2014).

In this paper we investigate how the lubrication is affected by viscoelasticity of
the deformable boundaries. Figure 1(a) shows four principal configurations in steady
soft lubrication in a two-dimensional configuration: translation with constant velocity
V (cases (i, ii)) or rotation with constant frequency ω (cases (iii, iv)) of cylinders near
a wall. Either the wall (i, iii) or the cylinder (ii, iv) is assumed to be soft. Contrary
to freely moving particles, here we impose translation or rotation on the cylinder to
decouple the intricate particle dynamics from the viscoelastic effects. When the soft
material is assumed to be perfectly elastic, adapting instantaneously to changes in
loading, all four cases are equivalent. At constant separation distance, the lift force
and the velocity are then related as L∼ V2 when the deformation is small (Skotheim
& Mahadevan 2004) and as L ∼ |V|3 when the deformation is large (Bissett 1989;
Snoeijer et al. 2013).

Importantly, viscoelasticity breaks the equivalence among the various cases in
figure 1(a). In cases (ii, iii), the deformations are stationary relative to the material
points. In stationary conditions, one only probes the long-time relaxation and the
response is purely elastic. Contrary to this, in cases (i, iv), the material points in the
deformed body are exposed to a dynamic loading and the deformations lag behind
the steadily moving fluid pressure. This continuous reconfiguration of the viscoelastic
material dissipates energy and probes the time-dependent rheology of the solid. The
key question addressed here is how the viscoelastic rheology affects the generated
lift force.
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FIGURE 1. (Colour online) (a) Four typical geometries of two-dimensional soft lubrication.
The arrows show the direction of steady motion of the cylinder. If the deformed material
is purely elastic in nature, all four have the same steady-state response when studied in a
comoving frame attached to the cylinder. Viscoelasticity breaks the equivalence among the
four cases (see the text for details). (b) Schematic of the problem studied here: a steadily
moving rigid cylinder of radius R close to a viscoelastic wall (distance ∆), corresponding
to case (i). The fluid has a dynamic viscosity η. H is the deformation of the viscoelastic
wall. It should be noted that case (iv) can be recovered by setting V→ωR.

This paper is organised as follows. In § 2 we formulate the problem based on the
linear viscoelastic response and discuss the solution strategy. Section 3 presents the
deformation profiles for three canonical examples, namely Kelvin–Voigt, standard
linear and power law rheology. We show how viscoelasticity affects the lift force in
these cases, by a combination of numerical solution and asymptotic analysis. The
paper concludes with a discussion in § 4.

2. Formulation
We focus on the geometry sketched in figure 1(b), where the cylinder is treated

as rigid and the lower boundary as viscoelastic. We restrict the analysis to small
deformations, in which case the analysis equally applies to case (iv), using
the connection V → ωR. Below we first formulate the problem and introduce
dimensionless variables, and subsequently explain the solution strategy to solve
the viscoelastic lubrication problem.

2.1. Lubrication equation and viscoelastic deformation
A rigid cylinder of radius R moves with a constant velocity V within a fluid
of dynamic viscosity η. The minimum distance between the cylinder and the
undeformed wall is ∆ (see figure 1b). In the limit ∆� R, the shape of the cylinder
is described by a parabola in the first approximation and the gap profile is given by
h0(x) = ∆ + x2/2R = ∆(1 + x2/2R∆). Hence, the characteristic length of the contact
zone becomes

`=√2∆R. (2.1)

The motion of the cylinder creates a lubrication pressure in the gap, and this in
turn deforms the wall. This deformation is characterised by H (x). The deformed
gap profile is h(x) = h0(x) −H (x). The profile of the thin gap h(x) and the fluid
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pressure p(x) in the gap are the unknowns of this coupled problem. They are related
by two equations: the steady-state hydrodynamic lubrication equation and the relation
between load and deformation of a viscoelastic half-space.

We first compute the deformation by treating the lubrication pressure as a traction
acting on a semi-infinite viscoelastic solid. The stress in an incompressible (Poisson
ratio ν = 1/2) linear viscoelastic material under dynamic strain is (Ferry 1961)

σij(x, z, t)=
∫ t

−∞
Ψ (t− t′)ε̇ij(x, z, t′) dt′ −Π(x, z, t)δij, (2.2)

where σij are the components of the stress tensor, εij are the components of the
strain tensor, Ψ (t) is the shear relaxation function and Π is the isotropic part of the
stress tensor. The dot represents a time derivative. In this two-dimensional setting, the
deformation of the viscoelastic wall is assumed to be zero in the y direction – this
leads to plane strain conditions, for which all the strain components normal to the
page vanish. For the case of inertia-free dynamics, mechanical equilibrium is defined
by σij,j = 0. We apply a Fourier transform in time (defined as f̂ (ω)= ∫∞−∞ f (t)e−iωt dt)
to (2.2) and σij,j = 0 to obtain

σ̂ij(x, z, ω)=µ(ω)ε̂ij(x, z, ω), (2.3a)
σ̂ij,j(x, z, ω)= 0 (2.3b)

for the stress–strain relation and the equilibrium condition respectively. Here, µ(ω) is
the complex shear modulus of the material and is given by

µ(ω)= iω
∫ ∞

0
Ψ (t)e−iωt dt=G′(ω)+ iG′′(ω), (2.4)

where G′(ω) and G′′(ω) are the storage and loss moduli. Equation (2.3) can be
solved for the surface profile H by a Green’s function approach. Recently, a similar
formulation was used to study dynamic deformation of a viscoelastic substrate under
a moving contact line (Karpitschka et al. 2015). For an arbitrary dynamic traction
p̂(x, ω), applied at the top surface of the wall (z= 0), the deformation is given by

Ĥ (x, ω)=
∫ ∞
−∞

p̂(x′, ω)
K (x− x′)
µ(ω)

dx′, (2.5)

where K (x) is the elastic Green’s function. Taking a Fourier transform of (2.5) in
space (defined as f̃ (q)= ∫∞−∞ f (x)e−iqx dx), we obtain

̂̃
H (q, ω)= ̂̃p(q, ω)K̃ (q)

µ(ω)
. (2.6)

The Green’s function for an elastic half-space is K (x) = log |x|/2π, or, in Fourier
space, K̃ (q)=−1/2|q| (Johnson 1987).

In the present problem the cylinder moves at a constant velocity, so that the
dynamical loading has the form of a travelling pressure wave p(x− Vt). This simple
form of the temporal loading enables detailed analysis taking into account the full
history-dependent response. Taking Fourier transforms of p(x − Vt) with respect
to space and time, we reach ̂̃p(q, ω) = 2πp̃(q)δ(ω + Vq), where δ(ω) is the Delta
function. Then (2.6) simplifies tỗ

H (q, ω)=−πp̃(q)
|q|

δ(ω+ Vq)
µ(ω)

. (2.7)
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Taking a backward transform from ω to t (defined as f (t)= ∫∞−∞ f̂ (ω)eiωt(dω/2π)), we
obtain

H̃ (q, t)=− p̃(q)
2|q|

e−iVqt

µ(−Vq)
. (2.8)

The only remaining time dependence is the phase factor e−iVqt, which describes the
translational motion of the cylinder. Hence, in the comoving frame that travels with
the cylinder, the profile becomes

H (x)=
∫ ∞
−∞
− p̃(q)

2|q|µ(−Vq)
eiqx dq

2π
. (2.9)

This is the first key equation of the problem, relating the lubrication pressure in the
narrow gap to the deformation of the viscoelastic wall.

The second equation is obtained by the steady-state lubrication equation, describing
the Stokes flow in the narrow gap. Using no-slip boundary conditions at both solids
(horizontal motion due to viscoelastic deformation is negligible in the lubrication limit
and the no-slip boundary condition holds on the soft surface), we obtain the horizontal
velocity component

u(x, z)= V
(

1− z
h

)
+ 1

2η
dp
dx
(z2 − zh), (2.10)

where η is the fluid viscosity and dp/dx is the pressure gradient in the horizontal
direction. Integrating (2.10) over the gap we obtain the volume flux

Q=
∫ h(x)

0
u(x, z) dz, (2.11)

which for an incompressible flow at steady state is constant (dQ/dx = 0). In the
comoving frame, it thus leads to

dQ
dx
= d

dx

[
1

6η
h3 dp

dx
+ Vh

]
= 0, (2.12)

where we recall that h(x) = h0(x) − H (x) is the thickness of the liquid layer.
Equations (2.9) and (2.12) form a set of coupled equations that constitute the
viscoelastic lubrication problem. For µ = constant, this is the same set of equations
as for ‘classical’ 2D elastohydrodynamics (Bissett 1989; Venner & Lubrecht 2000;
Snoeijer et al. 2013).

2.2. Non-dimensionalisation
We use the contact length ` as the horizontal length scale and the gap height ∆ as
the vertical length scale. The lubrication pressure then scales as

P∗ = η`V/∆2. (2.13)

The scale of the deformation induced by this lubrication pressure is given by

H ∗ = P∗`/2G= ηVR/G∆, (2.14)

where G is the static shear modulus of the viscoelastic material, defined as G′(ω= 0).
Hence, it is natural to introduce the first dimensionless parameter of the problem as

β ≡ H ∗

∆
= ηVR

G∆2
, (2.15)
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which is the ratio of the elastic deformation and the typical gap size. In this paper
we solve the coupled equations in the limit where H ∗ is small compared with ∆, i.e.
β� 1.

In contrast to the purely elastic case, the viscoelastic wall exhibits a relaxation time
scale τ . This time scale needs to be compared with that of the dynamical loading due
to the lubrication pressure. This pressure evolves on a time scale τp= `/V , which can
be seen as the inverse shear rate at which the solid is excited. The ratio of these two
time scales gives

T ≡ τ

τp
= τV

`
, (2.16)

the second dimensionless parameter in the problem. The parameter T is the solid
analogue of the Deborah number of a viscoelastic fluid. Equivalently, T can be
interpreted as a ratio of two length scales and compares the lateral extent of the
viscoelastic deformation with the contact length. If the material relaxes much faster
than the time scale of the changes of its load i.e. T � 1, the material behaves purely
elastically. If both time scales are comparable (T ∼ O(1)), viscoelasticity becomes
important.

It turns out that β and T are the only two dimensionless groups in the problem.
This is made explicit by introducing a set of non-dimensional variables,

x= x
`
, z= z

∆
, h= h

∆
, H = H

H ∗ , p= p
P∗
,

t= t
τ
, µ= µ

G
, q= q`, L= L

P∗`
.

 (2.17)

In the remainder, we will only use dimensionless quantities and thus drop the
overbars.

In dimensionless form (2.9) becomes

H (x)=−
∫ ∞
−∞

p̃(q)
|q|µ(−T q)

eiqx dq
2π
, (2.18)

which contains T as a parameter. Likewise, the dimensionless lubrication equation
becomes

d
dx

[
dp
dx

h(x)3 + 6h(x)
]
= 0. (2.19)

The deformed gap profile h(x) couples (2.18) and (2.19) by

h(x)= h0(x)− βH (x), (2.20)

where h0(x) = 1 + x2. As anticipated, the problem contains only the two parameters
T and β. In the case of a purely elastic deformation (T = 0), the solution depends
only on β (Hooke & O’Donoghue 1972; Bissett 1989; Snoeijer et al. 2013).

2.3. Solution strategy
We seek a perturbative solution of (2.19) and (2.20) for β�1, in the spirit of previous
work on thin compressible elastic layers (Skotheim & Mahadevan 2004). In this limit,
we can expand p(x) in β as

p(x)= p0(x)+ βp1(x)+O(β2). (2.21)
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For the leading orders in β we obtain from the lubrication equation (2.19)

O(1) : d
dx

[
dp0

dx
h3

0 + 6h0

]
= 0, (2.22a)

O(β) : d
dx

[
dp1

dx
h3

0 − 3h2
0H

dp0

dx
− 6H

]
= 0. (2.22b)

Here, (2.22a) is the steady-state classical lubrication problem with rigid boundaries. It
can be readily solved with the boundary conditions p0(−∞)= p0(∞)= 0:

p0(x)= 2x
(1+ x2)2

, p̃0(q)=−iπqe−|q|. (2.23a,b)

We note that the zeroth-order pressure p0(x) is antisymmetric and does not contribute
to the lift force. Substituting p̃(q) by p̃0(q) in (2.18), we solve for the deformation

H (x)=
∫ ∞
−∞

πqe−|q|

|q|
[

iG′(−T q)+G′′(−T q)
G′(−T q)2 +G′′(−T q)2

]
eiqx dq

2π
. (2.24)

Subsequently we solve (2.22b) for p1(x). Inspecting (2.24), one can see that the
storage modulus (G′) is associated with the imaginary part of H̃ (q) which gives
antisymmetric deformation in physical space. This antisymmetric part of H (x)
breaks the reversibility of the Stokes equation and generates a lift force. In contrast,
the dissipation in the viscoelastic medium (G′′) leads to the symmetric part of H (x).
Given H (x), one can solve for p1(x), and calculate the lift force (per unit length)
on the cylinder

L=
∫ ∞
−∞

p(x) dx= β
∫ ∞
−∞

p1(x) dx+O(β2). (2.25)

It is important to note that the functions p1(x) and H (x) depend only on T , so
that the lift scales as L ∼ β. The proportionality factor, however, will have a subtle
dependence on T , and hence on the cylinder velocity. The primary goal of the
analysis will be to identify this T dependence for different rheological models.

3. Results
We consider viscoelastic lubrication for three different rheological models for the

wall, each with one single characteristic time scale: the standard linear solid (SLS), the
Kelvin–Voigt model (KV) and a power law (PL) gel. In the following, we first briefly
discuss the elastic case and then introduce viscoelasticity through the three different
models.

3.1. Elastic wall (T = 0)
For an elastic wall that adapts instantaneously to load changes, the scaled shear
modulus reduces to µ= 1. Solving (2.24), we obtain

H (x)=− x
(1+ x2)

. (3.1)

This deformation is purely antisymmetric, just like p0(x). The first-order pressure p1
is obtained by solving (2.22b) using boundary conditions p1(−∞)= p1(∞)= 0,

p1(x)= 1− 2x2

(1+ x2)4
. (3.2)
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The lift force on the cylinder is obtained by integrating over p1(x) and yields

L0 = 3π

16
β. (3.3)

Our main interest is to study how the lift force differs from the purely elastic L0 for
various viscoelastic models. The difference will appear when T is of order unity (or
larger), for which the viscoelastic solid is excited on time scales comparable to (or
faster than) the relaxation time. For T � 1 the response will reduce to the elastic
case, with L= L0.

3.2. Standard linear solid model
The simplest rheological model for a viscoelastic solid is the superposition of an
elastic material and a viscous fluid with frequency-independent viscosity. It is often
represented by a spring and dashpot connected in parallel, which is the so-called KV
solid. The KV model is, however, not applicable to many solids, and we start our
analysis with a generalisation of it: the SLS model, which shows exponential stress
relaxation (cf. (3.4a)). In a spring–dashpot representation, a spring and a dashpot are
connected in series to form one arm of the model, and a second spring is connected
in parallel to this arm. The ratio of the two spring stiffnesses is given by c. Both
the SLS and the KV model have equilibrium or long-time modulus, a signature of
viscoelastic solid models. The extra spring in the SLS model provides an instantaneous
modulus which the KV model lacks. For intermediate frequencies, viscous dissipation
causes an exponential relaxation behaviour, characterised by a time scale τ . In terms
of the dimensionless relaxation function Ψ (t) and complex shear modulus µ(ω), the
SLS model reads

Ψ (t)= 1+ ce−ct, (3.4a)

µ(ω)= ω
2 + c2 + cω2

ω2 + c2
+ i

c2ω

ω2 + c2
. (3.4b)

The storage modulus G′(ω) = Re[µ(ω)] and loss modulus G′′(ω) = Im[µ(ω)] are
plotted in figure 2(a) for c= 100. One indeed observes two distinct values of G′, at
low and high frequency respectively.

For the SLS model, the viscoelastic deformation is obtained in closed form by
solving (2.24):

H (x) = − x
(1+ c)(1+ x2)

+
c2 exp

(
cx

T + cT

)
T (1+ c)2

×Re
[

exp
(

ic
T + cT

)(
Ei
[
− c(i+ x)

T + cT

]
+ iπ

)]
, (3.5)

where Ei is the exponential integral of a complex function z, defined as Ei(z) =
− ∫∞−z (e

−t/t) dt. The deformation according to (3.5) is plotted in figure 2(b). At
very small values of T , the response is essentially elastic and H is perfectly
antisymmetric. Viscoelastic effects become apparent for increasing T , for which
the deformation decreases in amplitude and loses its perfectly antisymmetric form.
However, at very high T , the instantaneous elasticity of the SLS model becomes
dominant. Hence, for T →∞, one recovers the same profile as for T = 0, but with
an amplitude reduced by a factor 1/(1+ c) (inset to figure 2b).
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FIGURE 2. (Colour online) (a) The storage and loss moduli of the SLS model for c =
100. (b) The deformation of the SLS half-space (c= 100) due to zeroth-order lubrication
pressure p0 for T = {0.05, 1, 2, 5, 20, 104} (cf. (3.5)). Inset: the magnified deformation
for T = 104 shows that it regains the small-T shape. (c) First-order pressure p1 for T =
{0.05, 1, 2, 5, 20, 104}. Inset: the magnified pressure at T = 104. (d) Lift force on the
cylinder as a function of T for three different c values normalised by L0. The red dashed
line is the small-T asymptotic (L/L0 = 1). The blue dashed lines indicate the large-T
asymptotic given by (3.6). The grey curves represent the numerically calculated lift force
using the full profile of (3.5). The green dashed curve gives the lift force for the KV
model calculated using (3.9).

Using (3.5), we solve (2.22b) numerically for the first-order pressure p1. Integrating
p1 we obtain the lift force L on the cylinder. The resulting pressures are shown in
figure 2(c), while we report the lift force L/L0 (i.e. normalised by the elastic case)
in figure 2(d). As anticipated, L/L0 = 1 in the limit of small T . The lift decreases
upon increasing T : the deformation H drops in amplitude and its shape develops a
symmetric component, both leading to a reduction in the generated lift force. At very
large T , where the SLS model responds as purely elastic with a higher modulus, the
shape and pressure become independent of T , and the lift force settles at a constant
value. Since the effective modulus at short times is smaller by a factor 1/(1+ c), the
lift force in this limit becomes

L/L0 = (1+ c)−1, (3.6)

which is indicated by the blue dashed lines in figure 2(d). All of the asymptotic results
are obtained assuming T > 0.

Intriguingly, the numerical results in figure 2(d) suggest an intermediate asymptotic
regime that emerges when c� 1, indicated by a dashed green curve. As we will show
in the next section, this intermediate regime corresponds exactly to the KV model.
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It will be shown that for T �1, the lift force for the KV model reads L' (2/3)|T |−2.
Comparing with (3.6), we see that the intermediate asymptotics is described by

L/L0 = 2
3 |T |−2, for 1�T �√c. (3.7)

This regime can indeed be observed when c� 1, which is naturally expected to be
the case for solids that exhibit an instantaneous elasticity.

3.3. Kelvin–Voigt limit
In the limit of c→∞, the instantaneous relaxation of the SLS model is suppressed
and one recovers the KV model. The relaxation function and the complex modulus of
the KV model are given by

Ψ (t)= 1+ δ(t), (3.8a)
µ(ω)= 1+ iω. (3.8b)

Therefore, for ω� 1, the KV model behaves as purely elastic, while for ω� 1 it
acts as a Newtonian fluid. The surface deformation of a KV half-space is obtained as
c→∞ in (3.5),

H (x;T )=
exp

( x
T

)
T

Re
[

exp
(

i
T

)(
Ei
[
−(i+ x)

T

]
+ iπ

)]
. (3.9)

The green dashed curve in figure 2(d) gives the numerically calculated lift force,
which is indeed the intermediate asymptotics of the SLS model.

We now calculate the asymptotic nature of the lift force for this material model. At
large T , (3.9) reduces to

H (x;T ) = |T |−1

(
γ + 1

2
log(1+ x2)

)
+ |T |−2

(
x(γ − 1)+ x

2
log(1+ x2)+ tan−1 x

)
+O(|T |−3), (3.10)

where γ is Euler’s constant, which is equal to 0.577216. Integrating (2.22b), we find

p1 =
∫ x

−∞
3
(

1
h0

dp0

dx′
+ 2

h3
0

)
H dx′ = |T |−1g1(x)+ |T |−2g2(x). (3.11)

Here, g1(x) is antisymmetric and makes no contribution to the lift force. The leading-
order contribution to the lift force is thus ∼|T |−2:

L=
∫ ∞
−∞

p1 dx= |T |−2
∫ ∞
−∞

g2(x) dx= k|T |−2. (3.12)

Numerical integration over g2(x) appears to give an exact ratio k = π/8 up to eight
decimals. As a result, the large-T asymptotics for the lift force becomes

L/L0 = 2
3 |T |−2, (3.13)

which is the scaling law anticipated before.
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3.4. Power law rheology
Many crosslinked polymers like PDMS and polyurethane exhibit a PL relaxation
behaviour, i.e. both G′(ω) and G′′(ω) scale as ωn for large ω. In general, a large
degree of polydispersity or a broad relaxation spectrum causes PL relaxation behaviour
in polymeric systems (Ng & McKinley 2008). The value of the exponent n depends
on the stoichiometry. For example, n= 1/2 for a stoichiometrically balanced PDMS,
otherwise n varies between 1/2 and 1 (Chambon & Winter 1987). The rheology of
such a PL gel can be modelled as

Ψ (t)= 1+ Γ (1− n)−1 1
tn
, (3.14a)

µ(ω)= 1+ (iω)n, (3.14b)

where Γ is the Gamma function. Equations (3.14) require 0 < n < 1, to allow for
integrability. Figure 3(a) shows the corresponding storage and loss moduli for n= 3/4.

The case where n approaches unity is a singular limit, in the sense that the limit of
large ω and n→ 1 cannot be reversed. At a given frequency ω, the response of the
PL gel approaches that of the KV rheology in the limit n→ 1, see (3.8b). However,
for any value of n< 1, the high-frequency asymptotics of the PL gel is G′∼G′′∼ωn,
while for the KV model one has G′∼ω0. For a given material of n< 1, we therefore
anticipate the lift in the high-velocity regime (T � 1) to be different from the KV
behaviour. Again, we will find that the KV model serves as an intermediate regime
for the PL solid.

The Fourier transform of the deformation of the PL solid reads

H̃ (q)= iπe−|q|q
|q|(1+ (−iT q)n)

. (3.15)

The inversion to the physical space has to be performed numerically. The results are
shown in figure 3(b). The inset shows a zoom of a profile of H (x) for large T .
Unlike the SLS model, a PL solid does not exhibit an elastic response at large T ,
and the profile is not perfectly antisymmetric. Figure 3(c) shows the corresponding
pressure profiles (for n = 0.75), and the lift forces are shown in figure 3(d) (grey
curves). For small T , the lift force is similar to the elastic case. For large T ,
L decreases algebraically with an exponent that depends on n. The green curve
corresponds to the KV model.

We now extract the large-T behaviour of L, and in particular its dependence on
the rheological exponent n. We expand (3.15), and to leading order obtain

H̃ (q)=−e−|q|π(−iq)1−n|T |−n

|q| , (3.16)

which can be inverted to physical space as

H (x;T )=−Γ (1− n)Re
[

i−n(1+ ix)n

−i+ x

]
|T |−n. (3.17)

Using (3.11) we can write

p1 = |T |−n
∫ x

−∞
−3Γ (1− n)Re

[
i−n(1+ ix′)n

−i+ x′

] (
1
h0

dp0

dx′
+ 2

h3
0

)
dx′ = |T |−nf1(x; n)

(3.18)
and the lift force

L/L0 = 16
3π

∫ ∞
−∞
|T |−nf1(x; n) dx= |T |−nf (n). (3.19)
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FIGURE 3. (Colour online) (a) The storage and loss moduli of the PL model for n= 3/4.
(b) The deformation of the PL half-space (with n= 3/4) obtained by numerical backward
transform of (3.15) for T = {0.05, 1, 2, 5, 20, 104}. Inset: the magnified deformation
for T = 104 shows that unlike the SLS model, the PL model does not exhibit elastic
deformation for large T . (c) First-order pressure p1 for T = {0.05, 1, 2, 5, 20, 104}. Inset:
the magnified pressure profile at T = 104. (d) Lift force on the cylinder as a function of
T for four different n values. The red dashed line is the small-T approximation given
by (3.3). The blue dashed lines indicate the large-T asymptotic given by (3.19). The grey
curves represent the numerically calculated lift force using the full profile of (3.15). The
green dashed curve gives the lift force for the KV model. Inset: the data points show the
numerically calculated prefactor f (n) as n varies between 0 and 1.

Hence, we find that L ∼ |T |−n. The prefactor f (n) is evaluated numerically and is
shown in the inset of figure 3(d). The blue dashed lines in figure 3(d) show the large-
T asymptotes, in agreement with the full numerical evaluation.

The KV model again serves as an intermediate regime (green curve), which now
emerges as n→ 1. Comparing (3.19) and (3.13), we find the scaling

L/L0 = 2
3 |T |−2, for 1�T � (1− n)−1, (3.20)

where we used that f ∼ (1 − n) near n = 1. The upper bound reflects that for 0 <
1− n� 1, the PL gel does not converge to the KV model at very high frequencies.

4. Discussion

We have analysed how the mechanics of lubricated contacts is affected by the
viscoelastic properties of the solid. We focused on two-dimensional cylindrical
contacts in the limit of small deformations, and considered several different
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rheological models for the lubricated solid. Here, we briefly summarise the key
findings, presented in physical units, and discuss how the results are generalised to
the arbitrary form of µ(ω)=G′(ω)+ iG′′(ω).

At low lubrication velocities, all rheologies with a non-vanishing static modulus G=
G′(ω = 0) give rise to a purely elastic response. In this case, the lift force (per unit
length) becomes

L0 = 3πη2R2

8G∆3
|V|2. (4.1)

For the Kelvin–Voigt solid, the large-velocity asymptote reads

L= πη2R3

2Gτ 2∆2
, (4.2)

which interestingly corresponds to a lift that is independent of velocity. For the PL
model we find the scaling law

L∼ η
2R2`n

G∆3τ n
|V|2−n, (4.3)

with a prefactor that depends on the rheological exponent n.
The effect of viscoelasticity is twofold: (i) the resulting deformation is reduced

in amplitude with respect to the purely elastic case, and (ii) the deformation profile
develops a symmetric part. The former gives a reduction in the lift force, but the
details of this reduction depend on the rheological model. It is of interest to generalise
these findings to arbitrary rheology. One can identify the relevant scale of the solid
deformation upon inspection of (2.24), bearing in mind that only the antisymmetric
deformation contributes to the lift. From this, we derive that the lift scales as

L∼ η
2R2

∆3

G′(|V|/`)
G′(|V|/`)2 +G′′(|V|/`)2 |V|

2, (4.4)

which is indeed consistent with all of the scaling laws mentioned above. Clearly, this
implies a reduction of the lift force with respect to the elastic response (4.1), whenever
the rheology contains a significant contribution of the loss modulus. This expression
also highlights the importance of both the storage and a loss modulus to determine
the hydrodynamic lift in viscoelastic lubrication: neither a vanishing nor an infinite G′
will lead to lift.

The presented formulation may be considered as a rheological tool. Indeed, lubri-
cation has recently been exploited for in situ atomic force microscopy measurements
of elastic properties of thin films at the microscale (Leroy & Charlaix 2011; Leroy
et al. 2012; Wang, Dhong & Frechette 2015). Similar experiments can be performed
to measure the lift force on a particle moving steadily in parallel to a soft boundary.
The large-V limit of the velocity–lift data thus obtained may show the viscoelastic
signature of the underlying substrate according to (4.4). In principle, the entire range
of velocity–lift data provides access to the full rheological spectrum of very soft layers.
From a theoretical point of view, interesting future directions would be to consider
the effect of viscoelasticity on freely moving particles and to release the condition of
small deformation.
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