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Abstract

Termination of logic programs depends critically on the selection rule, i.e. the rule that de-

termines which atom is selected in each resolution step. In this article, we classify programs

(and queries) according to the selection rules for which they terminate. This is a survey and

unified view on different approaches in the literature. For each class, we present a sufficient,

for most classes even necessary, criterion for determining that a program is in that class.

We study six classes: a program strongly terminates if it terminates for all selection rules; a

program input terminates if it terminates for selection rules which only select atoms that are

sufficiently instantiated in their input positions, so that these arguments do not get instanti-

ated any further by the unification; a program local delay terminates if it terminates for local

selection rules which only select atoms that are bounded w.r.t. an appropriate level mapping;

a program left-terminates if it terminates for the usual left-to-right selection rule; a program ∃-
terminates if there exists a selection rule for which it terminates; finally, a program has bounded

nondeterminism if it only has finitely many refutations. We propose a semantics-preserving

transformation from programs with bounded nondeterminism into strongly terminating pro-

grams. Moreover, by unifying different formalisms and making appropriate assumptions, we

are able to establish a formal hierarchy between the different classes.

KEYWORDS: universal termination, logic program, selection rule, norm, level mapping,

dynamic scheduling, left-termination, control

1 Introduction

The paradigm of logic programming originates from the discovery that a fragment

of first order logic can be given an elegant computational interpretation. Kowalski

(1979) advocates the separation of the logic and control aspects of a logic program

and has coined the famous formula

Algorithm = Logic + Control.

ã Supported by the ERCIM fellowship programme.
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The programmer should be responsible for the logic part, and hence a logic program

should be a (first order logic) specification. The control should be taken care of by the

logic programming system. One aspect of control in logic programs is the selection

rule. This is a rule stating which atom in a query is selected in each derivation step.

It is well-known that soundness and completeness of SLD-resolution is independent

of the selection rule (Apt, 1997). However, a stronger property is usually required

for a selection rule to be useful in programming, namely termination.

Definition 1.1

A terminating control for a program P and a query Q is a selection rule s such that

every SLD-derivation of P and Q via s is finite.

In reality, logic programming is far from the ideal that the logic and control

aspects are separated. Without the programmer being aware of the control and

writing programs accordingly, logic programs would usually be hopelessly inefficient

or even non-terminating.

The usual selection rule of early systems is the LD selection rule: in each derivation

step, the leftmost atom in a query is selected for resolution. This selection rule is

based on the assumption that programs are written in such a way that the data

flow within a query or clause body is from left to right. Under this assumption, this

selection rule is usually a terminating control. For most applications, this selection

rule is appropriate in that it allows for an efficient implementation.

Second generation logic languages adopt more flexible control primitives, which

allow for addressing logic and control separately. Program clauses have their usual

logical reading. In addition, programs are augmented by delay declarations or

annotations that specify restrictions on the admissible selection rules. These languages

include NU-Prolog (Thom and Zobel, 1988), Gödel (Hill and Lloyd, 1994) and

Mercury (Somogyi et al., 1996).

In this survey, we classify programs and queries according to the selection rules

under which they terminate, hence investigating the influence of the selection rule

on termination. As most approaches to the termination problem, we are interested

in universal termination of logic programs and queries, that is, showing that all

derivations for a program and query (via a certain selection rule) are finite. This

is in contrast to existential termination (Baudinet, 1992; De Schreye and Decorte,

1994; Marchiori, 1996b). Also, we consider definite logic programs, as opposed to

logic programs that also contain negated literals in clause bodies.

Figure 1 gives an overview of the classes we consider. Arrows drawn with solid

lines stand for set inclusion (‘→ corresponds to ⊂’). The numbers in the figure

correspond to propositions in section 9.

A program P and query Q strongly terminate if they terminate for all selection

rules. This class of programs has been studied mainly by Bezem (1993). Naturally,

this class is the smallest we consider. A program P and query Q left-terminate

if they terminate for the LD selection rule. The vast majority of the literature is

concerned with this class; see De Schreye and Decorte (1994) for an overview. A

program P and query Q ∃-terminate if there exists a selection rule for which they

terminate. This notion of termination has been introduced by Ruggieri (2001; 1999).
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Fig. 1. An overview of the classes.

Surprisingly, this is still not the largest class we consider. Namely, there is the class

of programs for which there are only finitely many successful derivations (although

there could also be infinite derivations). We say that these programs have bounded

nondeterminism, a notion studied by Pedreschi and Ruggieri (1999a). Such programs

can be transformed into equivalent programs which strongly terminate, as indicated

in the figure and stated in Theorem 9.11.

To explain the two remaining classes shown in the figure, and their relationship

with left-terminating programs, we have to introduce the concept of modes. A mode

is a labelling of each argument position of a predicate as either input or output. It

indicates the intended data flow in a query or clause body.

An input-consuming derivation is a derivation where an atom can be selected only

when its input arguments are instantiated to a sufficient degree, so that unification

with the head of the clause does not instantiate them further. A program and a

query input terminate if all input-consuming derivations for this program and query

are finite. This class of programs has been studied by Smaus (1999b) and Bossi et

al. (1999; 2000; 2001).
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A local selection rule is a selection rule specifying that an atom can only be

selected if there is no other atom which was introduced (by resolution) more

recently. Marchiori and Teusink (1999) have studied termination for selection rules

that are both local and delay-safe, i.e. they respect the delay declarations. We will

call termination w.r.t. such selection rules local delay termination. A priori, the LD

selection rule, input-consuming selection rules and local delay-safe selection rules

are not formally comparable. Under reasonable assumptions however, one can say

that assuming input-consuming selection rules is weaker than assuming local and

delay-safe selection rules, which is again weaker than assuming the LD selection

rule. This is indicated in the figure by arrows drawn with dashed lines. Again, the

numbers in the figure correspond to propositions in section 9.

In this survey, we present declarative characterisations of the classes of programs

and queries that terminate with respect to each of the mentioned notions of ter-

mination. The characterisations make use of level mappings and Herbrand models

in order to provide proof obligations on program clauses and queries. All charac-

terisations are sound. Except for the case of local delay termination, they are also

complete (in the case of input termination, this holds only under certain restrictions).

This survey is organised as follows. The next section introduces some basic con-

cepts and fixes the notation. Then we have six sections corresponding to the six

classes in figure 1, defined by increasingly strong assumptions about the selection

rule. In each section, we introduce a notion of termination and provide a declarative

characterisation for the corresponding class of terminating programs and queries.

In section 9, we establish relations between the classes, formally showing the impli-

cations of figure 1. Section 10 discusses the related work, and section 11 concludes.

2 Background and notation

We use the notation of Apt (1997), when not otherwise specified. In particular,

throughout this article we consider a fixed language L in which programs and

queries are written. All the results are parametric with respect to L, provided

that L is rich enough to contain the symbols of the programs and queries under

consideration. We denote with UL and BL the Herbrand universe and the Herbrand

base on L. TermL and AtomL denote the set of terms and atoms on L. We use

typewriter font for logical variables, e.g. X, Ys, upper case letters for arbitrary terms,

e.g. Xs , and lower case letters for ground terms, e.g. t, x, xs . We denote by instL(P )

(groundL(P )) the set of (ground) instances of all clauses in P that are in language

L. The notation groundL(Q) for a query Q is defined analogously.

The domain (resp., set of variables in the range) of a substitution θ is denoted as

Dom(θ) (resp., Ran(θ)).

2.1 Modes

For a predicate p/n, a mode is an atom p(m1, . . . , mn), where mi ∈ {I ,O} for i ∈ [1, n].

Positions with I are called input positions, and positions with O are called output

positions of p. To simplify the notation, an atom written as p(s, t) means: s is the
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vector of terms filling in the input positions, and t is the vector of terms filling in

the output positions. An atom p(s, t) is input-linear if s is linear, i.e. each variable

occurs at most once in s. The atom is output-linear if t is linear.

In the literature, several correctness criteria concerning the modes have been pro-

posed, the most important ones being nicely-modedness and well-modedness (Apt,

1997). In this article, we need simply moded programs (Apt and Etalle, 1993), which

are a special case of nicely moded programs, as well as well moded programs.

Definition 2.1

A clause p(t0, sn+1)← p1(s1, t1), . . . , pn(sn, tn) is simply moded if t1, . . . , tn is a linear

vector of variables and for all i ∈ [1, n]

Var(ti) ∩ Var(t0) = ∅ and Var(ti) ∩
i⋃

j=1

Var(sj) = ∅.

A query B is simply moded if the clause q← B is simply moded, where q is any

variable-free atom. A program is simply moded if all of its clauses are.

A query (clause, program) is permutation simply moded if it is simply moded

modulo reordering of the atoms of the query (each clause body).

Thus, a clause is simply moded if the output positions of body atoms are filled in

by distinct variables, and every variable occurring in an output position of a body

atom does not occur in an earlier input position. In particular, every unit clause is

simply moded.

Definition 2.2

A query Q = p1(s1, t1), . . . , pn(sn, tn) is well moded if for all i ∈ [1, n] and K = 1

Vars(si) ⊆
i−1⋃
j=K

Vars(tj) (1)

The clause p(t0, sn+1)← Q is well moded if (1) holds for all i ∈ [1, n + 1] and K = 0.

A program is well moded if all of its clauses are well moded.

A query (clause, program) is permutation well moded if it is well moded modulo

reordering of the atoms of the query (each clause body).

Almost all programs we consider in this article are permutation well and simply

moded with respect to the same set of modes. The program in figure 7 is an exception

due to the fact that our notion of modes cannot capture that sub-arguments of a

term can have different modes. We do not always give the modes explicitly, but they

are usually easy to guess.

2.2 Selection rules

Let INIT be the set of initial fragments of SLD-derivations in which the last query

is non-empty. The standard definition of selection rule is as follows: a selection rule

is a function that, when applied to an element in INIT , yields an occurrence of an

atom in its last query (Apt, 1997). In this article, we assume an extended definition:
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we also allow that a selection rule may select no atom (a situation called deadlock),

and we allow that it not only returns the selected atom, but also specifies the set

of program clauses that may be used to resolve the atom. Whenever we want to

emphasise that a selection rule always selects exactly one atom together with the

entire set of clauses for that atom’s predicate, we speak of a standard selection rule.

Note that for the extended definition, completeness of SLD-resolution is lost in

general. Selection rules are denoted by s.

We now define the selection rules used in this article, except for delay-safe selection

rules, since these rely on notions introduced only later.

Input-consuming selection rules are defined w.r.t. a given mode. A selection rule

s is input-consuming for a program P if either

• s selects an atom p(s, t) and a non-empty set of clauses of P such that p(s, t)

and each head of a clause in the set are unifiable with an mgu σ, and

Dom(σ) ∩ Vars(s) = ∅, or

• s selects an atom p(s, t) that unifies with no clause head from P , together with

all clauses in P (this models failure), or

• if the previous cases are impossible, s selects no atom (i.e. we have deadlock).

Consider a query, containing atoms A and B, in an initial fragment ξ of a derivation.

Then A is introduced more recently than B if the derivation step introducing A comes

after the step introducing B, in ξ. A local selection rule is a selection rule that specifies

that an atom in a query can be selected only if there is no more recently introduced

atom in the query.

The usual LD selection rule (also called leftmost selection rule) always selects the

leftmost atom in the last query of an element in INIT . The RD selection rule (also

called rightmost) always selects the rightmost atom.

A standard selection rule s is fair if for every SLD-derivation ξ via s either ξ is

finite or for every atom A in ξ, (some further instantiated version of) A is eventually

selected.

2.3 Universal termination

In general terms, the problem of universal termination of a program P and a query

Q w.r.t. a set of admissible selection rules consists of showing that every rule in the

set is a terminating control for P and Q.

Definition 2.3

A program P and a query Q universally terminate w.r.t. a set of selection rules S if

every SLD-derivation of P and Q via any selection rule from S is finite.

Note that, since SLD-trees are finitely branching, by König’s Lemma, “every

SLD-derivation for P and Q via a selection rule s is finite” is equivalent to stating

that the SLD-tree of P and Q via s is finite.

We say that a class of programs and queries is a sound characterisation of universal

termination w.r.t. S if every program and query in the class universally terminate

w.r.t. S. Conversely, it is complete if every program and query that universally

terminate w.r.t. S are in the class.
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2.4 Norms and level mappings

All the characterisations of terminating programs we propose make use of the

notions of norm and level mapping (Cavedon, 1989). Depending on the approach,

such notions are defined on ground or arbitrary objects.

In the following definition, TermL/∼ denotes the set of equivalence classes of

terms modulo variance. Similarly, we define AtomL/∼.

Definition 2.4

A norm is a function |.| : UL→ IN. A level mapping is a function |.| : BL→ IN. For

a ground atom A, |A| is called the level of A.

An atom A is bounded w.r.t. the level mapping |.| if there exists k ∈ IN such that

for every A′ ∈ groundL(A), we have k > |A′|.
A generalised norm is a function |.| : TermL/∼ → IN. A generalised level mapping

is a function |.| : AtomL/∼ → IN . Abusing notation, we write |T | (|A|) to denote

the value of |.| on the equivalence class of the term T (the atom A).

(Generalised) level mappings are used to measure the ‘size’ of a query and show

that this size decreases along a derivation, hence showing termination. They are

usually defined based on (generalised) norms. Therefore, we often use the same

notation |.| for a norm and a level mapping based on it.

Of course, a generalised norm or level mapping can be interpreted as an ordinary

norm or level mapping by restricting its domain to ground objects. Therefore, we

now give some examples of generalised norms and level mappings.

One commonly used generalised norm is the term size norm, defined as

size(f(T1 , . . . , Tn )) = 1 + size(T1) + . . . + size(Tn) if n > 0

size(T ) = 0 if T constant/variable.

Intuitively, the size of a term T is the number of function symbols occurring in T ,

excluding constants. Another widely used norm is the list-length function, defined

as

|[T |Ts]| = 1 + |Ts|
|f(. . .)| = 0 if f 6= [ . | . ].

In particular, for a nil-terminated list [T1, . . . , Tn], the list-length is n.

We will see later that usually, level mappings measure the input arguments of a

query, even though this is often just an intuitive understanding and not explicit.

Moreover, the choice of a particular selection rule often reflects a particular mode

of the program. In this sense, the choice of the level mapping must depend on the

selection rule, via the modes. This will be seen in our examples.

However, apart form the dependency just mentioned, the choice of level mapping

is an aspect of termination which is rather independent from the choice of the

selection rule. In particular, one does not find any interesting relationship between

the underlying norms and the selection rule. This is why the detailed study of

various norms and level mappings is beyond the scope of this article, although it is

an important aspect of automated proofs of termination (Decorte et al., 1993; Bossi

et al., 1994).
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We now define level mappings where the dependency on the modes is made

explicit (Etalle et al., 1999).

Definition 2.5

A moded (generalised) level mapping |.| is a (generalised) level mapping such that

for any (not necessarily) ground s, t and u, |p(s, t)| = |p(s, u)|.
The condition |p(s, t)| = |p(s, u)| states that the level of an atom is independent

from the terms in its output positions.

2.5 Models

Several of the criteria for termination we consider rely on information supplied by a

model of the program under consideration. We provide the definition of Herbrand

interpretations and models (Apt, 1997).

A Herbrand interpretation I is a set of ground atoms. A ground atom A is true in

I , written I |= A, if A ∈ I . This notation is extended to ground queries in the obvious

way. I is a Herbrand model of program P if for each A← B1 , . . . , Bn ∈ groundL(P ),

we have that I |= B1, . . . , Bn implies I |= A.

When speaking of the least Herbrand model of P , we mean least w.r.t. set

inclusion. In termination analysis, it is usually not necessary to consider the least

Herbrand model, which may be difficult or impossible to determine. Instead, one

uses models that capture some argument size relationship between the arguments of

each predicate (De Schreye and Decorte, 1994). For example, a model for the usual

append predicate is

{append(xs, ys, zs) | |zs| = |xs|+ |ys|}
where |.| is the list-length function.

3 Strong termination

3.1 Operational definition

Early approaches to the termination problem treated universal termination w.r.t. all

selection rules, called strong termination. Generally speaking, strongly terminating

programs and queries are either very trivial or especially written for theoretical

considerations.

Definition 3.1

A program P and query Q strongly terminate if they universally terminate w.r.t. the

set of all selection rules.

3.2 Declarative characterisation

In the following, we recall the approach of Bezem (1993), who defined the class

of recurrent programs and queries. Intuitively, a program is recurrent if for every

ground instance of a clause, the level of the body atoms is smaller than the level of

the head.
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Definition 3.2

Let |.| be a level mapping.

A program P is recurrent by |.| if for every A← B1 , . . . , Bn in groundL(P ):

for i ∈ [1, n] |A| > |Bi|.
A query Q is recurrent by |.| if there exists k ∈ IN such that for every A1 , . . . , An ∈
groundL(Q):

for i ∈ [1, n] k > |Ai|.
In the above definition, the proof obligations for a query Q are derived from those

for the program {p← Q}, where p is a fresh predicate symbol. Intuitively, this is

justified by the fact that the termination behaviour of the query Q and a program

P is the same as for the query p and the program P ∪ {p← Q}. So k plays the role

of the level of the atom p. In the original work (Bezem, 1993), the query was called

bounded. Throughout the paper, we prefer to maintain a uniform naming convention

both for programs and queries.

In section 9.1, we will compare recurrence to other characterisations.

Termination properties of recurrent programs are summarised in the following

theorem.

Theorem 3.3 (Bezem, 1993)

Let P be a program and Q a query.

If P and Q are both recurrent by a level mapping |.|, then they strongly terminate.

Conversely, if P and every ground query strongly terminate, then P is recurrent

by some level mapping |.|. If in addition P and Q strongly terminate, then P and Q

are both recurrent by some level mapping |.|.
Proof

The result is shown in Bezem (1993) for standard selection rules. It easily extends

to our generalisation of selection rules by noting that P and Q strongly terminate

iff they universally terminate w.r.t. the set of standard selection rules. The only-if

part is immediate. The if-part follows by noting that a derivation via an arbitrary

selection rule is a (prefix of a) derivation via a standard selection rule. q

3.3 Examples

Example 3.4

The program SAT in figure 2 decides propositional satisfiability. The program is

readily checked to be recurrent by |.|, where we define

|sat(t)| = |inval(t)| = size(t).

Note that Definition 3.2 imposes no proof obligations for unit clauses. The query

sat(X) is recurrent iff there exists a natural k such that for every ground instance x

of X, we have that size(x) is bounded by k. Obviously, this is the case iff X is already

a ground term. For instance, the query sat(not(true) ∧ false) is recurrent, while

the query sat(false ∧ X) is not.
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% sat(Formula) ←
% there is a true instance of Formula

sat(true).

sat(X ∧ Y) ←
sat(X), sat(Y).

sat(not X) ← inval(X).

inval(false).

inval(X ∧ Y) ← inval(X).

inval(X ∧ Y) ← inval(Y).

inval(not X) ← sat(X).

Fig. 2. SAT.

% append(Xs,Ys,Zs) ←
% Zs is the result of concatenating the lists Xs and Ys.

append([],Ys,Ys).

append([X|Xs],Ys,[X|Zs]) ← append(Xs,Ys,Zs).

Fig. 3. APPEND.

Note that the choice of an appropriate level mapping depends upon the intended

mode of the program and query. Even though this is usually not explicit, level

mappings measure the size of the input arguments of an atom (Etalle et al., 1999).

Example 3.5

Figure 3 shows the APPEND program. It is easy to check that APPEND is recurrent

by the level mapping |append(xs, ys, zs)| = |xs| and also by |append(xs, ys, zs)| = |zs|
(recall that |.| is the list-length function). A query append(Xs,Ys,Zs) is recurrent

by the first level mapping iff Xs is a list, and by the second iff Zs is a list. The level

mapping

|append(xs, ys, zs)| = min{|xs|, |zs|}
combines the advantages of both level mappings. APPEND is easily seen to be recurrent

by it, and if Xs or Zs is a list, append(Xs ,Ys ,Zs) is recurrent by it.

3.4 On completeness of the characterisation

Note that completeness is not stated in full general terms, i.e. recurrence is not a

complete proof method for strong termination. Informally speaking, incompleteness

is due to the use of level mappings, which are functions that must specify a value for

every ground atom. Therefore, if P strongly terminates for a certain ground query Q

but not for all ground queries, we cannot conclude that P is recurrent. We provide a

general completeness result in section 6 for a class of programs containing recurrent

programs.
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% even(X) ←
% X is an even natural number.

even(s(s(X))) ← even(X).

even(0).

% lte(X,Y) ←
% X,Y are natural numbers

% s.t. X is smaller or equal than Y.

lte(s(X),s(Y)) ← lte(X,Y).

lte(0,Y).

Fig. 4. EVEN.

4 Input termination

We have said above that the class of strongly terminating programs and queries is

very limited. Even if a program is recurrent, it may not strongly terminate for a

query of interest since the query is not recurrent.

Example 4.1

The program EVEN in figure 4 is recurrent by defining

|even(x)| = size(x)

|lte(x, y)| = size(y).

Now consider the query Q = even(X), lte(X, s100 (0)), which is supposed to compute

the even numbers not exceeding 100. By always selecting the leftmost atom, one can

easily obtain an infinite derivation for EVEN and Q. As a consequence of Theorem 3.3,

Q is not recurrent.

4.1 Operational definition

We now define termination for input-consuming derivations (Bossi et al., 2001),

i.e. derivations via an input-consuming selection rule.

Definition 4.2

A program P and query Q input terminate if they universally terminate w.r.t. the set

consisting of the input-consuming selection rules.

The requirement of input-consuming derivations merely reflects the very meaning

of input: an atom must only consume its own input, not produce it. In existing im-

plementations, input-consuming derivations can be ensured using control constructs

such as delay-declarations (Hill and Lloyd, 1994; SICStus, 1998; Somogyi et al.,

1996; Thom and Zobel, 1988).

In the above example, the obvious mode is even(I ), lte(O , I ). With this mode,

we will show that EVEN and Q input terminate. If we assume a selection rule that is

input-consuming while always selecting the leftmost atom if possible, then the above

example is a contrived instance of the generate-and-test paradigm. This paradigm

involves two procedures, one which generates a set of candidates, and another which

tests whether these candidates are solutions to the problem. The test occurs to the

left of the generator so that tests take place as soon as possible, i.e. as soon as

sufficient input has been generated for the derivation to be input-consuming.
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Proofs of input termination differ from proofs of strong termination in an impor-

tant respect. For the latter, we require that the initial query is recurrent, and as a

consequence we have that all queries in any derivation from it are recurrent (we say

that recurrence is persistent under resolution). This means that, at the time an atom

is selected, the depth of its SLD tree is bounded. In contrast, input termination does

not need such a strong requirement on each selected atom.

Example 4.3

Consider the EVEN program and the following input-consuming derivation, where

we underline the selected atom in each step

even(X), lte(X, s100 (0)) −→ even(s(X′)), lte(X′, s99 (0)) −→
even(s(s(X′′))), lte(X′′, s98 (0)) −→ even(X′′), lte(X′′, s98 (0)) . . .

At the time when even(s(s(X′′))) is selected, the depth of its SLD-tree is not bounded

(without knowing the eventual instantiation of X′′).

4.2 Information on data flow: simply-local substitutions and models

Since the depth of the SLD-tree of the selected atom depends on further instantiation

of the atom, it is important that programs are well-behaved w.r.t. the modes. This

is illustrated in the following example.

Example 4.4

Consider the APPEND program in mode append(I , I ,O) and the query

append([1|As], [], Bs), append(Bs, [], As).

Then we have the following infinite input-consuming derivation:

append([1|As], [], Bs), append(Bs, [], As) −→
append(As, [], Bs′), append([1|Bs′], [], As) −→
append([1|As′], [], Bs′), append(Bs′, [], As′) −→ . . .

This well-known termination problem of programs with coroutining has been iden-

tified as circular modes by Naish (1992).

To avoid the above situation, we require programs to be simply moded (see

section 2.1).

We now define simply-local substitutions, which reflect the way simply moded

clauses become instantiated in input-consuming derivations. Given a clause c =

p(t0, sn+1)← p1(s1, t1), . . . , pn(sn, tn) used in an input-consuming derivation, first t0

becomes instantiated, and the range of that substitution contains only variables

from outside of c. Then, by resolving p1(s1, t1), the vector t1 becomes instantiated,

and the range of that substitution contains variables from outside of c in addition

to variables from s1. Continuing in the same way, finally, by resolving pn(sn, tn), the

vector tn becomes instantiated, and the range of that substitution contains variables

from outside of c in addition to variables from s1 . . . sn. A substitution is simply-local

if it is composed from substitutions as sketched above. The formal definition is as

follows.
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Definition 4.5

A substitution θ is simply-local w.r.t. the clause c = p(t0, sn+1)← p1(s1, t1), . . . , pn(sn, tn)

if there exist substitutions σ0, σ1 . . . , σn and disjoint sets of fresh (w.r.t. c) variables

v0, v1, . . . , vn such that θ = σ0σ1 · · · σn where for i ∈ {0, . . . , n},
• Dom(σi) ⊆ Vars(ti),

• Ran(σi) ⊆ Vars(siσ0σ1 · · · σi−1) ∪ vi.1

θ is simply-local w.r.t. a query B if θ is simply-local w.r.t. the clause q← B where

q is any variable-free atom.

Note that in the case of a simply-local substitution w.r.t. a query, σ0 is the

empty substitution, since Dom(σ0) ⊆ Var(q) where q is an (imaginary) variable-free

atom. Note also that if A, B,C −→ (A,B,C)θ is an input-consuming derivation step

using clause c = H ← B, then θ|H is simply-local w.r.t. the clause H ← and θ|B is

simply-local w.r.t. the atom B (Bossi et al., 2001).

Example 4.6

Consider APPEND in mode append(I , I ,O), and its recursive clause

c = append([H|Xs], Ys, [H|Zs])← append(Xs, Ys, Zs).

The substitution θ = {H/V, Xs/[], Ys/[W], Zs/[W]} is simply-local w.r.t. c: let σ0 =

{H/V, Xs/[], Ys/[W]} and σ1 = {Zs/[W]}; then Dom(σ0) ⊆ {H, Xs, Ys}, and Ran(σ0) ⊆ v0

where v0 = {V, W}, and Dom(σ1) ⊆ {Zs}, and Ran(σ1) ⊆ Vars((Xs, Ys)σ0).

Based on simply-local substitutions, we now define a restricted notion of model.

Definition 4.7

Let I ⊆ AtomL. We say that I is a simply-local model of c = H ← B1, . . . , Bn if for

every substitution θ simply-local w.r.t. c,

if B1θ, . . . , Bnθ ∈ I then Hθ ∈ I . (2)

I is a simply-local model of a program P if it is a simply-local model of each clause

of it.

Note that a simply-local model is not necessarily a model in the classical sense,

since I is not necessarily a set of ground atoms, and the substitution in (2) is required

to be simply-local. For example, given the program {q(1), p(X)←q(X)} with modes

q(I ), p(O), a model must contain the atom p(1), whereas a simply-local model does

not necessarily contain p(1), since {X/1} is not simply-local w.r.t. p(X)← q(X). The

next subsection will further clarify the role of simply-local models.

Let SM P be the set of all simply moded atoms in AtomL. It has been shown that

the least simply-local model of P containing SM P exists and can be computed by

a variant of the well-known TP -operator (Bossi et al., 2001). We denote the least

simply-local model of P containing SM P by PM SL
P , for partial model .

1 Note that s0 is undefined. By abuse of notation, Vars(s0 . . .) = ∅.
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Example 4.8

Consider APPEND. To compute PM SL
APPEND, we must iterate the above mentioned

variant of the TP -operator starting from the fact clause ‘append([],Ys,Ys).’ and

any simply moded atom. It turns out that

PM SL
APPEND =

∞⋃
n=0

({append([T1, . . . , Tn], T , [T1, . . . , Tn|T ])} ∪

{append([T1, . . . , Tn|S], T , [T1, . . . , Tn|X]) | X is fresh}).
We refer to Bossi et al. (2001) for the details of this calculation.

4.3 Declarative characterisation

We now define simply-acceptability, which is the notion of decrease used for proving

input termination.

We write p ' q if p and q are mutually recursive predicates (Apt, 1997). Abusing

notation, we also use ' for atoms, where p(s, t) ' q(u, v) stands for p ' q.

Definition 4.9

Let P be a program, |.| a moded generalised2 level mapping and I a simply-local

model of P containing SM P . A clause A← B1 , . . . , Bn is simply-acceptable by |.| and

I if for every substitution θ simply-local w.r.t. it,

for all i ∈ [1, n], (B1, . . . , Bi−1)θ ∈ I and A ' Bi implies |Aθ| > |Biθ|.
The program P is simply-acceptable by |.| and I if each clause of P is simply-

acceptable by |.| and I .

Admittedly, the proof obligations may be difficult to verify, especially in the cases

where a small (precise) simply-local model is required. However, as our examples

show, often it is not necessary at all to consider the model, as one can show the

decrease for arbitrary instantiations of the clause.

Unlike all other characterisations in this article, simply-acceptability is not based

on ground instances of clauses, but rather on instances obtained by applying simply-

local substitutions, which arise in input-consuming derivations of simply moded

programs. This is also why we use generalised level mappings and a special kind of

models.

Also note that in contrast to recurrence and other decreasing notions to be

defined later, simply-acceptability has no proof obligation on queries (apart from

the requirement that queries must be simply moded). Intuitively, such a proof

obligation is made redundant by the mode conditions (simply-acceptability and

moded level mapping) and the fact that derivations must be input-consuming. We

also refer to section 9.1.

We can now show that this concept allows to characterise the class of input

terminating programs.

2 In (Bossi et al., 2001), the word “generalised” is dropped, but here we prefer to emphasise that
non-ground atoms are included in the domain.
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% permute(Xs,Ys) ←
% Ys is a permutation of the list Xs.

permute([X|Xs],Ys) ←
permute(Xs,Zs),

insert(Zs,X,Ys).

permute([],[]).

% insert(Xs,X,Zs) ←
% Zs is obtained by inserting X into Xs.

insert([],X,[X]).

insert([U|Xs],X,[U|Zs]) ←
insert(Xs,X,Zs).

Fig. 5. PERMUTE.

Theorem 4.10 (Bossi et al., 2001)

Let P and Q be a simply moded program and query.

If P is simply-acceptable by some |.| and I , then P and Q input terminate.

Conversely, if P and every simply moded query input terminate, then P is simply-

acceptable by some |.| and PM SL
P .

Note that the formulation of the theorem differs slightly from the original for

reasons of consistency, but one can easily see that the formulations are equivalent.

The definition of input-consuming derivations is independent from the textual

order of atoms in a query, and so the textual order is irrelevant for termination.

This means of course that if we can prove input termination for a program and

query, we have also proven termination for a program obtained by permuting the

body atoms of each clause and the query in an arbitrary way. This will be seen in

the next example. It would have been possible to state this explicitly in the above

theorem, but that would have complicated the definition of simply-local substitution

and subsequent definitions. Generally, the question of whether or not it is necessary

to make the permutations of body atoms explicit was discussed by Smaus (1999a).

4.4 Examples

Example 4.11

The program EVEN in figure 4 is simply-acceptable with modes even(I ), lte(O , I )

by using the level mapping in Example 4.1, interpreted as moded generalised level

mapping in the obvious way, and using any simply-local model. Moreover, the query

even(X), lte(X, s100(0)) is permutation simply moded. Hence EVEN and this query

input terminate.

Example 4.12

Figure 5 shows the program PERMUTE. Note that permute 6' insert. Assume the

modes permute(I ,O), insert(I , I ,O). The program is readily checked to be simply-

acceptable, using the moded generalised level mapping

|permute(Xs, Y s)| = |insert(Xs, Y s, Zs)| = size(Xs)

and any simply-local model. Thus the program and any simply moded query input

terminate. It can also easily be shown that the program is not recurrent.
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% quicksort(Xs, Ys) ← Ys is an ordered permutation of Xs.

quicksort(Xs,Ys) ← quicksort dl(Xs,Ys,[]).

quicksort dl([X|Xs],Ys,Zs) ←
partition(Xs,X,Littles,Bigs),

quicksort dl(Bigs,Ys1,Zs).

quicksort dl(Littles,Ys,[X|Ys1]),

quicksort dl([],Xs,Xs).

partition([X|Xs],Y,[X|Ls],Bs) ← X =< Y, partition(Xs,Y,Ls,Bs).

partition([X|Xs],Y,Ls,[X|Bs]) ← X > Y, partition(Xs,Y,Ls,Bs).

partition([],Y,[],[]).

Fig. 6. QUICKSORT.

Example 4.13

Figure 6 shows program 15.3 from (Sterling and Shapiro, 1986): QUICKSORT using a

form of difference lists (we permuted two body atoms for the sake of clarity). This

program is simply moded with the modes quicksort(I ,O), quicksort dl(I ,O , I ),

partition(I , I ,O ,O), =<(I , I ), >(I , I ).

Let |.| be the list-length function (see subsection 2.4). We use the following moded

generalised level mapping (positions with are irrelevant)

|quicksort dl(Xs, , )| = |Xs|,
|partition(Xs, , , )| = |Xs|.

The level mapping of all other atoms can be set to 0. Concerning the model, the

simplest solution is to use the model that expresses the dependency between the list

lengths of the arguments of partition, i.e. I should contain all atoms of the form

partition(S1, X, S2, S3) where |S1| > |S2| and |S1| > |S3| (|.| being the list-length

function). Note that this includes all simply-moded atoms using partition, and

that this model is a fortiori simply-local since (2) in Definition 4.7 is true even for

arbitrary θ.

The program is then simply-acceptable by |.| and I and hence input terminates

for every simply moded query.

5 Local delay termination

The class of programs and queries that terminate for all input-consuming derivations

is considerable, but there are still many interesting programs not contained in it.

Example 5.1

Consider again the PERMUTE program (figure 5), but this time assume the mode

permute(O , I ), insert(O ,O , I ). Consider also the query permute(X, [1]). It is easy

to check that there is an infinite input-consuming derivation for this query obtained

by selecting always the leftmost atom that can be selected. In fact, PERMUTE in this

mode cannot be simply-acceptable, not even after reordering of atoms in clause

bodies. To see this, we first reorder the body atoms of the recursive clause to obtain
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permute([X|Xs],Ys) ←
insert(Zs,X,Ys),

permute(Xs,Zs).

so that the program is simply moded and thus our method showing input termi-

nation is applicable in principle. Now PM SL
PERMUTE contains every atom of the form

insert(Us, U,Vs), i.e., every simply moded atom whose predicate is insert. There-

fore in particular insert(Us, U, Vs) ∈ PM SL
PERMUTE (note that Vs is a variable). The

substitution θ = {Ys/Vs, Zs/Us, X/U} is simply-local w.r.t. the clause. Therefore, for

the clause to be simply-acceptable, there would have to be a moded generalised level

mapping such that |permute([U|Xs], Vs)| > |permute(Xs, Us)|. This is a contradiction

since a moded generalised level mapping is necessarily defined as a generalised norm

of the second argument of permute, and Vs and Us are equivalent modulo variance.

However, all derivations for this query are finite w.r.t. the RD selection rule, which

for this example happens to be an instance of the selection rules considered in this

section.

5.1 Operational definition

Marchiori and Teusink (1999) have considered local selection rules controlled by

delay declarations. They define a safe delay declaration so that an atom can be

selected only when it is bounded w.r.t. a level mapping. In order to avoid even

having to define delay declarations, we take a shortcut, by defining the following.

Definition 5.2

A selection rule is delay-safe (w.r.t. |.|) if it specifies that an atom A can be selected

only when A is bounded w.r.t. |.|.
Note that delay-safe selection rules imply that the depth of the SLD-tree of the

selected atom does not depend on further instantiation as in the previous section.

Definition 5.3

A program P and query Q local delay terminate (w.r.t. |.|) if they universally terminate

w.r.t. the set of selection rules that are both local and delay-safe (w.r.t. |.|).
Unlike in the previous section, modes are not used explicitly in the definition of

delay-safe selection rules. Therefore it is possible to invent an example of a program

and a query that input terminate but do not local delay terminate. Such an example

is of course contrived, in that the level mapping is chosen in an inappropriate way.

Example 5.4

The APPEND program and the query append([],[],X), append(X,[],Y) input

terminate for the mode append(I,I,O). However, they do not local delay terminate

w.r.t. a level mapping |.| such that |A| = 0 for every A (e.g., consider the RD selection

rule).

However, in section 9 we will see that under natural assumptions (in particular, the

level mapping must be moded) delay-safe selection rules are also input-consuming.

Then, input termination implies local delay termination, and as is witnessed by

Example 5.1, this implication is strict.
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5.2 Information on data flow: covers

Delay-safe selection rules ensure that selected atoms are bounded. To ensure that

the level mapping decreases during a derivation, we exploit additional information

provided by a model of the program. Given an atom B in a query, we are interested

in other atoms that share variables with B, so that instantiating these variables

makes B bounded. A set of such atoms is called a direct cover. The only way

of making B bounded is by resolving away one of its direct covers. The formal

definition is as follows.

Definition 5.5

Let |.| be a level mapping, A← Q a clause containing a body atom B, and C̃ a

subset3 of Q such that B 6∈ C̃ . We say that C̃ is a direct cover for B (w.r.t. A← Q

and |.|) if there exists a substitution θ such that Bθ is bounded w.r.t. |.| and

Dom(θ) ⊆ Vars(A, C̃).

A direct cover is minimal if no proper subset is a direct cover.

Note that the above concept is similar to well-modedness, assuming a moded level

mapping. In this case, for each atom, the atoms to the left of it are a direct cover.

This generalises in the obvious way to permutation well moded queries.

Considering an atom B, we have said that the only way of making B bounded is

by resolving away one of B’s direct covers. However, for an atom in a direct cover,

say atom A, to be selected, A must be bounded, and the only way of making A

bounded is by resolving away one of A’s direct covers. Iterating this reasoning gives

rise to a kind of closure of the notion of direct cover.

Definition 5.6

Let |.| be a level mapping and A← Q a clause. Consider the least set C, subset of

P(Q×P(Q)), such that

1. 〈B, ∅〉 ∈ C whenever B has ∅ as minimal direct cover for B in A← Q;

2. 〈B, C̃〉 ∈ C whenever B 6∈ C̃ , and C̃ = {C1, . . . , Ck} ∪ D̃1 ∪ . . . D̃k , where

{C1, . . . , Ck} is a minimal direct cover of B in A← Q, and for i ∈ [1, k],

〈Ci, D̃i〉 ∈ C.

The set Covers(A← Q) ⊆ Q×P(Q) is defined as the set obtained by deleting from

C each element of the form 〈B, C̃〉 if there exists another element of C of the form

〈B, C̃ ′〉 such that C̃ ′ ⊂ C̃ .

We say that C̃ is a cover for B (w.r.t. A← Q and |.|) if 〈B, C̃〉 is an element of

Covers(A← Q).

5.3 Declarative characterisation

The following concept is used to show that programs terminate for local and delay-

safe selection rules. We present a definition slightly different from the original one

(Marchiori and Teusink, 1999), albeit equivalent.

3 By abuse of terminology, here we identify a query with the set of atoms it contains.
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Definition 5.7
Let |.| be a level mapping and I a Herbrand interpretation. A program P is delay-

recurrent by |.| and I if I is a model of P , and for every clause c = A← B1 , . . . , Bn

of P , for every i ∈ [1, n], for every cover C̃ for Bi, for every substitution θ such that

cθ is ground,

if I |= C̃θ then |Aθ| > |Biθ|.
We believe that this notion should have better been called delay-acceptable, since

the convention is to call decreasing notions that involve models (. . . )-acceptable,

and the ones that do not involve models (. . . )-recurrent.

The most essential differences between delay-recurrence and simply-acceptability

are that the former is based on models, whereas the latter is based on simply-local

models, and that the former requires decreasing for all body atoms, whereas the

latter only for mutually recursive calls.

Just as simply-acceptability, delay-recurrence imposes no proof obligation on

queries. Such a proof obligation is made redundant by the fact that selected atoms

must be bounded. Note that if no most recently introduced atom in a query is

bounded, we obtain termination by deadlock. We also refer to section 9.1.

For delay-recurrence to ensure termination, it is crucial that when an atom is

selected, its cover is resolved away completely (this allows to use the premise I |= C̃θ

in Definition 5.7). To this end, local selection rules must be adopted. We can now

state the result of this section.

Theorem 5.8 (Marchiori and Teusink, 1999)
Let P be a program. If P is delay-recurrent by a level mapping |.| and a Herbrand

interpretation I , then for every query Q, P and Q local delay terminate.

5.4 Example

Example 5.9
Consider again PERMUTE (figure 5), with the level mapping and model

|permute(xs, ys)| = |ys|+ 1

|insert(xs, ys, zs)| = |zs|
I = {permute(xs, ys) | |xs| = |ys|} ∪

{insert(xs, y, zs) | |zs| = |xs|+ 1}.
The program is delay-recurrent by |.| and I . We check the recursive clause for

permute. Consider an arbitrary ground instance

permute([x|xs], ys)← permute(xs, zs), insert(zs, x, ys). (3)

First, we observe that I is a model of this instance. In fact, if its body is true

in I , then |ys| = |zs| + 1 and |xs| = |zs|. This implies |ys| = |xs| + 1, and hence

permute([x|xs], ys) is true in I .

Let us now show the decrease from the head to the permute body atom. There is

only one cover insert(Zs, X, Ys), so we must show that

|ys| = |zs|+ 1 implies |ys|+ 1 > |zs|+ 1,
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which is clearly true. Now consider the second body atom. It has an empty cover.

This time, for every instance of the clause such that the head is ground, we have

that |ys|+ 1 > |ys|. Hence we have shown that the clause is delay-recurrent.

It is interesting to compare this to Example 5.1, where we were not able to show

a decrease.

5.5 On completeness of the characterisation

Note that delay-recurrence is a sufficient but not necessary condition for local delay

termination. The limitation lies in the notion of cover: to make an atom bounded,

one has to resolve one of its covers; but conversely, it is not true that resolving any

cover will make the atom bounded.

Example 5.10

Consider the following simple program

z ← p(X), q(X), r(X).

p(0).

q(s(X)) ← q(X).

r(X).

The program and any query Q local delay terminate w.r.t. the level mapping:

|z| = |p(t)| = |r(t)| = 0

|q(t)| = size(t)

In fact, the only source of non-termination for a query might be an atom q(X).

However, for any such atom selected by a delay-safe selection rule, X is a ground

term. Hence the recursive clause in the program cannot generate an infinite deriva-

tion. On the other hand, it is not the case that the program is delay-recurrent.

Consider, in fact, the first clause. Since r(X) is a cover for q(X), we would have to

show for some |.|′ that for every t:

|z|′ > |q(t)|′.
This is impossible, since delay-recurrence on the third clause implies |q(sk(0))|′ > k

for any natural k.

6 Left-termination

In analogy to previous sections, we should start this section with an example

illustrating that the assumption of local delay-safe selection rules is sometimes too

weak to ensure termination, and thereby motivate the ‘stronger’ assumption of the

LD selection rule. Such an example can easily be given.

Example 6.1

Consider the program

p ← q, p.

with query p, where |p| = |q| = 0. It left-terminates but does not local delay

terminate.
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% trans(x,y,e) ← x e y for a DAG e

trans(X,Y,E) ←
member(arc(X,Y),E).

trans(X,Y,E) ←
member(arc(X,Z),E), trans(Z,Y,E).

member(X,[X|Xs]).

member(X,[Y|Xs]) ←
member(X,Xs).

Fig. 7. TRANSP.

However, the example is somewhat artificial, and in fact, we believe that assuming

the LD selection rule is only slightly stronger than assuming an arbitrary local

delay-safe selection rule, as far as termination is concerned. Nevertheless, there are

several reasons for studying this selection rule in its own right. First, the conditions

for termination are easier to formulate than for local delay termination. Secondly,

the vast majority of works consider this rule, being the standard selection rule of

Prolog. Finally, for the class of programs and queries that terminate w.r.t. the LD

selection rule we are able to provide a sound and complete characterisation.

6.1 Operational definition

Definition 6.2

A program P and query Q left-terminate if they universally terminate w.r.t. the set

consisting of only the LD selection rule.

Formally comparing this class to the two previous ones is difficult. In particular,

left-termination is not necessarily stronger than input or local delay termination.

Example 6.3

We have shown in Example 5.9 that PERMUTE and every query local delay terminate

w.r.t. the level mapping given there. Moreover, no derivation deadlocks. However,

PERMUTE and the query permute(X, [1]) do not left terminate. Similarly to Example

5.1, this example is contrived since the program is intended for the RD selection rule.

One could easily construct a similar example comparing left termination with

input termination.

Also, local delay termination may not imply left-termination because of the

deadlock problem.

6.2 On completeness of the characterisation

Left-termination was addressed by Apt and Pedreschi (1993), who introduced the

class of acceptable logic programs. However, their characterisation encountered a

completeness problem similar to the one highlighted for Theorem 3.3.

Example 6.4

Figure 7 shows TRANSP, a program that terminates on a strict subset of ground

queries only. In the intended meaning of the program, trans(x, y, e) succeeds iff
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x e y, i.e. if arc(x, y) is in the transitive closure of a direct acyclic graph (DAG) e,

which is represented as a list of arcs. It is readily checked that if e is a graph that

contains a cycle, infinite derivations may occur.

In the approach by Apt and Pedreschi, TRANSP cannot be reasoned about, since

the same incompleteness problem as for recurrent programs occurs, namely that

they characterise a class of programs that (left-)terminate for every ground query.

The cause of the restricted form of completeness of Theorem 3.3 lies in the use

of level mappings, which must specify a natural number for every ground atom –

hence termination is forced for every ground query. A more subtle problem with

using level mappings is that one must specify values also for uninteresting atoms,

such as trans(x, y, e) when e is not a DAG. The solution to both problems is to

consider extended level mappings (Ruggieri, 1997, 1999).

Definition 6.5

An extended level mapping is a function |.| : BL→ IN∞ of ground atoms to IN∞,

where IN∞ = IN ∪ {∞}.
The inclusion of ∞ in the codomain is intended to model non-termination and

uninteresting instances of program clauses. First, we extend the > order on IN to a

relation B on IN∞.

Definition 6.6

We define nB m for n, m ∈ IN∞ iff n = ∞ or n > m. We write nD m iff nB m or

n = m.

6.3 Declarative characterisation

Therefore, ∞B m for every m ∈ IN∞. With this additional notation we are now ready

to introduce (a revised definition of) acceptable programs and queries. A program

P is acceptable if for every ground instance of a clause from P , the level of the head

is greater than the level of each atom in the body such that the body atoms to its

left are true in a Herbrand model of the program.

Definition 6.7

Let |.| be an extended level mapping, and I a Herbrand interpretation. A program

P is acceptable by |.| and I if I is a model of P , and for every A← B1 , . . . , Bn in

groundL(P ):

for all i ∈ [1, n], I |= B1, . . . , Bi−1 implies |A|B |Bi|.
A query Q is acceptable by |.| and I if there exists k ∈ IN such that for every

A1 , . . . , An ∈ groundL(Q):

for all i ∈ [1, n], I |= A1, . . . , Ai−1 implies k B |Ai|.
Let us compare this definition with the definition of delay-recurrence (Defini-

tion 5.7). In the case of local and delay-safe selection rules, an atom cannot be

selected before one of its covers is completely resolved. In the case of the LD

selection rule, an atom cannot be selected before the atoms to its left are completely
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resolved. Because of the correctness of LD resolution (Apt, 1997), this explains why,

in both cases, a decrease is only required if the instance of the cover, resp. the

instance of the atoms to the left, are in some model of the program. We also refer

to section 9.1.

Acceptable programs and queries precisely characterise left-termination.

Theorem 6.8 (Apt and Pedreschi, 1993; Ruggieri, 1997)

Let P be a program and Q a query. If P and Q are both acceptable by an extended

level mapping |.| and a Herbrand interpretation I , then P and Q left-terminate.

Conversely, if P and Q left-terminate, then there exist an extended level mapping

|.| and a Herbrand interpretation I such that P and Q are both acceptable by |.| and

I .

6.4 Example

Example 6.9

We will show that TRANSP is acceptable. We have pointed out that in the intended

use of the program, e is supposed to be a DAG. We define:

|trans(x, y, e)| =

{ |e|+ 1 + Card{v | x e v} if e is a DAG

∞ otherwise

|member(x, e)| = |e|
I = {trans(x, y, e) | x, y, e ∈ UL} ∪

{member(x, e) | x is in the list e}.
where Card is the set cardinality operator. It is easy to check that TRANSP is

acceptable by |.| and I . In particular, consider a ground instance of the second

clause:

trans(x, y, e)← member(arc(x, z), e), trans(z, y, e).

It is immediate to see that I is a model of it. In addition, we have the proof

obligations:

(i) |trans(x, y, e)|B |member(arc(x, z), e)|
(ii) arc(x, z) is in e ⇒ |trans(x, y, e)|B |trans(z, y, e)|.

The first one is easy to show since |trans(x, y, e)|B |e|. Considering the second one,

we distinguish two cases. If e is not a DAG, the conclusion is immediate. Otherwise,

arc(x, z) in e implies that Card{v | x e v} > Card{v | z  e v}, and so:

|trans(x, y, e)| = |e|+ 1 + Card{v | x e v}
B |e|+ 1 + Card{v | z  e v} = |trans(z, y, e)|.

Finally, observe that for a DAG e, the queries trans(x, Y, e) and trans(X, Y, e) are

acceptable by |.| and I . The first one is intended to compute all nodes y such

that x  e y, while the second one computes the binary relation  e. Therefore, the

TRANSP program and those queries left-terminate.

Note that this is of course also an example of a program and a query which

left-terminate, but do not strongly terminate (e.g. consider the RD selection rule).
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(s) system(N) ←
prod(Bs), cons(Bs,N).

(p1) prod([s(0)|Bs])) ←
prod(Bs).

(p2) prod([s(s(0))|Bs])) ←
prod(Bs).

prod([]).

(c) cons([D|Bs],s(N)) ←
cons(Bs,N), wait(D).

cons([], 0).

(w) wait(s(D)) ←
wait(D).

wait(0).

Fig. 8. PRODCONS.

7 ∃-termination

So far we have considered four classes of terminating programs, making increasingly

strong assumptions about the selection rule, or in other words, considering in each

section a smaller set of selection rules. In the previous section we have arrived

at a singleton set containing the LD selection rule. Therefore we can clearly not

strengthen our assumptions, in the same sense as before, any further.

We will now consider an assumption about the selection rule which is equally

abstract as assuming all selection rules (section 3). We introduce ∃-termination of

logic programs, claiming that it is an essential concept for separating the logic and

control aspects of a program.

However, we first motivate the limitations of left-termination.

Example 7.1

The program PRODCONS in figure 8 abstracts a (concurrent) system composed of

a producer and a consumer. For notational convenience, we identify the term

sn(0) with the natural number n. Intuitively, prod is the producer of a non-

deterministic sequence of 1’s and 2’s, and cons the consumer of the sequence. The

shared variable Bs in clause (s) acts as an unbounded buffer. The overall system

is started by the query system(n). Note that the program is well moded with the

obvious mode {prod(O), cons(I , I ), wait(I )}, but assuming LD (and hence, input-

consuming) derivations does not ensure termination. The crux is that prod can

produce a message sequence of arbitrary length. Now cons can only consume a

message sequence of length n, but for this to ensure termination, atoms using cons

must be eventually selected. We will see that a selection rule exists for which this

program and the query system(n) terminate.

7.1 Operational definition

We introduce next the notion of ∃-termination.

Definition 7.2

A program P and a query Q ∃-terminate if there exists a non-empty set S of

standard selection rules such that P and Q universally terminate w.r.t. S.
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If P and Q do not ∃-terminate, then no standard selection rule can be terminating.

For extensions of the standard definition of selection rule, such as input-consuming

and delay-safe rules, this is not always true.

Example 7.3

The simple program

p(s(X)) ← p(X).

p(X).

with mode p(I ) and query p(X) input terminates, but does not ∃-terminate. The same

program and query local delay terminate (w.r.t. |p(t)| = size(t)).

In section 9, we will show that permutation well-modedness is a sufficient condition

to ensure that if P and Q input terminate then they ∃-terminate.

Here, we observe that ∃-termination coincides with universal termination w.r.t. the

set of fair selection rules. Therefore, any fair selection rule is a terminating control

for any program and query for which a terminating control exists.

Theorem 7.4 (Ruggieri, 2001; Ruggieri, 1999)

A program P and a query Q ∃-terminate iff they universally terminate w.r.t. the set

of fair selection rules.

Concerning Example 7.1, it can be said that viewed as a concurrent system, the

program inherently relies on fairness for termination.

7.2 Declarative characterisation

Ruggieri (2001; 1999) offers a characterisation of ∃-termination using the notion of

fair-bounded programs and queries. Just as Definition 6.7, it is based on extended

level mappings.

Definition 7.5

Let |.| be an extended level mapping, and I a Herbrand interpretation. A program P

is fair-bounded by |.| and I if I is a model of P such that for every A← B1 , . . . , Bn

in groundL(P ):

(a) I |= B1 , . . . , Bn implies that for every i ∈ [1, n], |A|B |Bi|, and

(b) I 6|= B1 , . . . , Bn implies that there exists i ∈ [1, n] with I 6|= Bi ∧ |A|B |Bi|.
A query Q is fair-bounded by |.| and I if there exists k ∈ IN such that for every

A1 , . . . , An ∈ groundL(Q):

(a) I |= A1, . . . , An implies that for every i ∈ [1, n], k B |Ai|, and

(b) I 6|= A1, . . . , An implies that there exists i ∈ [1, n] with I 6|= Ai ∧ k B |Ai|.
Note that the hypotheses of conditions (a) and (b) are mutually exclusive.

Let us discuss in more detail the meaning of proof obligations (a) and (b) in

Definition 7.5. Consider a ground instance A← B1 , . . . , Bn of a clause.

If the body B1 , . . . , Bn is true in the model I , then there might exist a SLD-

refutation for it. Condition (a) is then intended to bound the length of the refutation.
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If the body is not true in the model I , then it cannot have a refutation. In

this case, termination actually means that there is an atom in the body that has a

finitely failed SLD-tree. Condition (b) is then intended to bound the depth of the

finitely failed SLD-tree. As a consequence of this, the complement of I is necessarily

included in the finite failure set of the program.

Compared to acceptability, the model and the extended level mapping in the proof

of fair-boundedness have to be chosen more carefully, due to more binding proof

obligations. As we will see in section 9, however, the simpler proof obligations of

recurrence and acceptability are sufficient conditions for proving fair-boundedness.

Note also that, as in the case of acceptable programs, the inclusion of ∞ in the

codomain of extended level mapping allows for excluding unintended atoms and

non-terminating atoms from the termination analysis. In fact, if |A| = ∞ then (a, b)

in Definition 7.5 are trivially satisfied.

Fair-bounded programs and queries precisely characterise ∃-termination, i.e. the

class of logic programs and queries for which a terminating control exists.

Theorem 7.6 (Ruggieri, 2001; Ruggieri, 1999)

Let P be a program and Q a query.

If P and Q are both fair-bounded by an extended level mapping |.| and a Herbrand

interpretation I , then P and Q ∃-terminate.

Conversely, if P and Q ∃-terminate, then there exist an extended level mapping

|.| and a Herbrand interpretation I such that P and Q are both fair-bounded by |.|
and I .

7.3 Example

Example 7.7

The PRODCONS program is fair-bounded. First, we introduce the list-max norm:

lmax(f(x1, . . ., xn)) = 0 if f 6= [ . | . ]
lmax([x|xs]) = max{lmax(xs), size(x)} otherwise.

Note that for a ground list xs, lmax(xs) equals the maximum size of an element in

xs. Then we define:

|system(n)| = size(n) + 3

|prod(bs)| = |bs|
|cons(bs, n)| =

{
size(n) + lmax(bs) if I |= cons(bs, n)

size(n) if I 6|= cons(bs, n)

|wait(t)| = size(t)

I = {system(n) | n ∈ UL} ∪ {prod(bs) | lmax(bs) 6 2} ∪
{cons(bs,n) | |bs| = size(n)} ∪ {wait(x) | x ∈ UL}.

Let us show the proof obligations of Definition 7.5. Those for unit clauses are trivial.

Consider now the recursive clauses (w), (c), (p1), (p2), and (s).

(w). I is obviously a model of (w). In addition, |wait(s(d))| = size(d)+1 B size(d)

= |wait(d)|. This implies (a, b).
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(c). Consider a ground instance cons([d|bs], s(n))← cons(bs, n), wait(d) of (c). If

I |= cons(bs, n), wait(d), then |bs| = size(n), and so

|[d|bs]| = |bs|+ 1 = size(n) + 1 = size(s(n)),

i.e. I |= cons([d|bs], s(n)). Therefore, I is a model of (c). Let us show proof obliga-

tions (a, b) of Definition 7.5.

(a) Suppose that I |= cons(bs, n), wait(d). We have already shown that I |=
cons([d|bs], s(n)). We calculate:

|cons([d|bs], s(n))| = size(n) + 1 + max{lmax(bs), size(d)}
B size(n) + lmax(bs) = |cons(bs, n)|

|cons([d|bs], s(n))| = size(n) + 1 + max{lmax(bs), size(d)}
B size(d) = |wait(d)|.

These two inequalities show that (a) holds.

(b) If I 6|= cons(bs, n), wait(d), then necessarily I 6|= cons(bs, n). Therefore

|cons([d|bs], s(n))| D size(n) + 1

B size(n) = |cons(bs, n)|,
and so we have (b). Recall that (b) states that the depth of the finitely

failed SLD-tree must be bounded. In fact, it is the decrease of the ‘counter’,

the second argument of cons, which in this case bounds the depth of the

SLD-tree.

(p1,p2). I is obviously a model of (p1). Moreover we have

|prod([s(0)|bs])| = |bs|+ 1 B |bs| = |prod(bs)|,
which implies (a) and (b). The reasoning for (p2) is analogous.

(s). Consider a ground instance system(n)← prod(bs), cons(bs, n) of (s). Obviously

I is a model of (s). Let us show (a,b).

(a) Suppose that I |= prod(bs), cons(bs, n). This implies lmax(bs) 6 2 and |bs| =

size(n). These imply:

|system(n)| = size(n) + 3 B |bs| = |prod(bs)|
|system(n)| = size(n) + 3 B size(n) + lmax(bs) = |cons(bs, n)|.

These two inequalities show (a).

(b) Suppose that I 6|= prod(bs), cons(bs, n). Intuitively, this means that prod(bs),

cons(bs, n) has no refutation. We distinguish two cases. If I 6|= cons(bs, n)

(cons(bs, n) has no refutation) then:

|system(n)| = size(n) + 3 B size(n) = |cons(bs, n)|,
i.e. the depth of the SLD-tree of cons(bs, n) is bounded (hence, the SLD-tree is
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% even(X) ←
% X is an even natural number.

even(s(X)) ← odd(X).

even(0).

% odd(X) ←
% X is an odd natural number.

odd(s(X)) ← even(X).

Fig. 9. ODDEVEN.

finitely failed). If I |= cons(bs, n) and I 6|= prod(bs) (prod(bs) has no refutation)

then |bs| = size(n), which implies:

|system(n)| = size(n) + 3B |bs| = |prod(bs)|,
i.e. the depth of the SLD-tree of prod(bs) is bounded.

We conclude this example by noting that for every n ∈ IN the query system(n)

is fair-bounded by |.| and I , and so every fair SLD-derivation of PRODCONS and

system(n) is finite.

8 Bounded nondeterminism

In the previous section, we have made the strongest possible assumption about the

selection rule, in that we considered programs and queries for which there exists a

terminating control. In general, a terminating control may not exist. Even in this

case however, all is not lost. If we can establish that a program and query have only

finitely many successful derivations, then we can transform the program so that it

terminates.

Example 8.1

The program ODDEVEN in figure 9 defines the even and odd predicates, with the

usual intuitive meaning. The query even(X), odd(X) is intended to check whether

there is a number that is both even and odd. It is readily checked that ODDEVEN and

the query do not ∃-terminate. However, ODDEVEN and the query have only finitely

many, namely 0, successful derivations.

8.1 Operational definition

Pedreschi and Ruggieri (1999a) propose the notion of bounded nondeterminism to

model programs and queries with finitely many refutations.

Definition 8.2

A program P and query Q have bounded nondeterminism if for every standard

selection rule s there are finitely many SLD-refutations of P and Q via s.

By the Switching Lemma (Apt, 1997), each refutation via some standard selection

rule is isomorphic to some refutation via any other standard selection rule. Therefore,

bounded nondeterminism could have been defined by requiring finitely many SLD-

refutations of P and Q via some standard selection rule. Also, note that, while
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bounded nondeterminism implies that there are finitely many refutations also for

non-standard selection rules, the converse implication does not hold, in general (see

Example 7.3).

Bounded nondeterminism, although not being a notion of termination in the strict

sense, is closely related to termination. In fact, if P and Q ∃-terminate, then P and

Q have bounded nondeterminism. Conversely, if P and Q have bounded nonde-

terminism then there exists an upper bound for the length of the SLD-refutations

of P and Q. If the upper bound is known, then we can syntactically transform

P and Q into an equivalent program and query that strongly terminate, i.e. any

selection rule will be a terminating control for them. Note that this transformation

is even interesting for programs and queries that ∃-terminate, since few existing

systems adopt fair selection rules. In addition, even if we adopt a selection rule that

ensures termination, we may apply the transformation to prune the SLD-tree from

unsuccessful branches.

8.2 Declarative characterisation

In the following, we present a declarative characterisation of programs and queries

that have bounded nondeterminism, by introducing the class of bounded programs

and queries. Just as Definitions 6.7 and 7.5, it is based on extended level mappings.

Definition 8.3

Let |.| be an extended level mapping, and I a Herbrand interpretation. A program

P is bounded by |.| and I if I is a model of P such that for every A← B1 , . . . , Bn in

groundL(P ):

I |= B1 , . . . , Bn implies that for every i ∈ [1, n], |A|B |Bi|.
A query Q is bounded by |.| and I if there exists k ∈ IN such that for every

A1 , . . . , An ∈ groundL(Q):

I |= A1, . . . , An implies that for every i ∈ [1, n], k B |Ai|.
It is straightforward to check that the definition of bounded programs is a

simplification of Definition 7.5 of fair-bounded programs, where proof obligation (b)

is discarded. Intuitively, the definition of boundedness only requires the decreasing

of the extended level mapping when the body atoms are true in some model of the

program, i.e. they might have a refutation.

Bounded programs and queries precisely characterise the notion of bounded

nondeterminism.

Theorem 8.4 (Pedreschi and Ruggieri, 1999a; Ruggieri, 1999)

Let P be a program and Q a query.

If P and Q are both bounded by an extended level mapping |.| and a Herbrand

interpretation I , then P and Q have bounded nondeterminism.

Conversely, if P and Q have bounded nondeterminism, then there exist an extended

level mapping |.| and a Herbrand interpretation I such that P and Q are both

bounded by |.| and I .
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8.3 Examples

Example 8.5

Consider again the ODDEVEN program. It is readily checked that it is bounded by

defining:

|even(x)| = |odd(x)| = size(x)

I = {even(s2·i(0)), odd(s2·i+1(0)) | i > 0}.
The query even(X), odd(X) is bounded by |.| and I . In fact, since no instance of it is

true in I , Definition 8.3 imposes no requirement. Therefore, ODDEVEN and the query

above have bounded nondeterminism.

Generally, for a query that has no instance in a model of the program (it is

unsolvable), the k in Definition 8.3 can be chosen as 0. An automatic method to

check whether a query (at a node of a SLD-tree) is unsolvable has been proposed

by Bruynooghe et al. (1998). Of course, the example is somewhat a limit case, since

one does not even need to run a query if it has been shown to be unsolvable.

However, we have already mentioned that the benefits of characterising bounded

nondeterminism also apply to programs and queries belonging to the previously

introduced classes. In addition, it is still possible to devise an example program and

a satisfiable query that do not ∃-terminate but have bounded nondeterminism.

Example 8.6

We now define the predicate all such that the query all(n0, n1, Xs) collects in Xs

the answers of a query q(m,A) for values m ranging from n0 to n1.

all(N,N,[A]) ← q(N,A).

all(N,N1,[A|As]) ← q(N,A), all(s(N),N1,As).

q(Y, Y). %just as an example

The program and the query all(0,s(s(0)),As) do not ∃-terminate, but they

have only one computed answer, namely As = [0,s(0),s(s(0))]. The program

and the query are bounded (and thus have bounded nondeterminism) by defining:

|all(n, m, x)| = max{size(m)− size(n), 0}+ 1

|q(x, y)| = 0

I = {all(n, m, x) | size(n) 6 size(m)} ∪
= {q(x, y)}.

9 Relations between classes

We have introduced six classes of programs and queries, which provide declarative

characterisations of operational notions of universal termination and bounded non-

determinism. In this section we summarise the relationships between these classes.
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Table 1. Comparison of characterisations.

only ground?

only rec
ursiv

e?

uses
model?

query
oblig.?

∞ in
codomain?

neg. model info.?

boundedness yes no yes yes yes no

fair-boundedness yes no yes yes yes yes

acceptability yes no yes yes yes no

delay-recurrence yes no yes no no no

simply-acceptability no yes yes no no no

recurrence yes no no yes no n.a.

9.1 Comparison of characterisations

We now try to provide an intuitive understanding of the significance of the technical

differences between the characterisations of termination we have proposed. These

are summarised in table 1.

The first difference concerns the question of whether a decrease is defined for all

ground instances of a clause, or rather for instances specified in some other way.

All characterisations, except simply-acceptability, require a decrease for all ground

instances of a clause. One cannot clearly say that this difference lies in the nature

of the termination classes themselves: the first characterisation of input-termination

by Smaus (1999b) also required a decrease for the ground instances of a clause,

just as there are characterisations of left-termination (Bossi et al., 1994; De Schreye

et al., 1992) based on generalised level mappings and hence non-ground instances

of clauses. However, one can say that our characterisation of input-termination

inherently relies on measuring the level of non-ground atoms, which may change via

further instantiation. Nevertheless, this instantiation is not arbitrary: it is controlled

by the fact that derivations are input-consuming and the programs are simply

moded. This is reflected in the condition that a decrease holds for all simply-local

instantiations of a clause.

The second difference concerns the question of whether a decrease is required for

recursive body atoms only, or whether recursion plays no role. Simply-acceptability is

the only characterisation that requires a decrease for recursive body atoms only. We

attribute this difference essentially to the explicit use of modes. Broadly speaking,

modes restrict the data flow of a program in a way that allows for termination

proofs that are inherently modular. Therefore one does not explicitly require a

decrease for non-recursive calls, but rather one requires that for the predicate of the

non-recursive call, termination has already been shown (independently). To support

this explanation, we refer to Etalle et al. (1999): there left-termination for well moded

programs is shown, using well-acceptability. Well-acceptability requires a decrease

only for recursive body atoms.
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The third difference concerns the question of whether the method relies on

(some kind of) models or not. It is not surprising that a method for showing

strong termination cannot rely on models: one cannot make any assumptions about

certain atoms being resolved before an atom is selected. However, the original

methods of showing termination for input-consuming derivations were also not

based on models (Smaus, 1999b; Bossi et al., 1999), and it was noted that the

principle underlying the use of models in proofs of left-termination cannot be easily

transferred to input termination. By restricting to simply moded programs and

defining a special notion of model, this was nevertheless achieved. For a clause

H ← A1, . . . , An, assuming that Ai is the selected atom, we exploited that provided

that programs and queries are simply moded, we know that even though A1, . . . , Ai−1

may not be resolved completely, A1, . . . , Ai−1θ will be in any ‘partial model’ of the

program.

The fourth difference concerns the question of whether proof obligations are

imposed on queries. Delay-recurrence and simply-acceptability are the characterisa-

tions that impose no proof obligations for queries (except that in the latter case, the

query must be simply moded). The reason is that the restrictions on the selectability

of an atom, which depends on the degree of instantiation, take the role of such a

proof obligation.

The fifth difference concerns the question of whether ∞ is in the codomain of level

mappings. This is the case for acceptability, fair-boundedness and boundedness. In

all three cases, this allows for excluding unintended atoms and non-terminating atoms

from the termination analysis. For an atom A with |A| = ∞ the proof obligations

are trivially satisfied. Also, the use of ∞ allows to achieve full completeness of the

characterisation.

A final difference concerns the way information on data flow (modes, simply-local

models, covers, Herbrand models) is used in the declarative characterisations. For

recurrence this is not applicable. Apart from that, in all except fair-boundedness,

such information is used only in a ‘positive’ way, i.e. ‘if . . . is in the model then

. . . ’. In fair-boundedness, it is also used in a ‘negative’ way, namely ‘if . . . is not

in the model then . . . ’. Intuitively, in all characterisation, except fair-boundedness,

the relevant part of the information concerns a characterisation of atoms that are

logical consequences of the program. In fair-boundedness, it is also relevant the

characterisation of atoms that are not logical consequences, since for those atoms

we must ensure finite failure.

9.2 From strong termination to bounded nondeterminism

In this subsection, we show inclusions between the introduced classes, i.e. we justify

each arrow in figure 1. We first leave aside input termination and local delay

termination, since for these classes, the comparison is much less clearcut.

Looking at the four remaining classes from an operational point of view, we

note that strong termination of a program and a query implies left-termination,

which in turn implies ∃-termination, which in turn implies bounded nondeterminism.

Examples 6.9, 7.1 and 8.1 show that these implications are strict.

https://doi.org/10.1017/S1471068402001400 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001400


Classes of terminating logic programs 401

Since the declarative characterisations of those notions are sound and complete,

the same strict inclusions hold among recurrence, acceptability, fair-boundedness

and boundedness. This allows for reusing or simplifying termination proofs.

Theorem 9.1

Let P be a program and Q a query, |.| an extended level mapping and I a Herbrand

model of P . Each of the following statements strictly implies the statements below

it:

(i) P and Q are recurrent by |.|,
(ii) P and Q are acceptable by |.| and I ,

(iii) P and Q are fair-bounded by |.| and I ,

(iv) P and Q are bounded by |.| and I .

In the following example, we show how the above theorem allows for reuse of

termination proofs.

Example 9.2

In Example 6.9 we showed that the TRANSP program is acceptable by a level mapping

|.| and a model I . The proof obligations of acceptability had to be shown for every

clause of the program.

However, we note that the clauses defining the predicate member are a sub-

program which is readily checked to be recurrent by the same |.|. By Theorem 9.1,

we conclude that the proof obligations for clauses defining member are satisfied for

every Herbrand model of TRANSP and thus in particular for I .

We refer the reader to Apt and Pedreschi (1994) for a collection of results on

reuse of proofs of recurrence to show acceptability, and on proving acceptability of

P ∪ P ′ by reusing separate proofs for P and P ′.

Consider now local delay termination. Obviously, it is implied by strong termi-

nation. However, we have observed with the programs and queries of Examples 6.3

and 7.3 that local delay termination does not imply left-termination or ∃-termination,

in general. These results can be obtained under reasonable assumptions, which, in

particular, rule out deadlock.

The following proposition relates local delay termination with ∃-termination.

Proposition 9.3

Let P and Q be a permutation well moded program and query, and |.| a moded

level mapping.

If P and Q local delay terminate (w.r.t. |.|) then they ∃-terminate.

If P is delay-recurrent by |.| and some Herbrand interpretation then P and Q are

fair-bounded by some extended level mapping and Herbrand interpretation.

Proof

Since P and Q are permutation well moded, every query Q′ in a derivation of P

and Q is permutation well moded (Smaus, 1999a), i.e., there exists a permutation

Q̃′ of Q′ which is well moded. By Definition 2.2, the leftmost atom in Q̃′ is ground

in its input positions and hence bounded w.r.t. |.|. Consider the selection rule which

https://doi.org/10.1017/S1471068402001400 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001400


402 D. Pedreschi et al.

always selects this ‘leftmost’ (modulo the permutation) atom. This selection rule

is local and delay-safe, and it is a standard selection rule (since there is always a

selected atom). Therefore, local delay termination implies ∃-termination.

Concerning the second claim, since fair-boundedness is a complete characterisation

of ∃-termination, we have the conclusion. q

The next proposition relates local delay termination with left-termination. In this

case, programs must be well moded, not just permutation well moded. The proof is

similar to the previous one but simpler.

Proposition 9.4

Let P and Q be a well moded program and query, and |.| a moded level mapping.

If P and Q local delay terminate (w.r.t. |.|) then they left-terminate.

If P is delay-recurrent by |.| and some Herbrand interpretation then P and Q are

acceptable by some extended level mapping and Herbrand interpretation.

Marchiori and Teusink (1999) propose a program transformation such that the

original program is delay-recurrent iff the transformed program is acceptable. This

transformation allows us to use automated proof methods originally designed for

acceptability for the purpose of showing delay-recurrence.

Consider now input termination. As before, it is implied by strong termination.

However, as observed in Examples 5.4, 6.3 and 7.3, input termination does not imply

local delay termination, left-termination, or ∃-termination, in general. Again, these

results can be obtained under reasonable assumptions.

The following proposition relates input termination to ∃-termination.

Proposition 9.5

Let P and Q be a permutation well moded program and query. If P and Q input

terminate then they ∃-terminate.

Let P and Q be a permutation well and simply moded program and query. If

P is simply-acceptable by some |.| and I then P and Q are fair-bounded by some

extended level mapping and Herbrand interpretation.

Proof

Since P and Q are permutation well moded, every query Q′ in a derivation of P

and Q is permutation well moded (Smaus, 1999a), and so Q′ contains an atom that

is ground in its input position. The selection rule s that always selects this atom

together with all program clauses is an input-consuming selection rule, and also a

standard selection rule. Therefore, input termination implies universal termination

w.r.t. {s} and hence ∃-termination.

Concerning the second claim, by Theorem 4.10, P and Q input terminate. As

shown above, this implies that they ∃-terminate. Since fair-boundedness is a complete

characterisation of ∃-termination, we have the conclusion. q

The next proposition gives a direct comparison between input and left-termination.

The proof is similar to the previous one.
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Proposition 9.6

Let P and Q be a well moded program and query. If P and Q input terminate then

they left-terminate.

Let P and Q be a well and simply moded program and query. If P is simply-

acceptable by some |.| and I then P and Q are acceptable by some extended level

mapping and Herbrand interpretation.

To relate input termination to local delay termination, we introduce a notion

that relates delay-safe derivations with input-consuming derivations, based on an a

similar concept from Apt and Luitjes (1995).

Definition 9.7

Let P be a program and |.| a moded level mapping.

We say that |.| implies matching (w.r.t. |.|) if for every atom A = p(s, t) bounded

w.r.t. |.| and for every B = p(v, u) head of a renaming of a clause from P which is

variable-disjoint with A, if A and B unify, then s is an instance of v.

Note that, in particular, |.| implies matching if every atom bounded by |.| is ground

in its input positions.

Proposition 9.8

Let P and Q be a permutation simply moded program and query, and |.| a moded

level mapping that implies matching.

If P and Q input terminate then they local delay terminate (w.r.t. |.|).
Proof

The conclusion follows by showing that any derivation of P and any permutation

simply moded query Q′ via a local delay-safe selection rule (w.r.t. |.|) is also a

derivation via an input-consuming selection rule. So, let s be a local delay-safe

selection rule and Q′ a permutation simply-well moded query such that s selects

atom A = p(s, t). Then by Definition 9.7, for each B = p(v, u), head of a renaming

of a clause from P , if A and B unify, then s is an instance of v, i.e. s = vθ for

some substitution θ such that dom(θ)⊆ Vars(v). By (Apt and Luitjes, 1995, Corollary

31), this implies that the resolvent of Q′ and any clause in P is again permutation

simply moded. Moreover, by applying the unification algorithm (Apt, 1997), it is

readily checked that, if A and B unify, then σ = θ ∪ {t/uθ} is an mgu. Permutation

simply-modedness implies that s and t are variable-disjoint. Moreover, s and v are

variable-disjoint. This implies that Dom(σ)∩Vars(s) = ∅, and so the derivation step

is input-consuming.

By repeatedly applying this argument to all queries in the SLD-derivation of P

and Q via s, it follows that the derivation is via some input-consuming selection

rule. q

It remains an open question whether simply-acceptability implies delay-recurrence

under some general hypotheses. The problem with showing such a result lies in the

fact that delay-recurrence is a sufficient but not necessary condition for local delay

termination.
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Example 9.9

Consider again the program and the level mapping |.| of Example 5.10. We have

already observed that the program and any query local delay terminate.

In addition, given the mode {p(O), q(I ), r(I )}, it is readily checked that the

program is simply moded, and that the level mapping is moded and implies matching.

Also, note that the program is simply-acceptable by |.| and any simply-local model.

However, this is not sufficient to show that the program is delay-recurrent, as

proved in Example 5.10. Intuitively, the problem with showing delay-recurrence lies

in the fact that the notion of cover does not appropriately describe the data flow in

this program given by the modes.

9.3 From bounded nondeterminism to strong termination

Consider now a program P and a query Q which either do not universally terminate

for a set of selection rules in question, or simply for which we (or our compiler) fail

to prove termination. We have already mentioned that, if P and Q have bounded

nondeterminism then there exists an upper bound for the length of the SLD-

refutations of P and Q. If the upper bound is known, then we can syntactically

transform P and Q into an equivalent program and query that strongly terminate.

As shown by Pedreschi and Ruggieri (1999a), such an upper bound is related to

the natural number k of Definition 8.3 of bounded queries. As in our notation for

moded atoms, we use boldface letters to denote vectors of (possibly non-ground)

terms.

Definition 9.10

Let P be a program and Q a query both bounded by |.| and I , and let k ∈ IN. We

define Ter(P ) as the program such that:

• for every clause p0(t0)← p1(t1), . . . , pn(tn) in P , with n > 0, the clause

p0(t0, s(D))← p1(t1, D), . . . , pn(tn, D)

is in Ter(P ), where D is a fresh variable,

• and, for every clause p0(t0) in P , the clause

p0(t0, )←
is in Ter(P ).

Also, for the query Q = p1(t1), . . . , pn(tn), we define Ter(Q, k) as the query

p1(t1, s
k(0)), . . . , pn(tn, s

k(0))

The transformed program relates to the original one as shown in the following

theorem.

Theorem 9.11 (Pedreschi and Ruggieri, 1999a; Ruggieri, 1999)

Let P be a program and Q a query both bounded by |.| and I , and let k be a given

natural number satisfying Definition 8.3.

Then, for every n ∈ IN, Ter(P ) and Ter(Q, n) strongly terminate.
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Moreover, there is a bijection between SLD-refutations of P and Q via a selection

rule s and SLD-refutations of Ter(P ) and Ter(Q, k − 1) via s.

The intuitive reading of this result is that the transformed program and query

maintain the same success semantics of the original program and query. Note that

no assumption is made on the selection rule s, i.e. any selection rule is a terminating

control for the transformed program and query.

Example 9.12

Reconsider the program ODDEVEN and the query Q = even(X), odd(X) of Example 8.1.

The transformed program Ter(ODDEVEN) is:

even(s(X),s(D)) ← odd(X,D).

even(0, ).

odd(s(X),s(D)) ← even(X,D).

and the transformed query Ter(Q, k−1) for k = 3 is even(X,s2(0)),odd(X,s2(0)).

By Theorem 9.11, the transformed program and query terminate for any selection

rule, and the semantics w.r.t. the original program is preserved modulo the extra

argument added to each predicate.

The transformations Ter(P ) and Ter(Q, k) are of purely theoretical interest. In

practice, one would implement these counters directly into the compiler/interpreter.

Also, the compiler/interpreter should include a module that infers an upper bound k

automatically. Approaches to the automatic inference of level mappings and models

are briefly recalled in the next section. Pedreschi and Ruggieri (1999a) give an

example showing how the approach of Decorte et al. (1999) could be rephrased to

infer boundedness.

10 Related work

The survey on termination of logic programs by De Schreye and Decorte (1994)

covers most work in this area until 1994. The authors distinguish three types of

approaches: the ones that express necessary and sufficient conditions for termina-

tion, the ones that provide decidable sufficient conditions, and the ones that prove

decidability or undecidability for subclasses of programs and queries. Under this

classification, our survey falls in the first type. In the following, we mainly mention

works published since 1994. We group the works according to the main focus or

angle they take.

10.1 Other characterisations of left-termination

Apt and Pedreschi (1994) refined acceptability to make the method modular. Here,

modularity means that the termination proof for a program P ∪ P ′ can be obtained

from separate termination proofs for P and P ′. Also, in Apt et al. (1994), acceptability

is extended to reason on first-order built-in’s of Prolog.

Etalle et al. (1999) propose a refinement of acceptability (called well-acceptability)
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for well moded programs and queries. The requirement of well-modedness simplifies

proofs of acceptability. On the one hand, no proof obligation is imposed on the

queries. On the other hand, the decrease of the level mapping is now required

only from the head to the mutually recursive clause body atoms. It is interesting

to observe that the definition of well-acceptability is then very close to simply-

acceptability. Actually, well-modedness of a program and a query implies that atoms

selected by the LD selection rule are ground in their input positions, hence a

derivation via the LD selection rule is input-consuming.

Serebrenik and De Schreye (2001) show that, when restricting to well moded

programs and queries and moded level mappings (they call them output-independent),

acceptability can be generalised by having any well-founded ordering, not necessarily

IN, as co-domain of level mappings. This simplifies the proof of programs where

complex level mappings may be required.

Also, a characterisation of acceptability in the context of metric spaces was

provided by Hitzler and Seda (1999).

Alternative characterisations of left-termination consider proof obligations on

generalised level mappings and thus on possibly non-ground instances of clauses

and queries. Bossi et al. (1994) provide sufficient and necessary conditions that

involve: (1) generalised level mappings (with an arbitrary well-founded ordering

as the codomain) that do not increase w.r.t. substitutions; (2) a specification (Pre,

Post), with Pre, Post⊆ AtomL, which is intended to characterise call patterns (Pre)

and correct instances (Post) of atomic queries. Call patterns provide information

on the structure of selected atoms, while correct instances provide information on

data flow. The method has the advantage of reasoning both on termination and on

partial correctness within the same framework. However, proof obligations are not

well suited for paper & pencil proofs, since they require to reason on the strongly

connected components of a graph abstracting the flow of control of the program

under consideration. An adaption of acceptability to total correctness is presented in

Pedreschi and Ruggieri (1999c). Also, we mention the works of Bronsard et al. (1992)

and Deransart and Ma luszyński (1993), which rely on partial correctness or typing

information to characterise call patterns. Deransart and Ma luszyński generalise the

proof obligations on the left-to-right order of the LD selection rule to any acyclic

ordering of body atoms. Another characterisation of left-termination particularly

suited for automation is due to De Schreye et al. (1992; 1999). Their notion is

similar to the one of Bossi et al., but it uses: (1) generalised level mappings that

are constant w.r.t. substitution (called rigid level mappings); (2) a pair (Pre, Post),

with Pre, Post⊆ AtomL, where Post is a model of the program and Pre is a

characterisation of call patterns computed using abstract interpretation.

A generalisation of the definition of left-termination considers a program together

with a set of queries (De Schreye et al., 1992; Bossi et al., 1994), while we considered

a program and a single query. We say that a program P and a set of queries Q
left-terminate if every derivation for P and any Q ∈ Q via the leftmost selection

rule is finite. The benefit of such a definition consists of having just one single proof

of termination for a set of queries rather than a set of proofs, one for each query

in the set. However, we observe that in our examples on acceptability, proofs can
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easily be generalised to a set of queries. For instance, for a level mapping such that

|p(t)| = |t|, it is immediate to conclude that all queries p(T), where T is a list, are

acceptable. Conversely, is it the case that if P and Q left-terminate then P and any

Q ∈ Q are acceptable by a same |.| and I? The answer is affirmative. In fact, from the

proof of the Completeness Theorem 6.8 (Ruggieri, 1999, Theorem 2.3.20), if P and

Q left-terminate then they are acceptable by a level mapping |.|P and a Herbrand

model IP that only depend on P . This implies that every Q ∈ Q is acceptable by

|.|P and IP . In conclusion, acceptability by |.|P and IP precisely characterises the

maximal set Q such that P and Q left-terminate.

Finally, instead of considering left-termination of a program P and a query Q,

one may be interested in proving left-termination of some permutation P ′ and Q′
of them. A permutation of P (Q) is any program (query) obtained by reordering

clause body atoms in P (Q). This notion is called σ-termination in Hoarau and

Mesnard (2001), where a system for automatic inference is presented. σ-termination

is strictly weaker than left-termination, and strictly stronger than ∃-termination (e.g.

program PRODCONS in figure 8 and system(n), with n ∈ IN, ∃-terminate but do not

σ-terminate).

10.2 Writing left-terminating programs

There are also works that are not directly concerned with proving an existing

program left-terminating, but rather with heuristics and transformations that help

write left-terminating programs.

Hoarau and Mesnard (1998) studied inferring and compiling termination for

(constraint) logic programs. Inferring termination means inferring a set of queries

for which a program ‘potentially’ terminates, that is to say, it terminates after

possible reordering of atoms. This phase uses abstract interpretation and the Boolean

µ-calculus. Compiling termination means reordering the body atoms so that the

program terminates. The method is implemented.

Neumerkel and Mesnard (1999) studied the problem of localising and explain-

ing reasons for nontermination in a logic programs. The work aims at assisting

programmers in writing terminating programs and helping them to understand why

their program does not terminate. The method has been implemented and is in-

tended as a debugging tool, in particular for beginners (it has been used for teaching

purposes). The idea is to localise a fragment of a program that is in itself already

non-terminating, and hence constitutes an explanation for non-termination of the

whole program.

10.3 Transformational approaches

It is possible to investigate termination of logic programs by transforming them

to some other formal system. If the transformation preserves termination, one can

resort to the compendium of techniques of those formal systems for the purpose of

proving termination of the original logic program.

Baudinet (1992) considered transforming logic programs into functional programs.

Termination of the transformed programs can then be studied by structural induc-
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tion. Her approach covers general logic programs, existential termination and the

effects of Prolog cut.

There is a considerable amount of literature on transforming logic programs

to term rewriting systems (TRSs), which are perhaps the generic formalism for

studying termination as such. It is very common in these transformational approaches

to use modes. The intuitive idea is usually that the input of an atom has to

rewrite into the output of that atom. Most of those works assume the left-to-right

selection rule. One valuable exception is due to Krishna Rao et al. (1998), where

termination is considered w.r.t. selection rules that respect a producer-consumer

relation among variables in clauses. Such a producer-consumer relation is formalised

with an extension of the notion of well-modedness. The approach improves over the

original proposal of the authors (Krishna Rao et al., 1992), where the LD selection

rule was assumed.

The approach by Aguzzi and Modigliani (1993) takes into account that logic

programs can be used in several modes, even within the same run of a program.

Moreover, the approach is able to handle local variables, i.e. variables occurring

only in a clause body but not in the head. Such variables model what is sometimes

called sideways information passing. One remarkable property of the transformation

is that it provides a characterisation of termination, albeit only for the limited class

of input driven logic programs (Apt and Etalle, 1993). So for this limited class, a

program terminates if and only if the corresponding TRS terminates.

Ganzinger and Waldmann (1992) proposed a transformation of logic programs

into conditional TRSs. In such TRSs, the rules have the form u1 → v1, . . . , un →
vn ⇒ s → t, which is to be read as “if each ui rewrites to vi, then s rewrites to t”.

Well moded logic program clauses are transformed into such rules, where there is a

correspondence between each ui and the input of the ith body atom, each vi and the

output of the ith body atom, s and the input of the head, and t and the output of the

head. The method improves over that by Krishna Rao et al. (1992) in applicability

and simplicity.

Marchiori (1994) improves over the transformations of Aguzzi and Modigliani

(1993) and Ganzinger and Waldmann (1992) by adopting enhanced methods to

detect unification-freeness, i.e. situations where unification (used by SLD-resolution)

boils down to matching (used by TRS operational semantics). Another contribution

lies in the fact that the transformation proposed is modular, i.e. it considers each

clause in isolation.

More recently, Arts (1997) investigated a new termination method for TRSs called

innermost normalisation and applied it also to TRSs obtained by transforming well

moded logic programs. The technique improves that of Krishna Rao et al. (1992).

10.4 Dynamic selection rules

By dynamic selection rules we mean those rules where selection depends on the degree

of instantiation of atoms at run-time. Second generation logic languages adopt

dynamic selection rules as control primitives. We mention here delay declarations,

input-consuming derivations and guarded clauses.
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Apt and Luitjes (1995) consider deterministic programs, i.e. programs where for

each selectable atom (according to the delay declarations), there is at most one

clause head unifiable with it. For such programs, the existence of one successful

derivation implies that all derivations are finite. Apt and Luitjes also give conditions

for the termination of append, but these are ad-hoc and do not address the general

problem.

Lüttringhaus-Kappel (1993) proposes a method for generating control (delay

declarations) automatically. The method finds acceptable delay declarations, ensuring

that the most general selectable atoms have finite SLD-trees. What is required

however are safe delay declarations, ensuring that instances of most general selectable

atoms have finite SLD-trees. A safe program is a program for which every acceptable

delay declaration is safe. Lüttringhaus-Kappel states that all programs he has

considered are safe, but gives no hint as to how this might be shown in general. This

work is hence not about proving termination. In some cases, the delay declarations

that are generated require an argument of an atom to be a list before that atom can

be selected. This is similar to requiring the atom to be bounded, i.e. to the approach

of Marchiori and Teusink (1999) and Martin and King (1997), and of section 5.

Naish (1992) considers delay declarations that test for partial instantiation of

certain predicate arguments. Such delay declarations implicitly ensure input-consu-

ming derivations. He gives good intuitive explanations about possible causes of

loops, essentially circular modes and speculative output bindings. The first cause (see

Example 4.4) can be eliminated by requiring programs to be permutation nicely4

moded. Speculative output bindings are indeed a good explanation for the fact that

permute(O , I ) (see Example 5.1) does not input terminate. Naish then makes the

additional assumption that the selection rule always selects the leftmost selectable

atom, and proposes to put recursive calls last in clause bodies. Effectively, this

guarantees that the recursive calls are ground in their input positions, which goes

beyond assuming input-consuming derivations.

Naish’s proposal has been formalised and refined by Smaus et al. (2001). They

consider atoms that may loop when called with insufficient input, or in other words,

atoms for which assuming input-consuming derivations is insufficient to guarantee

termination. It is proposed to place such atoms sufficiently late; all producers of

input for such atoms must occur textually earlier. Effectively, this is an assumption

about the selection rule that lies between input-consuming derivations and local

delay-safe derivations.

Our characterisation of input termination only requires (permutation) simply

moded programs and queries. The first sound but incomplete characterisation of

Smaus (1999b) assumed well and nicely moded programs. It was then found that the

condition of well-modedness could easily be lifted (Bossi et al., 1999). It was only

by restricting to simply moded programs that one could give a characterisation that

is also complete. This means of course that the method of Bossi et al. (1999) does

not subsume the method of (Bossi et al., 2001) surveyed here, but nevertheless, we

4 A slightly more general notion than permutation simply-modedness.
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believe that the fact that the characterisation is complete is more important. Input-

consuming derivations can be ensured in existing systems using delay declarations

such as provided by Gödel (Hill and Lloyd, 1994) or SICStus (SICStus, 1998). This

is shown in Bossi et al. (2000, 2001) and Smaus (1999a).

The definition of input-consuming derivations has a certain resemblance with

derivations in the parallel logic language of (Flat) Guarded Horn Clauses (Ueda,

1988). In (F)GHC, an atom and clause may be resolved only if the atom is an instance

of the clause head, and a test (guard) on clause selectability is satisfied. Termination

of GHC programs was studied by Krishna Rao et al. (1997) by transforming them

into TRSs.

Pedreschi and Ruggieri (1999b) characterised a class of programs with guards

and queries that have no failed derivation. For those programs, termination for

one selection rule implies termination (with success) for all selection rules. This

situation has been previously described as saying that a program does not make

speculative bindings (Smaus et al., 2001). The approach by Pedreschi and Ruggieri is

an improvement w.r.t. the latter one, since what might be called ‘shallow’ failure does

not count as failure. For example, the program QUICKSORT is considered failure-free

in the approach of Pedreschi and Ruggieri.

10.5 ∃-termination and bounded nondeterminism

Concerning termination w.r.t. fair selection rules, i.e. ∃-termination, we are aware

only of the works of Gori (2000) and McPhee (2000). Gori proposes an automatic

system based on abstract interpretation analysis that infers ∃-termination. McPhee

proposes the notion of prioritised fair selection rules, where atoms that are known

to terminate are selected first, with the aim of improving efficiency of fair selection

rules. He adopts the automatic test of Lindenstrauss and Sagiv (1997) to infer

(left-)termination, but, in principle, the idea applies to any automatic termination

inference system.

Concerning bounded nondeterminism, Martin and King (1997) define a transfor-

mation for Gödel programs, which shares with the transformation of Definition 9.10

the idea of not following derivations longer than a certain length. However, they rely

on sufficient conditions for inferring the length of refutations, namely termination

via a class of selection rules called semilocal. Their transformation adds run-time

overhead, since the maximum length is computed at run-time. On the other hand,

a run-time analysis is potentially able to generate more precise upper bounds than

our static transformation, and thus to cut more unsuccessful branches. Also, the

idea of pruning SLD-derivations at run-time is common to the research area of loop

checking (Bol et al., 1991).

Sufficient (semi-)automatic methods to approximate the number of computed

instances by means of lower and upper bounds have been studied in the context of

cost analysis of logic programs (Debray and Lin, 1993) and of cardinality analysis of

Prolog programs (Braem et al., 1994). Of course, if ∞ is a lower bound to the number

of computed instances of P and Q then they do not have bounded nondeterminism.

Dually, if n ∈ N is an upper bound then P and Q have bounded nondeterminism.
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In this case, however, we are still left with the problem of determining a depth of

the SLD-tree that includes all the refutations.

10.6 Automatic termination inference

On a theoretical level, the problem of deciding whether a program belongs to one of

the classes studied in this article is undecidable. This was formally shown by Bezem

(1993) for recurrence, and by Ruggieri (1999) for acceptability, fair-boundedness

and boundedness. On a practical level, however, many methods have been proposed

to infer (usually: left-) termination automatically. This research stream is currently

very active, and some efficient tools are already integrated in compilers.

A challenging topic of the research in automatic termination inference consists in

finding standard forms of level mappings and models, so that the solution of the

resulting proof obligations can be reduced to known problems for which efficient

algorithms exist (Bossi et al., 1994; Benoy and King, 1997; Decorte et al., 1993;

Plümer, 1990; van Gelder, 1991).

As an example, we mention the detailed account of automatic termination analysis

by Decorte et al. (1999). The main idea is as follows. Termination analysis is

parametrised by several factors, such as the choice of modes and level mappings.

In practice, these are usually inferred using abstract interpretation techniques. This

is often not very efficient. Therefore Decorte et al. propose to encode all those

parameters and the conditions that have to hold for them as constraints. So for

example, there are constraint variables for each weighting parameter used in the

definition of (semi-) linear norms and level mappings. To show termination of the

analysed program, one has to find a solution to the constraint system.

Lindenstrauss and Sagiv (1997) developed the system TermiLog for checking

termination. They use linear norms, (monotonicity and equality) constraint inference

and the termination test of Sagiv (1991), originally designed for Datalog programs.

The implementation of the static termination analysis algorithm of the Mercury

system (Speirs et al., 1997) exploits mode and type information provided by the

programmer. Speirs et al. claim a better performance than the TermiLog system in

the average case. The implementation of fair selection rules has been announced for

future releases of Mercury. Codish and Taboch (1999) proposed a formal semantics

basis that facilitates abstract interpretation for inferring left-termination.

Recently, Mesnard et al. (2000) developed the cTI system for bottom-up left-

termination inference of logic programs. Bottom-up refers to the use of abstract

interpretation based fixpoint computations whose output is a set of queries for

which the system infers termination. The results show that, on several benchmark

programs, the sets of queries inferred by cTI strictly include the set of queries for

which the top-down methods of Decorte et al. (1999), Lindenstrauss and Sagiv

(1997) and Speirs et al. (1997) can show termination.

Finally, we recall the approach by Stärk (1998) to prove both termination and

partial correctness together. His system, called LPTP, is implemented in Prolog and

consists of an interactive theorem prover able to prove termination and correctness

of Prolog programs with negation, arithmetic built-in’s and meta-predicates such as
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call. The formal theory underlying LPTP is an inductive extension of pure Prolog

programs that allows to express modes and types of predicates.

10.7 Extensions of pure logic programming

In this paper, we have assumed the standard definition of SLD-derivations for defi-

nite logic programs. We now briefly discuss termination of alternative or generalised

execution models of logic programs.

A declarative characterisation of strong termination for general logic programs and

queries (i.e, with negation) was proposed by Apt and Bezem (1991). The execution

model assumed is SLDNF resolution with a safe (not to be confused with delay-safe

(Marchiori and Teusink, 1999)) selection rule, meaning that negative literals can

be selected only if they are ground. Also, we mention the bottom-up approach of

Balbiani (1992), where an operator TP is provided such that its ordinal closure

coincides with those ground atoms A such that P and A strongly terminate.

Apt and Pedreschi (1993) have generalised acceptability to reason on programs

with negation under SLDNF resolution. The characterisation is sound. Also, it

is complete for safe selection rules. Marchiori (1996a) proposes a modification of

acceptability to reason on programs with Chan’s constructive negation resolution.

Termination of abductive logic programs has been studied by Verbaeten (1999). The

execution model of abductive logic programs, called SLDNFA resolution, extends

SLDNF resolution. Just as for Apt and Bezem (1991), the selection rule is an

arbitrary safe one, but the definition of safe is weaker in this context. Essentially,

SLDNFA resolution behaves worse than SLDNF resolution w.r.t. termination, which

is why the conditions given by Apt and Bezem (1991) have to be strengthened.

Finally, we point out that the conditions given are sufficient but not necessary.

Tabled logic programming is particularly interesting in the context of termination

analysis since tabling improves the termination behaviour of a logic program, com-

pared to ordinary execution. The works we discuss in the following take advantage

of this, i.e. they can show termination in interesting cases where ordinary execution

does not terminate. They assume tabled execution based on the left-to-right selection

rule.

A declarative characterisation of tabled termination has been given by Decorte

et al. (1998). To automate termination proofs of tabled logic programs, this work

has been combined by Verbaeten and De Schreye (2001) with the constraint-based

approach to proving left-termination automatically, discussed above (Decorte et al.,

1999). Verbaeten et al. (2001) have studied termination of programs using a mix of

tabled and ordinary execution.

Concerning constraint logic programming (CLP), Colussi et al. (1995) first pro-

posed a necessary and sufficient condition for left-termination, inspired by the

method of Floyd for termination of flowchart programs. Their method consists of

assigning a data flow graph to a program, and then to state conditions to prevent

the program to enter an infinite loop in the graph.

Also, Ruggieri (1997) proposed an extension of acceptability that is sound and

complete for ideal CLP languages. A CLP language is ideal if its constraint solver,
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the procedure used to test consistency of constraints, returns true on a consistent

constraint and false on an inconsistent one. In contrast, a non-ideal constraint

solver may return unknown if it is unable to determine (in)consistency. An example

of non-ideal CLP language is the CLP(R) system, for which Ruggieri proposes

additional proof obligations (based on a notion of modes) to acceptability in order

to obtain a sound characterisation of left-termination.

Mesnard (1996) provides sufficient termination conditions based on approxi-

mation techniques and boolean µ-calculus, with the aim of inferring a class of

left-terminating CLP queries. The approach has been refined and implemented by

Hoarau and Mesnard (1998).

11 Conclusion

In this paper, we have surveyed six different classes of terminating logic programs

and queries. For each class, we have provided a sound declarative characterisation

of termination. Except for local delay termination, this characterisation was also

complete. We have offered a unified view of those classes allowing for non-trivial

formal comparisons.

In section 9.1, we have compared the different characterisations w.r.t. certain

technical details with the aim of understanding the role each technical detail plays.

In section 9.2, we have compared the classes themselves. The inclusion relations

among them are summarised in the hierarchy of figure 1. Intuitively, as the assump-

tions about the selection rule become stronger, the proof obligations about programs

become weaker.

One may ask: in how far is such a hierarchy ad-hoc, and could other classes

be considered? We believe that the interest in strong termination, ∃-termination

and bounded nondeterminism is evident because they are cornerstones of the whole

spectrum of classes. The interest in left-termination is motivated by the fact that the

standard selection rule of Prolog is assumed.

The interest in input termination and local delay termination is more arguable.

We cannot claim that there are no other interesting classes in the surroundings

of those two classes. Nevertheless, we believe that the distinction between input-

consuming and local delay-safe selection rules captures an important difference

among dynamic selection rules: requiring derivations to be input-consuming can

be considered a reasonable minimum requirement to ensure termination, as we

have argued that only very simple or contrived programs strongly terminate. In

particular, the selection rule does not allow for methods showing termination that

rely on boundedness of the selected atom. At the time of the selection, the depth of

the SLD tree of an atom is not determined (by the atom itself). In contrast, local

delay-safe selection rules require that the selected atom is bounded, and thus the

depth of the SLD tree of an atom is determined.

We thus hope that we have captured much of the essence of the effect different

choices of selection rules have on termination. This should be a step towards a

possible automatic choice of selection rule and thus towards realising Kowalski’s

ideal.
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