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Background
Knowledge is growing on the essential role of neural circuits
involved in aberrant cognitive control and reward sensitivity for
the onset and maintenance of binge eating.

Aims
To investigate how the brain’s reward (bottom-up) and inhibition
control (top-down) systems potentially and dynamically interact
to contribute to subclinical binge eating.

Method
Functional magnetic resonance imaging data were acquired
from 30 binge eaters and 29 controls while participants per-
formed a food reward Go/NoGo task. Dynamic causal modelling
with the parametric empirical Bayes framework, a novel brain
connectivity technique, was used to examine between-group
differences in the directional influence between reward and
executive control regions. We explored the proximal risk factors
for binge eating and its neural basis, and assessed the predictive
ability of neural indices on future disordered eating and body
weight.

Results
The binge eating group relative to controls displayed fewer
reward-inhibition undirectional and directional synchronisations

(i.e. medial orbitofrontal cortex [mOFC]–superior parietal gyrus
[SPG] connectivity, mOFC→ SPG excitatory connectivity) during
food reward_nogo condition. Trait impulsivity is a key proximal
factor that could weaken the mOFC–SPG connectivity and
exacerbate binge eating. Crucially, this core mOFC–SPG con-
nectivity successfully predicted binge eating frequency 6months
later.

Conclusions
These findings point to a particularly important role of the bot-
tom-up interactions between cortical reward and frontoparietal
control circuits in subclinical binge eating, which offers novel
insights into the neural hierarchical mechanisms underlying
problematic eating, and may have implications for the early
identification of individuals suffering from strong binge eating-
associated symptomatology in the general population.
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Eating disorders are disabling, critical and expensive mental disor-
ders, causing 10 200 deaths per year, equating to 1 death every
52 min.1 As reported in the Global Burden of Disease Study,
around 41.9 million cases were uncounted in the number of
global eating disorders in 2019.2 Treatment and recovery from
eating disorders is a long and difficult process, increasing economic
costs and service utilisation (e.g. US$64.7 billion in health-related
expenses in the USA yearly).1 In China, the prevalence of binge
eating disorder (BED) in adult women is the highest (3.53%)
among all subtypes of eating disorders.3 Crucially, subclinical
binge eating is characterised by overeating, accompanied by a
sense of loss of control while eating. Its prevalence is particularly
high (15.5–22.2%) in children and adolescents, possibly increasing
the risk for future development of full-syndrome eating disor-
ders.4–6 Accumulating evidence has suggested that binge eating is
strongly associated with adverse health consequences and several
psychological difficulties, such as depression, anxiety, poor quality
of life and suicidal ideation, which can have long-term effects.
Thus, probing the neural underpinnings of subclinical binge
eating behaviour would be key to identifying vulnerable individuals
who are at heightened risk for dysregulated eating and developing
more targeted and effective prevention strategies.

The role of single system in binge eating

Previously, theorists and researchers have largely focused on the
role of a single psychological function or neural system (e.g.

inhibitory control, reward sensitivity) in the origin and persistence
of binge eating.7–18 These studies have confirmed that neurofunc-
tional alterations involved in executive functioning (e.g. inhibitory
control and response inhibition) and reward processing
(e.g. reward sensitivity, reward reactivity and reward-based eating
drive) are a robust and clinically relevant neurobiological feature
of binge eating symptomatology. However, how the brain’s
reward and inhibition control systems potentially interact to con-
tribute to susceptibility to problematic eating remains poorly under-
stood. As early symptomatic behaviours are predictive of the later
development of clinical disorders11 and identifying the full range
of adaptive to maladaptive phenomena is essential for a comprehen-
sive understanding of the full dynamic range andmeans for the pro-
motion of well-being in as many individuals as possible, it is of
critical importance to investigate the precise neural interaction
mechanisms of subclinical binge eating in the general population,
which will advance our understanding of symptomatologic variabil-
ity associated with clinical BED.19–21

The role of reward-inhibition dual-system in binge eating

Theoretically, the underlying interaction of the brain’s reward and
inhibitory control systems plays a key role in excessive food
intake and overeating.6,22 The bipartite interaction model of
dietary decision-making22 proposes that the developing adolescent
prefrontal cortex (PFC) does not have full top-down control over
behaviour, and the time difference in maturation creates an imbal-
ance between reward-driven behaviours (limbic system) and top-
down cognitive regulation (from the PFC), which is manifested as* These authors contributed equally to this work.
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enhanced sensitivity to rewards and diminished behavioural regula-
tion. This imbalance between top-down regulatory regions and sub-
cortical regions may drive excessive consumptive behaviours,
motivated by food rewards and binge eating behaviour. Empirical
evidence also suggested that abnormal information communication,
as reflected by alterations in brain connectivity between the
executive control network (ECN; e.g. superior frontal gyrus [SFG],
middle frontal gyrus [MFG] and inferior parietal gyrus) and the
reward network (e.g. caudate [CAU], putamen [PUT] and medial
orbitofrontal cortex [mOFC]), may relate to the decreased ability
to maintain balance between dietary self-control and reward
sensitivity, thus promoting more binge-type eating in the general
population.20,21,23–25

Key questions unanswered

Despite increasing knowledge on the reward-inhibition dual-system
interaction patterns of binge eating symptomatology, most studies
have relied on correlation-based indices of functional connectivity.
The functional connectivity allows researchers to identify shared
variation in activations between brain regions, but it does not
allow conclusions to be drawn about the direction of information
flow. Moreover, the specific focus on resting-state functional mag-
netic resonance imaging (fMRI) has also precluded knowledge of
impairments in dynamic engagement of functional circuits during
dual-system conflict processing. This leaves key questions
unanswered. Is abnormal reward-inhibition processing in individuals
with recurrent binge eating episodes caused by abnormalities in top-
down processes that stem from executive functioning deficits,
bottom-up processes such as aberrant reward sensitivity, or both?
Here we address this gap by examining the regional activation, undir-
ectional synchronisations and directional pathways involved in food
reward-based response inhibition in people with binge eating epi-
sodes, especially the intrinsic effective connectivity between prefrontal
control (top-down) and subcortical reward (bottom-up) circuits.

Dynamic causal modelling

Dynamic causal modelling (DCM) is a powerful tool for describing
the effective connectivities of fMRI blood oxygen level-dependent
(BOLD) activity, allowing for testing the directional influence
exerted by one brain region on another (i.e. the direction of influ-
ences).26 DCM estimates underlying neural dynamics in terms of
excitatory and inhibitory connections (i.e. the valence of influences)
between regions, self-inhibition parameters that account for natural
decay over time within regions and changes in connections as a
function of experimental contexts, such as task conditions.26–28 In
classical DCM, a few models are specified, and these models differ
in the presence or absence of the influence of experimental manip-
ulations on certain connections. Notably, the current study applied
a novel method of DCM with a parametric empirical Bayes (PEB)
framework to examine the bidirectional modulatory changes in
intrinsic and extrinsic effective connectivity to model context-sensi-
tive changes in information flow.27,29,30 In contrast to classical DCM
analyses involving model comparison, the key advantage of the
DCM-PEB approach is that it removes the need to contend with
the multiple-comparison problem. This technique provides both
the posterior distribution of the connection strengths at the group
level and the marginal likelihood or Bayesian model evidence of
the PEB model itself for Bayesian model comparison of alternative
hypotheses.26,27,29–31 Using fMRI data acquired during neurocogni-
tive task performance, the recently developed DCM-PEB approach
has been applied to map directed links underlying force control,
repetition suppression, memory performance, body weight, per-
ceived criticism and clinical outcomes (schizophrenia, autism and
major depression). However, this technique remains to be used in

the identification of directional interaction patterns of binge eating
in subclinical samples. Thus, it is still unclear whether and how the
ECN and reward network show aberrant task-evoked modulation
during inhibition of the food reward stimuli in adults with binge
eating episodes.

The current study

By focusing on the directional architecture between reward and
inhibition control systems through more advanced brain connectiv-
ity techniques (i.e. DCM-PEB), the present research sought to char-
acterise the directionality of abnormal influences of one region on
another during dual-system conflict processing in subclinical
binge eaters. Notably, we constructed a food reward picture
library specific to individuals with binge eating episodes for the
food reward Go/NoGo (GNG) paradigm given the cultural and geo-
graphical aspects of food preferences.32 Based on the altered brain
responses identified in a previous task-evoked fMRI study,12 we
hypothesised that the binge eating group would exhibit abnormal
activation and functional connectivity involved in cognitive
control and/or reward sensitivity. In the absence of any prior knowl-
edge of impairments in dynamic engagement of functional circuits,
we expected to observe an imbalance between reward and control
regions (i.e. effective connectivity) during the food reward_nogo
condition in the binge eating group, compared to controls.
Finally, we explored the proximal risk factors for binge eating
behaviour and its neural basis using mediating model analysis
(cross-sectional level), and further probed the predictive ability of
brain indices at baseline on disordered eating and body weight 6
months later (longitudinal level). The current study represents an
important first step in addressing the essential role of directional
interaction patterns in subclinical binge eating behaviour by using
a recently developed DCM-PEB approach, which offers novel
insights into the neural hierarchical mechanisms of this highly
prevalent problematic eating.

Method

Transparency and openness

The codes, research materials and coded data that support the find-
ings of this study are available upon reasonable request from the
corresponding author.

Participants

All participants were recruited from the Southwest University in
Chongqing, China (via advertisement online). A total of 1451
young adults completed the behavioural assessment (i.e. the
Eating Disorder Diagnosis Scale [EDDS] and Binge Eating Scale
[BES]). Participants who fulfilled the following criteria constituted
the binge eating group: (a) the presence of binge eating episodes
marked by a perceived loss of control and the consumption of a
large amount of food as indexed by a response of greater than or
equal to 1 on EDDS Item 8 (i.e. ‘How many TIMES per week on
average over the past 3 MONTHS have you eaten an unusually
large amount of food and experienced a loss of control?’); and (b)
the absence of any compensatory behaviours (i.e. purging via self-
induced vomiting or laxative use, restrictive eating or compulsive
exercise) as reflected by a 0 response to EDDS Items 15–18.
A total of 30 participants constituted the binge eating group
(Mean[number of binge eating episodes per week] = 2.51; s.d. = 1.67; range,
1–8). All of the episodes classified as binge eating were considered
subclinical owing to the lack of structured clinical interviews.
Meanwhile, non-binge eating control participants were included if
they fulfilled the following criteria: (a) the absence of binge eating
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episodes as indexed by a response of 0 on EDDS Item 8; and (b) the
absence of any compensatory behaviours as reflected by a 0 response
to EDDS Items 15–18. The final sample involved 30 participants for
the binge eating group (23 females) and 29 participants for the non-
binge eating group (18 females) (Table 1). Furthermore, we used the
BES33 to confirm the surmised binge eating status: participants who
reported no binge eating episodes were expected to score lower than
8 in the BES to be included in the non-binge eating group.23 In our
study, the mean BES score of the non-binge eating group was 4.06
(s.d. = 2.25; range, 0−7), suggesting the effectiveness of the grouping.

Before the brain scanning and self-reported measurement, all
participants signed a written informed consent form containing
self-report medical and psychiatric disorder information. Only
those participants who reported no psychiatric or neurological dis-
orders, no use of psychoactive medications and no other chronic
diseases were included in the present research. Participants
met the safety requirement for MRI scanning and the exclusion cri-
teria, including claustrophobia, metallic implants, pregnancy and a
history of head trauma and fainting. Participants were paid 70 Yuan
as compensation for their time. The authors assert that all proce-
dures contributing to this work comply with the ethical standards
of the relevant national and institutional committees on human
experimentation and with the Helsinki Declaration of 1975, as
revised in 2008. All procedures involving human participants were
approved by the Ethical Committee for Scientific Research of the
Faculty of Psychology, Southwest University (IRB No. H22096).

Procedure
Preliminary screening and rating of picture materials

The food reward pictures were selected from the Chinese Food
Image Database for Eating and Appetite Studies,34 given the cultural
and geographical aspects of food preferences.32 A total of 508 food

pictures were visually screened by two doctoral students, with the
inclusion criteria being high image clarity and generalisability (in
line with the Chinese cultural context). After two rounds of prelim-
inary screening, 154 food pictures were included in the first round of
the food picture, named Set 1.Meanwhile, 80 pictures of daily neces-
sities (such as scissors and cups) were selected from the standardised
picture library of daily necessities compiled by our team. Through
randomly repeating 20 pictures, we obtained the first round of
neutral pictures, named Set 2, totalling 100 pictures. An additional
53 participants were recruited for this study and asked to rate the
arousal, pleasantness and familiarity of 154 food pictures and 100
neutral pictures on a 7-point scale ranging from 1 (e.g. ‘I am very
unfamiliar with this food/daily necessity’) to 7 (e.g. ‘I am very famil-
iar with this food/daily necessity’) (for further details, see the
Supplementary Results).

Re-rating and determination of picture materials

Before the scanning, a total of 59 participants (nbinge eating = 30,
nnon-binge eating = 29) further rated 110 food pictures and 100
neutral pictures on a 9-point scale ranging from 1 (very unpalatable)
to 9 (very palatable) in terms of arousal, pleasantness, familiarity,
palatability (food pictures only) and favouritism (food pictures
only) (Supplementary Table 2 available at https://doi.org/10.1192/
bjp.2024.212).

Formal experiment

For standardisation, participants were required to avoid eating for 2 h
before arriving at the laboratory. Participants arrived at the laboratory
about 40 min early. Upon arrival at the laboratory, each participant
completed the informed consent form related to the experiment.
Subsequently, participants provided sociodemographic information
and completed a series of self-report questionnaires. The

Table 1 Descriptive characteristics and between-group comparisons for self-reported measures

Measures

Binge eating (n = 30) Non-binge eating (n = 29)

P-valuesMean ± s.d. Mean ± s.d.

Timepoint 1
Gender (female/male) 23/7 18/11 0.223
Age (years) 20.37 (1.45) 19.41 (1.35) 0.012*
Body mass index (kg/m2) 21.26 (2.66) 20.35 (3.60) 0.270
Binge eating frequency (weekly)a 2.57 (1.68) 0.00 (0.00) <0.001***
Perceived appearance pressure 18.77 (4.64) 16.55 (4.72) 0.074
Body dissatisfaction 28.90 (6.55) 25.10 (5.06) 0.016*
Body awareness 82.67 (12.28) 87.28 (13.70) 0.179
Early life environmental unpredictability 40.73 (6.11) 35.66 (6.83) 0.004**
Depression 37.50 (6.54) 31.28 (7.95) 0.002**
Trait anxiety 46.50 (8.85) 38.31 (9.62) 0.001**
Disordered eating behaviours
Cognitive restraint eating subscale 13.67 (4.74) 11.24 (4.05) 0.039*
Emotional eating subscale 8.00 (2.05) 5.76 (1.96) <0.001***
Uncontrolled eating subscale 22.80 (5.01) 16.14 (3.68) <0.001***

Trait impulsiveness
Motor subscale 26.07 (5.71) 21.07 (5.85) 0.002**
Attentional subscale 25.67 (6.48) 21.59 (4.70) 0.008**
Non-planning subscale 29.17 (6.65) 23.69 (6.05) 0.001**

Reward sensitivity 13.27 (3.16) 11.76 (4.30) 0.130
Punishment sensitivity 15.17 (5.63) 12.82 (6.15) 0.133

Timepoint 2
Gender (female/male) 22/7b N/A N/A
Age (years) 20.93 (1.53) N/A N/A
Body mass index (kg/m2) 21.87 (2.83) N/A N/A
Binge eating frequency (weekly)a 1.72 (1.69) N/A N/A
Binge eating behaviour 5.76 (4.30) N/A N/A

N/A, data not available.
a. The Eating Disorder Diagnosis Scale was used to assess binge eating frequency (see the ‘Method’ section for details).
b. One participant was excluded because of model parameter cloning failure (see the ‘Dynamic causal modelling analysis’ section for details).
Significance is indicated by the asterisks (*P < 0.05, **P < 0.01, ***P < 0.001).
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experimenters explained the rules of the GNG task to the partici-
pants, and the participants undertook a practice session of the
task (for details, see ‘Food reward Go/NoGo task’ section below).
Before undergoing magnetic resonance imaging (MRI), participants
were required to wear specialised clothing, remove any metal arti-
facts such as earrings and wear earplugs. Participants with myopia
were equipped with the corresponding degree of scanning glasses
in advance (for use during scanning). After the experimenters
explained the scanning procedure to the participants, they com-
pleted the food reward GNG task while undergoing MRI (see
Fig. 1 for the experimental procedure).

Demographics

Information was solicited about participants’ age, gender, ethnicity
and self-reported handedness. Body mass index (BMI) was calcu-
lated from subjectively reported height and weight [BMI = weight
(kg)/height2 (m2)].

Self-report measures

All participants completed the EDDS, BES, Food Preference Scale,
Satisfaction and Dissatisfaction with Body Parts Scale, Three-
Factor Eating Questionnaire-R18, The Center for Epidemiologic
Studies Depression Scale, State-Trait Anxiety Inventory, Barratt
Impulsiveness Scale, Visual Analog Scale, Body Awareness
Questionnaire, Perceived Sociocultural Pressure Scale, Early Life
Environmental Unpredictability Scale and Sensitivity to
Punishment and Sensitivity to Reward Questionnaire. Details of
measures can be found in the Supplementary Methods.

Food reward Go/NoGo task

The GNG is a measure of response inhibition that requires indivi-
duals to perform speeded responses on Go trials and to inhibit
responding on No-go trials. In our study, the food reward GNG
paradigm was designed to examine inhibition of prepotent
responses to food reward stimuli compared to neutral stimuli
(Supplementary Fig. 1). The task consisted of two runs, in which
pictures of food reward (e.g. hamburgers and cherries) or neutral
objects (e.g. scissors and cups) were presented. After two rounds
of material rating, we finally included 43 food picture stimuli and
37 daily necessities as neutral picture stimuli for formal scanning.
These picture stimuli not only maximised the reward value of the
food stimulus for the binge eating group32 but also ensured, to the
largest extent possible, that the neural response differences were
driven by the grouping conditions (for details, see the
Supplementary Results). Participants had to either press a button
with their right hand or inhibit their response to each picture,
according to the instructions at the beginning of each run. The
role of food and neutral pictures was different according to the
run: in the ‘GO FOOD’ run, food pictures served as target stimuli,
and therefore participants were asked to press the button with the
right-hand index finger to food pictures (Go) and withhold their
response to neutral pictures (No-go). In the ‘GO NEUTRAL’ run,
neutral pictures served as target stimuli, and therefore participants
were asked to press the button with neutral stimuli (Go) and with-
hold their response to food stimuli (No-go). Participants were
instructed to respond as quickly and accurately as possible. Each
run consisted of 129 Go trials (75%) and 43 No-go trials (25%).12

Before the formal scanning, participants received a practice
session of the task (30 trials in total). At the beginning of each
run, an instruction slide was presented as a reminder. During
each run, the trials began with a fixation cross (1000 ms), followed
by a neutral or a food stimulus presented for 1000 ms. The time
window to respond lasted 1000 ms. Within a given run, trials

were separated by a random inter-trial interval ranging from 1000
to 3000 ms. The stimuli were presented in a pseudorandomised
order and the order of the runs was counterbalanced across partici-
pants to optimise the efficiency of the design. Total duration of the
task was approximately 20 min. The GNG task was programmed
and administered using E-Prime 2.0 presentation software
(Psychology Software Tools, Inc. Pittsburgh, PA, USA; see https://
pstnet.com/products/e-prime/).

Neuroimaging data acquisition and preprocessing

All images were collected using a 3-T Trio scanner (Siemens Prisma,
Erlangen, Germany) at the Brain Imaging Center, Southwest
University. Foam pads and earplugs were used to minimise head
movement and scanning noise. The functional images were col-
lected using a gradient echo planar imaging sequence with the fol-
lowing parameters: repetition time, 2000 ms; echo time, 30 ms;
number of slices, 62; slice thickness, 2 mm; field of view, 224 ×
224 mm2; flip angle, 90°; voxel size, 2 × 2 × 2 mm3. The GNG task
was conducted in two sessions consisting of 522 volumes (261
volumes per session). High-resolution T1-weighted anatomical
images were acquired using a magnetisation-prepared rapid gradi-
ent echo sequence (parameters: repetition time, 2530 ms; echo
time, 2.98 ms; field of view, 256 × 256 mm2; flip angle, 7°; slice per
slab, 192; slice oversampling, 33.3%; voxel size, 0.5 × 0.5 × 1 mm3).

A standard preprocessing procedure was implemented using
Statistical Parametric Mapping (SPM12, Wellcome Department of
Cognitive Neurology, London, UK; see https://www.fil.ion.ucl.ac.
uk/spm/) working in MATLAB (R2017b, MathWorks, Inc.,
Natick, MA, USA; see https://www.mathworks.com). The DICOM
data were first converted to Neuroimaging Informatics
Technology Initiative (NIfTI) format. The functional images were
corrected for temporal shifts between slices and realigned to the
middle volume. The anatomical T1 images were then coregistered
to the realigned mean functional image, then images were trans-
formed into standard Montreal Neurological Institute (MNI)
space using segmentation-based normalisation parameters, resliced
to a final voxel size of 2 × 2 × 2 mm3 (as acquired). The resulting
functional images were spatially smoothed using an 8-mm full-
width at half-maximum Gaussian kernel.

Head movements were generally small in the current sample,
with the majority of participants moving less than 1 mm/degree
across the task, and two participants with a maximum of still less
than 2 mm/degree. Therefore, a total of 59 participants were
included in subsequent analyses.

Whole-brain activation analysis
First-level analysis

The fMRI data were modelled using a general linear model (GLM)
by convolving the onsets of each condition with the canonical
hemodynamic response function (HRF). This study defined four
conditions: (a) food reward_nogo; (b) neutral_go; (c) neutral_nogo;
and (d) food reward_go. To account for head movement, the six
movement parameters of the rigid body transformation applied
by the realignment procedure were also included as regressors in
the first-level analysis. The resulting GLM for each participant
included 16 regressors representing each experimental condition
(four conditions in total) andmovement parameters (six parameters
per run, 12 parameters in total for two runs). Before model estima-
tion, a high-pass filter of 128 s was applied to remove low-frequency
noise and slow drifts in the signal. Notably, the present research
focused on the brain activation involved in inhibition of prepotent
responses to food reward stimuli (i.e. food reward_nogo conflict
condition).35 Therefore, the beta image for the food reward_nogo
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bilateral PUT
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Whole-brain functional connectivity map Significant functional connectivity
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Food no-go

Neutral go

Food go

Neutral no-go

Significant region

Two-sample t-test

pFWE < 0.05

pFDR < 0.05

Self-report measures
Practice session (food GNG task)
FMRI scanning (food GNG task)

Six-month follow-up

Binge eating frequency
Binge eating behaviors

Body mass index

Inhibitory control nodes
left IFG
left dmPFC
bilateral aPFC
bilateral sPar

Dynamic causal modelling analysis

Time series extraction

Regions of interest
Reward nodes
right mOFC
right CAU

left IFG
right SPG

right LOC
left lingual gyrus

Hypothetical model 1
Significant effective 

connectivity
Parametric empirical Bayes
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Subject 1

Subject 2

Subject 3
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Subject 2
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...

Fig. 1 Schematic illustration of experimental procedure and data analysis strategy. Schematic flow of the experimental procedure, whole-brain
activation analysis, seed-based functional connectivity analysis and dynamic causal modelling analysis. Hypothetical model 1 corresponds to
the reward-inhibition dual-system model. Hypothetical model 2 represents the reward-inhibition-vision triple-system model.

GNG, Go/NoGo; fMRI, functional magnetic resonance imaging; FWE, family-wise error; FDR, false discovery rate; mOFC, medial orbitofrontal cortex; THA, thalamus; CAU, caudate;
PUT, putamen; NAc, accumbens; IFG, inferior frontal gyrus; dmPFC, dorsal medial prefrontal cortex; aPFC, anterior prefrontal cortex; sPar, superior parietal lobule; SPG, superior
parietal gyrus; LOC, lateral occipital cortex.
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condition and two types of beta contrast images (i.e. food reward_
nogo minus neutral_nogo, food reward_nogo minus food
reward_go) were output as a result of this analysis.

Second-level analysis

We used the two-sample t-test to examine between-group differ-
ences in brain activation. Age and gender were included as covari-
ates.36 Analysis was conducted on the whole brain and statistical
inference was performed by using cluster-wise control of family-
wise error (FWE). Statistical images were first assessed for cluster-
wise significance with a primary cluster-defining threshold of P =
0.001, then the thresholded cluster was considered significant at a
FWE rate of 0.05.12,36 Coordinates of significant local maxima are
reported in a standard stereotaxic reference space of the MNI
system. Anatomical labels are based on Automated Anatomical
Labeling (AAL; Neurodegeneratives Diseases Institute, University
of Bordeaux, Bordeaux, France; see https://www.gin.cnrs.fr/en/
tools/aal/) implemented in SPM12.

Seed-based functional connectivity analysis
Regions of interest definition and time series extraction

The five regions of interest (ROIs) of the ECN (dorsal medial PFC
[dmPFC], left-hand anterior PFC [aPFC], right-hand aPFC, left-
hand superior parietal lobule [sPar] and right-hand sPar) were
defined based on previous studies of this network.37 Two cortical
ROIs for the reward network (left- and right-hand mOFC) were
derived using AAL3, and eight subcortical ROIs of the reward
network (bilateral thalamus [THA], CAU, PUT and accumbens
[NAc]) were obtained from the HarvardOxford Atlas. See
Supplementary Table 1 for the detailed ROI definition. We also
included the regions with significant group differences in the activa-
tion analysis (i.e. one region; see ‘Group comparison of whole-brain
activation’ section below). This study limited the network scale to
16 ROIs as they are representative nodes in the networks.20,21,24,37

We defined each ROI as a 10-mm radius centred on the peak coordi-
nates and extracted their time series by performing a principal compo-
nents analysis across voxels and retaining the principal eigenvariate.

Psychophysiological interaction analysis

This study used psychophysiological interaction (PPI) analysis to
examine connectivity differences between the binge eating and
non-binge eating groups during three conditions of interest,
respectively, namely the food reward_nogo condition, food
reward_nogominus neutral_nogo condition and food reward_nogo
minus food reward_go condition. The PPI model consisted of the
physiological terms (the time series of a seed), psychological
terms (HRF convolved main effect of condition of interest) and
PPI terms (deconvolved raw time series of the seed multiplied by
the main effect of condition of interest, and then convolved with
the HRF). These three regressors were included in the GLM with
six movement parameters included as covariates. In the group-
level two-sample t-test we conducted multiple PPI analyses and,
in each analysis, one of the 16 ROIs was used as a seed and the
remaining ROIs were used as targets for each condition of interest
(ROI-to-ROI analysis). Statistical significance was set at P < 0.05
with false discovery rate (FDR) correction. In addition, we also
tested the group differences in correlations between a seed ROI
and each voxel in the rest of the brain for each condition of interest
(seed-to-voxel analysis). Statistical significance was set at voxel-wise
threshold P < 0.001 (uncorrected) threshold and cluster-size FDR
corrected significance of P < 0.05. The task-based connectivity ana-
lyses were performed using the Functional Connectivity Toolbox
(CONN 19.c; Computational Neuroscience Research Lab, Boston

University, Boston, MA, USA; see https://www.nitrc.org/projects/
conn).

Multiple-comparison correction

Since a total of 16 seed regions were tested in the current study, a
Bonferroni correction was applied to account for multiple testing,
with the threshold for significance set to PFDR < 0.05/16 = 0.003.
The between-group difference of functional connectivity is consid-
ered statistically significant if the PFDR value of the connectivity is
less than 0.003.

Dynamic causal modelling analysis

The DCM uses an input-state-output model based on a bilinear
state equation:26

_z ¼ Aþ
XM
j¼1

ujB
(j)

 !
z þ Cu

where ż is the temporal derivative of the state variable z, which
describes neuronal activity resulting from intrinsic effective con-
nectivity (A), changes in connectivity caused by the contextual mod-
ulations (B) and the direct influence of the driving input u (C).
Here, ż, z and u are the observed parameters, and A, B and C are
the estimated parameters. The thus defined neuronal model is
coupled to a biologically plausible neurovascular model of the BOLD
response, and the coupled models are used to predict the BOLD
time series in a priori defined volumes of interest. The present study
aimed to investigate the directional connectivity pattern during food
reward-inhibition conflict processing. We implemented the PEB
framework for DCM in SPM12 (revision 7771), a recently developed
technique.29,30 We briefly explain each step as follows.

DCM-specific design matrix construction

Since our study focused on altered effective coupling during the
food reward_nogo condition,35 we constructed a DCM-specific
regression design matrix for subsequent analyses by including the
food reward_nogo condition as a condition of interest in the
DCM-specific model and re-estimated the GLM.

Region of interest definition and time series extractiona

We defined a total of six ROIs (i.e. significant activation and
connectivity regions), namely the right-hand inferior frontal
gyrus (IFG; x =−50, y = 14, z = 18), right-hand mOFC (x = 17,
y = 37, z =−22), right-hand lateral occipital cortex (LOC;
x = 34, y =−96, z =−10), right-hand superior parietal gyrus (SPG;
x = 32, y =−42, z = 70), right-hand CAU (x = 13, y = 10, z = 11)
and left-hand lingual gyrus (x = 0, y =−74, z = 4). The time series
BOLD activity for each participant and each node was extracted
by computing the first eigenvector of all voxels within the 8-mm
radius sphere.32,33

Model specification,b estimation and diagnosis (first level)

Time series extracted from individual ROIs were carried into DCM
analysis for the first level, in which a fully connected model was

a In the DCM analysis, only regions with significant between-group
differences in the activation and functional connectivity analyses
described above were used as ROIs to further reveal directional influ-
ences between key regions.
b Before model estimation, one participant in the binge eating group
was excluded because of model parameter cloning failure, resulting in
a final sample of 58 participants (nbinge eating = 29 (7 males, 22 females);
nnon-binge eating = 29 (10 males, 19 females)).
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estimated for each participant.38 The DCM consisted of three differ-
ent sets of parameters: (a) matrix A: the ‘intrinsic’ connectivity
representing the latent connectivity between regions irrespective
of experimental conditions; (b) matrix B: the ‘modulatory’ connect-
ivity representing the influence of experimental conditions on the
intrinsic connectivity; and (c) matrix C: ‘input’ representing the
driving influence on brain regions by the experimental conditions.
The inversion (estimation) of the model uses the variational
Laplace estimation scheme, which allows finding the predicted
time series that matches the observed time series as much as pos-
sible, minimising movement of the parameters from their prior
values. By doing so, the score of the quality of the mode (i.e. the
negative variational free energy) may be maximised, finding the
neural parameters that offer the best trade-off betweenmodel accur-
acy and complexity. Before group-level analyses, we checked that for
each participant the variance explained by the model was at least of
10%, as an index of the success of model inversion.29 No subject data
was excluded during the model diagnosis.

Notably, the present study focused on two aspects when we spe-
cified the model space comprising certain models. First, we were
interested in the intrinsic connectivity irrespective of experimental
conditions and how the interplay between inhibitory control and
reward nodes might be modulated by conflict condition (here,
food reward_nogo condition). Thus, we only defined and tested
the parameters (differences) in matrices A and B. Second, our
current activation and connectivity results suggested that the sensi-
tive neural responses during dual-system conflict processing also
involved visual areas (see ‘Group comparison of functional connect-
ivity’ section below). To provide more comprehensive evidence on
the potential links between key regions underlying problematic
eating, we constructed two hypothetical models: the reward-inhib-
ition dual-system model (four ROIs: CAU, mOFC, IFG, SPG) and
the reward-inhibition-vision triple-system model (six ROIs: CAU,
mOFC, IFG, SPG, LOC, lingual gyrus). The reward-inhibition
dual-system hypothetical model is shown in Supplementary Fig. 2.

Model search, comparison and reduction (second level)

To examine between-group differences in connectivity, this study
used a hierarchical model over parameters implemented by the
PEB framework, which accounts for variability in individual con-
nection strengths and reduces the weight of subjects with noisy
data.27,29 Specifically, we constructed a PEB model to test
between-group differences, with the dependent variable being the
parameters of each participant (such as 16 A parameters and 16 B
parameters). The PEB model includes two main regressors: group
mean effect and group difference (contrast) effect. After estimating
the model parameters for each participant, the PEB approach
requires one to perform Bayesian model reduction (BMR) and
Bayesian model average (BMA) analysis. Briefly, BMR is a particu-
larly efficient form of Bayesian model selection that, using a greedy
search, automatically compares the full model with 256 models
where one or more connections, which have the least evidence, are
pruned out and thus switched off, whereas the parameters with the
most evidence are kept stable.27 Each reducedmodel has a probability
density over the possible values of parameters (connection strengths)
that maximises the score for the quality of the model.29 We per-
formed BMA analysis to average the parameters across models,
weighted by the evidence of each model. The current study sought
to determine the between-group differences in effective coupling,
and we thus modelled the difference of the binge eating group (1)
versus the non-binge eating group (−1). Finally, we used a threshold
based on free energy, taking into account the covariance of para-
meters, to evaluate whether a parameter contributed to themodel evi-
dence. Based on the PEB framework, posterior probability values

>0.95 were considered ‘strong evidence’ for significant effects.39

Here, the effective connectivity with posterior probability values
greater than 0.95 was considered to best describe the between-
group differences (see Fig. 1 for data analysis strategy).

Mediation analysis

To explore the proximal predictors of binge eating behaviour and its
neural basis, we examined whether neural alterations mediated the
association between psychological factors and binge eating behav-
iour across groups. Spearman’s correlation coefficients were first
calculated to test the relationships of significant brain signal
values (extracted from activation, functional connectivity and
effective connectivity analyses) and binge eating behaviour with
potential psychological factors (e.g. body awareness, body dissatis-
faction, depression, trait anxiety and impulsivity). The mediation
analysis was then performed using Mplus 8.0 software (Muthén &
Muthén, Los Angeles, CA, USA; see http://www.statmodel.com).
A bootstrapping method with 5000 iterations was used to assess
the significance of the mediation model. If the 95% percentile boot-
strap confidence interval for the indirect effect does not include
zero, it is considered significant at the P < 0.05 level.

Longitudinal prediction analysis

This study further investigated the predictive ability of brain activa-
tion and connectivity indices on future disordered eating and body
weight in the binge eating group. We used linear regression analysis
to test whether significant neural indices during the GNG task
(baseline) could effectively predict binge eating behaviour, binge
eating frequency (times/week), body weight and BMI (6 months
later). Age, gender and the corresponding prediction variable at
baseline were controlled as covariates. Data analyses were performed
using SPSS 21 software (International BusinessMachines Corporation,
New York, NY, USA; see https://www.ibm.com/spss).

Results

Sample characteristics

Table 1 shows the descriptive characteristics and results of self-
reported measures. Compared with the non-binge eating group,
the binge eating group had significantly higher binge eating
frequency (t = 8.39, P < 0.001), body dissatisfaction (t = 2.49,
P < 0.05), early life environmental unpredictability (t = 3.01, P < 0.01),
depression (t = 3.29, P < 0.01) and anxiety (t = 3.40, P < 0.01).
Individuals with binge eating episodes also reported more cognitive
restraint eating (t = 2.11, P < 0.05), emotional eating (t = 4.30,
P < 0.001) and uncontrolled eating (t = 4.29, P < 0.001), as well as
higher levels of impulsivity (motor subscale: t= 3.23, P < 0.01;
attentional subscale: t = 2.76, P < 0.01; non-planning subscale: t = 3.31,
P < 0.01) than individuals in the non-binge eating group.

Food preferences

Given that an individual’s specific diet may influence their reaction to
the stimuli,32 this study evaluated participant preferences for sweet,
salty, spicy, sour and bitter foods. The binge eating group reported
the highest and closest preference for sweet and spicy foods (means:
sweet [5.33] > spicy [5.10] > sour [4.30] > salty [4.23] > bitter [1.53];
range, 1−7), suggesting that individuals with binge eating episodes
do not prefer a specific type of food. Thus, it is necessary and import-
ant to construct a food reward picture library specific to binge eaters,
so as to reduce the potential influence of individual differences in food
preference on neural responses (especially rewarding-related
response). In addition, there were no significant differences in food
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preferences between the two groups (Supplementary Fig. 3), demon-
strating that food preferences may not be a confounding factor influ-
encing the neural results.

Behavioural performance

There were no significant between-group differences in the reaction
times during correct Go trials, the percentage of commission errors
in No-go trials or the percentage of response omissions in Go trials
(Supplementary Table 3).

Group comparison of whole-brain activation

There were no significant between-group differences in the three
conditions of interest: food reward_nogo, food reward_nogo
minus neutral_nogo and food reward_nogo minus food reward_go
(all PFWE > 0.05). To explore the potential activation during food
reward-inhibition processing, a whole-brain uncorrected cluster-
forming threshold of P < 0.005 was set, followed by FWE cluster-
level correction at P < 0.05. In the food reward_nogo condition,
we found that the binge eating group displayed weaker activation
in the left-hand IFG (peak MNI: x =−50, y = 14, z = 18; voxel size
= 323; PFWE = 0.029) than controls (Fig. 2(a)). Analysis of covari-
ance further showed that the between-group difference in IFG acti-
vation remained significant after controlling for age, gender and
BMI (F(1, 54) = 14.14, P = 0.0004).

Group comparison of functional connectivity
ROI-to-ROI connectivityc

In the food reward_nogo condition, the binge eating group showed
stronger connectivity within the reward network (left-hand
mOFC–right-hand mOFC connection) and ECN (right-hand
sPar–left-hand aPFC connection, right-hand sPar–IFG connection)
than controls (Supplementary Table 4).

Seed-to-voxel connectivity

The between-group differences in the three conditions of interest
are shown in Supplementary Table 4.

Multiple-comparison correction

The right-hand mOFC–LOC connectivity and right-hand
mOFC–SPG connectivity in the food reward_nogo condition, as
well as the right-hand CAU–left-hand lingual gyrus connectivity
in the food reward_nogo−neutral_nogo condition, survived a strin-
gent Bonferroni correction for multiple comparisons (PFDR < 0.05/
16 = 0.003) (Supplementary Table 4; Fig. 2(b)). See Supplementary
Table 5 for correlations between behavioural performance and
connections.

Group comparison of effective connectivity
Reward-inhibition dual-system model

There was no significant between-group difference in the intrinsic
connectivity (matrix A). In the food reward_nogo condition, the
binge eating group exhibited weaker excitatory connectivity from
the right-hand mOFC to SPG (matrix B) (averaged connectivity
values: binge eating =−1.222, controls = 0.414, posterior prob-
ability = 1.00). See Fig. 2(c) and Table 2 for the group-difference
effects.

Reward-inhibition-vision triple-system model

In the A (‘intrinsic’) matrix, compared with controls, the binge
eating group showed the following: (a) stronger inhibitory self-con-
nection of the right-hand SPG (averaged connectivity values: binge
eating =−0.442, controls =−0.237, posterior probability = 0.96);
(b) weaker inhibitory connection from the left-hand IFG to
right-hand SPG (averaged connectivity values: binge eating =
0.254, controls =−2.01E–06, posterior probability = 1.00); (c)
weaker inhibitory connection from the left-hand IFG to lingual
gyrus (averaged connectivity values: binge eating = 0.196, controls
=−2.09E–06, posterior probability = 0.97); and (d) weaker excita-
tory connection from the right-hand LOC to SPG (averaged con-
nectivity values: binge eating = 0.039, controls = 0.256, posterior
probability = 0.99). Regarding the B (‘modulatory’) matrix, in the
food reward_nogo condition, compared with controls, the binge
eating group displayed the following: (a) stronger inhibitory con-
nection from the right-handmOFC to left-hand lingual gyrus (aver-
aged connectivity values: binge eating =−1.352, controls =
−1.74E–06, posterior probability = 0.97); (b) weaker excitatory con-
nection from the left-hand IFG to lingual gyrus (averaged connect-
ivity values: binge eating =−9.39E–09, controls = 1.094, posterior
probability = 0.99); and (c) weaker excitatory connection from the
left-hand lingual gyrus to right-hand LOC (averaged connectivity
values: binge eating =−0.368, controls = 0.282, posterior probabil-
ity = 1.00). The group-difference effects are shown in Fig. 2(d)
and Table 2.

Proximal risk factors for binge eating and its neural
basis

The mediation analyses indicated the following: (a) right-hand
mOFC–SPG connectivity mediated the link between trait impulsiv-
ity and binge eating behaviour (indirect effect = 0.03, s.e. = 0.01,
95% CI [0.005, 0.084], 13.4% of the total effect size); (b) right-
hand mOFC–LOC connectivity mediated the relationship
between depression and binge eating behaviour (indirect effect =
0.06, s.e. = 0.03, 95% CI [0.011, 0.128], 18.8% of the total effect
size); (c) right-hand mOFC–LOC connectivity mediated the
link between trait anxiety and binge eating behaviour (indirect
effect = 0.04, s.e. = 0.02, 95% CI [0.006, 0.100], 20.0% of the total
effect size); and (d) left-hand lingual gyrus→ right-hand LOC con-
nectivity mediated the link between trait anxiety and binge eating
behaviour (indirect effect = 0.06, s.e. = 0.04, 95% CI [0.001, 0.152],
28.9% of the total effect size). Significant mediation models are
shown in Fig. 3(a) (see Supplementary Table 6 for correlation
results).

Task-based connectivity predicts future binge eating

In the binge eating group, baseline binge eating significantly pre-
dicted future binge eating after controlling for age and gender (base-
line) (β[binge eating frequency] = 0.365, P < 0.05; β[binge eating behaviour] =
0.483, P < 0.01). The baseline right-hand mOFC–SPG connectivity
(during the food reward_nogo condition) predicted binge eating
frequency 6 months later after controlling for age and gender (base-
line) (β = 0.371, P = 0.050).When binge eating frequency (β = 0.413,
P < 0.05) andmOFC–SPG connectivity (β = 0.427, P < 0.05) at base-
line were included in a regression model, both significantly pre-
dicted future binge eating frequency after adjusting for age and
gender (baseline). After adjusting for age, gender and binge eating
behaviour (baseline), the baseline left-hand lingual gyrus→ right-
hand LOC connectivity (during the food reward_nogo condition)
significantly predicted binge eating behaviour 6 months later
(β = 0.374, P < 0.05) (Fig. 3(b)).

c These connections were weaker in the non-binge eating group
compared to the binge eating group (non-binge eating > binge eating;
pFDR < 0.05, two-tailed).
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Fig. 2 Group comparison of neural substrates of food reward-based response inhibition. (a) Weaker IFG activation in the binge eating group
compared to the non-binge eating group. (b) Compared to non-binge eating group, the binge eating group displayed weaker mOFC–LOC
connectivity and mOFC–SPG connectivity in the food reward_nogo condition, as well as weaker CAU–lingual gyrus connectivity in the food
reward_nogo−neutral_nogo condition. (c) In the reward-inhibition dual-system model, the binge eating group exhibited weaker mOFC→ SPG
excitatory connectivity in the food reward_nogo condition (corresponding to matrix B; *posterior probability > 0.95). (d) In the reward-inhibition-
vision triple-system model, the binge eating group displayed stronger inhibitory self-connection of the SPG, weaker IFG→ SPG inhibitory
connectivity, weaker IFG→ lingual gyrus inhibitory connectivity and weaker LOC→ SPG excitatory connectivity (corresponding to matrix A;
*posterior probability > 0.95).

IFG, inferior frontal gyrus; mOFC,medial orbitofrontal cortex; LOC, lateral occipital cortex; SPG, superior parietal gyrus; CAU, caudate; FWE, family-wise error; FDR, false discovery rate.
In the food reward_nogo condition, the binge eating group exhibited stronger mOFC→ lingual gyrus inhibitory connectivity, weaker IFG→ lingual gyrus excitatory connectivity and
weaker lingual gyrus→ LOC excitatory connectivity (corresponding to matrix B; *posterior probability > 0.95). See Table 2 for the group-difference effect values. For visualisation, we
separated the excitatory connectivity (grey) from the inhibitory connectivity (blue). The plus (+) and minus (–) signs indicate the stronger and weaker directed connectivity in the binge
eating group compared to non-binge eating group, respectively.
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Discussion

The present research applied DCM-PEB, a recently developed brain
connectivity technique, to identify the directionality of abnormal

influences between key regions during food reward-based response
inhibition in adults with recurrent binge eating episodes. These
novel findings point to a particularly important role of the under-
lying interactions between cortical reward (mOFC) and

Table 2 Group comparison of effective connectivity strength (binge eating > non-binge eating)

Effective connectivity Connectivity strength difference (posterior probability > 0.95)

Reward-inhibition dual-system model
Matrix B: right mOFC→ right SPGa −1.07
Reward-inhibition-vision triple-system model
Matrix AI: right-hand SPG→ right-hand SPG −0.09
Matrix AE: left-hand IFG→ right-hand SPG 0.12
Matrix AE: left-hand IFG→ left-hand lingual gyrus 0.08
Matrix AE: right-hand LOC→ right-hand SPG −0.10
Matrix B: right-hand mOFC→ left-hand lingual gyrusa −0.55
Matrix B: left-hand IFG→ left-hand lingual gyrusa −0.58
Matrix B: left-hand lingual gyrus→ right-hand LOCa −0.58

mOFC, medial orbitofrontal cortex; SPG, superior parietal gyrus; IFG, inferior frontal gyrus; LOC, lateral occipital cortex.
a. Connections modulated by the food reward_nogo condition (conflict condition).
In dynamic causal modelling, matrix A contains the parameters independent of experimental conditions, including matrices AI and AE. Matrix AI represents the intrinsic coupling of the brain
region to itself. Matrix AE represents the intrinsic connections between brain regions. Matrix B represents the modulatory effect exerted by specific inputs (i.e. experimental conditions) on
the connectivity between regions.
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Fig. 3 The proximal risk factors for binge eating and its neural basis, and the prediction of future binge eating from the baseline task-based
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mOFC, medial orbitofrontal cortex; LOC, lateral occipital cortex; SPG, superior parietal gyrus.
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frontoparietal control (SPG) circuits in subclinical binge eating,
which deepens our understanding of the neural hierarchical
mechanisms of maladaptive eating, and may have implications for
the early identification of individuals suffering from strong binge
eating-associated symptomatology in the general population.

The finding that the binge eating group exhibited weaker IFG
activation than controls during the food reward_nogo condition is
consistent with the results of a recent task-evoked study that
reported that binge eaters from the general population showed
lower activation of the right-hand MFG during the Go/No-Go
task than the control group.12 The inhibitory control deficit
theory of overeating proposes that individuals with inhibitory
control deficits, and lower responsivity of brain regions implicated
in behavioural control, are more sensitive to food cues and more
vulnerable to the pervasive temptation of appetising foods in our
environment, which increases overeating.13 It is highly plausible
that the diminished engagement of cognitive control regions may
relate to decreased dietary self-control in individuals with highly
disordered eating habits.

At the undirectional synchrony level, we observed that the right-
hand mOFC–SPG connectivity and right-hand mOFC–LOC
connectivity in the food reward_nogo condition, as well as the
right-hand CAU–left-hand lingual gyrus connectivity in the food
reward_nogo−neutral_nogo condition, were significantly wea-
kened in the binge eating group. Recent researches have suggested
that the involvement of reward and frontoparietal control regions
(e.g. OFC–inferior parietal gyrus connectivity, OFC–MFG connect-
ivity and CAU–IFG connectivity) represents the crucial neural sub-
strates that could explain the potential interactions of aberrant
reward sensitivity with dysfunctional inhibitory control in binge
eating behaviours in the general population.21,23,24 Theoretical
and review studies also demonstrated that dysregulated eating
behaviours (such as overeating, binge eating and loss of control
eating) are linked to an altered balance of reward and inhibitory
processing.22 Using the perspective of dynamic engagement of
functional circuits, this novel finding that diminished reward-
inhibition undirectional synchrony in people with binge eating
episodes supports the stable and vital role of the information
communication between reward and inhibitory control circuits in
both subclinical binge eating behaviours and clinical BED.24,40,41

In addition, we observed lesser connectivity between reward and
visual areas (e.g. right-hand mOFC–LOC connectivity) in the
binge eating group. Although no study has yet explored the
dynamic integration of neurocircuitry during dual-system conflict
processing in subclinical samples, a previous task-dependent study
reported altered activation in visual regions (e.g. superior occipital
gyrus and inferior occipital gyrus) during response inhibition tasks
in binge eaters.12 Presumably, decreased functional synergy
between reward and visual regions might reflect abnormal food-cue
processing in adults with problematic eating. Since comparative
research on the link between binge eating-associated symptomatol-
ogy and dual-system functional organisation (modulated by cognitive
tasks) is lacking, this result should be interpreted with caution.

The most prominent finding in the present research was the
lesser excitatory connectivity from the right-hand mOFC to SPG
in the binge eating group compared to the control group during
the food reward_nogo condition. Empirical studies have shown
that extremes of eating behaviours are strongly linked to an
altered balance of reward reactivity and behavioural control in
both clinical and non-clinical populations.21,23,24,41 Our study
further revealed a directional influence between key nodes in the
binge eating group; in general, the excitatory effect means that the
brain activity of the right-hand mOFC could increase the rate of
change in activity in the right-hand SPG.42 The excitatory effect
of the reward region (mOFC)→inhibitory region (SPG) may

reflect the potential information exchange during inhibition of the
food reward stimuli, in which reward reactivity information in the
mOFC is converted into response inhibition information in the
SPG, successfully exerting executive control. However, the
reduced mOFC→ SPG connectivity strength of individuals with
recurrent binge eating episodes may suggest a decrease in this
bottom-up information exchange ability. This finding offers
unique insights beyond those by existing resting-state fMRI
studies involving subclinical binge eating participants20,21,23 by
revealing the directionality of the dual-system information flow
involved in food reward-based response inhibition in people with
binge eating episodes (for the ‘reward-inhibition-vision triple-
system model’, see the Supplementary Discussion).

At the cross-sectional level, three main mediating results were
obtained. First, the right-hand mOFC–SPG connectivity mediated
the link between trait impulsivity and binge eating behaviour.
This finding is in accordance with the results of a previous
resting-state fMRI study that reported that binge eaters exhibited
a higher level of trait impulsivity and lower functional connectivity
between the right-hand insula and MFG, suggesting that higher
impulsivity is at the root of binge eating and pointing to a possible
disequilibrium between reward sensitivity and cognitive control
processes.12 Our study contributes to the previous literature by
further examining the relationship of impulsivity with reward-
inhibition functional synchrony and binge eating, demonstrating
that trait impulsivity is a strong proximal factor that could
weaken the mOFC–SPG connection and facilitate binge eating
behaviour. Second, the right-hand mOFC–LOC connectivity
mediated the link between depression/anxiety and binge eating
behaviour. Negative emotions such as depression and anxiety
have been associated with binge eating behaviours/symptoms.43,44

Recent review studies have also highlighted that negative affectivity
(e.g. anxiety, depression and stress) are prominent risk factors for
adult BED.6 Therefore, the current result may suggest that func-
tional synergy between reward and visual regions involved in aber-
rant food-cue processing is of great value for explaining the
relationship of negative affect with binge eating behaviour. Third,
the left-hand lingual gyrus→ right LOC connectivity mediated
the association between anxiety and binge eating behaviour. To
date, examinations of task-dependent functional networks that
support the role of cognitive control and reward sensitivity in
binge eating symptomatology have rarely involved subclinical
samples. Clinically, neurofunctional alterations in the primary
visual cortex (such as greater occipital lobe activation, weaker func-
tional connectivity between the right-hand sPar and bilateral lingual
gyrus) have been identified as an aspect of the pathophysiological
mechanism of BED and bulimia nervosa.45,46 Patients with
anxiety disorder also displayed weakened voxel-mirrored homoto-
pic connectivity in the lingual gyrus.47 Given the well-established
association between anxiety and binge eating,6,43 this study
further identified a potential mediating role of the effective connect-
ivity between primary visual processing areas in the link between
anxiety and binge eating behaviour in the general population.
More importantly, our findings expand previous cross-sectional
binge eating studies21,23,24 by revealing a significant predictive
effect of the key dual-system undirectional synchrony (i.e. right-
hand mOFC–SPG connectivity) on binge eating frequency 6
months later, which again supports the crucial role of the underlying
interplay between reward and response inhibition regions in the
onset and maintenance of binge eating.20–22,24,40,41

Based on these findings, Fig. 4 presents a theoretical model of
the neural mechanisms of binge eating from the perspective of the
reward-inhibition dual-system interaction. This model builds on
existing evidence of binge eating symptomatology emphasising
undirectional functional connectivity between reward and
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inhibitory control circuits.23,24,40,41,48 Moreover, it incorporates
directional effective connectivity between key nodes identified in
previous studies20 and in the current study to provide a theoretical
framework for future research. Regarding the dual-system undirec-
tional interaction, we proposed that higher levels of binge eating are
linked with less efficient information exchange between networks
involved in reward sensitivity and executive control (e.g.
mOFC–SPG connection, CAU–IFG connection, CAU–SFG con-
nection, PUT–IFG connection, PUT–SFG connection, NAc–SFG
connection and insula–MFG connection). Potential commonalities
and differences exist in the dual-system directional interaction
pattern at rest and during cognitive tasks. The pattern difference
is reflected in the valence of influences (i.e. mOFC→ SPG inhibitory
or excitatory connection), while the pattern commonality is
reflected in the strength (i.e. the mOFC→ SPG connection strength
decreased in both the resting and task states). These novel findings
provide empirical support for the bipartite interaction model of
dietary decision-making22 through revealing the particularly
important role of the diminished integration between cortical
reward (mOFC) and frontoparietal control (SPG) circuits (i.e. an
imbalance between bottom-up reward sensitivity and top-down
behavioural regulation) in subclinical binge eating behaviour.

Several limitations should be considered in the present research.
One limitation of this study was that our sample had a fairly
restricted age range and the sample size is relatively small, which
may affect the generalisability of the findings. This study used the
EDDS to screen binge eaters, and self-report bias among partici-
pants may have some potential impact on the results. Additional
research should further diagnose individuals with (subthreshold)
BED through the structured clinical interview for DSM-5 and
verify the robustness of the results. Given the limited information
provided by the EDDS in healthy controls, and given that the
small sample size of the binge eating group may weaken the
ability to establish ideal brain–behaviour relationships, the current
study could not provide stable evidence on the direction of the rela-
tionship between connectivity and binge eating within each group
(see Supplementary Table 7). Future studies could investigate
these interesting possibilities by increasing the sample size and
including some additional measurements (e.g. food portion choice
task). An additional limitation is that the number of ROIs in the

ECN and reward network was different in the seed-based functional
connectivity analysis, although we used pre-defined seed regions
based on previous studies.20,37 Future research should improve
this issue, for example by employing independent component
analysis that can determine subject-specific brain networks.49

Lastly, this study provides information on task-evoked alterations
in the dual-system undirectional and directional interaction in
subclinical binge eaters, but may not provide clinical insights
regarding an actual eating disorder. Also, the decrease in binge
episodes at timepoint 2 among binge eaters could in part be
caused by the lack of persistent negative life events and emotions
(e.g. social stress and depression)6 that may maintain or exacerbate
an individual’s level of binge eating. Future prospective cohort
studies involving newly disordered individuals, with longitudinal
follow-ups to determine who goes on to develop binge eating or
BED, will deepen understanding of the full range of neuromarkers
from non-eating disorder to eating disorder conditions.

The prevalence of subclinical binge eating behaviours is particu-
larly high in the general population, possibly increasing the risk for
future development of full-syndrome eating disorders. The present
research establishes an important first step to elucidate whether and
how the dynamic information integration between cortical reward
and frontoparietal control systems contributes to subclinical binge
eating, which advances our understanding of the neural hierarchical
mechanisms of binge eating-associated symptomatology, and may
have implications for the early identification of individuals who
are at heightened risk for problematic eating. This application of
the recently developed DCM-PEB technique to the task-dependent
fMRI data opens a new avenue for characterising the directional
architecture underlying subclinical disordered eating, not only in
clinical patients.32
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